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Abstract. The design and control of swarm robotics systems generally
relies on either a fully self-organizing approach or a completely central-
ized one. Self-organization is leveraged to obtain systems that are scal-
able, flexible and fault-tolerant at the cost of reduced controllability and
performance. Centralized systems, instead, are easier to design and gen-
erally perform better than self-organizing ones but come with the risks
associated with a single point of failure. We investigate a hybrid approach
to the control of robot swarms in which a part of the swarm acts as a
control entity, estimating global information, to influence the remain-
ing robots in the swarm and increase performance. We investigate this
concept by implementing a consensus achievement system tasked with
choosing the best of two resource locations. We show (i) how estimating
and leveraging global information impacts the decision-making process
and (ii) how the proposed hybrid approach improves performance over a
fully self-organizing approach.

1 Introduction

Swarm robotics is a promising approach to the design and control of systems
composed of large numbers of embodied agents [9]. Robot swarms have shown
potential for solving tasks which are deemed too dangerous or too demanding
for humans, such as search and rescue, de-mining, underwater surveillance or
environment patrolling. Inspired by nature [3, 5], robot swarms are generally
designed and controlled through the principles of self-organization with the aim
to obtain systems that are flexible, fault-tolerant and scalable [4, 9]. Typically,
robot swarms do not have a leader, do not use global information, and are highly
redundant thanks to a large number of constituent robots. Robots in a swarm rely
on local sensing and communication to solve the tasks they are given. Having a
large number of robots acting in an unsupervised manner, however, often results
in a system that is hard to control and/or to predict and whose performance can
vary greatly over a same task.

Centralized control, on the opposite, relies on a control entity with access to
global information and with the authority to correct the behavior of the system
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to reach the desired goal. In general, centralized systems are easier to manage and
predict than self-organizing ones and often achieve better performances. Central-
ized approaches to the control of large groups of robots rely on a central entity,
for example to provide the robots with directives regarding the task to execute,
the motions required, or information about the position of objects of interest
in the environment [15, 17, 40]. While centralized control provides us with more
manageability over the system, as well as a more stable and trusted performance,
the presence of a centralized entity in charge of controlling the functioning of the
whole system reduces parallelism and scalability and introduces a single point
of failure.

In this paper we investigate a different approach to the control of a robot
swarm that we refer to as Swarm Hybrid Control System (SHCS). SHCS com-
bines localized elements of centralized control with self-organizing behaviors per-
formed by the remaining elements of the system with the aim to obtain the best
of both design approaches. In our approach, the control authority is not an entity
external to the swarm; rather, it consists of a group of robots of the swarm which
cooperate in a self-organizing way to provide services akin to those of a central
authority. In this way, we are able to exploit the advantages associated to a cen-
tral authority without introducing a single point of failure into the system. The
control entity is thus a formation of robots, created through a self-organizing
process, that exchanges information locally to obtain an estimate of the global
state of the system and that uses this information to influence the future be-
havior of the swarm. We investigate this idea by implementing a SHCS for a
problem of consensus achievement.

Consensus achievement is a common problem that robot swarms are required
to solve in many different application scenarios (e.g., to choose which area to
explore in a de-mining scenario or which target requires the most attention
in a search and rescue situation). Also known as the best-of-n problem [38], it
requires the swarm to choose the best option over a set of n available possibilities
which (generally) differ in their quality and cost. The problem of consensus
achievement for a robot swarm has been studied in many different application
scenarios and modeled with a variety of mathematical tools (e.g., ODE [19],
chemical master equations [39]). Additionally, various decision-making strategies
have been proposed to address this problem, most of which take inspiration
from nature [30]. We consider a binary resource-selection scenario, in which
the swarm is foraging between a central location (the nest) and two locations
(sources) containing resources that have the same quality but different costs in
terms of time necessary to collect/extract them. That is, the cost of a resource
location corresponds to the time required by a robot to collect resources from
that specific location. For example, robots might be collecting minerals buried
underground and the cost may represent how deep the robot needs to dig to reach
the minerals. The scenario we have chosen is a binary consensus achievement
problem with indirect modulation of robots opinions resulting from the different
cost associated to each resource location [35], in which robots alternate between
foraging from their preferred source and disseminating their preference in the
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nest. Before returning to forage, robots pool the opinions of their neighbors and
apply a decision rule (either the majority rule or the voter model) to decide
whether or not to change their current preference.1

A well-mixed state of robots’ opinions is generally assumed to be one of
the condition necessary to address distributed decision-making problems [24].
Well-mixed systems are systems in which each robot in the swarm has the same
probability to interact with any other robot in the swarm. The necessity for the
robots to be well-mixed when disseminating is due to their limited interaction
range which limits the information they can perceive about the opinions of other
robots. Poor mixing of robots’ opinions may result in the fragmentation of the
system in parties with contrasting opinions and prevent the achievement of con-
sensus. While robots, when disseminating their opinion, are usually programmed
to move randomly in the environment for an amount of time sufficiently long to
properly mix inside the swarm [39], random motion does not guarantee that the
resulting system will be well-mixed. Moreover, increasing the amount of time
that the robots spend disseminating (and thus mixing) their opinions increases
the overall duration of the decision-making process as well. In our implementa-
tion, the SHCS collects information about the opinions in the swarm through
local interactions, and merges them in order to obtain an estimate of the global
state of the system in the form of a database of robot opinions. By giving the
rest of the swarm access to this information, the SHCS tries to approximate the
information that robots would have access to in a well-mixed system. We show
the potential of this idea by comparing the SHCS with a fully self-organizing
approach over the same task.

The remaining of this paper is organized as follows. In Section 2, we discuss
related work. In Section 3, we describe the chosen decision-making scenario and
the controllers of the robots for both the self-organizing approach and the SHCS
one. In Section 4, we present the results of our experiments performed in simula-
tion. In Section 5, we discuss the effect of the SHCS based on our experimental
results. Finally, in Section 6 we draw our conclusions and discuss our future
directions of research.

2 Related Work

2.1 Control of Robot Swarms

Brambilla et al. [4] reviewed the literature of swarm robotics focusing on self-
organizing approaches and proposed a taxonomy summarizing different design
and analysis methodologies adopted in the field. Most of these design methods
are bottom-up approaches in which the controller of each single robot is iter-
atively refined in order to obtain a desired behavior of the swarm as a whole.
Recently, different design methods have been proposed to automatically derive
the robot controllers for a given task. Trianni et al. [34] use a generational evolu-
tionary algorithm to evolve robot controllers for a clustering behavior. Francesca

1 In the paper we use the terms ‘robot opinion’ and ‘robot preference’ interchangeably
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et al. [11] proposed AutoMoDe, an approach to automatically generate modular
control software in the form of probabilistic finite state machines, starting from
a set of predefined atomic behaviors and conditional state transitions through
an optimization process. Bottom-up approaches have been used to program a
number of different robot swarm behaviors: pattern formation behaviors, aimed
at distributing the swarm in space according to desired properties [21–23, 31, 32];
navigation behaviors, aimed at coordinating the movement of the swarm in the
environment [10]; and collective decision-making behaviors, in which the swarm
has to take a decision about how to distribute its components (i.e., the robots)
among different tasks [6] or which option to unanimously choose [30].

Centralized methods for the control of multi robot systems have also been
proposed, in particular for navigation problems, such as deployment of robots
in cooperative surveillance [33], target tracking [14], path planning [1, 28], or
formation control [8]. The purpose of central control can vary between different
tasks, but generally it includes calculating the motion plans for the single robots,
allowing the robots to localize themselves by sensing and providing global infor-
mation, or simply providing updated mission goals [41]. Some approaches can be
found in which a distributed swarm behavior also relies on an external control
entity to initiate or correct its functioning, such as in the work of Berman et
al. [2], where a central unit broadcasts updated transition parameters for task
allocation.

One notable exception to the above-mentioned approaches where the control
is either fully self-organizing or centralized, is the recent work by Mathews et
al. [18]. In this work, robots in a swarm are able to physically merge into a
single entity, named a ‘mergeable nervous system robot’ (MNS-robot for short),
comprising one single brain robot which acts as central controller for the robot
aggregate. While both our work and the one of Mathews et al. share the idea of
a centralized form of control internal to the swarm, the MNS aims at obtaining
swarms able to morphologically adapt to the task of interest, while our focus is
on designing a swarm able to monitor and influence its own behavior so as to
increase its performance.

2.2 Consensus Achievement

Consensus achievement is one of the two branches of collective decision-making,
the other being task allocation [4], and refers to the problem of having a robot
swarm select a single option among different alternatives to maximizes the ben-
efits of the swarm [35]. Many scenarios have been proposed by the community,
mostly inspired by biological systems such as ants choosing the shortest path
connecting a pair of locations [7], or honeybees collectively selecting the best
site for relocation of the swarm [25]. Montes de Oca et al. [19] proposed a col-
lective decision-making strategy based on the majority rule and the concept
of latent voters (i.e. after updating their opinions, agents do not take part in
the decision making process for a stochastic amount of time) first described by
Lambiotte et al. [16]. We utilize a similar concept in our scenario: after updating
their opinion, agents enter a latent phase during which first they forage from the
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source indicated by their opinion and then disseminate their opinion to other
robots. Valentini et al. [38] reviewed the best-of-n problem for robot swarms
in all of its variations, proposing two taxonomies to classify the literature, one
based on the relation between cost and quality of each option, and one based on
the design approaches. Despite the variety of methods proposed for consensus
achievement problems in robot swarms [12, 13, 29], to our knowledge, our work
is the first one that proposes to use an emerging control entity to estimate and
leverage global information to influence the collective decision-making process.

3 Methods

3.1 Experimental Setup

We consider a binary resource selection problem for a robot swarm performing
a foraging task. We define an environment consisting of an arena of size 200 ×
100 cm2 divided into three areas: a nest (80× 100 cm2) positioned in the center
of the arena, and two resource locations (60× 100 cm2 each) on each side of the
nest. These locations, called source A and source B, have different costs σA and
σB , with σA < σB in our experiments. The cost of a resource location reflects
the time required to collect resources from that source, representing features
such as how deep a robot would have to dig for minerals, or how far the source
is from the central nest. Two light sources are positioned on one side of the
arena in order to provide the robots with a light gradient and to enable them to
navigate the environment. The robots are initially placed in the nest and have
an initial opinion for a preferred source when the experiment starts. Initially,
robots in the swarm are equally split among the two options. Robots perform
the foraging task by collecting resources from their currently preferred source,
and then returning to the nest. Robots in the nest can change their opinion based
on the opinions of neighboring robots by applying a decision mechanism. The
goal of the swarm is to achieve consensus on the best source (which is always
source A in our experiments).

We implemented this scenario using the ARGoS3 simulator [27] and the
ARGoS3 Kilobot plug-in [26]. Figure 1a shows a view of the environment and of
the swarm of Kilobots implemented inside the simulation, where source A and
source B are represented, respectively, by the blue and red areas. The Kilobot [31]
is a low cost and small size (3.3 cm diameter) autonomous robot. It is able to
communicate with other Kilobots at a distance of up to 10 cm via infrared
communication, to sense ambient light, and to move by means of 2 vibrating
motors and 3 rigid legs. By means of an ARGoS loop function, we provide the
Kilobots with the ability to detect whether or not they are in close proximity of
a wall, in which area of the environment they currently are (i.e., nest, source A,
source B), and, in case they are in one of the two sources, the source quality.

3.2 Self-Organizing Behavior

We implement the self-organizing behavior with indirect modulation of the latent
phase in the decision-making process [35]. In this phase the robots alternate
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between dissemination and exploration. During the exploration phase, robots
forage from their preferred resource location for a time drawn from a normal
distribution with mean g · σi and standard deviation g/10, where σA = 1 and
σB > 1 are the costs, respectively, of source A and source B. In the dissemination
phase, robots broadcast their current opinion inside the nest and listen to the
opinions of neighboring robots for a time drawn from an exponential distribution
with mean q; differently from the exploration time, the dissemination time is not
modulated. At the end of the dissemination phase, the robots apply a decision
rule on a set of opinions containing the last G opinions received from their
neighbors with the aim to decide whether or not to switch their current opinion.
After that, robots enter the exploration phase. We implemented two decision
rules: the voter model, where a robot changes its opinion to the one of a randomly
selected neighbor, and the majority rule, where a robot selects its opinion to be
the one of the majority of its neighbors.

During both the dissemination and the exploration phases, robots move ran-
domly, by alternating periods of straight motion with periods of rotating motion.
Forward motion lasts for an amount of time drawn from a normal distribution
with mean 20 s and standard deviation 5 s while the rotation motion lasts for an
amount of time drawn from a normal distribution with mean 3 s and standard
deviation 0.5 s. Additionally, when robots move closer than 5 cm to the edges of
the arena, they perform wall avoidance by turning on the spot in a random direc-
tion and then moving forward. Between dissemination and exploration, robots
have to move from the nest to the foraging sites and vice-versa. To do so, robots
perform a gradient-following routine, by sensing the light intensity received from
the light sources. Robots following the light gradient move forward while keep-
ing track of the minimum and maximum light intensities sampled in intervals of
5 s. If a robot detects that it is not following the light gradient in the desired
direction, it turns on the spot (using the same parameters as the random walk
rotation) and then moves forward again, until it finds the correct direction of
motion. Robots always show their current opinion by switching their on-board
LED to the color of their preferred source.

Because of the shorter time required to forage from the source with lower cost,
robots foraging from the best source will return to the nest more frequently and
have more chances to disseminate their opinion in the nest: this results in a
higher chance for their opinion to be observed from other robots as they apply
the decision rule which biases the swarm towards consensus for the best option.
The swarm is thus able to slowly achieve consensus on the best source as robots
repeat the exploration-dissemination-decision rule cycle. In the following, we will
refer to robots performing the behavior described in this section as SO robots.

3.3 SHCS implementation

In our hybrid implementation, we introduce a second behavior in addition to
the self-organizing one described in the previous section. Robots of the swarm
can be either part of the control entity (SHCS robots) or be SO robots. More-
over, robots can switch between these two modalities. At the beginning of the
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(a) (b)

Fig. 1. View of the environment and Kilobot swarm implemented with the ARGoS3
simulator (a) and of the SHCS during a simulated experiment (b). The shaded area
shows the communication range of the SHCS considered as a whole. SHCS robots show
their LED in green (seed robot) or white (remaining SHCS robots); robots showing
blue and red LEDs are SO robots, with the color representing their current opinion.

experiment, the swarm allocates its workforce between SHCS robots and SO
robots. To do so, the robots select a seed robot around which they start an ag-
gregation process to form the SHCS entity. The seed robot is selected through a
self-exclusion process starting with a connected swarm2 placed in the nest. The
connectivity requirement strongly reduces the probability of selecting multiple
robot seeds. Each robot spends the first 10 s of the experiment turning on the
spot and sampling light values. Then, for the next 10 s, robots broadcast the
minimum and maximum light measurement perceived in the swarm, initially
set to their own perceived value and later updated according to the received
messages. Additionally, robots also broadcast a randomly generated number be-
tween 0 and 255. Robots who find themselves outside of a 10% range from the
mean value of the light perceived by the swarm (based on information received
from neighbors) exclude themselves from the selection process and become SO
robots. The purpose of this initial procedure is to obtain a selection of candidate
seed robots that is positioned at an intermediate distance from the light source.
Then, these candidate seed robots compare their own randomly generated num-
ber with those received from their neighbors and, if they receive a lower value,
they exclude themselves from the process and become SO robots. After an addi-
tional 10 s, all remaining robots in the process become SHCS robots. The aim of
this final part of the procedure is to maximize the probability to select a single
seed robot. The total procedure to select the seed robot requires abound 30 s.

SHCS robots, initially represented by the sole seed robot selected with the
above procedure, maintain a representation of their position h inside the ag-
gregate in a manner similar to that of Nagpal et al. [20], and share this value
with their neighbors as part of a heartbeat protocol. The seed robot has a po-
sition h = 0. All other SHCS robots in the aggregate set their position h to

2 A swarm is connected if a path of communicating robots can be found between any
two robots in the swarm



8 M. Trabattoni et al.

h = h
′

min + 1 where h
′

min is the minimum position received from neighboring
SHCS robots. In our experiments, we limit the size of the SHCS aggregate by
imposing a maximum position h = 3, that is, 3 levels of SHCS robots sur-
rounding the seed robot. SO robots that perceive SHCS robots join the SHCS
aggregate with probability p = 0.1

h+1 if h ∈ {0, 1, 2}, where h is the position
of the SHCS robot broadcasting the message. If the perceived position of the
SHCS robot broadcasting the message is h = 3, SO robots do not join the aggre-
gate. Once joined the SHCS aggregate, robots estimate their distance from neigh-
boring SHCS robots by measuring the intensity of the infrared signal of received
messages. If a SHCS robot with position h is too close (i.e., distance < 40 mm)
or too far (i.e., distance > 70 mm) from his neighbors at position h

′
= h−1, the

SHCS robot will try to reposition itself at a favorable distance by moving in a
random direction while it does not move otherwise. SHCS robots may lose con-
nectivity from the aggregate during repositioning or due to collisions with other
robots. If an SHCS robot loses connectivity for more than 10 s, it becomes an
SO robot. This process allows the SHCS aggregate to initially form around the
seed robot in a distributed manner and to maintain a stable dimension robust
to connectivity failures. Figure 1b shows a top-view of the SHCS aggregate and
its communication range during a simulated experiment.

SHCS robots continuously broadcast a heartbeat message with the aim (i) to
maintain a database of the last 30 source preferences received from SO robots
and (ii) to use this database to influence the preference of SO robots. A heartbeat
message is composed of the id of the sending SHCS robot, its position h, a robot
preference taken from its database, and a decision-making outcome. Whenever
an SHCS robot receives a new opinion, either from a heartbeat message or from
an SO robot, it adds the received opinion to its database (in a first-in first-out
manner) and sets this opinion as the robot preference to share in the heartbeat
message. SHCS robots generate a new decision-making outcome each time they
send a new heartbeat; to do so, they use either the majority rule or the voter
model applied to a set of G preferences randomly selected from their database.

SO robots behave as described in Section 2.2 except when receiving a heart-
beat message. In this case, if a SO robot is in the dissemination phase, it im-
mediately changes its opinion to match that contained in the decision-making
outcome of the heartbeat message, terminates the dissemination phase, and re-
turns to the foraging task. This mechanism improves the efficiency of the swarm
as SO robots spend more time foraging and less time disseminating their opin-
ions.

4 Experiments

We perform a series of simulation experiments to compare the hybrid control
system (SHCS) approach with the fully self-organizing (SO) approach. In our
experiments, we keep the cost of source A constant to σA = 1 and vary the cost
of source B in {1.11, 1.25, 1.43, 1.67, 2}. We use a swarm of 100 robots of which
50 have initial opinion A and 50 have initial opinion B. The mean duration of the
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Fig. 2. Simulation results with SHCS, 100 SO robots, and 70 SO robots for varying σB :
exit probability (a) and consensus time (b) for the voter model; exit probability (c) and
consensus time (d) for the majority rule. Results obtained running 1000 simulations
for each tested condition.

dissemination and exploration phases is set, respectively, to q = 300 s and g =
600 s. We test two decision rules, the majority rule and the voter model, with a
group size of G = 3 preferences. We perform 1000 simulation runs for each value
of σB for both the SO approach and the SHCS one. We consider two metrics: exit
probability, computed as the proportion of simulations converging to a consensus
for source A, and the mean consensus time, computed over all simulations. Since
the average SHCS size during experiments was approximately 30 robots, we
performed an additional set of experiments implementing the SO approach with
a swarm of 100 − 30 = 70 robots, in order to compare the performance of
the SHCS with the SO approach over a similar number of SO robots actively
pursuing the foraging task.

Figure 2 shows the exit probability and mean consensus time obtained with
the three implementations (SHCS for a swarm of 100 robots, 100 SO robots, 70
SO robots) for the two tested decision rules: voter model and majority rule.

Figure 2a shows the exit probability for the voter model. The SHCS im-
plementation maintains a value above 0.95 for all of the considered values of
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σB while the SO implementations are considerably worse. The accuracy for all
the three systems increases as the cost of source B increases. This is because
the decision-making problem becomes simpler as the difference in cost between
source A and source B increases. The SHCS implementation performs similarly
for the majority rule (Figure 2c), where its exit probability maintains values
around 0.9 even at lower values of σB ; the performances of the SO swarms in-
stead are significantly worse. The 70 SO robot swarm has lower exit probability
than the 100 SO robot swarm, and both of them are outperformed by the SHCS
approach for all of the considered cases. Overall, the majority rule when com-
pared to the voter model obtains a higher exit probability for the easier cases
and a lower exit probability for the more difficult ones, in agreement with what
reported in previous works [39].

Figure 2b shows the consensus time for the voter model. The SHCS shows
significantly (p < .001, Wilcoxon rank-sum test) lower consensus times than both
SO implementations. The 70 SO robots swarm shows lower consensus times than
the 100 SO robots one, again coherently with previous literature work. Figure 2d
shows the consensus time for the majority rule. The SHCS implementation re-
sults faster than both SO implementations for lower difficulties; however, the 70
SO robots swarm shows similar (even though statistically different, p < .001,
Wilcoxon rank-sum test) consensus time at higher difficulties. The consensus
time for all the three implementation slowly decreases as the cost σB increases,
for both decision rules. Overall, the majority rule shows a significantly (p < .001,
Wilcoxon rank-sum test) lower consensus time than the voter model, resulting
in a speed vs accuracy trade-off between the two decision rules [37].

5 Discussion

The results of our experiments show the potential of the SHCS approach which
is able to improve the performance of a fully self-organizing robot swarm in a
collective decision-making problem. The SHCS approach leverages information
regarding the global state of the opinions in the swarm to influence the individual
decisions of SO robots. This results in a higher accuracy of the swarm in terms
of the probability to choose the best resource location compared to the accuracy
of the SO swarm (Figure 2a and 2c). Additionally, the SHCS speeds up the
decision-making process by allowing robots to terminate the dissemination phase
as soon as they get in contact with the SHCS aggregate, since the dissemination
of their opinion is performed by the SHCS. The faster convergence to a collective
decision shown in Figure 2b and 2d derives from a combination of the shorter
dissemination phase and the more accurate information provided by the SHCS
robots. In future work, we intend to investigate the extent of the contribution
of each of the two mechanisms.

One may conjecture that the difference in performance between the SHCS
approach and the fully SO approach is due to the fact that the SHCS swarm is
actually relying on a smaller swarm size to actively perform the decision-making
task. In our experiments, we measured an average of 30 robots composing the
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SHCS aggregate, leaving 70 SO robots to perform the self-organizing behavior.
However, the results obtained with a swarm of 70 SO robots are significantly
different and of lower quality than those obtained with the SHCS approach.
These results rule out the above conjecture that the difference in number of
SO robots is responsible for the different performances between the SHCS and
the SO approach.

It should be noted that in our experiments we use constant probabilities for
SO robots to join the SHCS and limit the SHCS to three levels, preventing the
SHCS from extending to the entire swarm. However, it would be interesting
to extend this approach to include perceived features in the environment, for
example by changing the probabilities with which SO robots join the SHCS
depending on ambient light values, in order to obtain a more dynamic system.

6 Conclusions and Future Works

In this paper, we proposed a new control strategy for a robot swarm based on a
combination of centralized information and self-organized behaviors. We called
this control strategy Swarm Hybrid Control System (SHCS) and we investigated
this idea with a preliminary implementation of the SHCS approach for a problem
of consensus achievement in a binary resource-selection scenario. Our system is
characterized by a control entity, having the form of an aggregate of SHCS robots
and arising through a self-organizing process, with the purpose to estimate in-
formation about the global state of the swarm and to use this information to
influence the collective decision-making process. We have shown how, for both
the majority rule and the voter model, our system is able to outperform the fully
self-organizing approach by achieving a shorter consensus time while providing
higher accuracy of the collective decision in terms of exit probability. In the near
future, we plan to implement the consensus achievement scenario presented in
this paper on a real swarm of 100 Kilobots by leveraging the potential of a 2 m2

Kilogrid system [36].
As future work, we are interested in investigating how the proportion of

SHCS robots, the shape of the SHCS or the usage of multiple smaller SHCS each
controlling a portion of the swarm can impact the performance of the system,
as well as how our control approach can be applied to different scenarios, such
as task allocation and pattern formation. We also intend to investigate whether
automatic design techniques can be used to generate the controllers for the robots
of our hybrid swarm.
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7. Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S.,
Dorigo, M.: Artificial pheromone for path selection by a foraging swarm of robots.
Biological Cybernetics 103(5), 339–352 (2010)

8. De La Cruz, C., Carelli, R.: Dynamic modeling and centralized formation con-
trol of mobile robots. In: IEEE Industrial Electronics, IECON 2006-32nd Annual
Conference on. pp. 3880–3885. IEEE (2006)

9. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

10. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-
organized flocking with a mobile robot swarm: a novel motion control method.
Adaptive Behavior 20(6), 460–477 (2012)

11. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
A novel approach to the automatic design of control software for robot swarms.
Swarm Intelligence 8(2), 89–112 (2014)

12. Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., Birattari, M.: Analysing an
evolved robotic behaviour using a biological model of collegial decision making. In:
Ziemke, T., Balkenius, C., Hallam, J. (eds.) From Animals to Animats 12, LNCS,
vol. 7426, pp. 381–390. Springer (2012)
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34. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation
behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dit-
trich, P., Kim, J.T. (eds.) Advances in Artificial Life, LNCS, vol. 2801, pp. 865–874.
Springer (2003)

35. Valentini, G.: Achieving Consensus in Robot Swarms: Design and Analysis of
Strategies for the best-of-n Problem. Springer International Publishing, Cham,
Switzerland (2017)

36. Valentini, G., Antoun, A., Trabattoni, M., Wiandt, B., Tamura, Y., Hocquard, E.,
Trianni, V., Dorigo, M.: Kilogrid: a novel experimental environment for the kilobot
robot. Swarm Intelligence (2018)

37. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of
environmental features in a robot swarm. In: Dorigo, M., Birattari, M., Li, X.,
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