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Abstract

Grammar-based automatic algorithm design has been shown to generate stochastic local search algorithms that
compete with or outperform state-of-the-art methods. In such systems, algorithms are divided in components and
a grammar is used to describe how to properly combine the components to create a working algorithm. In our
approach, the grammar is converted in parameters and an automatic parameter configuration tool is used to find
the best configuration. This approach allows to consider and hybridize different metaheuristic templates producing
combinations never tested before, but this flexibility leads to a very large configuration space to explore. Is such
complexity really needed to achieve state-of-the-art performance?
In this paper, we investigate this question by creating grammars that allow the hybridization of stochastic local
search algorithms at most two, one or zero times. We use these grammars to generate algorithms for the three
most studied objectives of the permutation flowshop problem: makespan, total completion time and total tardiness.
The generated algorithms are compared using benchmark sets from the literature as well as a quantitative measure
of algorithm complexity using a metric based on concept directed acyclic graphs. The experiments show that our
system tends to generate hybridized algorithms only when they can provide a substantial performance improve-
ment. On the contrary, when such algorithms do not improve performance, the system generates simpler algorithms
regardless of the grammar used.

Keywords: Grammar-based automatic algorithm design; stochastic local search; permutation flowshop

1. Introduction

Designing stochastic local search (SLS) algorithms is not a trivial task. The process requires, first, to
choose the most appropriate SLS algorithm and then to adapt the chosen algorithm to the problem. Fi-
nally, the designer has to choose the right configuration for the parameters of the algorithm. Automatic
algorithm configuration has been proposed to solve the configuration problem using different techniques
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such as continuous optimization (Hansen and Ostermeier, 2001), SLS methods (Grefenstette, 1986),
the racing algorithm (Maron and Moore, 1997) and model-based approaches Mockus (1989). Nowa-
days several, publicly available, automatic configuration tools such as irace (López-Ibáñez et al., 2016),
paramILS (Hutter et al., 2007) or SMAC (Hutter et al., 2011) can be used to optimize the performance
of any algorithm.

The idea of automatic algorithm design (AAD) consists of expressing all these choices as parameters
and then use an automatic configuration tool, like irace, to select the best configuration and, consequently,
the best algorithm. This design paradigm has been called design by optimization (Hoos, 2012). In a top-
down approach, the algorithmic template is fixed (e.g. iterated local search or simulated annealing) and
all the design choices regarding the single components and their parameters. In a bottom-up approach,
instead, different templates can be instantiated and hybridized and a context-free grammar is used to set
the rules that describes how to build algorithms by combining algorithmic components.

The hybridization of different kinds of SLS algorithms has shown to be able to generate state-of-the-
art algorithms when applied to permutation flowshop (Pagnozzi and Stützle, 2019; Marmion et al., 2013)
as well as hybrid flowshop (Alfaro-Fernández et al., 2020), the unconstrained binary quadratic program-
ming and the traveling salesman problem with time windows (López-Ibáñez et al., 2017). However,
allowing hybridization can generate huge parameter spaces and generate algorithms with a complex,
nested structure. For instance, the grammar based approach used in Pagnozzi and Stützle (2019) for the
permutation flowshop problem with the makespan objective had 502 parameters.

In this paper, we try to understand if this complexity is really needed by using the AAD system pre-
sented in a previous paper to generate algorithms with varying levels of allowed hybridization for the
three most studied objectives of the permutation flowshop problem (PFSP): makespan (PFSPMS), total
completion time (PFSPTCT) and the total tardiness (PFSPTT) (Pagnozzi and Stützle, 2019).

In order to measure algorithm complexity, we use a quantitative measure based on the algorithms’
similarity calculated by a method based on directed acyclic graphs (Xu et al., 2016). This similarity
metric has been proposed to evaluate the differences between different parameters configuration and it
has been used to compare different algorithms generated by SATenstein (KhudaBukhsh et al., 2016).
In a different publication, the same metric is used in a tool, called CAVE (Biedenkapp et al., 2018), to
compare and analyzed the results of automatic algorithm configurators.

The proposed similarity metric considers each algorithm as its parameter configuration and each con-
figuration is organized in a directed acyclic graph (DAG). When comparing two configurations, the
similarity is calculated as the cost of the changes that need to be applied to one DAG to transform it
into the other. In particular, a different cost is calculated for parameters that have to be deleted, inserted
or modified. In addition, since often parameters are linked to others, each cost is weighted considering
how many parameters will be effected by the change. Our proposition is to use this distance metric to
evaluate the complexity of an algorithm by measuring its distance from the most simple algorithm that
can be defined according to the grammar.

For each objective we consider two grammars, a base grammar comprising different SLS templates
and one that explicitly includes an hybridized SLS as one of the available templates. For each combina-
tion of objective and grammar, we allow no hybridization, up to one level of hybridization and up to two
levels. For each of these combinations we generate 10 algorithms that are compared considering solution
quality and algorithm complexity for a total of 180 algorithms.

The expected result is that more complex algorithms will be generated only when they can provide



better results. In the case where a simple algorithm has better performance, we expect the generated
algorithms to share, more or less, the same complexity no matter how many levels of hybridization are
allowed. The experiments show that our AAD system generates a more complex algorithm only if it
performs similarly or better than a less complex algorithm. Furthermore, the results show that the huge
parameter spaces produced by allowing hybridization do not seem to generate less performing algorithms
when simple algorithms perform better.

To the best of our knowledge, there is little work directly relevant to quantify the complexity of algo-
rithm structure, let alone similarity of algorithm configurations. In a relevant work, algorithm similarity
is assessed using the notion of edit distance (Nikolić et al., 2009). Given two strings of texts, the edit
distance is defined as the minimum number of edit operations needed to change one string of text to
another. Although it is possible to turn two parameter configurations into strings of text, this method
would not suit our needs. In fact, simply turning the parameter configurations in strings of text would
ignore the dependencies between parameters set by conditional parameters, that is, parameters whose
value depends on the value of other parameters.

The structure of the paper is as follows. In Section 2, the permutation flowshop problem and the
objectives tackled in this paper are described. In Section 3, we present the automatic design system and
how the grammar influence the algorithms. The experimental setup as well as the experiment results are
described in Section 4. Finally, in Section 5, we summarize the results and report our conclusions.

2. Permutation flowshop problem

In the permutation flowshop problems there are n jobs that have to be processed on m machines.
Each job has to be processed on each machine in order without preemption. The processing time
of job i on machine j is defined as pi,j . The solution to a PFSP instance consists in a permutation
{π(1), ..., π(i), ..., π(n)} that specifies the order in which the jobs should be processed. The completion
time of job i on machine j, Cπ(i),j , is calculated as

Cπ(i),j = max(Cπ(i−1),j , Cπ(i),j−1) + pπ(i),j .

In this work, we consider three of the most common objectives: makespan, total completion time or
sum of completion time and the total tardiness. The makespan Cmax is calculated as the completion of
the last job on the last machine, that is,

Cmax = Cπ(n),m.

The total completion time Ctct is calculated as the sum of the completion times of all jobs on the last
machine

Ctct =

n∑
i=1

Ci,m.

The tardiness of a job π(i) is calculated as Tπ(i) = max(Ci,m − dπ(i), 0), where dπ(i) is the due date
of job π(i). Consequently, the total tardiness, Ctt, is calculated as



Ctt =

n∑
i=1

Ti,

that is, the sum of the tardiness of all jobs. For all three of these objectives the permutation flowshop is
NP-hard (with the exception of the two machine case for the makespan objective (Johnson, 1954)). The
current state-of-the-art algorithms for these objective have been developed using automatic algorithm
design (Pagnozzi and Stützle, 2019). In particular, the algorithm generated for the makespan objective is
an iterated greedy algorithm quite similar to the previous state of the art (Dubois-Lacoste et al., 2017).
On the contrary, the algorithms generated for the total completion time and total tardiness objectives are
hybridized SLS algorithms composed of two nested SLS.

3. Methodology

3.1. Automatic algorithm design

In the literature, two main approaches are reported: top-down and bottom-up. In the first, top-down, the
SLS algorithm is fixed, and only singular components can be changed. For instance, a simulated anneal-
ing algorithm where different choices can be made regarding its major design choices such as neigh-
borhood exploration, cooling scheme and acceptance criterion. Examples of the top-down approach
are the SAT solver SATenstein (KhudaBukhsh et al., 2016), the MOACO framework for multi objec-
tive ant colony optimization algorithms (López-Ibáñez and Stützle, 2012) as well as other algorithmic
frameworks for multi objective evolutionary algorithms (Bezerra et al., 2019, 2020), simulated anneal-
ing (Franzin and Stützle, 2019) and iterated local search (ILS) (Brum and Ritt, 2018b,a; De Souza and
Ritt, 2018b,a). This approach is less complex and the number of different categorical combinations is
relatively low.

The approach followed by our system is the bottom-up approach. This approach uses a general tem-
plate that allows, by using the proper parameter setting, to instantiate several different SLS algorithms.
Moreover, this approach allows SLS algorithm hybridization, where different SLS algorithms can be
combined. For instance, an ILS algorithm could be configured to use a tabu search or a simulated an-
nealing as local search. This general template approach combined with hybridization can possibly lead
to new, never seen combinations. In early examples, this approach has been used in a system based on
irace as automatic configurator and the ParadisEO framework (Humeau et al., 2013) for the algorithmic
components. With this system, new state-of-the-art algorithms were generated for the permutation flow-
shop problem with the weighted tardiness objective (Marmion et al., 2013), the unconstrained binary
quadratic programming and the traveling salesman problem with time windows (López-Ibáñez et al.,
2017). In more recent examples, a system based on irace and the EMILI framework has been used to
generate new state-of-the-art algorithms for problems such as the permutation flowshop problem and the
hybrid flowshop problem (Pagnozzi and Stützle, 2019; Alfaro-Fernández et al., 2020). Another automatic
design method is the one related to generative hyperheuristics (Burke et al., 2019). These methods build
heuristics and other algorithmic components based on techniques such as genetic programming (Koza,
1992), grammatical evolution (Burke et al., 2012) and gene expression programming (Sabar et al., 2015).

In order to support the bottom-up approach, we need an algorithmic framework that is flexible enough



Algorithm 1 ILS
1: Output The best solution found π∗,
2: π := Init()
3: π := SLS(π)
4: while ! termination criterion do
5: π′ := Perturbation(π)
6: π′ := SLS(π′)
7: π := AcceptanceCriterion(π, π′)
8: end while
9: Return the best solution found in the search process

to allow the definition of algorithmic components and templates with minimal effort. We use the EMILI
framework that was designed exclusively for this purpose. A key complication introduced by this ap-
proach is that the configuration space is larger and there are parameter configurations that do not repre-
sent a legal algorithm, that is, an algorithm that can be instantiated. Additionally, some legal configura-
tion may be undesirable, such as an ILS without a perturbation. To solve this problem, grammars have
been proposed to limit the search space to only legal configurations (Mascia et al., 2014).

The EMILI framework design is based on a generalized version of a widely known SLS algorithm,
iterated local search (ILS). The outline of this algorithm is shown in Algorithm 1. The ILS starts with an
initial solution typically generated by a construction heuristic and combines an intensification phase, to
reach quickly a local minimum, and a diversification phase, to explore the search space and try to escape
local minima. The balance between intensification and diversification is controlled by an acceptance
criterion. Finally, the algorithm stops when a termination condition is reached, typically dependent on
running time or the number of algorithm iterations.

In its implementation for the PFSP, the framework considers, typically, first improvement, best im-
provement and variable neighborhood descend (VND) for the intensification phase. Compared with the
ILS template, these algorithms require only an initial solution, a termination condition and to define the
neighborhood to explore or the set of neighborhood definitions. In Table 1 we report the components
used in this study divided by type. Given the focus of this paper, we will not provide a detailed de-
scription of all the components. For such description we remind the reader to our previous publication
(Pagnozzi and Stützle, 2019).

3.2. Grammars

In the following, we describe in detail how the rules composing a context-free grammar are translated
into parameters. Context-free grammars are defined as a four-tuple G = (V,Σ, R, S), where V repre-
sents a set of non-terminal symbols, Σ is a set of terminal symbols, R is a set of rules that maps every
non-terminal symbol in V to the set (V ∪ Σ)∗, and S specifies the starting non-terminal symbol. The
rules in Σ are also known as production rules and link every non-terminal symbol to a combination of
terminal and/or non-terminal symbols. Applying one production rule consists in replacing a non-terminal
with the combination of symbols indicated by the rule. While non-terminal symbols can be seen as vari-
ables, terminal symbols represent values that can be either strings of text or numbers. An example of
production rule is the following



Type Component Parameters

Construction Heuristics

NEH (Nawaz et al., 1983), NEHtb (Fernandez-Viagas and Framiñán, 2014) -
NEHedd (Kim, 1993), LR (Liu and Reeves, 2001), NLR -
FRB5 (Rad et al., 2009), RZ (Rajendran and Ziegler, 1997), NRZ, NRZ2,SLACK, -
NEHrs, BS (Fernandez-Viagas and Framiñán, 2017), BSCH (Fernandez-Viagas et al., 2018) -

Iterative improvements

First Improvement 〈In, T,N〉
Best improvement 〈In, T,N〉
VND 〈P, In, T, {N1, ..., Nk}〉
iRZ (Pan and Ruiz, 2012) 〈In〉
ALS (Brum and Ritt, 2018a) 〈l1, l2〉

Neighborhoods
transpose, exchange, insert, binsert -finsert, atctinsert (Pagnozzi and Stützle, 2019), attinsert (Pagnozzi and Stützle, 2019) -
twinsert, karneigh (Karabulut, 2016) -

Termination criteria
local minimum -
maxsteps 〈maxi〉
maxstepsorlocmin 〈maxi〉

Perturbation criteria

random move 〈N,num〉
vr move 〈{d, num, (N1, ..., Nk)}〉
IGlsps (Dubois-Lacoste et al., 2017) 〈d〉
IG,IGrs (Ruiz and Stützle, 2007) 〈d〉
IGio (Pagnozzi and Stützle, 2019) 〈d〉
mrsilsp (Wang et al., 2014) 〈p〉
CP3 (Li et al., 2015) 〈d, ω, pc〉

Acceptance criteria

better 〈∅〉
improve plateau 〈st, sn〉
ft (Metropolis et al., 1953) 〈T 〉
psa (Metropolis et al., 1953) 〈Ts, Te, β, it〉
sa (Metropolis et al., 1953) 〈Ts, Te, β, α, it〉
rsacc (Ruiz and Stützle, 2007) 〈Tp〉
karacc (Karabulut, 2016) 〈Tp〉

Table 1: Algorithmic components implemented in the EMILI framework that were used in this study

<A> :: ‘b’ | ‘c’,

where the non terminal <A> can be expanded either as the terminal ‘b’ or ‘c’. Every legal sentence
according to G can be produced by applying the production rules in R starting with S.

Once defined, the grammar rules can be converted in two types of parameters, numerical or categor-
ical. Numerical parameters are used to represent numbers that can be either integer or real. Categorical
parameters are used to represent a set of values that are unrelated and cannot be ordered. Usually, this
type of parameters is used to represent different design choices. Although it is not used in this approach,
most AAC tools supports also ordinal parameters which represent parameters with values that can be or-
dered but not compared. Additionally, parameters can be conditional, which means that they are active,
that is, they are required to assume a value if a certain condition is verified; otherwise, their value is not
considered and the parameter is inactive. Usually, the most common condition is that another param-
eter assumes a specific value. For instance, considering the termination condition of a SLS algorithm,
if the parameter controlling the termination condition is set to stop the algorithm after reaching a local
minimum, the numerical parameter controlling the maximum number of iterations is inactive.

When converting grammar rules to parameters, we have to take into account several cases. Simple
rules, that is production rules that presents only terminal symbols on the right side, like the one shown
above for ‘A’, can be directly converted into parameters. These rules are translated either in numerical



or categorical parameter. Rules that have non terminals on the right side, recursive rules and groups of
rules arranged in a loop, needs more than one parameter to be converted. These rules need a parameter
for the non terminal on the left side of the rule and then a new parameter for each non terminal on the
right side. Recursive rules and loops can be applied more than once, thus, a new set of parameters has to
be created every time the recursion is applied. For instance, lets consider the following production rule

<C> :: ‘b’ <C> | ‘d’, (1)

where <C> can either be ‘d’ or ‘b’ and then there is a recursive call to <C>. A parameter Pc is
created for <C> that comprises the choice between ‘b’ and ‘d’. The recursion is then treated by creating
a new parameter Pc2 in the same way as Pc that can assume a value only if Pc assumes the value ‘b’.
This process is stopped after Rc times, otherwise it would be impossible to transform the grammar in a
set of parameters making the use of parameter tuners impossible. For instance, when the limit Rc is set
to 1, the production rule <C> is transformed in a set of two production rules, shown in Equation 2. The
two rules are directly translated in a set of two parameters with the parameter for <C2> that has to be
set when <C> assumes the value ‘b’.

<C> :: ‘b’ <C2> | ‘d’
<C2> :: ‘d’ (2)

A similar consideration is made when taking into account loops, with the difference that all the rules
involved in the loop have to be replicated. We can show an example by modifying the example in Equa-
tion 1 as

<C> :: ‘b’ <D> | ‘d’
<D> :: ‘a’ <C> (3)

In Equation 3, there is a loop composed of <C> and <D>. Considering a value of Rc = 1, the loop
is translated in the group of production rules shown in Equation 4.

<C> :: ‘b’ <D> | ‘d’
<D> :: ‘a’ <C2>
<C2> :: ‘b’ <D2> | ‘d’
<D2> :: ‘a’

(4)

The grammar used for this study is shown in Figure 1, where the starting production rule is <SLS>.
In the figure we omitted simple rules and numerical parameters to better highlight the parts of the gram-
mar that influence the complexity. The general ILS implemented in the EMILI framework is described
by the rule <ILS>, while the hybridization is allowed by the loop composed of the rules <ILS> and
<LocalSearch>. When converting the grammar into parameters, expanding this loop requires the du-
plication of all the rules in Figure 1 with the exception of <SLS>, resulting in a huge increase in the
number of parameters to tune.



<SLS> ::= <ILS> | <TabuSearch>
<ILS> ::= ‘ils’ <LocalSearch> <Termination> <Perturbation>

<Acceptance>
<TabuSearch> ::= <FirstTabuSearch> | <BestTabuSearch>
<FirstTabuSearch> ::= ‘tabu’ ‘first’ <InitialSolution>

<Termination> <Neighborhood> <TabuMemory>
<BestTabuSearch> ::= ‘tabu’ ‘best’ <InitialSolution>

<Termination> <Neighborhood> <TabuMemory>
<LocalSearch> ::= <FirstImprovement> | <BestImprovement> |

<TabuSearch> | <VND> | <ILS> | <EmptyLocalSearch>
<FirstImprovement> ::= ‘first’ <InitialSolution> <Termination> <Neighborhood>
<BestImprovement> ::= ‘best’ <InitialSolution> <Termination> <Neighborhood>
<EmptyLocalSearch> ::= ‘nols’ <InitialSolution>
<VND> ::= ‘vnd’ <firstVND> | <bestVND>
<firstVND> ::= ‘first’ <InitialSolution> <Termination> <neighborhoods>
<bestVND> ::= ‘best’ <InitialSolution> <Termination> <neighborhoods>
<neighborhoods> ::= <Neighborhood> <neighborhoods> | ∅
<Perturbation> ::= <IG > | <IGlsps > | <random move > | ‘noper’
<IGlsps > ::= ‘IGlsps’ <SimpleImprovement>
<SimpleImprovement> ::= <FirstImprovement> | <BestImprovement>

Fig. 1: Template of the context-free grammar used for this study.

In empirical experiments conducted, while developing the EMILI framework, it was observed that,
with the grammar in Figure 1, there was a low probability of generating hybridized SLS algorithms even
when such algorithms would provide better performance. This may be explained by the fact that in order
to generate an hybridized algorithm, two parameters have to be set with the right value: <SLS> has to
be set to <ILS> and <LocalSearch> has to be either <ILS> or <TabuSearch>. For this reason, the
grammar that was used to generate SLS algorithms in Pagnozzi and Stützle (2019) included an explicit
rule for generating hybridized SLS algorithms. This rule, shown in Figure 2 as<HSLS>, is almost equal
to <ILS> with the only change being the substitution of <LocalSearch> with <ILS>. The effect is to
increase the probability of generating an hybridized algorithm, since now it can be selected with one
parameter as <ILS> and <TabuSearch>.

The additional rules omitted in Figure 1, describe the different components available for each com-
ponent type. These components are shown in Table 1. The grammar in Figure 1 was adapted to each
objective by adding the specific set of objective specific components. These components represent the
only differences between the three grammars prepared for each PFSP objective. Additionally we con-
sidered, for each objective, also the grammar with the modification shown in Figure 2, resulting in two
grammars for each objective and six grammars in total.

From these grammars, we generate three set of parameters by varying the value of Rc from zero to
two that, for the grammars with the explicit hybridization rule, corresponds to going from one to three.
This is another effect of the rule <HSLS>, where an hybridized algorithm is defined as a different rule.
Defined in this way, <HSLS> is not a loop and, thus, it is converted to parameters even when Rc is
set to zero. As a result when setting Rc = 0, the set of parameters generated from the grammar with



<SLS> ::= <ILS> | <TabuSearch> | <HSLS>
<HSLS> ::= ‘ils’ <ILS> <Termination> <Perturbation>

Fig. 2: The changes made to the grammar in Figure 1 to increase the probability of generating an hy-
bridized SLS algorithm.

Rc = 0 Rc = 1 Rc = 2 Rc = 3
PFSPMS 91 167 243 -
PFSPMS

∗ - 204 356 508
PFSPTCT 97 179 261 -
PFSPTCT

∗ - 207 371 535
PFSPTT 99 187 275 -
PFSPTT

∗ - 225 401 577

Fig. 3: Number of parameters generated for each objective when converting the grammar with values of
Rc from one to three.

additional hybridization is similar to set generated from the base grammar with Rc = 1. In Table 3,
for each objective, we report the number of parameters generated from the grammar for the four values
of Rc. The grammars with the explicit hybridization rule are indicated with ∗. Considering the same
objective, the huge difference in the number of parameters is due to all the parameters that needs to be
created by the added rule<HSLS> and the loops it creates. ForRc = 1, the different values for the three
objectives are due to the different number of objective specific components. In the other two cases, the
huge increase in the number of parameters is due to having to handle rule <ILS> and the loop it creates.
Having to insert new parameters also increases the initial differences among the size of the grammars.

3.3. Directed acyclic graph based complexity metric

The complexity metric used in this work is derived by a similarity metric proposed to evaluate different
parameter configurations (Xu et al., 2016). In this metric, each parameter configuration is represented as
a concept DAG.

A concept DAG, G, is defined as a six-tuple G = (V,E, Lv, R,D,M) where V and E contain,
respectively, the set of nodes and directed edges and represent an acyclic graph, Lv is a set of node labels
composed of text strings, R represent a root node, D is the set of all node labels and, finally, M is an
injective mapping that assigns to every node in V a label from Lv.

Every node of the DAG represents a parameter and every edge models a dependency relation among
them. If there is an edge from node A to node B it means that B needs A to be set in order to be used.

In the original proposition of this representation, the root node R is an artificial node introduced to
link together all the parameters. However, in our case, due to the use of a grammar representation, all
the parameter configurations have a tree structure and so the root node is the one representing the first
derivation rule of the grammar.



The distance between two parameter configurations is calculated as the cost of transforming the DAG
representing the first in the one representing the second configuration. The process of transforming one
DAG into another is broken down in a series of four types of operations: deletion, insertion, relabelling
and moving. A cost is defined for each operation and the distance is defined as the sum of the costs of
all the operations needed to transform one DAG into another. The cost of deleting one node is defined as

C(delete(v)) =
1

|V |
· (height(DAG)− depth(v) + 1 + |DE(v)|),

where height(DAG) is the height of the DAG, depth(v) is the depth of node v and DE(v) is the set
of the nodes that depend on v. The insertion cost is calculated as

C(insert(u, v)) =
1

|V |
· (height(DAG)− depth(u) + 1 + |DE(v)|),

where node v is inserted under node u. The moving cost is given by

C(moving(u, v)) =
|V | − 2

2 · |V |
· [C(delete(v)) + C(insert(u, v))],

where |V | has to be greater than 2. The relabelling operation models the situation where two parameter
configurations have the same parameter with a different value. The cost of this operation is calculated as

C(relabel(v, lv, lv
∗
)) = [C(delete(v)) + C(insert(u, v))] · s(lv, lv∗),

where u is the parent node of v, lv is the old label and lv
∗

is the new label; s(lv, lv
∗
) is a measure of

the distance between the two labels. This measure is calculated in different ways depending on the type
of the parameter. For parameters representing continuous values s(lv, lv

∗
) = |lv − lv∗ |. For parameters

representing a discrete set of k values s(lv, lv
∗
) = |num(v,v∗)

k−1 |, where num(v, v∗) is the number of
intermediate values between v and v∗. Finally, for categorical parameters s(lv, lv

∗
) = 0 if the parameters

have the same label, and 1 otherwise. As in Xu et al. (2016), when calculating the distance the moving
operator was never used.

In general, configurations can be represented with very general graphs composed of different con-
nected components depending on how many conditional parameters are defined. When calculating the
distance, the series of operators and order in which they are applied influence the final value since op-
erators may change the height of the DAG, the depth of a node, or the number of dependencies. Conse-
quently, calculating the distance between two configurations means finding the minimal transformation
cost, which may be a computational expensive task. In this work, we exploit some characteristics of the
considered AAD system to make the calculation of the distance quite straightforward.

In the case of grammar based AAD, all parameters are conditional with the exception of the one
created from the starting rule of the grammar. For this reason, all the parameters and dependencies can
be represented in a single general tree, where the root node is the parameter representing the starting rule
of the grammar. Moreover, DAGs built from algorithm configurations can be seen as a subtree of this
general tree. We exploit this underlying tree structure by defining |DE(v)|, height(DAG) and depth(v)
referring to the general tree. In particular, |DE(v)| is the number of child nodes of v in the general tree,
while height(DAG) and depth(v) are, respectively, the height of the general tree and the depth of node



<A> ::= ‘a1’ <B> | ‘a2’ <C>
<B> ::= ‘b1’ <D> | ‘b2’ <D>
<C> ::= ‘c1’ <E> | ‘c2’ <E>
<D> ::= ‘d1’ | ‘d2’
<E> ::= ‘e1’ | ‘e2’ | ‘e2’

Fig. 4: A simple context-free grammar com-
prising five non-terminal and eleven terminal
symbols.

A

B C

D E

Fig. 5: Graph representing the parameters and
the dependencies generated from the grammar
in Figure 4

Configuration A B C D E
C1 ‘a1’ ‘b1’ - ‘d2’ -
C2 ‘a2’ - ‘c2’ - ‘e3’

Fig. 6: Two possible configurations for the parameters derived from the grammar in Figure 4.

v in the general tree. In this way, the order in which operators are applied does not change the distance
measured.

To better explain how the distance between two configurations is calculated, we consider the grammar
in Figure 4. The grammar does not have any recursive rule or loops, so that it can be transformed in pa-
rameter space using five categorical parameters, {A,B,C,D,E}, where B and C depend on parameter
A, and D and E depend on, respectively, B and C. The graph, generated by considering only the param-
eters and the dependencies, is shown in Figure 5. Let us calculate the distance for two configurations C1

and C2, shown in Figure 6. From the tree in Figure 5 we can see that height(C1) = height(C2) = 3 and
|DE(A)| = 2, |DE(B)| = |DE(C)| = 1 and |DE(D)| = |DE(E)| = 0. The calculation of the distance
between these two configurations can be decomposed as the sum of the different operators needed to
transform C1 in C2. More precisely,

d(C1, C2) = relabel(A, ‘a1’, ‘a2’) + delete(B) + insert(C,A) + delete(D) + insert(E,C)

which, after applying the operators, becames

d(C1, C2) = 2.2 + 0.6 + 0.4 + 0.2 + 0.4 = 3.8.

The complexity metric we consider in this work is derived by this distance by evaluating the complex-
ity as the distance from a simple baseline algorithm. This algorithm, called Abs, was chosen as the one
with the most simple structure that can be instantiated with the grammar and still be considered a local
search algorithm.Abs is an ILS that has a first improvement local search that stops once it reaches a local
minimum. Abs does not have a perturbation and only accepts improving solutions. Practically, Abs is an
iterated improvement algorithm that stops when a local minimum is reached.



4. Experimental Results

Considering the grammar with and without explicit hybridization rule, six parameter sets were generated
for each objective allowing 0, up to 1 and up to 2 levels of recursion. For each level, 10 tuning sessions
were conducted for a total of 60 sessions per objective. In each session, irace was executed two times,
each time with the same budget of 105 experiments. The two executions were in succession in the sense
that the second execution of irace was seeded with the best configurations produced during the first exe-
cution. All the irace sessions used a training set of 40 instances generated using the procedure described
by Minella et al. (2008). The training set is composed of five instances with number of jobs in 50, 60,
70, 80, 90, 100 and 20 machines plus five instances with size 250× 30 and five 250× 50.

All the experiments were carried out on a computing cluster consisting of 32 Opteron 6272 CPUs
running at 2.1 Ghz for a total of 512 cores, with 32 GB of RAM memory per CPU. Requiring 30 cores
for each run, each execution of irace lasted about six days. Considering two irace execution per grammar
and Rc value, collecting the data for this study required in total 360 irace executions. Running this
amount of experiments one after the other would have required almost six years. Thanks to the high
core count of the computing cluster we were able to run, at the same time, ten irace executions reducing
the computing time to seven months. Additionally, the algorithms generated during the experiments are
compared with the three state-of-the-art automatically generated algorithms and the three best manually
designed algorithms. The three state-of-the-art algorithms are: IGirms for PFSPMS, ALGirtct for PFSPTCT
and ALGirtt for PFSPTT (Pagnozzi and Stützle, 2019). The three manually designed algorithms are: IGall
(Dubois-Lacoste et al., 2017) for PFSPMS; MRSILS(BSCH) (Fernandez-Viagas and Framiñán, 2017) for
PFSPTCT and IAras for PFSPTT (Fernandez-Viagas and Framiñán, 2018).

All these algorithms are implemented in the EMILI framework and they use their original configu-
ration, with the exception of ALGirtct and ALGirtt. Since the development of ALGirtct and ALGirtt, BSCH
and BS, two new initial solution heuristics based on beam search (Fernandez-Viagas and Framiñán,
2017, 2018) have been proposed for, respectively, PFSPTCT and PFSPTT. These heuristics show excellent
performances and are used in the manually developed algorithms as well as in the algorithms gener-
ated during the experiments. Therefore, to have a better comparison, ALGirtt and ALGirtct were modified
to use these components. In the following the modified versions of these algorithms will be indicated
as, respectively, ALGirtct(BSCH) and ALGirtt(BS). A more detailed comparison between manual and
automatically designed algorithms for the permutation flowshop problem is available in Pagnozzi and
Stützle (2019).

From each tuning session we take the best algorithm as indicated by irace. The complexity metric
was implemented using the R language, so that it can better interact with irace. For each objective, the
algorithms are grouped by level of recursion and grammar resulting in six groups of 10 algorithms. For
all algorithms we report the complexity calculated as outline in the previous section and the performance
calculated on a benchmark set specific for each objective. The Taillard benchmark (Taillard, 1993) was
used for PFSPMS and PFSPTCT, which comprises of 120 instances divided in groups of 10 composed
by all the combination of number of jobs n ∈ {20, 50, 100} and number of machines m ∈ {5, 10, 20}
plus three groups with size (n,m) ∈ {(200, 10), (200, 20), (500, 20)}. For PFSPTT instead, we used
the benchmark proposed in Vallada et al. (2008), which consists of 540 instances dived in groups of 45
with jobs n ∈ {50, 150, 250, 350} and machines m ∈ {10, 30, 50}. Algorithm’s performance is reported
using the relative percentage deviation (RPD) for PFSPMS and PFSPTCT, which is calculated as S−Sb

Sb
,



where S is the quality of the solution found and Sb is the best known, or sometimes optimal, solution.
Since in some cases the best solution can be 0, for PFSPTT we use the relative deviation index (RDI)
that is calculated as S−Sb

Sw−Sb
, where Sw is the worst solution found. Additionally, for each objective, the

Wilcoxon paired test is used to assess the significance of the differences between the average perfor-
mance of the algorithms generated by the two grammars. In particular, the test is executed over the
average performance of the best ten algorithms generated by the base grammar and the ten generated by
the grammar with additional hybridization. All algorithms are executed for the same amount of time cal-
culated as n · (m/2) · t milliseconds, where n and m are, respectively, the number of jobs and machines
and t is set to 60.

Algorithm 2 A1
1: Input Given a Problem Definition π,
2: Output The best solution found s∗,
3: s := init()
4: s∗ := s
5: while ! termination criterion do
6: s′ := perturbation(s)
7: s′′ := iterative improvement(s′)
8: s := acceptance(s, s′′)
9: if f(s) < f(s∗) then

10: s∗ := s′

11: end if
12: end while
13: Return s∗

Algorithm 3 A2
1: Input Given a Problem Definition π,
2: Output The best solution found s∗,
3: s := init()
4: s∗ := s
5: while ! termination criterion do
6: s′ := IGlsps(s, local search)
7: s′′ := iterative improvement(s′)
8: s := acceptance(s, s′′)
9: if f(s) < f(s∗) then

10: s∗ := s′

11: end if
12: end while
13: Return s∗

4.1. Makespan

The results for the makespan objectives are shown in Figure 7. The figure show the correlation between
complexity and average RPD for the base grammar on the left and the grammar with additional hy-
bridization on the right. In the makespan case, the algorithms generated allowing one and two recursions
are not so different from the ones obtained without recursion. In fact, the difference between the average
performance of the ten best algorithms for both types of grammar is not significant. The majority of
the algorithms generated considering the three grammars are versions of the algorithm A2, shown in
Algorithm 3, which is, an IG algorithm using an IG perturbation with local search (IGlsps), either first
improvement or best improvement, on the partial solution. The two less performing algorithms, the two
squares at the top in Figure 7 (a), are, instead, two versions of the A1 algorithm, shown in Algorithm 2,
using the IGio perturbation.

The algorithms generated using the grammar with explicit recursion, in Figure 7 (b), follow, with the
exception of four algorithms, the same classification. There is a first group of A1 algorithms character-
ized by an iterated greedy perturbation and a second group of A2 algorithms using the IGlsps perturbation.
Considering the remaining four algorithms, one is a version of the algorithm A3, shown in Algorithm 4,
that is an ILS that uses a VND as local search and the IGlsps perturbation. Given the performances of the
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Fig. 7: Correlation between ARPD and algorithm complexity for the PFSPMS considering three levels of
maximally allowed recursion. On the left, there are the results for the base grammar while on the right
there are the results for the grammar with the additional hybridization rule. Circles indicate algorithms
generated not allowing any hybridization, with the triangles one level is allowed and with the squares
two levels are allowed. With Rc∗ we indicate the adjusted value of Rc after considering the explicit
recursion as explained at the end of Section 3.2.

majority of the A2 algorithms, the VND does not look better than a simple iterative improvement algo-
rithm. The last three algorithms are hybridized algorithms and can be described as versions of algorithm
A5, shown in Algorithm 6, where one ILS algorithm uses another ILS to improve the current solution
after the perturbation.

The manually designed algorithm, IGall (Dubois-Lacoste et al., 2017), as well as the current state-of-
the-art, IGirms, belong to the A2 algorithms. IGall (shown in Figure 7 (a)) has better performances than
the A1 algorithms thanks to the IGlsps perturbation but when considering the A2 group, IGall is one of
the worst performing algorithms. This result further highlights the performance improvements that can
be achieved by AAD. IGirms instead (shown in Figure 7 (a)), sits at the bottom of the A2 group with seven
other algorithms showing a better mean, although this difference is not statistically significant according
to the Wilcoxon test.

Finally, even considering the different number of parameters due to the different Rc values, we can
see that the relative performance of the generated algorithms is quite close. This result suggests that the
budget allocated for the experiments is adequate to reach good configurations. The lack of hybridized
algorithms, with just three generated over sixty, can be explained by the fact that simple algorithms
represent a very deep local minimum that irace encounters quite early in the search. Ultimately, this
result is not unexpected. In fact IGall as well as IGirms are IG algorithms with the optimization of the
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Fig. 8: Correlation between ARPD and algorithm complexity for the PFSPTCT considering three levels
of maximally allowed recursion. On the left, there are the results for the base grammar while on the right
there are the results for the grammar with the additional hybridization rule. Circles indicate algorithms
generated not allowing any hybridization, with the triangles one level is allowed and with the squares
two levels are allowed. With Rc∗ we indicate the adjusted value of Rc after considering the explicit
recursion as explained at the end of Section 3.2.

partial solutions in the perturbation.

4.2. Total completion times

The situation in PFSPTCT is more interesting with clearly different results between the two grammars.
Looking at the correlation plot for the base grammar, shown in Figure 8 (a), we can see that the al-
gorithms are clustered in three groups. The first group consist of A1 algorithms, such as Algorithm
2, differing mostly on the termination condition of the first improvement local search, the kind of IG
perturbation and the acceptance criteria. The second group is composed of two A3 algorithms having
a VND and an IG perturbation with performances comparable to the ones in the first group. The four
algorithms in the final group, that are also the ones with the better performances, are A5 algorithms,
which combines two SLS algorithms. In all four cases, one of the two SLS algorithms has a stronger
perturbation combined with an accepting criteria biased towards intensification, that is accepting only or
with an high probability improving solutions. The other of the two instead, has a weaker perturbation
combined with an accepting criteria having an higher probability of accepting non improving solutions.
MRSILS(BSCH) (Fernandez-Viagas and Framiñán, 2017) is shown at the top of Figure 8 (a) and shows



Algorithm 4 A3
1: Input Given a Problem Definition π,
2: Output The best solution found s∗,
3: s := init()
4: s∗ := s
5: while ! termination criterion do
6: s′ := perturbation(s, iterative improvement)
7: s′′ := VND(s′, neighborhoods)
8: s := acceptance(s, s′′)
9: if f(s) < f(s∗) then

10: s∗ := s′

11: end if
12: end while
13: Return s∗

Algorithm 5 A4
1: Input Given a Problem Definition π,
2: Output The best solution found s∗,
3: s := init()
4: s∗ := s
5: a := 0
6: while ! termination criterion do
7: s′ := perturbation(s, iterative improvement)
8: ALS procedure
9: if a mod 2 = 0 then

10: s′′ := iterative improvement 1(s′)
11: else
12: s′′ := iterative improvement 2(s′)
13: end if
14: s := acceptance(s, s′′)
15: if f(s) < f(s∗) then
16: s∗ := s′

17: end if
18: a := a+ 1
19: end while
20: Return s∗

a significant difference with the automatically generated algorithms. This algorithm belongs to the A1
group but differs from the other algorithms in this group for the perturbation and the acceptance crite-
rion. In fact, MRSILS(BSCH) uses a perturbation based on random moves in the insert neighborhood
instead of the IG perturbation and accepts only improving solution as acceptance criterion instead of
an acceptance criterion based on the Metropolis condition. ALGirtct(BSCH) instead, sits at the bottom



of Figure 8 (a) and belongs to the A5 group. The use of the BSCH heuristic improved significantly the
performance of the algorithm that went from having a mean of 0.59 (as reported in Pagnozzi and Stützle
(2019)) to 0.15. Considering the algorithms generated in this work, there are three algorithms with a bet-
ter mean that ALGirtct(BSCH) but, as in the case of PFSPMS, the difference is not significant according
to the Wilcoxon test.

The algorithms generated with the grammar with explicit recursion, shown in Figure 8 (b), can be
grouped in almost the same way with a first group composed of A1 algorithms, one A3 algorithm, a
third bigger group composed of A5 algorithms and, finally, two algorithms composed of three nested
SLS algorithms similar to the A6 algorithm shown in Algorithm 7. The main difference with the base
grammar is that, in this case, the majority of the generated algorithms is composed of hybridized algo-
rithms. Moreover, irace was able to generate, on average, algorithms with better performance compared
with the base grammar. This difference between the two grammars has been found to be statistically
significant by the Wilcoxon paired test.

Considering Figure 8, it seems that passing a certain complexity threshold, that consists of having
a two nested SLS structure, delivers better performances. This results is in accordance with ALGirtct
(Pagnozzi and Stützle, 2019), which is also a composed algorithm consisting of nested SLS algorithms.
Although better performing, there is a low probability of generating hybridized algorithms when using
the base grammar. This result could mean that common SLS algorithms represent a local minima in the
configurations search space. On the contrary, the results with the more complex grammar, in Figure 8
(b), indicate that increasing the chances of generating more complex algorithms seems to help irace to
overcome this local minima.

4.3. Total tardiness

While complexity seems to lead to better performances for PFSPTCT, the same does not seem to be the
case for PFSPTT when considering the base grammar, as shown in Figure 9 (a) where all algorithms but
two are versions of the A1 algorithm. One of the two is a nested algorithm similar to the A5 algorithm
as in Algorithm 6. The other is similar to the A4 algorithm shown in Algorithm 5. This algorithm uses
the ALS local search, where two iterative improvement algorithms are executed alternatively. The best
manually designed algorithm, IAras (Fernandez-Viagas and Framiñán, 2018) has by far the worst per-
formances and it is shown at the top of Figure 9 (a). As in the case of MRSILS(BSCH) for PFSPTCT,
IAras belongs to the A1 group. This algorithm is a simple ILS with a perturbation based on random
moves in the transpose neighborhood and an acceptance criterion based on the Metropolis condition
with a fixed temperature. Considering that almost all the algorithms in the A1 group share this same
structure, the difference in performance shown by IAras is probably caused by the configuration of the
numerical parameters. ALGirtt(BS), shown in the middle in Figure 9 (a), belongs to the A5 group, being
composed of two nested SLS algorithms. Considering the performance, ALGirtt(BS) shows a significant
improvement thanks to the BS heuristic, passing from an RDI of 0.0321 to 0.025. When comparing with
the algorithms generated for this work, there are nine algorithms, three in the A1 group and three in the

1This value is calculated using the data reported in Pagnozzi and Stützle (2019) and taking into account the best and worst
solutions used in this study.
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Fig. 9: Correlation between ARDI and algorithm complexity for the PFSPTT considering three levels of
maximally allowed recursion. On the left, there are the results for the base grammar while on the right
there are the results for the grammar with the additional hybridization rule. Circles indicate algorithms
generated not allowing any hybridization, with the triangles one level is allowed and with the squares
two levels are allowed. With Rc∗ we indicate the adjusted value of Rc after considering the explicit
recursion as explained at the end of Section 3.2.

A5 group, that have a better mean than ALGirtt(BS). This result is statistically significant for seven of
these algorithms. A probable explanation for this result is that ALGirtt(BS) does not have the best bal-
ance between intensification and diversification to take fully advantage of the initial solution generated
by BS.

In the case of the grammar with explicit hybridization, the results, presented in Figure 9 (b) show a
different outcome. In fact, the algorithms can be grouped in four types. The first group of algorithms is
composed of A1 algorithms with random move perturbations. There is an A3 algorithm, a group com-
posed of hybridized algorithms such as the A5 algorithm and, finally, two algorithms composed of three
SLS algorithms such as the A6 algorithm. Interestingly, the grammar with the additional hybridization
led to better performing algorithms with and without hybridization. This result is significant according
to the Wilcoxon paired test. A possible explanation is that forcing irace to consider more hybridized al-
gorithms may help it in the exploration of the parameter space. The results suggests that in this case the
difference in performance of SLS and nested SLS algorithms is not very big. Considering the number of
non nested algorithms, these results further confirms that the system tends to prefer simple algorithms
with the base grammar. On the contrary, using the grammar with explicit hybridization can lead to better
algorithms, both simple and nested.



Algorithm 6 A5
1: Input Given a Problem Definition π,
2: Output The best solution found s∗,
3: s := init()
4: s∗ := s
5: while ! termination criterion do
6: s′ := perturbation(s)
7: s′′ := A1(s′)
8: s := acceptance(s, s′′)
9: if f(s) < f(s∗) then

10: s∗ := s′

11: end if
12: end while
13: Return s∗

Algorithm 7 A6
1: Input Given a Problem Definition π,
2: Output The best solution found s∗,
3: s := init()
4: s∗ := s
5: while ! termination criterion do
6: s′ := perturbation(s)
7: s′′ := A5(s′)
8: s := acceptance(s, s′′)
9: if f(s) < f(s∗) then

10: s∗ := s′

11: end if
12: end while
13: Return s∗

5. Discussion and conclusions

In this paper we analyzed how grammars influence the generation of complex algorithms in the auto-
matic algorithm design system. We generated algorithms with grammars allowing increasing levels of
complexity for the three most studied PFSP objectives, PFSPMS, PFSPTCT and PFSPTT. For each objective
and level of complexity we used a base grammar and a grammar with an additional rule to directly build
hybridized algorithms. The complexity of the algorithms generated with these grammars was compared
using a metric based on DAGs.

The experiments with PFSPTCT and PFSPTT have shown that an AAD system generates a more complex
algorithm only if it performs similarly or better than a less complex algorithm. Furthermore, the results
for PFSPMS show that the huge parameter spaces produced by allowing hybridization do not seem to
generate less performing algorithms when simple algorithms perform better. In fact, the majority of the
algorithms produced for this objective are quite clustered around a similar ARPD value. Additionally, our
results show that using a grammar that favors hybridization not only leads to generating better performing
algorithms when complex algorithms works best, as in PFSPTCT and PFSPTT, but also it does not seem
to add a significant bias towards complex algorithms when they do not perform as well as simple ones.
These observations make us conclude that algorithm hybridization should always be allowed, at least for
PFSP problems.

The generated algorithms were compared with the state-of-the-art as well as with the best manually
designed algorithms. The results further confirms that AAD is one of the best methodology to generate
high performing algorithms even in cases where constructing the best algorithm seems obvious, as in
adding a better initial solution heuristic to the state-of-the-art algorithm ALGirtt.

Finally, in this paper we have seen that automatically generated algorithms tends to have a simple
structure for problems with a large literature, such as PFSPMS, for which there are many papers proposing
high-performing heuristics, neighborhoods, perturbations and, in general, problem-specific components.
Considering this observation, a future direction for this line of research would be to understand whether



there is a link between the availability of high-performing problem-specific components and structural
complexity of automatically generated algorithms.
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Additional data

Results summary for PFSPMS
Base Grammar Grammar with explicit recursion
Complexity ARPD Complexity ARPD Complexity ARPD

Rc = 0 Rc∗ = 1
A0 0.299 0.212 A0 0.357 0.208 IGall 0.232 0.240
A1 0.290 0.213 A1 0.331 0.239 IGirms 0.331 0.206
A2 0.313 0.218 A2 0.937 0.207
A3 0.279 0.219 A3 0.357 0.211
A4 0.258 0.224 A4 0.243 0.254
A5 0.274 0.240 A5 0.211 0.269
A6 0.331 0.215 A6 0.280 0.209
A7 0.274 0.207 A7 0.292 0.220
A8 0.306 0.206 A8 0.323 0.214
A9 0.292 0.233 A9 0.331 0.209
Rc = 1 Rc∗ = 2
A0 0.299 0.211 A0 0.295 0.210
A1 0.258 0.221 A1 0.331 0.212
A2 0.313 0.222 A2 0.365 0.209
A3 0.282 0.208 A3 0.264 0.259
A4 0.306 0.206 A4 0.931 0.208
A5 0.274 0.207 A5 0.282 0.206
A6 0.299 0.211 A6 0.260 0.255
A7 0.313 0.207 A7 0.331 0.203
A8 0.313 0.207 A8 0.282 0.208
A9 0.366 0.220 A9 0.229 0.261
Rc = 2 Rc∗ = 3
A0 0.299 0.216 A0 0.289 0.220
A1 0.331 0.208 A1 0.584 0.227
A2 0.319 0.210 A2 0.243 0.267
A3 0.323 0.206 A3 0.299 0.205
A4 0.339 0.210 A4 0.274 0.219
A5 0.260 0.259 A5 0.292 0.206
A6 0.299 0.204 A6 0.270 0.221
A7 0.323 0.207 A7 0.274 0.207
A8 0.260 0.259 A8 0.925 0.208
A9 0.323 0.212 A9 0.302 0.212

Table A1: The measured values of algorithm complexity and performance for the makespan objective.
On the left and center we report the results of the algorithms generated during the experiments grouped
by the type of grammar and the Rc or the Rc∗ value. On the right we report the values of the best
algorithms designed manually and automatically



Results summary for PFSPTCT
Base Grammar Grammar with explicit recursion
Complexity ARPD Complexity ARPD Complexity ARPD

Rc = 0 Rc∗ = 1
A0 0.304 0.165 A0 0.532 0.165 MRSILS(BSCH) 0.192 0.215
A1 0.304 0.166 A1 0.791 0.158 ALGirtct(BSCH) 0.821 0.147
A2 0.272 0.164 A2 0.727 0.152
A3 0.279 0.168 A3 0.736 0.155
A4 0.272 0.166 A4 0.821 0.148
A5 0.267 0.165 A5 0.807 0.154
A6 0.144 0.161 A6 0.800 0.155
A7 0.275 0.165 A7 0.807 0.149
A8 0.288 0.163 A8 0.774 0.155
A9 0.504 0.165 A9 0.304 0.164
Rc = 1 Rc∗ = 2
A0 0.222 0.166 A0 0.725 0.146
A1 0.571 0.151 A1 1.036 0.154
A2 0.674 0.154 A2 0.764 0.148
A3 0.222 0.164 A3 0.695 0.149
A4 0.250 0.173 A4 1.054 0.148
A5 0.264 0.165 A5 0.802 0.154
A6 0.296 0.169 A6 0.243 0.164
A7 0.222 0.166 A7 0.871 0.148
A8 0.295 0.166 A8 0.860 0.155
A9 0.304 0.165 A9 0.793 0.153
Rc = 2 Rc∗ = 3
A0 0.347 0.167 A0 0.819 0.148
A1 0.635 0.155 A1 0.828 0.147
A2 0.195 0.167 A2 0.251 0.167
A3 0.304 0.165 A3 0.830 0.148
A4 0.235 0.166 A4 0.142 0.168
A5 0.275 0.163 A5 0.725 0.146
A6 0.267 0.164 A6 0.264 0.165
A7 0.513 0.164 A7 0.736 0.153
A8 0.296 0.165 A8 0.791 0.150
A9 0.585 0.155 A9 0.548 0.151

Table A2: Summary of the results reporting algorithm complexity and performance for the total comple-
tion time objective. On the left and center we report the results of the algorithms generated during the
experiments grouped by the type of grammar and the Rc or the Rc∗ value. On the right we report the
values of the best algorithms designed manually and automatically.



Results summary for PFSPTT
Base Grammar Grammar with explicit recursion
Complexity ARPD Complexity ARPD Complexity ARPD

Rc = 0 Rc∗ = 1
A0 0.773 0.0207 A0 0.142 0.0207 IAras 0.102 0.0304
A1 0.202 0.0205 A1 0.142 0.0209 ALGirtt(BS) 0.801 0.0204
A2 0.202 0.0209 A2 0.114 0.0214
A3 0.811 0.0209 A3 0.114 0.0203
A4 0.858 0.0208 A4 0.172 0.0208
A5 0.780 0.0217 A5 0.142 0.0209
A6 0.773 0.0207 A6 0.142 0.0204
A7 0.801 0.0212 A7 0.114 0.0203
A8 0.818 0.0208 A8 0.142 0.0204
A9 0.114 0.0208 A9 0.142 0.0207
Rc = 1 Rc∗ = 2
A0 0.368 0.0208 A0 0.142 0.0211
A1 0.795 0.0207 A1 0.172 0.0198
A2 0.142 0.0205 A2 0.114 0.0202
A3 0.801 0.0206 A3 0.529 0.0196
A4 0.202 0.0213 A4 0.172 0.0206
A5 0.114 0.0208 A5 0.114 0.0201
A6 0.801 0.0211 A6 0.142 0.0197
A7 0.142 0.0207 A7 0.114 0.0202
A8 0.142 0.0209 A8 0.142 0.0200
A9 0.775 0.0209 A9 0.172 0.0200
Rc = 2 Rc∗ = 3
A0 0.811 0.0211 A0 0.142 0.0204
A1 0.114 0.0210 A1 0.142 0.0207
A2 0.172 0.0211 A2 0.172 0.0206
A3 0.114 0.0207 A3 0.142 0.0205
A4 1.045 0.0209 A4 0.142 0.0208
A5 0.172 0.0212 A5 0.114 0.0208
A6 0.142 0.0206 A6 0.114 0.0211
A7 0.782 0.0207 A7 0.114 0.0204
A8 1.078 0.0209 A8 0.588 0.0204
A9 0.114 0.0207 A9 0.142 0.0205

Table A3: Summary of the results reporting algorithm complexity and performance for the total tardiness
objective. On the left and center we report the results of the algorithms generated during the experiments
grouped by the type of grammar and the Rc or the Rc∗ value. On the right we report the values of the
best algorithms designed manually and automatically


