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Abstract. The swarm robotics literature has shown that complex tasks
can be solved by large groups of simple robots interacting with each
other and their environment. Most of these tasks require the robots to
explore their environment, making exploration a building block of the
behaviors of robot swarms. However, exploration schemes have rarely
been thoroughly evaluated, especially in the context of automatic design.
This is the case with AutoMoDe, an automatic modular design approach
that designs control software by assembling predefined mission-agnostic
modules that embed fixed and arbitrarily selected exploration schemes.
In this paper, we study the influence of different exploration schemes on
the automatic design of robot swarms. To do so, we introduce AutoMoDe-
Coconut, a new variant of AutoMoDe with multiple configurable explo-
ration schemes embedded within its modules. We test Coconut both in
bounded and unbounded workspaces and we compare the results with
those of AutoMoDe-Chocolate in order to understand the impact of the
new exploration schemes. The results show that Coconut is prone to se-
lect exploration schemes that fulfill the requirements of the mission in
hand. However, Coconut does not perform better than Chocolate, even in
situations where the only exploration schemes available to Chocolate are
at an apparent disadvantage. We conjecture that the overall exploration
capabilities of the swarm are not the mere reflection of individual-level
exploration schemes but result from a more complex interaction between
the atomic behaviors of the individuals.

Keywords: Automatic design · exploration · random walk.

1 Introduction

A robot swarm is a large group of robots whose collective behavior results
from local interactions of the robots between themselves and with their envi-
ronment [9]. A robot swarm operates without relying on any external structure
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or any form of centralized control [1, 32]. These characteristics make swarms of
robots scalable, robust and flexible.

Unfortunately, the design of control software for robot swarms is a complex
activity. Indeed, there is no reliable way to anticipate the global behavior of a
swarm of robots based on the behavior of a single individual [12]. It is therefore
common to resort to automatic design, for which multiple methods have been
developed [26, 37, 10]. In particular, AutoMoDe [14] is an automatic modular de-
sign approach that produces control software by assembling preexisting software
modules into an appropriate modular architecture—e.g., a finite-state machine
or a behavior tree. The possible states come from a finite set of atomic behav-
iors, such as the attraction to light sources or the repulsion from other robots.
A few methods belonging to the AutoMoDe family have been proposed so far.
Most of them are variants of Vanilla, the first method proposed that meet the
specifications of AutoMoDe [14]. In these variants, most of the atomic behaviors
embed the same exploration scheme: ballistic motion.

We foresee that other exploration schemes, such as random walks [31, 27, 38,
11], could improve the exploration capabilities of robot swarms automatically
generated via AutoMoDe.

To study the influence of different exploration schemes in automatic modular
design of robot swarms, we introduce AutoMoDe-Coconut, a new variant of Au-
toMoDe able to select different exploration schemes. Following the tenets of the
automatic offline design of robot swarms [4], we assess the capabilities of Coconut
to design control software for missions that require the robot swarm to explore
in different manners. To this aim, we conduct experiments on two classes of mis-
sions using realistic simulations and real robots experiments. We compare the
performance of Coconut against the one of the state-of-the-art modular design
method AutoMoDe-Chocolate [13]. We expect Coconut to outperform Chocolate
in at least one class of mission thanks to its extended exploration capabilities.
To the best of our knowledge, this is the first time different exploration schemes
are compared in the context of automatic design.

The paper is structured as follows. In Section 2, we discuss related work
in automatic design and exploration. In Section 3, we present Coconut, the
automatic modular design method we investigate in the paper. In Section 4 we
describe the experimental setup. In Section 5, we illustrate the results of the
experiments. In Section 6, we conclude the paper and we sketch future research.

2 Related work

In single-robot systems, the control software is typically designed by hand by a
human developer as the behavior of the robot is easy to derive from its specifica-
tions. In swarm robotics however, the link between the behavior of the individual
robots that one should program and the global behavior of the swarm that one
wishes to obtain is often particularly complex. Indeed, it is difficult to antic-
ipate the behavior of a swarm solely based on the individual behavior of the
robots [6]. The control software of the individual robots is therefore a trial and
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error process, which is time consuming, prone to bias and errors, and difficult to
replicate [5]. Automatic design appears to be a promising way to overcome the
difficulties of generating control software for robot swarms [12].

Neuro-evolutionary robotics is the classical automatic design approach adopted
in swarm robotics [26, 8]. In this approach, robots are controlled by a neural
network whose parameters (and possibly the structure) are optimized using an
evolutionary algorithm in an off-line process based on computer simulations [35,
29, 36]. The inputs of the neural networks are the readings of the sensors and
outputs are the commands to be fed to the actuators. Unfortunately, the neuro-
evolutionary approach is known to produce control software that crosses the
reality gap poorly [19, 33]. Indeed, a noticeable drop in performance can be of-
ten observed when neural networks optimized in simulation are tested on real
robots. This is the result of a sort of overfitting of the control software to the
simulator, which prevents it to then generalize to the real world [22].

An alternative approach to automatic design is the automatic modular design
method proposed by Francesca et al.: AutoMoDe [14]. The original idea behind
AutoMoDe is to inject a bias in the automatic design process by increasing
the granularity of the control software architecture. This reduces the risk of
overfitting the simulator and eventually increases the chance that the control
software produced crosses the reality gap successfully, generalizing properly to
reality. Multiple variants of AutoMoDe have been developed so far [13, 21, 18].

However, the exploration scheme used by AutoMoDe, ballistic motion, was
selected arbitrarily from Vanilla and has been kept in all the following stud-
ies without a further discussion. Recent works have shown the relevance of the
exploration scheme in robot swarms. Common random walks (Brownian mo-
tion [11], correlated random walk [31], Lévy walk [38] and Lévy taxis [27])
have been evaluated by Dimidov et al. [7] with a swarm of Kilobots. An opti-
mal parametrization for these random walks was found with this configuration.
Kegeleirs et al. [20] evaluated the same random walks, along with ballistic mo-
tion, for mapping with ten e-pucks and found that the parametrization does not
generalize to other robotic platforms. Similarly, Ramachandran et al. [30] per-
formed distributed mapping with three robots using a custom variant of Lévy
walk. To the best of our knowledge, no study has been published that evaluates
the performance of the aforementioned exploration schemes in the context of the
automatic design of collective behaviors for robot swarms.

3 AutoMoDe-Coconut

Coconut builds on Chocolate [13]. As Chocolate, it belongs to the AutoMoDe
class of methods originally defined by Francesca et al. [14]. These methods auto-
matically generate control software by assembling predefined, mission-agnostic
software modules. Like Chocolate, Coconut produces control software for the
e-puck platform [25]. The control software produced by Coconut, like the one
produced by Chocolate, has the form of a probabilistic finite-state machine. The
modules are either low-level behaviors to be used as states of the state machine or
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conditions to be associated with its edges. Conditions determine whether a tran-
sition should happen or not. Modules may have tunable parameters that modify
their functioning. The topology of the probabilistic finite-state machine, the be-
haviors and the conditions to be included, and the value of their parameters are
determined by an optimization algorithm that maximizes a mission-specific per-
formance measure. The optimization algorithm adopted in Coconut, as well as in
Chocolate, is Iterated F-race (irace) [23]. The only difference between Coconut
and Chocolate is that, in Coconut, the modules have a parameter controlling the
type of exploration scheme to use, whereas in Chocolate the scheme is fixed for
each module. Indeed, Coconut embeds three different exploration schemes within
its modules: ballistic motion with random rotations, ballistic motion with vector
field and, random walk. As Coconut is identical to Chocolate in all other aspects,
the discussion on performance differences can focus on the sole influence of these
exploration schemes.

3.1 Robot platform

Coconut produces control software for the e-puck platform, extended with three
hardware modules: the Overo Gumstix, the ground sensor, and the range and
bearing. The e-puck is a circular two-wheeled robot, whose diameter is approxi-
mately 70 mm. It has 8 IR transceivers, positioned all around its body, that work
both as light and proximity sensors. The Overo Gumstix module is a single-board
computer that allows the e-puck to run Linux. The ground sensor module allows
the e-puck to perceive the color of the floor. The range-and-bearing module [16]
is an infrared communication device for local sensing and messaging. It operates
by broadcasting a ping signal that can be received by robots within a range of
about 0.7 m from the sender. A robot that receives a ping is able to estimate
the relative position of the sender in polar coordinates. The capabilities of the
e-puck platform are formally defined by the reference model RM 1.1 [17], see
Table 1.

3.2 Set of modules

Coconut’s modules are built upon those of Chocolate. They comprise 6 behaviors
and 6 transitions:

Behaviors:
– rambling1: the robot explores randomly its environment;
– stop: the robot stands still;
– phototaxis: the robot goes towards the light source, if perceived;
– anti-phototaxis: the robot goes away from the light, if perceived;
– attraction: the robot goes towards its neighboring peers, if perceived;
– repulsion: the robot goes away from its neighboring peers, if perceived.

1 Originally, this module was called exploration [14]. In this paper, we changed its
denomination to avoid confusion with the notion of exploration scheme.
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Table 1: Reference model RM1 of the e-puck robot [17]. RM1 abstracts sensors
and actuators by defining the input and the output variables that are made
available to the control software at each control step. Sensors are defined as
input variables: the control software can only read them. Actuators are defined
as output variables: the control software can only write them. Input and output
variables are updated with a period of 100 ms.

sensor / actuator variables

proximity proxi ∈ [0, 1], with i ∈ {1, 2, ..., 8}
light lighti ∈ [0, 1], with i ∈ {1, 2, ..., 8}
ground groundi ∈ {white, gray, black}, with i ∈ {1, 2, 3}

range-and-bearing
n ∈ [0, 20]

rm ∈ [0, 0.70], with m ∈ {1, 2, ..., 20}
bm ∈ [0, 2π] rad, with m ∈ {1, 2, ..., 20}

wheels vl, vr ∈ [−0.12, 0.12] m/s

Conditions:
– black-floor: change state if floor is black;
– white-floor: change if it is white;
– gray-floor: change if it is gray;
– neighbor-count: change if sufficiently many neighboring peers are perceived;
– inverted-neighbor-count: change if they are sufficiently few;
– fixed-probability: change state with a fixed probability.

The behaviors are identical to those of Chocolate except for the exploration
scheme adopted. In Chocolate, fixed default exploration schemes are used in
the rambling module (ballistic motion with random rotations) as well as in the
phototaxis, anti-phototaxis, attraction and repulsion modules when no light/no
neighboring peers are perceived (ballistic motion with vector field). In Coconut,
these five modules do not use a default exploration scheme but have instead a
new ε parameter that has 3 possible values: BMVF, BMRR, and RW.

If ε = BMVF, the exploration scheme is a ballistic motion with vector field.
The robot follows the two-dimensional vector w = wb −wo, where wb represents
the ballistic vector and wo the perceived obstacle vector. The ballistic vector is
trivially defined as wb = (1, 6 0) and represent a straight motion. The obstacle
vector wo is calculated with equation 1.

wo =

8∑
i=1

(ri, 6 bi) (1)

Where ri represents the reading of i, one of the eight proximity sensors of the
robot and bi the angle between this sensor and the front of the robot. The vector
wo therefore represents the average position of the sensed obstacle(s) as the sum
of the eight vectors corresponding to proximity readings.

If ε = BMRR, the exploration scheme is a ballistic motion with random
rotations. The robot moves in a straight line. When it encounters an obstacle, it
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Table 2: Different value ranges of the key parameters of the random walks, along
with the corresponding distributions [27, 7].

Move length µ Turning angle ρ

Brownian motion
Asymptotically
Gaussian-like

3 Uniform 0

Correlated
random walk

Asymptotically
Gaussian-like

3 Wrapped Cauchy ∈ [0, 1]

Lévy walk Power law ∈]1, 3] Uniform 0

Lévy taxis Power law ∈]1, 3] Wrapped Cauchy ∈ [0, 1]

turns on itself for a random number of control cycles uniformly chosen between
[0, τ ], where τ is a parameter of the module. The parameter τ is an integer in
the range [0, 100].

If ε = RW, the exploration scheme is a random walk. The robot follows the
two-dimensional vector w = wLt−wo, where wLt represents the Lévy taxis vector
and wo is calculated with equation 1, as in the ballistic motion with vector field.
The Lévy taxis vector is calculated as wLt = (1, 6 Ta) where Ta is the turning
angle defined by equation 2.

Ta = 2 arctan

(
1 − ρ

1 + ρ
tan

(
π(r − 0.5)

))
+ bias (2)

The turning angle changes after a number of control cycles governed by the
movement length Ml defined by equation 3.

Ml = Lminr
1

1−µ (3)

These equations depend on the parameters µ and ρ, 2 parameters of the module.
The parameter µ is real-valued and chosen in the range ]1, 3]. The parameter ρ
is real-valued as well and chosen in the range [0, 1]. Table 2 presents the values
of µ and ρ for the major state-of-the-art random walks that can be modeled by
Equations 2 and 3. These additional parameters have also an effect on the search
space size: it is larger for Coconut than for Chocolate.

3.3 Automatic design process

Coconut produces control software in the form of probabilistic finite-state ma-
chines. The topology of the probabilistic finite-state machine, the modules to be
included and their parameters are defined by an optimization process. The space
of the probabilistic finite-state machines that Coconut can possibly generate is
constrained to those comprising at most 4 states having each at most 4 outgoing
edges.

As an optimization algorithm, Coconut uses the implementation of Iterated
F-race provided by the R package irace [23] with its default parameters. Iterated
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F-race is based on F-race [2], a racing procedure where a set of candidate solu-
tions are randomly sampled and then sequentially evaluated, over a set of test
cases, to eventually select the most suitable one. Along the sequential evalua-
tion of candidate solutions, a Friedman test is repeatedly performed to identify
candidate solutions that perform significantly worse than at least another one.
These solutions are discarded so that the evaluation can focus on the best ones.
The algorithm terminates when only one candidate solution remains or when a
predefined budget of evaluations is depleted. Iterated F-race consists of multiple
iterations of F-race. After the first iteration, each subsequent one operates on
a set of candidate solutions that are sampled around those that the previous
iteration selected as the best ones. The algorithm terminates when a predefined
budget of evaluations is depleted.

Within the optimization process, simulations are performed using the AR-
GoS3 simulator [28], version beta 48, together with the argos3-epuck library [15].
ARGoS3 is a modular multi-physics robot simulator specifically conceived to sim-
ulate robot swarms. Coconut uses the 2D dynamic physics engine of ARGoS3
to simulate the robots and the environment. The argos3-epuck library provides
low-level implementations of the sensors and actuators of the e-puck robot with
fine control on noise levels for all actuators and sensors. ARGoS3 and the argos3-
epuck library inject a realistic level of sensor and actuator noise in all simulations
as suggested by Miglino et al. [24] as a good practice for reducing the impact of
the reality gap.

4 Experimental setup

In order to assess the performance impact of the new exploration schemes inte-
grated in its modules, we compare Coconut to Chocolate on a set of missions,
both in bounded and unbounded workspaces. Similarly to previous studies in au-
tomatic modular design, we also compare Chocolate and Coconut to Evostick, an
automatic design method that implements a typical evolutionary robotics setup.
Evostick was introduced in Francesca et al [14] to define a yardstick against
which AutoMoDe variants can be compared. We expect Coconut to produce
results similar to those of Chocolate in bounded workspace but to outperform
Chocolate in unbounded workspace. The choice of the missions is motivated by
the need to challenge both the general problem-solving capabilities of the two
methods and their exploration capabilities. Therefore, the missions consist in
missions already used to test other AutoMoDe variants as well as a new mission
specifically targeting the exploration capabilities offered by the new exploration
schemes. The chosen missions are aggregation, foraging, and grid exploration.

4.1 Missions

Each mission takes place in a dodecagonal workspace of 4.91 m2 surrounded by
walls that are tall enough to prevent the robots from seeing anything beyond
them. The floor is gray with the exception of black or white areas specific to
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each mission. All missions are performed by a swarm of 20 e-puck robots for
a duration of 120 s. In the following descriptions, the coordinates are in meters
with the origin of the axes at the center of the workspace. The x axis points
right and the y axis points up. The three missions are detailed below.

Aggregation: The robots must aggregate as fast as possible on a black spot
at the center of the workspace. The floor is completely gray except for a black
circular area of diameter 0.60 m at the center of the workspace. At the beginning
of the experiment, the 20 robots are randomly placed in the whole workspace.
Figure 1a shows the workspace of the mission. The performance of the swarm is
measured by the sum of the time spent, in seconds, by each robot in the black
area during the whole duration of the mission. Formally:

Faggregation =

N∑
i=1

Ti (4)

Where N = 20 is the number of robots and Ti is the aggregated time spent in
the black area by robot i during the whole duration of the mission.

Foraging: The robots must retrieve as many objects as possible from two
sources and drop them in a specific area, the nest. The sources and nest are
represented respectively by two black spots and a white area. The two black spots
are black circular areas of diameter 0.30 m located at the coordinates (0, 0.75)
and (0,−0.75). The white area covers the whole region of the workspace with x >
0.60. Moreover, a light source is placed behind the nest at coordinates (1.25, 0)
at 0.75 m from the ground. Figure 1b shows the workspace of the mission. Since
the e-puck robot doesn’t have grasping capabilities, the transportation of objects
is abstracted. Therefore, it is supposed that a robot grabs an object (if it isn’t
already holding one) when it enters a source and drops the object (if it has one)
when it enters the nest. At the beginning of the experiment, the 20 robots are
randomly placed in the workspace. The performance of the swarm is measured
by the sum of the number of objects retrieved by each robot, during the whole
duration of the mission. Formally:

Fforaging =

N∑
i=1

Oi (5)

Where N = 20 is the number of robots and Oi is the number of objects retrieved
by the robot i.

Grid exploration: The robots must explore and cover as much space as
possible. The floor is completely gray. At the beginning of the experiment, the
20 robots are randomly placed in the workspace. Figure 1c shows the workspace
of the mission. In order to measure the performance of the swarm, the arena is
divided in a grid of 10 tiles by 10 tiles. For each tile, we retain the time t elapsed
since the last time it was visited by a robot. Each time the tile is visited by a
robot, this time is reset to 0. The performance of the swarm is measured by the
sum over all control cycles of the opposite of the average time t over all the tiles.
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(a) Aggregation (b) Foraging (c) Grid exploration

Fig. 1: Workspaces of the 3 bounded missions, including an example of initial
positions for the robots

(a) Aggregation (b) Foraging (c) Grid exploration

Fig. 2: Workspaces of the 3 unbounded missions, including an example of initial
positions for the robots

Formally:

Fgridexploration =

Ncc∑
i=1

(
1

Ntiles

Ntiles∑
j=1

−tij
)

(6)

Where Ncc is the number of control cycles for the whole experiment, Ntiles is
the number of tiles and tij is the time, at the control cycle i, since the tile j was
crossed by a robot.

For each of these missions, we evaluated an alternative version in an un-
bounded workspace. The only difference between a mission and its unbounded
counterpart is that 3 walls have been removed from the workspace of the un-
bounded workspace mission. The 3 walls are the same for all the missions, namely
the leftmost wall and its 2 neighbors. Figure 2 displays the workspaces of those
alternative unbounded missions. These 2 sets of missions constitute the bounded
and the unbounded classes of missions studied in this paper.

4.2 Protocol

Coconut, Chocolate and Evostick are executed 10 times on each of the 3 missions
of each class with a budget of 100.000 evaluations. This design process produces
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10 instances of control software per mission and per method. Each of these
instances is then evaluated once on its respective mission 2. The results of these
evaluations are then presented mission by mission.

Then, each instance is uploaded on real e-pucks and evaluated once in a real
environment with the same geometry and features as in the simulation. The
results of these evaluations are also presented for each mission.

The evaluation of the performance on each mission is represented by notched
box plots. For each mission, the score obtained in simulation and in reality
for Coconut, Chocolate and Evostick is reported. Statements about the relative
performance of the three methods on a specific mission are supported by the
confidence intervals of those box plots. The evaluation of the aggregated perfor-
mance over all of the missions is represented by a Friedman test. Once again,
statements about the relative performance of the two methods are supported by
the confidence intervals of this test. Any statement like “A performs significantly
better/worse than B” means that the confidence intervals of the box plots of the
scores obtained or the Friedman test for A and B do not overlap.

In order to interpret the observed performance of the automatic modular
design methods, one needs to have some insight into the modules used by the
two variants of AutoMoDe. We use two ways to measure the use of the different
modules during a mission. The first one consists in counting, for each module, the
proportion of instances of control software using this module in their finite-state
machine. While this measurement gives some information about the finite-state
machines and the behavior of the control software, it also shows modules that
might not actually be used at runtime. Indeed, some states of the finite-state
machines can be bypassed completely by high-probability transitions, making
them useless. The second measurement is the average (across all of the robots of
the swarm and all instances of control software of the mission) of the proportion
of time each robot uses the behavior of each module. While this measure gives
a better idea of the actual use of the different modules at runtime, it fails to
differentiate important modules used for a short time and useless modules used
as transitions. For that reason, the two measurements are compared.

5 Results

We present the qualitative analysis of the results. Demonstrative videos, code,
and additional results are available in [34]. The performance of Chocolate, Co-
conut and Evostick on the two classes of missions are shown in Figure 3. For all
missions, Evostick performs the same or better than both AutoMoDe methods in
simulation but completely fails in reality. This is coherent with previous results
obtained in the litterature [13, 18]. For Chocolate and Coconut, the results in
simulation are close to those in reality for all the missions and for both methods
although a small reality gap can be seen. An analysis of the exploration schemes
used by Coconut for the different missions is shown in Figure 4. We observe

2 This protocol has been used in [14, 13, 21, 22, 18] and is further discussed in [3]
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(b) Bounded aggregation (c) Bounded foraging (d) Bounded grid
exploration

(e) Unbounded
aggregation

(f) Unbounded foraging (g) Unbounded grid
exploration

Fig. 3: Performance of Chocolate, Coconut and Evostick on aggregation, foraging
and grid exploration, in bounded (top) and unbounded (bottom) workspaces.
The higher the better.

(b) Aggregation (c) Foraging (d) Grid exploration

Fig. 4: Runtime use of the ballistic motion with vector field, ballistic motion
with random rotations and random walk exploration schemes in control software
designed by Coconut for aggregation, foraging and grid exploration, in bounded
and unbounded workspaces.

that Coconut selects the ballistic motion for the bounded missions to promote
exploration. Indeed, ballistic motion allows the robots to cover larger distances.
For the unbounded missions, Coconut switches to random walk to promote ex-
ploitation. The random walk tends to keep robots in the same area and hence
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(a) Bounded foraging (b) Unbounded foraging

Fig. 5: Runtime use of the modules in control software designed by Chocolate
and Coconut for foraging in bounded (left) and unbounded (right) workspaces.

reduces the risks to lose robots. In this sense, the exploration scheme has an
influence in the unbounded class of missions.

Performance-wise, Coconut performs similarly to Chocolate in most mis-
sions. Differences between Chocolate and Coconut can only be observed for the
bounded versions of foraging and grid exploration. However, these differences
do not result from the exploration capabilities of Coconut but rather from the
difference between the search space size of both methods. Indeed, Coconut has
a larger search space and hence explores more solutions. Eventually, Coconut
can find a solution that Chocolate cannot produce. In particular, this is the case
for the bounded foraging mission. On the contrary, Chocolate will explore fewer
solutions and converge to an optimal solution faster than Coconut. Eventually,
this can translate into a slightly better performance, like for the bounded grid
exploration. All in all, there is no improvement from the addition of new explo-
ration schemes, even for the unbounded class of missions for which relying only
on ballistic motion is an apparent disadvantage.

Therefore, we analyze the finite-state machines produced by Chocolate and
Coconut on bounded and unbounded missions. We focus here on foraging but
the following observations can also be made on the other missions. We can see
in Figure 5 that, in the unbounded mission, both Chocolate and Coconut de-
crease their use of the exploration module to rely more on the light (phototaxis
and anti-phototaxis). The light is indeed at the opposite of the open part of the
workspace and helps the robots to stay within the workspace. Considering that
the performance of Chocolate and Coconut are similar, random walk does not
help Coconut to achieve a better behavior. Therefore, we conjecture that Choco-
late is able to adapt to different classes of missions by combining the modules
at its disposal, without relying on different exploration schemes. In this sense,
the exploration capabilities of Chocolate emerge from the interaction between
its different modules rather than being the direct result of specific embedded
exploration schemes.
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6 Conclusions

We introduced Coconut, an automatic modular design method able to select
different exploration schemes for each of its modules. We evaluated Coconut on
three missions in bounded and unbounded workspaces. We observed that Co-
conut is prone to select exploration schemes that fit the requirements of the mis-
sion at hand. In bounded workspace, the control software produced uses mainly
ballistic motion as it allows robots to cover bigger distances than random walks
and promotes hence exploration. On the contrary, in unbounded workspaces, the
control software produced uses mainly instances of random walk as it promotes
exploitation behaviors that help maintaining the robots within the workspace.
In this sense, the influence of the exploration scheme is only relevant for the
class of missions in which the workspace is unbounded.

We also compared Coconut to Chocolate, the state-of-the-art automatic mod-
ular design method. Performance-wise, we could not observe a conclusive differ-
ence between the control software produced by Chocolate and Coconut, even in
unbounded workspaces. Other exploration schemes do not improve the perfor-
mance of the swarm as we expected but the results are still interesting as they
allow us to make the following observations.

Even though Chocolate could only rely on ballistic motion as exploration
scheme, it yielded a similar performance to Coconut in unbounded workspaces.
Chocolate was hence able to design a control software preventing the robots
to leave the workspace by combining its different modules. This means that
exploration capabilities come from the interaction between atomic behaviors and
not only from the exploration schemes embedded in the modules. In this sense,
we saw that AutoMoDe adjusts to produce appropriate exploration strategies
for the task at hand.

For the class of missions conceived so far, ballistic motion has proven to
be a sufficiently appropriate exploration scheme. Still, whether random walk
exploration could be a suitable solution in other contexts needs to be further
explored.
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Belgium (2018)

18. Hasselmann, K., Robert, F., Birattari, M.: Automatic design of communication-
based behaviors for robot swarms. In: Dorigo, M., et al. (eds.) Swarm Intelligence,
ANTS, LNCS, vol. 11172, pp. 16–29. Springer, Cham, Switzerland (2018)

19. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: Morán, F., et al. (eds.) Advances in Artificial Life.
LNCS, vol. 929, pp. 704–720. Springer, London, UK (1995)



Exploration schemes in the automatic modular design of robot swarms 15

20. Kegeleirs, M., Garzón Ramos, D., Birattari, M.: Random walk exploration for
swarm mapping. In: Towards Autonomous Robotic Systems. TAROS 2019. LNCS,
vol. 11650, pp. 211–222. Springer, Cham, Switzerland (2019)

21. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic modular design of robot swarms. In: Dorigo, M.,
et al. (eds.) Swarm Intelligence, ANTS, LNCS, vol. 11172, pp. 30–43. Springer,
Cham, Switzerland (2018)

22. Ligot, A., Birattari, M.: On mimicking the effects of the reality gap with simulation-
only experiments. In: Dorigo, M., et al. (eds.) Swarm Intelligence, ANTS, LNCS,
vol. 11172, pp. 109–122. Springer, Cham, Switzerland (2018)
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