
Automatic design of robot swarms that perform composite missions:
an approach based on inverse reinforcement learning

Jeanne Szpirer, David Garzón Ramos, and Mauro Birattari

Abstract— We investigate the automatic design of robot
swarms that perform composite missions—that is, missions
specified as the composition of consecutive sub-missions. Au-
tomatic design through performance optimization has become
a viable and appealing approach to designing robot swarms.
First, a user defines a mission by specifying a performance
measure: a function indicating to what extent the swarm
has attained its goal. An optimization process then generates
suitable control software for the robots by maximizing the
performance measure. The definition of a performance measure
is a challenging task that requires expert input, which hinders
the automatic nature of the approach. Recently, inverse rein-
forcement learning was introduced to minimize the need for
human intervention in the automatic design of robot swarms.
However, this method was only applied to single-objective
missions. In this paper, we extend the method to address
composite missions, by formulating and solving the design
problem as a multi-objective optimization problem. We conduct
simulations with a swarm of twenty e-puck robots that perform
twelve composite missions. We compare the performance of the
swarm when the robots operate with control software produced
manually or using inverse reinforcement learning.

I. INTRODUCTION

Swarm robotics [1]–[3] has gained notable attention in the
past decade [4]–[12]. However, designing robot swarms is
still a major challenge [13]: no generally applicable method
exists to generate the control software of individual robots
so that they can collectively perform a given mission [14]–
[16]. A promising approach to address this issue is automatic
design [17]–[28]. In automatic design, the control software
is generated via an optimization-based process [29]. This
process is typically driven by a mission-specific performance
measure—i.e., an objective function—provided as part of the
mission specification. During the design process, an opti-
mization algorithm searches the space of possible instances
of control software to find one that maximizes the perfor-
mance of the swarm—according to the mission specification.
No human intervention is required in the realization of robot
swarms, except for the definition of the mission specification,
including the performance measure. The problem is that
formulating a performance measure that properly specifies

The authors are with IRIDIA, Université libre de Bruxelles, Brus-
sels, Belgium. {jeanne.szpirer, david.garzon.ramos,
mauro.birattari}@ulb.be.

The project has received funding from Belgium’s Wallonia-Brussels
Federation through a ARC Advanced Project 2020 (Guaranteed by Op-
timization). DGR acknowledges support from the Colombian Ministry of
Science, Technology and Innovation – Minciencias; and JS and MB from
the Belgian Fonds de la Recherche Scientifique–FNRS.

The experiments were designed by JS and DGR, and performed by JS.
The paper was drafted by JS and revised by JS, DGR, and MB. The research
was directed by MB.

the desired behavior of a swarm is a non-trivial task that
requires the attention of an expert [30], [31].

We contend that automatic design must advance towards
methods that operate over a more natural and intuitive form
of mission specification—e.g., simplified language [32] or
behavior demonstrations [33], [34]. This is a necessary step
to achieve truly automatic design processes that allow for the
design and deployment of robot swarms without requiring
technical expertise [21].

The challenge of formulating appropriate performance
measures has emerged also within the reinforcement learning
literature, particularly in the context of developing a suitable
reward function that facilitates the learning of an optimal
policy [35]. Inverse reinforcement learning was conceived
to tackle this problem [36]. Instead of manually crafting
a reward function, inverse reinforcement learning methods
automatically generate a reward function from a user’s
demonstrations. The reward function and the policy are
learned simultaneously in an iterative process. This approach
is advantageous because demonstrating desired behaviors is
typically easier, more natural, and intuitive, than crafting a
corresponding reward function [37], [38]. These advantages
recently motivated the adoption of inverse reinforcement
learning in the automatic design of robot swarms [33], [34].

In this paper, we use inverse reinforcement learning to
automatically design robot swarms that perform composite
missions. The composite missions are specified by two sub-
missions that must be performed one after the other. A cue in
the environment signals to the swarm which sub-mission to
perform at every moment. The two sub-missions are specified
via demonstrations of the desired spatial organization that
the swarm must achieve. The challenges of addressing this
design problem are (i) to identify relevant features that
characterize the sub-missions using only demonstrations and
(ii) to concurrently consider two sub-missions in the design
of a single instance of control software.

In our study, we consider two design approaches with
different degrees of human intervention: a multi-objective
approach (DemoTuttiFrutti-MO) and a two single-objective
one (DemoTuttiFrutti-2SO). For simplicity, we will refer
to these methods as DTF-MO and DTF-2SO, respectively,
throughout the paper. In DTF-MO, the sub-missions are
addressed concurrently and the design process generates a
single instance of control software from the demonstrations,
without any human intervention. In DTF-2SO, the sub-
missions are addressed independently and the design process
generates two instances of control software—one for each
demonstrated sub-mission. Then, we manually hard code a



transition rule that allows the robots to switch from one sub-
mission to the other [39]. We compare the results of these
two approaches with those obtained by applying a baseline—
control software produced completely by hand.

We report qualitative and quantitative results of experi-
ments conducted with a swarm of twenty e-puck robots [40]
in ARGoS3 [41]—a realistic physics-based swarm robotics
simulator that proved to be able to produce control software
that transfers effectively to the real robots [12], [42]–[44].
For most missions, DTF-2SO and/or DTF-MO performed
better than the manual baseline, with DTF-2SO often per-
forming better than DTF-MO. In DTF-MO, the design process
was able to generate tailored transition rules that allowed the
swarm to switch from one behavior to the other. In particular,
it found strategies that exploit the communication capabilities
of the robots to coordinate the transition. However, this fully
automatic approach considerably increased the size of the
search space with respect to the semi-automatic one, which
ultimately hindered its relative performance. The experiments
we conducted allowed us to identify the reasons behind this
performance difference and to outline steps to overcome this
challenge in future research.

II. RELATED WORK

In swarm robotics, inverse reinforcement learning was
first applied by Šošic et al. [33]. They presented a scalable
solution to learning a local reward function that explains
and reproduces the desired global behavior of a swarm. In
their paper, Šošic et al. designed collective behaviors for a
swarm of particles that perform collective motion and align-
ment. More recently, Gharbi et al. [34] built on these ideas
and applied inverse reinforcement learning to the automatic
design of control software for a swarm of twenty e-puck
robots. They introduced Demo-Cho: a method to realize
robot swarms starting from user demonstrations. Demo-Cho
is the combination of Chocolate [25]—a modular method
to automatically design robot swarms—and apprenticeship
learning [36]—an implementation of the inverse reinforce-
ment learning approach. In their paper, Gharbi et al. focused
on proving the general applicability of inverse reinforcement
learning to automatically designing robot swarms in several
missions. The authors restricted their study to missions
aimed at achieving a single desired behavior [11]. Like in
Šošic’s work, Gharbi et al. conducted experiments with a
swarm that must achieve a desired spatial organization in
its environment. For a recent review on robot learning for
swarm robotics, see [45].

Little research exists on how to automatically design robot
swarms that must perform composite missions, transitioning
from one sub-mission to another. Previous related stud-
ies [46]–[48] assumed that the sub-missions are learned sepa-
rately, and the transitions and/or order are known beforehand.
Notably, Duarte et al. [39] evolved individual neural network-
based controllers to achieve desired behaviors. Subsequently,
they combined these to generate control software capable of
addressing composite missions. On the other hand, Garattoni
and Birattari [6] presented a swarm that is able to collectively

sequence sub-missions at run time, without the need to know
a priori the order in which they should be executed. However,
the behaviors needed to perform the sub-missions were hard-
coded in advance.

Designing robot swarms that perform composite missions
is more complex than designing them to perform a single
mission at a time. A user must produce control software
that performs well in all the specified sub-missions, while
enabling efficient transitions from one to another [19], [49],
[50]. In its own nature, this is a multi-criteria design prob-
lem [51]. Šošic’s and Gharbi’s approaches cannot be directly
applied to problems that belong into a multi-criteria design
framework. The methods they conceived do not provide
the means for (i) specifying various missions altogether
and (ii) conducting the required multi-criteria optimization
process. In our research, we address these two limitations
and investigate how to address composite missions in an
automatic and integrated way. By doing so, we advance
the automatic design of robot swarms towards missions
of growing complexity, while simultaneously reducing the
technical expertise required to realize them.

III. DESIGNING ROBOT SWARMS THAT
PERFORM COMPOSITE MISSIONS

The approaches we propose—DTF-MO and DTF-2SO—
belong in the automatic modular design of robot swarms
(AutoMoDe) [28]. They produce control software for the
robots by selecting, fine-tuning, and combining pre-defined
software modules into a modular control architecture. These
two automatic approaches are characterized by three ele-
ments: (i) the robot platform and control architecture on
which they operate; (ii) the inverse reinforcement learning
algorithm that learns an objective function on the basis of
the given demonstrations; and (iii) an optimization process
that produces control software by maximizing the learned
objective function(s).

A. Robot and control architecture

DTF-MO and DTF-2SO produce control software for the
e-puck robot [40] in the form of probabilistic fine-state ma-
chines. We consider e-puck robots whose functional capabili-
ties are formally defined by the reference model RM 3 [52]—
see Fig. 1. A reference model defines the relationship be-
tween the control inputs and outputs, and the robot hardware.
The e-pucks we consider are endowed with proximity and
ground sensors, a range-and-bearing module, a Linux exten-
sion board, an omnidirectional camera, two wheels, and RGB
LEDs. Due to space limitation, we refer the reader to [53] for
details on the robots’ hardware. In DTF-MO and DTF-2SO,
we adopted the control architecture and pre-defined software
modules introduced with AutoMoDe-TuttiFrutti [26].
AutoMoDe-TuttiFrutti generates control software that
allows robots to interact with their peers and environment via
color signals. We selected this method because it allowed us
to conceive composite missions in which a cue—specifically,
a color displayed by the walls enclosing the arena in which
the robots operate—is available to inform the robots that



Fig. 1. The e-puck robot and its reference model RM3.

they should transition from one sub-mission to the other.
For a detailed description of AutoMoDe-TuttiFrutti,
we refer the reader to the original work in which it was
introduced [26].

B. Learning the objective function from demonstrations

Like Demo-Cho, DTF-MO and DTF-2SO are based on
the algorithm known as apprenticeship learning via inverse
reinforcement learning [38] where the learning is done in a
particular Markov decision process.

A conventional Markov decision process (MDP) is defined
by the tuple (S,A, T, γ,D,R∗), where S is a finite set of
states; A is a set of actions; T = {Psa} is a set of state-
transition probabilities; γ ∈ [0, 1) is a discount factor; D
is the initial-state distribution, from which the state s0 is
drawn; and R∗ : S → R is the reward function. In this
formalism, it is assumed that the reward function R∗ is
known and can be used to find an optimal policy. On the other
hand, in inverse reinforcement learning, the reward function
R∗ is unknown and an approximation R should be learned
from expert demonstrations. The “true” reward function R∗

is assumed to exist and be such that the policy π∗ that is
optimal with respect to it is the one that would generate the
demonstrations provided by the expert.

In apprenticeship learning via inverse reinforcement learn-
ing [38] it is assumed that R∗ can be expressed as a linear
combination of k features ϕ(s): R∗(s) = w∗ · ϕ(s), where
w∗ ∈ Rk. The features map the state into a k-dimensional
vector: ϕ : S → [0, 1]k, where S is the set of states and k is
the number of features. For every policy π, the expected
discounted accumulated feature value vector is µ(π) =
E [

∑∞
t=0 γ

tϕ(st)|π] ∈ Rk. The value of µ for the optimal
policy π∗—i.e., the one demonstrated by the expert—is
µ∗ = µ(π∗) and is computed using the demonstrations
provided. The vector w describing the reward function is
iteratively computed via a support vector machine: it is the
normal vector of the hyperplane that separates µ∗ and the
vectors µ obtained in the previous iterations. On the basis
of the resulting reward Rw(s) = w · ϕ(s), the policy πw is
computed through the optimization process and evaluated.
As a result a new value µ(πw) is obtained and included in
the set of previous µ vectors. By iterating the process, the
vector w converges to w∗, and the policy πw to π∗.

In DTF-MO and DTF-2SO, the user is required to provide

demonstrations for each sub-mission in the composite mis-
sion, which specifically indicate the robots’ positions and
exemplify the desired spatial distribution of the swarm in
the environment. For the apprenticeship learning algorithm,
the position of the robots—i.e., swarm state—is mapped to
a mission-independent feature vector ϕ(s) ∈ [0, 1]k. This
feature vector encapsulates the spatial distribution of the
swarm—inter-robot distances—and the location of the swarm
in the arena—landmarks-robots distances. It is important to
stress here that the feature vector, defined once, depends only
on the environment, and not on the mission to perform.

DTF-MO and DTF-2SO apply mapping transformations,
which are similar to those of Demo-Cho, to convert the
positions of the robots into features describing the spatial
relationships between robots and with their environment. In
our experimental setup, the twenty e-pucks operate in an
arena that comprises three landmarks—see Section IV. The
mapping results into 60 features that describe the distance
between each robot and the three landmarks, and 20 features
that describe the distance between each robot and its closest
peer. The features related to landmarks are calculated as
follows:

ϕrl =

{
1, if robot r is inside landmark l;
10−

2
dDrl , otherwise.

(1)

Here, d is the diameter of the arena and Drl is the distance
from robot r = 1, . . . , n to landmark l = 1, . . . ,m, where
n and m are the number of robots and the number of
landmarks, respectively. For each landmark, r = 1 is the
closest robot to the landmark itself and r = 20 the farthest
one.

The features related to distance between robots are calcu-
lated as follows:

ϕr = 10−
2
dDr , (2)

where Dr is distance between robot r = 1, . . . , n and its
closest peer, and n is the number of robots. Here, r = 1 is
the robot whose distance to its closest peer is the shortest;
and r = 20, the one whose distance to its closest peer is
the longest. Swarm robots are interchangeable, with mapping
based on relative positions. The feature vector, ϕ(s) =
(ϕ11, . . . , ϕ1m, . . . , ϕn1, . . . , ϕnm, ϕ1, . . . , ϕn), describes the
swarm’s spatial configuration, regardless of individual iden-
tities.

In Demo-Cho, the apprenticeship learning algorithm was
limited to learning a single objective function from the
demonstrations. In DTF-MO and DTF-2SO, the algorithm
learns an objective function for each sub-mission. The com-
posite missions we consider in this study comprise two
sub-missions. Therefore, the apprenticeship learning algo-
rithm must learn two objective functions to be optimized,
Rw1(s) = w1 · ϕ(s) and Rw2(s) = w2 · ϕ(s), where w1 and
w2 are the weight vectors that describe the importance given
to each feature.

We set a maximum number of iterations as the termination
criterion for the apprenticeship learning—the same criterion
defined in Demo-Cho. The maximum number of iterations



is chosen to be sufficiently large to allow w1 and w2 to
converge.

C. Multi-criteria optimization

DTF-MO and DTF-2SO must produce control software for
the robots on the basis of the objective functions learned via
apprenticeship learning, Rw1

(s) and Rw2
(s), which define

two performance measures to be maximized. However, there
is currently no well-defined approach to conducting multi-
criteria optimization in the automatic design of robot swarms.
We therefore base the multi-criteria design process of DTF-
MO and DTF-2SO on two strategies previously adopted in
the literature.

DTF-MO conducts a single-objective optimization process
that concurrently considers Rw1(s) and Rw2(s). DTF-MO
linearly combines the two objectives into a single one:
R(S) = Rw1

(s)+Rw2
(s) = w1 ·ϕ(s)+w2 ·ϕ(s). This is an

approach previously adopted in the swarm robotics literature
to aggregate multiple performance measures [23], [26], [54],
[55]. Here, the two objective functions are equally weighted
as there is no reason to assume a priori that one sub-mission
is more or less important than the other.

DTF-2SO, on the contrary, conducts single-objective op-
timization processes that consider Rw1

(s) and Rw2
(s) sep-

arately. This results in two instances of control software,
one that maximizes Rw1

(s) and another one that maximizes
Rw2(s). After the design process ends, we manually assem-
ble the two instances by hard-coding a transition condition
from one to the other—according the environmental cue
that indicates the transition between sub-missions. This is
a similar approach to that adopted in [39].

The design process in DTF-MO and DTF-2SO is based on
Iterated F-race [56]—a single-objective optimization algo-
rithm adopted in many existing AutoMoDe methods [22]–
[28]. During the design process, DTF-MO and DTF-2SO
produce a set of candidate control software instances, each
representing a potential solution to the composite mission.
In order to select the best performing instance, we assume
that the distance in the feature space indicates how close
a behavior is to the demonstrations given for each sub-
mission. Each instance has two associated distances, one for
each objective, Rw1

(s) and Rw2
(s). DTF-2SO and DTF-2SO

compute the L2 norm to aggregate the distance values of an
instance into a single measure that can be used to compare
instances across the two sub-missions. The smaller the L2
norm, the closer the control software is to the demonstrations.
This method has been shown to be effective in feature
selection problems [57].

IV. EXPERIMENTAL SETUP

We conducted experiments to assess the performance of
DTF-MO and DTF-2SO against the manually designed base-
line. In these experiments, the robots operate in an hexagonal
arena of 2.60m2 with gray floor. The arena comprises three
landmarks: a white circular region in the center, and two
black triangular regions at the left and right sides. These
are the three landmarks considered in the learning process.

SUB-MISSION A SUB-MISSION B SUB-MISSION C

SUB-MISSION D SUB-MISSION E

Fig. 2. Experimental arena. The figure indicates the three landmarks, RGB
blocks, and a swarm of 20 e-pucks that examplify the demonstrations given
for each sub-mission. The green walls do not change color. Other walls
switch from red to blue to indicate the transition between sub-missions.
This is the cue that the automatic design process must learn to exploit.

The walls of the arena are made of 24 RGB blocks that can
change their color at run-time [58]. The 4 blocks at the right
corner of the arena constantly display the color green.

The robots have 120 s to perform the two sub-missions,
with 60 s allocated to each. The arena walls (except for the
right corner) are red for the first 60 s and then turn blue,
indicating which sub-mission should be performed. This is
the environmental cue we use to manually code the transition
between behaviors in the control software produced by DTF-
2SO—see Section III. In DTF-MO, the reaction to this cue
and the behavior transition must be automatically inferred
during the design process. DTF-MO and DTF-2SO extract
and evaluate the position of the robots only at the end of
each sub-mission—that is, after their allocated 60 s. Fig. 2
shows the experimental arena.

Without a pre-existing theoretical baseline, we developed
our own. Utilizing the AutoMoDe-Chocolate modules,
we manually designed a control software instance for each
sub-mission. Then, we manually assembled the two corre-
sponding instances of a composite mission by using the same
manually designed transition as the one used for DTF-2SO.

A. Missions

We conceived five sub-missions that we paired to produce
twelve composite missions.1 Fig. 2 shows the sub-missions
as specified by the demonstrations. The sub-missions we
conceived are inspired by spatial-organizing behaviors ob-
served in previous automatic design studies [24]–[27], [59].
Although simple, these sub-missions require developing the
same basic collective behaviors that would be needed in real-
world applications.

For clarity, we also provide a written description of the
desired behavior specified by the demonstrations in Fig. 2.
SUB-MISSION A (mA): the robots must aggregate in the

1By combining the five missions, we could generate twenty sequences.
We selected twelve of them for these experiments.



center of the arena, on the white area. SUB-MISSION B (mB):
the robots must line in the edges of the arena, except for the
two rightmost walls. SUB-MISSION C (mC): the robots must
cover all the arena. SUB-MISSION D (mD): the robots must
aggregate in the left black area. SUB-MISSION E (mE): the
robots must aggregate in the right black area.

The twelve composite missions are organized in pairs, with
each pair denoted as mX·Y, where X and Y represent the sub-
missions to be executed in sequence. The pairs are: mA·B,
mB·A, mC·B, mB·C, mC·D, mD·C, mE·A, mA·E, mB·E, mE·B, mD·E
and mE·D.

B. Protocol

We generated 120 instances of control software with DTF-
MO and other 120 with DTF-2SO—10 for each mission.
In every design process, we specified the composite mis-
sion with 10 demonstrations—five for each associated sub-
mission. In all cases, the apprenticeship learning algorithm
performed 15 iterations. In every iteration, Iterated F-race
had a budget of 100 000 simulations to produce a control
software. DTF-MO was given these 100 000 simulations to
produce a single instance of control software for the two
sub-missions. DTF-2SO was given an budget of 100 000
simulations to produce each of the two instances of control
software, required by the two sub-missions. This resulted in
an advantage for DTF-2SO, considering that its search space
is less than half that of DTF-MO.

We present numerical results with notched box-plots. We
use the L2 Norm—see Section III—to quantitatively compare
the performance of the instances of control software pro-
duced with DTF-MO, DTF-2SO, and the manual baseline. We
use heat-map plots to present the distribution of weights, w1

and w2, that the apprenticeship learning algorithm assigned
to the linear combination of features. In addition, we use
scatter plots to study the distribution of the solutions with
respect to the distance to each sub-mission and we conduct
a visual inspection of the behaviors of the robots to verify
their ability to reproduce the given demonstrations.

V. RESULTS AND DISCUSSION

The source code, control software produced, scatter plots,
and demonstration videos are available as supplementary
material [60].

The numerical results presented in Fig. 3 show that DTF-
2SO outperforms DTF-MO and the manual baseline in half
of the missions. Specifically, the L2 norm is lower for DTF-
2SO in these missions. While the L2 norm gave a general
idea, the results of the scatter plots and the visual analysis
gave more detailed information. They allowed to see clearly
if an approach generated a control software performed well
only for one sub-mission or the two of them. Two factors
can influence the performance of the methods: (i) the ability
to learn the objective functions from the demonstrations,
(ii) and the effectiveness of the optimization process in
finding suitable control software.

We first investigated the ability of DTF-MO and DTF-
2SO to identify the subset of features that is most relevant

for each sub-mission, and properly learn a distribution of
weights for w1 and w2. The heatmap plots showed that,
across all missions, the two methods were able to identify
the most relevant features during the learning process—see
supplementary material [60]. Indeed, DTF-MO and DTF-2SO
assigned mission-specific distribution of weights that prop-
erly characterized the desired spatial relationship between
robots and environment—according to the demonstrations of
the two associated sub-missions. We illustrate these results
with the weights assigned in mission mD·E—see Fig. 4. In
SUB-MISSION D, the robots were expected to stay close
to the left black landmark and far from the right one.
Conversely, in SUB-MISSION E, the robots were expected
to remain close to the right black landmark and far from
the left one. Fig. 4 shows how both DTF-MO and DTF-2SO
put the appropriate emphasis on the related features in each
case. These results allowed us to isolate the main factor that
caused the performance difference: the optimization process
and its ability to produce suitable control software.

Fig. 3 shows that DTF-MO performed better than the
manual baseline and equally or better than DTF-2SO in
four missions: mC·B , mA·B , mC·D and mA·E . We visually
inspected these missions to determine possible reasons for
the performance difference with respect to the general results.
We observed that DTF-MO was more effective because it
designed behaviors that ease the transition from one sub-
mission to the other. By concurrently considering the two
sub-missions, it not only optimized each part of the com-
posite mission but also the transition phase between them.
For example, in SUB-MISSION A of mA·B , the robots do not
exactly aggregate in the center of the arena—as indicated in
the demonstration. Instead, they remain near the borders of
the white circle to perceive the walls more easily and react
promptly to the cue. Similarly, we observed that in SUB-
MISSION D of mC·D, the robots not only head towards the
left landmark. They also trigger their own cue to signal other
robots to follow them—a color-based communication behav-
ior previously observed in AutoMoDe-TuttiFrutti [26].

We also inspected two missions in which neither DTF-
MO nor DTF-2SO outperformed the manual baseline. We
observed that missions mE·A and mB·A are challenging
because of a difficult transition phase between the sub-
missions. DTF-MO focuses on the second sub-mission to
get the best performance out of it, without risking losing too
much time with the transition. In DTF-2SO, the optimization
process is conducted independently for each sub-mission
and the control software is manually assembled afterward,
preventing the generation of behaviors that consider the
transition between sub-missions. For example, in mE·A,
the robots effectively aggregate in the right green corner.
However, from this corner, some of them are unable to
perceive the cue to start performing mission SUB-MISSION
A, and fail to aggregate in the center of the arena—as
demonstrated.

Our experiments show that DTF-MO is viable for the
automatic design of robot swarms that perform composite
missions, which are specified via demonstrations. However,



Fig. 3. Experimental results. The lower, the better.

Fig. 4. Heat-map plots for mission mD·E represents the weight associated
to each of the 80 features in the objective functions. When the weight
is near zero, the feature’s impact on the objective function is minimal.
Negative weights (blue color) require feature minimization, positive weights
(orange color) require maximization. As features are inversely proportional
to distances, maximizing a feature minimizes its corresponding distance,
and vice versa. DTF-MO (top) and DTF-2SO (bottom) learned for (i) mD ,
to maximize the distance from the right triangle and minimize it with the
left one; (ii) mB , to maximize the distance with the left triangle and the
center and minimize it with the right triangle and the peers.

this method is challenged by the increased search space
of conducting a design process that tracts the composite
mission as a whole. DTF-MO has to design good-performing
control software for the two sub-missions, and simultane-
ously identify the cue and define the transition rule. DTF-
2SO, on the contrary, benefits from independently addressing
the sub-missions during the design process, and from a
higher degree of human intervention: manually assembling
the generated control software and hard-coding a transition
rule. We argue that this intervention eased the exploration
of the search space for DTF-2SO with respect to DTF-MO,
and allowed it to perform better. Notwithstanding, DTF-
2SO’s advantage is challenged when the demonstrations
show possibly conflicting positioning for the robots, as it
can prevent the swarm from properly reacting to the cue that
is hard-coded manually.

In DTF-MO, we used a rather simple multi-criteria opti-
mization strategy and we expect that more advanced alter-
natives [61] could possibly extend the range of missions it
can address. We will devote future work to investigating
whether more advanced optimization algorithms available

in the literature can bootstrap the design capabilities of
DTF-MO, while maintaining the fully automatic nature of
its design process. The selection of appropriate optimization
algorithms is an open problem in the automatic design of
robot swarms [11], [25], [62].

A known limitation of our approach to the design by
demonstrations is that it currently only allows for specifying
desired static spatial-organizing behaviors—as also noted by
Gharbi et al. [34]. In the future, we plan to investigate the
applicability of our approach in other design problems.

VI. CONCLUSION

In this work, we investigated the problem of automati-
cally designing robot swarms that can perform composite
missions. We proposed two approaches based on inverse
reinforcement learning and demonstrated their efficacy in
generating robot control software. DTF-MO showed the abil-
ity to produce control software based only on demonstrations
of the desired swarm behavior, whereas DTF-2SO required
also human intervention to assemble the control software for
each sub-mission. These results contribute to advancing the
automatic design of robot swarms towards a more natural
way of specifying the missions for the robots. Additionally,
our contribution to the literature includes defining a protocol
to experiment with the realization of robot swarms that must
perform composite missions.

So far, automatic design approaches have focused on
addressing missions defined by a single performance measure
to be optimized. Here, we show that it is possible to perform
missions whose specification defines multiple performance
measures. However, increasing the number of performance
measures to be considered raises new challenges to the opti-
mization algorithms typically considered in the literature—
and therefore, to their ability of generating suitable control
software. Our experiments have also identified weaknesses in
each approach and suggest avenues for improvement. Partic-
ularly, we shed light on different advantages and limitations
of using different multi-criteria optimization algorithms in
the automatic design of robot swarms.



REFERENCES

[1] G. Beni, “From swarm intelligence to swarm robotics,” in Swarm
Robotics: SAB 2004 International Workshop, ser. Lecture Notes in
Computer Science, E. Şahin and W. M. Spears, Eds., vol. 3342.
Berlin, Germany: Springer, 2005, pp. 1–9.

[2] E. Şahin, “Swarm robotics: from sources of inspiration to domains of
application,” in Swarm Robotics: SAB 2004 International Workshop,
ser. Lecture Notes in Computer Science, E. Şahin and W. M. Spears,
Eds., vol. 3342. Berlin, Germany: Springer, 2005, pp. 10–20.

[3] M. Dorigo, M. Birattari, and M. Brambilla, “Swarm robotics,” Schol-
arpedia, vol. 9, no. 1, p. 1463, 2014.

[4] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-
assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198,
pp. 795–799, 2014.

[5] J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior
in a termite-inspired robot construction team,” Science, vol. 343, no.
6172, pp. 754–758, 2014.

[6] L. Garattoni and M. Birattari, “Autonomous task sequencing in a robot
swarm,” Science Robotics, vol. 3, no. 20, p. eaat0430, 2018.

[7] I. Slavkov, D. Carrillo-Zapata, N. Carranza, X. Diego, F. Jansson,
J. Kaandorp, S. Hauert, and J. Sharpe, “Morphogenesis in robot
swarms,” Science Robotics, vol. 3, no. 25, p. eaau9178, 2018.

[8] J. Yu, B. Wang, X. Du, Q. Wang, and L. Zhang, “Ultra-extensible
ribbon-like magnetic microswarm,” Nature Communications, vol. 9,
no. 1, p. 3260, 2018.

[9] S. Li, R. Batra, D. Brown, H.-D. Chang, N. Ranganathan, C. Hober-
man, D. Rus, and H. Lipson, “Particle robotics based on statistical
mechanics of loosely coupled components,” Nature, vol. 567, no. 7748,
pp. 361–365, 2019.

[10] H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen, L. Wang, L. Dong, and
Q. He, “Reconfigurable magnetic microrobot swarm: multimode trans-
formation, locomotion, and manipulation,” Science Robotics, vol. 4,
no. 28, p. eaav8006, 2019.

[11] K. Hasselmann, A. Ligot, J. Ruddick, and M. Birattari, “Empirical
assessment and comparison of neuro-evolutionary methods for the
automatic off-line design of robot swarms,” Nature Communications,
vol. 12, p. 4345, 2021.

[12] M. Salman, D. Garzón Ramos, and M. Birattari, “Automatic design
of stigmergy-based behaviours for robot swarms,” Communications
Engineering, vol. 3, p. 30, 2024.

[13] G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full,
N. Jacobstein, V. Kumar, M. McNutt, R. Merrifield, B. J. Nelson,
B. Scassellati, M. Taddeo, R. Taylor, M. Veloso, Z. L. Wang, and R. J.
Wood, “The grand challenges of Science Robotics,” Science Robotics,
vol. 3, no. 14, p. eaar7650, 2018.

[14] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, no. 1, pp. 1–41, 2013.

[15] M. Dorigo, G. Theraulaz, and V. Trianni, “Reflections on the future
of swarm robotics,” Science Robotics, vol. 5, p. eabe4385, 2020.

[16] ——, “Swarm robotics: past, present, and future [point of view],”
Proceedings of the IEEE, vol. 109, no. 7, pp. 1152–1165, 2021.

[17] G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and
S. Nolfi, “Self-organized coordinated motion in groups of physically
connected robots,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics), vol. 37, no. 1, pp. 224–239, 2007.

[18] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, “Self-organized ag-
gregation without computation,” The International Journal of Robotics
Research, vol. 33, no. 8, pp. 1145–1161, 2014.

[19] M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira,
and A. L. Christensen, “Evolution of collective behaviors for a real
swarm of aquatic surface robots,” PLOS ONE, vol. 11, no. 3, p.
e0151834, 2016.

[20] S. Jones, M. Studley, S. Hauert, and A. Winfield, “Evolving behaviour
trees for swarm robotics,” in Distributed Autonomous Robotic Sys-
tems: The 13th International Symposium, ser. Springer Proceedings
in Advanced Robotics, R. Groß, A. Kolling, S. Berman, E. Frazzoli,
A. Martinoli, F. Matsuno, and M. Gauci, Eds., vol. 6. Cham,
Switzerland: Springer, 2018, pp. 487–501.

[21] M. Birattari, A. Ligot, D. Bozhinoski, M. Brambilla, G. Francesca,
L. Garattoni, D. Garzón Ramos, K. Hasselmann, M. Kegeleirs,
J. Kuckling, F. Pagnozzi, A. Roli, M. Salman, and T. Stützle, “Au-
tomatic off-line design of robot swarms: a manifesto,” Frontiers in
Robotics and AI, vol. 6, p. 59, 2019.

[22] A. Ligot, K. Hasselmann, and M. Birattari, “AutoMoDe-Arlequin:
neural networks as behavioral modules for the automatic design
of probabilistic finite state machines,” in Swarm Intelligence: 12th
International Conference, ANTS 2020, ser. Lecture Notes in Computer
Science, M. Dorigo, T. Stützle, M. J. Blesa, C. Blum, H. Hamann,
M. K. Heinrich, and V. Strobel, Eds., vol. 12421. Cham, Switzerland:
Springer, 2020, pp. 109–122.

[23] J. Kuckling, V. van Pelt, and M. Birattari, “AutoMoDe-Cedrata:
automatic design of behavior trees for controlling a swarm of robots
with communication capabilities,” SN Computer Science, vol. 3, p.
136, 2022.

[24] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari,
“AutoMoDe: a novel approach to the automatic design of control
software for robot swarms,” Swarm Intelligence, vol. 8, no. 2, pp.
89–112, 2014.

[25] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch,
G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F. Mas-
cia, V. Trianni, and M. Birattari, “AutoMoDe-Chocolate: automatic
design of control software for robot swarms,” Swarm Intelligence,
vol. 9, no. 2–3, pp. 125–152, 2015.

[26] D. Garzón Ramos and M. Birattari, “Automatic design of collective
behaviors for robots that can display and perceive colors,” Applied
Sciences, vol. 10, no. 13, p. 4654, 2020.

[27] F. J. Mendiburu, D. Garzón Ramos, M. R. A. Morais, A. M. N.
Lima, and M. Birattari, “AutoMoDe-Mate: automatic off-line design
of spatially-organizing behaviors for robot swarms,” Swarm and Evo-
lutionary Computation, vol. 74, p. 101118, 2022.

[28] M. Birattari, A. Ligot, and G. Francesca, “AutoMoDe: a modular
approach to the automatic off-line design and fine-tuning of control
software for robot swarms,” in Automated Design of Machine Learning
and Search Algorithms, ser. Natural Computing Series, N. Pillay and
R. Qu, Eds. Cham, Switzerland: Springer, 2021, pp. 73–90.

[29] M. Birattari, A. Ligot, and K. Hasselmann, “Disentangling automatic
and semi-automatic approaches to the optimization-based design of
control software for robot swarms,” Nature Machine Intelligence,
vol. 2, no. 9, pp. 494–499, 2020.

[30] G. Francesca and M. Birattari, “Automatic design of robot swarms:
achievements and challenges,” Frontiers in Robotics and AI, vol. 3,
no. 29, pp. 1–9, 2016.

[31] H. Hamann, Swarm robotics: a formal approach. Cham, Switzerland:
Springer, 2018.

[32] D. Bozhinoski and M. Birattari, “Towards an integrated automatic
design process for robot swarms,” Open research Europe, vol. 1, p.
112, 2021.

[33] A. Šošić, W. R. Khuda Bukhsh, A. M. Zoubir, and H. Koeppl,
“Inverse reinforcement learning in swarm systems,” in AAMAS ’17:
Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems. Richland, SC, USA: International Foundation
for Autonomous Agents and Multiagent Systems (IFAAMAS), 2017,
pp. 1413––1421.

[34] I. Gharbi, J. Kuckling, D. Garzón Ramos, and M. Birattari, “Show
me what you want: inverse reinforcement learning to automatically
design robot swarms by demonstration,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). Piscataway, NJ,
USA: IEEE, 2023, pp. 5063–5070.

[35] A. Y. Ng, D. Harada, and S. J. Russel, “Policy invariance under
reward transformations: theory and application to reward shaping,” in
ICML’99: Proceedings of the 16th Annual International Conference
on Machine Learning, I. Bratko and S. Dzeroski, Eds. San Francisco,
CA, USA: Morgan Kaufmann Publishers, 1999, pp. 278–287.

[36] P. Abbeel and A. Y. Ng, “Inverse Reinforcement Learning,” in
Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, Eds.
Boston, MA: Springer US, 2010, pp. 554–558. [Online]. Available:
https://doi.org/10.1007/978-0-387-30164-8417

[37] S. J. Russel, “Learning agents for uncertain environments (extended
abstract),” in COLT’ 98: Proceedings of the 11th annual conference
on Computational learning theory, P. Bartlett and Y. Mansour, Eds.
New York, NY, USA: ACM, 1998, pp. 101–103.

[38] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 1.

[39] M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira,
and A. L. Christensen, “Evolution of collective behaviors for a real
swarm of aquatic surface robots,” PloS one, vol. 11, no. 3, p. e0151834,
2016.

https://doi.org/10.1007/978-0-387-30164-8417


[40] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a robot designed for education in engineering,” in ROBOTICA
2009: Proceedings of the 9th Conference on Autonomous Robot
Systems and Competitions, P. Gonçalves, P. Torres, and C. Alves, Eds.
Castelo Branco, Portugal: Instituto Politécnico de Castelo Branco,
2009, pp. 59–65.

[41] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. A. Di Caro, F. Ducatelle, M. Birat-
tari, L. M. Gambardella, and M. Dorigo, “ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems,” Swarm Intelligence,
vol. 6, no. 4, pp. 271–295, 2012.

[42] A. Ligot and M. Birattari, “Simulation-only experiments to mimic the
effects of the reality gap in the automatic design of robot swarms,”
Swarm Intelligence, vol. 14, pp. 1–24, 2020.

[43] K. Hasselmann and M. Birattari, “Modular automatic design of
collective behaviors for robots endowed with local communication
capabilities,” PeerJ Computer Science, vol. 6, p. e291, 2020.

[44] M. Kegeleirs, D. Garzón Ramos, K. Hasselmann, L. Garattoni,
G. Francesca, and M. Birattari, “Transferability in the automatic off-
line design of robot swarms: from sim-to-real to embodiment and
design-method transfer across different platforms,” IEEE Robotics and
Automation Letters, vol. 9, no. 3, pp. 2758–2765, 2024.

[45] J. Kuckling, “Recent trends in robot learning and evolution for swarm
robotics,” Frontiers in Robotics and AI, vol. 10, p. 1134841, 2023.

[46] M. J. Krieger, J.-B. Billeter, and L. Keller, “Ant-like task allocation
and recruitment in cooperative robots,” Nature, vol. 406, no. 6799, pp.
992–995, 2000.

[47] T. Schmickl, R. Thenius, C. Moslinger, J. Timmis, A. Tyrrell, M. Read,
J. Hilder, J. Halloy, A. Campo, C. Stefanini, et al., “Cocoro–the self-
aware underwater swarm,” in 2011 Fifth IEEE Conference on Self-
Adaptive and Self-Organizing Systems Workshops. IEEE, 2011, pp.
120–126.

[48] E. C. Ferrer, T. Hardjono, A. Pentland, and M. Dorigo, “Secure and
secret cooperation in robot swarms,” Science Robotics, vol. 6, no. 56,
p. eabf1538, 2021.

[49] M. J. B. Krieger, J.-B. Billeter, and L. Keller, “Ant-like task allocation
and recruitment in cooperative robots,” Nature, vol. 406, pp. 992–995,
2000.

[50] S. Nouyan, R. Groß, M. Bonani, F. Mondada, and M. Dorigo,
“Teamwork in self-organized robot colonies,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 4, pp. 695–711, 2009.

[51] P. C. Fishburn, Utility Theory for Decision Making, ser. Publications
in Operations Research. New York, NY, USA: John Wiley & Sons,
1970.

[52] K. Hasselmann, A. Ligot, G. Francesca, D. Garzón Ramos, M. Salman,
J. Kuckling, F. J. Mendiburu, and M. Birattari, “Reference models
for AutoMoDe,” IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium, Tech. Rep. TR/IRIDIA/2018-002, 2018.

[53] L. Garattoni, G. Francesca, A. Brutschy, C. Pinciroli, and M. Birattari,
“Software infrastructure for e-puck (and TAM),” IRIDIA, Université
Libre de Bruxelles, Brussels, Belgium, Tech. Rep. TR/IRIDIA/2015-
004, 2015.

[54] V. Trianni and M. López-Ibáñez, “Advantages of task-specific multi-
objective optimisation in evolutionary robotics,” PLOS ONE, vol. 10,
no. 8, p. e0136406, 2015.

[55] S. Jones, A. Winfield, S. Hauert, and M. Studley, “Onboard evolution
of understandable swarm behaviors,” Advanced Intelligent Systems,
vol. 1, no. 6, p. 1900031, 2019.

[56] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari,
and T. Stützle, “The irace package: iterated racing for automatic
algorithm configuration,” Operations Research Perspectives, vol. 3,
pp. 43–58, 2016.

[57] R. Salman, A. Alzaatreh, and H. Sulieman, “The stability of different
aggregation techniques in ensemble feature selection,” Journal of Big
Data, vol. 9, no. 1, pp. 1–23, 2022.

[58] D. Garzón Ramos, M. Salman, K. Ubeda Arriaza, K. Hasselmann,
and M. Birattari, “MoCA: a modular RGB color arena for swarm
robotics experiments,” IRIDIA, Université libre de Bruxelles, Brussels,
Belgium, Tech. Rep. TR/IRIDIA/2022-014, 2022.

[59] G. Spaey, M. Kegeleirs, D. Garzón Ramos, and M. Birattari, “Eval-
uation of alternative exploration schemes in the automatic modular
design of robot swarms,” in Artificial Intelligence and Machine
Learning: BNAIC 2019, BENELEARN 2019, ser. Communications
in Computer and Information Science, B. Bogaerts, G. Bontempi,
P. Geurts, N. Harley, B. Lebichot, T. Lenaerts, and G. Louppe, Eds.
Cham, Switzerland: Springer, 2020, vol. 1196, pp. 18–33.

[60] J. Szpirer, D. Garzón Ramos, and M. Birattari, “Automatic
design of robot swarms that perform composite missions:
an approach based on inverse reinforcement learning,”
https://iridia.ulb.ac.be/supp/IridiaSupp2023-003, 2024.

[61] M. T. M. Emmerich and A. H. Deutz, “A tutorial on multiobjective
optimization: fundamentals and evolutionary methods,” Natural Com-
puting, vol. 17, no. 3, pp. 585–609, 2018.

[62] J. Kuckling, T. Stützle, and M. Birattari, “Iterative improvement in the
automatic modular design of robot swarms,” PeerJ Computer Science,
vol. 6, p. e322, 2020.


	INTRODUCTION
	RELATED WORK
	DESIGNING ROBOT SWARMS THAT PERFORM COMPOSITE MISSIONS
	Robot and control architecture
	Learning the objective function from demonstrations
	Multi-criteria optimization

	EXPERIMENTAL SETUP
	Missions
	Protocol

	RESULTS AND DISCUSSION
	CONCLUSION
	References

