
Graphical Abstract
AutoMoDe-Mate: automatic off-line design of spatially-organizing
behaviors for robot swarms
Fernando J. Mendiburu, David Garzón Ramos, Marcos R. A. Morais, Antonio
M. N. Lima, Mauro Birattari

Email addresses: fernando.mendiburu@ee.ufcg.edu.br (Fernando J. Mendiburu),
dgarzonr@ulb.ac.be (David Garzón Ramos), morais@dee.ufcg.edu.br (Marcos R. A.
Morais), amnlima@dee.ufcg.edu.br (Antonio M. N. Lima), mbiro@ulb.ac.be (Mauro
Birattari)

These authors contributed equally: Fernando J. Mendiburu and David Garzón Ramos.
Corresponding authors: Fernando J. Mendiburu, David Garzón Ramos, and Mauro

Birattari.

Cite as: Fernando J. Mendiburu, David Garzón Ramos, Marcos R. A. Morais, Antonio M. N. Lima, and Mauro Birattari (2022).
AutoMoDe-Mate: automatic off-line design of spatially-organizing behaviors for robot swarms. Swarm and Evolutionary
Computation, 74, 101118. DOI: 10.1016/j.swevo.2022.101118

Highlights
AutoMoDe-Mate: automatic off-line design of spatially-organizing
behaviors for robot swarms
Fernando J. Mendiburu, David Garzón Ramos, Marcos R. A. Morais, Antonio
M. N. Lima, Mauro Birattari

• Automatic methods can design spatially-organizing behaviors for robot
swarms.

• AutoMoDe-Mate is a design method specialized in spatial organization
problems.

• AutoMoDe-Mate includes a module that enables robot pattern forma-
tion.

• Experiments with physical robots show effectiveness in coverage and
networking.

• AutoMoDe-Mate outperforms baseline modular and neuro-evolutionary
methods.

Email addresses: fernando.mendiburu@ee.ufcg.edu.br (Fernando J. Mendiburu),
dgarzonr@ulb.ac.be (David Garzón Ramos), morais@dee.ufcg.edu.br (Marcos R. A.
Morais), amnlima@dee.ufcg.edu.br (Antonio M. N. Lima), mbiro@ulb.ac.be (Mauro
Birattari)

These authors contributed equally: Fernando J. Mendiburu and David Garzón Ramos.
Corresponding authors: Fernando J. Mendiburu, David Garzón Ramos, and Mauro

Birattari.

AutoMoDe-Mate: automatic off-line design of
spatially-organizing behaviors for robot swarms

Fernando J. Mendiburua,b,1,2, David Garzón Ramosa,1,2, Marcos R. A.
Moraisb, Antonio M. N. Limab, Mauro Birattaria,2

aIRIDIA, Université Libre de Bruxelles, Av. Franklin Roosevelt
50, Brussels, 1050, Belgium

bUniversidade Federal de Campina Grande, R. Aprígio Veloso, 882, Campina
Grande, 58428-830, Paraíba, Brazil

Abstract
We present Mate, an automatic off-line design method specialized in the de-
sign of spatially-organizing behaviors for robot swarms. Mate belongs to the
family of modular methods known as AutoMoDe. We introduce Mate to
study the automatic design of collective behaviors for missions in which the
swarm is subject to spatial distribution constrains. In this paper, we produce
control software for three missions with specifications related to the distri-
bution of the swarm in the environment. We conduct experiments in simula-
tion and with a swarm of 20 e-puck robots. Alongside Mate, we also conduct
experiments with two other automatic design methods: Chocolate—a state-
of-the-art instance of AutoMoDe; and EvoSpace—a method based on neuro-
evolution. Early studies conducted with existing modular design methods
have shown their limitations in the design of spatially-organizing behaviors
for robots that operate under spatial constrains. By introducing a specialized
method like Mate, we expect to overcome these limitations. The aggregate
results of our experiments show that Mate performs significantly better than
Chocolate and EvoSpace in the missions we consider.

Email addresses: fernando.mendiburu@ee.ufcg.edu.br (Fernando J. Mendiburu),
dgarzonr@ulb.ac.be (David Garzón Ramos), morais@dee.ufcg.edu.br (Marcos R. A.
Morais), amnlima@dee.ufcg.edu.br (Antonio M. N. Lima), mbiro@ulb.ac.be (Mauro
Birattari)

1These authors contributed equally: Fernando J. Mendiburu and David Garzón Ramos.
2Corresponding authors.

July 20, 2022

Cite as: Fernando J. Mendiburu, David Garzón Ramos, Marcos R. A. Morais, Antonio M. N. Lima, and Mauro Birattari (2022).
AutoMoDe-Mate: automatic off-line design of spatially-organizing behaviors for robot swarms. Swarm and Evolutionary
Computation, 74, 101118. DOI: 10.1016/j.swevo.2022.101118

Keywords: swarm robotics, automatic design, spatially-organizing
behaviors, relative positioning, AutoMoDe, evolutionary robotics

1. Introduction

A robot swarm [1, 2] is a self-organizing system that can adapt to the
environment and exhibit a wide variety of collective behaviors [3]. We in-
vestigate to which extent automatic off-line design is a viable approach to
designing robot swarms that operate under spatial distribution constrains.
To this end, we introduce AutoMoDe-Mate (Mate hereafter): an automatic
modular method specialized in the design of spatially-organizing behaviors.

Swarm robotics is an approach to the decentralized coordination of large
groups of robots [2]. In a robot swarm, the collective behavior emerges from
the interactions that individual robots have with their peers and with their
environment [4]. Robot swarms have desirable properties such as redundancy,
flexibility, fault-tolerance, parallelism, and scalability [2, 3]. Unfortunately,
no general methodology exists to define what an individual robot must do so
that a specific collective behavior emerges [3]. Therefore, the control software
of robot swarms is primarily handcrafted and the intuition and experience of
the designer play a major role in the design process—which remains costly
and time consuming. Automated engineering methodologies are crucial to
overcome this limitation [5].

Current perspectives on the future of swarm robotics emphasize the need
to leverage the realization of robot swarms with automatic methods [5–7].
In a recent work, we also discussed how automatic methods are a viable ap-
proach to designing collective behaviors for robot swarms [8]. In comparison
to other research lines in swarm robotics, little work is devoted to develop-
ing automated engineering methodologies to conduct/assist the design pro-
cess [6]. Automatic methods generate collective behaviors via optimization—
that is, an optimization algorithm evaluates possible control software for the
robots and selects an appropriate instance to perform a desired mission. Tra-
ditionally, research in automatic design has focused on the neuro-evolutionary
approach [9, 10]. In this approach, the control software of the robots has the
form of an artificial neural network whose parameters (and possibly archi-
tecture) are obtained via evolutionary computation. More recently, a few
modular design methods have been introduced as an alternative to neuro-
evolution [11–21]. In the modular approach, the control software results

2

from the tuning of pre-defined software modules and their combination into
specific architectures—e.g., probabilistic finite-state machines [11–19, 21, 22]
or behavior trees [20, 21]. Neuro-evolution and modular design are both ap-
pealing approaches to the automatic generation of robot control software. A
larger body of literature belongs to the former [6] and, only recently, studies
started to shed light on how popular methods of the two approaches compare
to each other [23].

Spatially-organizing behaviors concern the organization and distribution
of robots and objects in space [3]. Robots displaying spatially-organizing
behaviors are characterized by their ability to establish accurate relative
positioning with respect to their peers [24]. Typical examples are behav-
iors such as aggregation [11, 25], chain-formation [26, 27], self-assembly and
morphogenesis [28, 29], and object clustering and assembling [30, 31]. In
particular, we are interested in cases where the swarm displays a regular and
repetitive spatial distribution of robots [32, 33]—often refereed to as pattern-
formation [3]. The generation of spatially-organizing behaviors was originally
tested in the first studies of automatic modular design [12]. However, results
were not satisfactory when the robots had to operate under constrains in
their relative positioning. Our hypothesis are that existing modular meth-
ods either (i) do not have a proper set of modules to address this class of
missions or, if they have them, the methods fail at (ii) properly combining
them in good-performing control software. No automatic modular method
has been conceived to specifically address the design of spatially-organizing
behaviors.

Automatic modular design is a general framework that must be special-
ized to address a pre-defined class of problems with a specific robot plat-
form [34]. Studies in automatic modular design have shown that the ap-
proach can effectively produce specialized collective behaviors—for example,
in missions related to collective exploration [14], communications [15], and
the interaction of robots with objects in their environment [17]. Commonly,
researchers establish a class of problems (i.e., a class of missions) of inter-
est and conceive an appropriate modular design method to address it. To
conceive a modular design method, one must define three principal compo-
nents: (i) the robot platform for which control software should be designed;
(ii) the optimization algorithm that drives the design process; and (iii) the
control architecture and software modules that can be combined to produce
the control software of the robots. We expect that by introducing a new
software module that facilitates the relative positioning of robots, Mate will

3

become a design method specialized in the design of spatially-organizing be-
haviors for robot swarms. In this sense, we expect that Mate will overcome
the limitations observed in the previously proposed methods [12].

Mate belongs to the family of modular design methods known as Auto-
MoDe [11]. Like other instances of this family [12–15, 17], Mate produces con-
trol software by assembling pre-defined software modules into probabilistic
finite-state machines. We developed Mate on the basis of Chocolate [12]—
a state-of-the-art instance of AutoMoDe. In addition to the original set of
modules conceived for Chocolate, Mate includes a new module that enables
the hexagonal pattern-formation of robots. We develop the new module via a
principled design method [24] based on virtual physics [35]—more precisely,
the Lennard-Jones potential [36]. This new module allows Mate to address
missions related to the spatial distribution of the robots.

Alongside Mate, we also present results obtained with other two methods
for the automatic design of robot swarms: Chocolate, as implemented by
Francesca et al. [12]; and EvoSpace, an original neuro-evolutionary method
that—likewise Mate—incorporates the Lennard-Jones potential. EvoSpace
is an implementation of the neuro-evolutionary approach that builds on
EvoStick—a method that has been used as a baseline in many other stud-
ies [11, 12, 18, 20, 22]. We conduct our study following the recently proposed
tenets of the automatic off-line design of robot swarms [8]: (i) the design
methods we consider can address a whole class of missions without under-
going any modification; and, (ii) once a mission is specified, no human in-
tervention is provided for in any phase of the design process. In the absence
of a well established state of the art in the automatic design of spatially-
organizing behaviors, we find that Chocolate and EvoSpace are appropriate
baselines. We assess Mate, Chocolate and EvoSpace in three missions where
the performance of the swarm depends on the ability of the robots to operate
under spatial distribution constrains. We present the results of experiments
with a swarm of 20 e-puck robots, both in simulation and reality. The rest
of the paper is organized as follows: we discuss related work in Section 2;
in Section 3, we introduce Mate; we describe the experimental setup in Sec-
tion 4; in Section 5, we present the results and discussion; and in Section 6,
we highlight the conclusions and future work.

4

2. Related Work

Spatially-organizing behaviors have been largely studied in the context of
multi-agent systems [37], multi-robot systems [38, 39], and swarm robotics [3].
The literature in these domains is extensive and therefore we restrict our at-
tention to studies in swarm robotics [3, 4]. In particular, we focus on studies
that are relevant to the automatic design of robot swarms [8, 40].

We conceive Mate to design collective behaviors that resemble those ob-
served in previous studies on pattern formation [41–43]. Pattern-formation
behaviors are commonly conceived under the framework of virtual physics—
in particular, with methods that use artificial potential fields [35]. In this
approach, robots react to attractive and/or repulsive virtual forces. The arti-
ficial potential field approach was proposed by Khatib [44], and then adapted
to swarm robotics by Spears and Gordon [35]. Artificial potential fields have
been used in the context of monitoring and surveillance [45, 46], distributed
sensing and actuation [47], coverage [46, 48], and collective motion [45, 49–
51] among others. Designers commonly produced these collective behaviors
following an ad hoc procedure. That is, designers manually produced con-
trol software and evaluated it only on a specific mission. As a consequence,
results are difficult to reproduce and it is unclear whether they are of gen-
eral applicability to a wider range of problems. Manual design prevents the
generalization and use of collective behaviors beyond the missions for which
they are originally conceived [8, 40, 52]. Alternatively, automatic design can
provide generally applicable methodologies to design collective behaviors [3].

Mate is an automatic off-line design method—a particular case of the
optimization-base design of robot swarms [40]. In optimization-based design,
the control software of the robots is produced via an optimization process.
Common classifications divide optimization-base design into (i) on-line and
off-line methods and into (ii) semi-automatic and (fully) automatic methods.
On-line methods produce control software while the robots operate in the
target environment and off-line methods produce the control software prior
to the deployment of the robots—typically by using simulations. In semi-
automatic methods, a human designer uses an optimization algorithm as
their primary design tool and, conversely, automatic methods do not require
human intervention during the design process. These classifications are not
meant to be considered as strict—indeed, hybrids exists. These classifications
are rather a convenient way to set appropriate performance expectations and
to make fair comparisons across methods.

5

The literature in the optimization-based design of spatially-organizing
behaviors belongs mostly to the fields of evolutionary robotics and neuro-
evolution [9, 10]. For example, Duarte et al. [33, 53–55] produced hybrid
and hierarchical control software by evolving individual behaviors that are
then executed via a behavior arbitrator. In a latter study, the authors
used this method to design spatially-organizing behaviors for robot swarms
that detect intruders in their workspace—both in simulation [54] and with
physical robots [33, 55]. There are also studies that consider the design
of spatially-organizing behaviors with virtual physics and artificial potential
fields [56–60]—mainly in the case of semi-automatic design. For example,
Pinciroli et al. [59] produced control software for swarms of satellites that
self-organize in lattices, and latter, the authors used artificial evolution to
fine-tune the parameters of the control software [60]. Unfortunately, although
neuro-evolution is a versatile approach, it is prone to suffer from bootstrap-
ping and deception [53]. Also, it has been observed that the performance
of neuro-evolutionary methods is substantially affected by the so-called re-
ality gap [11, 22, 23, 53, 61, 62]—that is, the difference between simulations
models and reality.

Automatic modular design methods are less affected by the reality gap
than implementations of the neuro-evolutionary approach [12, 15, 17, 18, 20,
23]. In previous work, the modular approach has been used to design collec-
tive behaviors in various classes of missions. For example, Chocolate has be-
ing tested in the design of aggregation [11, 16, 18, 20–22], foraging [11, 16, 18–
22], decision making [15], collective exploration [14], and coverage [12] be-
haviors. With respect to spatially-organizing behaviors, Francesca et al. [12]
tested Chocolate in three missions where robots must operate under spatial
distribution constrains: surface and perimeter coverage; coverage
with forbidden areas; and largest covering network. In sur-
face and perimeter coverage, the swarm performs well if the robots
uniformly cover the perimeter and surface of two target regions. Similarly, in
coverage with forbidden areas, the swarm performs well if the robots
uniformly cover the space that is not indicated as forbidden. And finally,
in largest covering network, the performance of the swarm is propor-
tional to the surface covered by the largest network of robots—i.e., robots
that maintain connectivity at a specific distance. Although Chocolate can
design control software for this class of missions, results are not completely
satisfactory. In most cases, the robots address the mission without achiev-
ing any meaningful spatial organization. Chocolate—like other instances of

6

AutoMoDe—has limitations in the design of spatially-organizing behaviors
with relative positioning between robots. With Mate, we expect to overcome
this limitation.

3. AutoMoDe-Mate

Mate designs control software in the form of probabilistic finite-state ma-
chines: the states are low-level behaviors that a robot can perform; and the
transitions are conditions to switch from one behavior to another. Both low-
level behaviors and transitions are pre-defined software modules: they are
defined once and for all in a mission-agnostic way. Starting from the specifi-
cation of a mission, Mate searchers for an appropriate combination of these
modules and returns an instance of control software that is then uploaded
to the robots. In the following, we first characterize the robot platform for
which Mate designs control software; then, we introduce the pre-defined soft-
ware modules on which Mate is based; and finally, we describe the automatic
design process.

3.1. Robot platform
Mate produces control software for an extended version of the e-puck [63],

a two-wheeled differential-drive robot designed for research and education.
We consider a version of the e-puck that is equipped with a Linux extension
board [64], a range-and-bearing board [65], an omnidirectional camera [66],
RGB LEDs, three infrared ground sensors, and eight infrared proximity sen-
sors that also measure ambient light intensity [63]. Methods in the Auto-
MoDe family operate over an abstraction of the robotic platform that we
refer to as a reference model [67]. The reference model formalizes the inputs
and outputs of the control software, and establishes its relationship with
the sensors and actuators of the robot. Although Mate builds on the top
of Chocolate, Mate designs control software for the reference model RM3.1
and Chocolate does it for RM1.1 [67]. The two methods consider e-pucks
with (formally) different sensing and actuation capabilities and therefore they
operate with different reference models. In RM3.1, e-pucks use their omni-
directional camera and RGB LEDs to estimate the relative position of other
e-pucks. Table 1 describes RM3.1 and highlights the differences with respect
to RM1.1.

In RM3.1, the velocity of the wheels (vi∈{left,right}) of the robot can be
set independently in the range [−0.12,0.12] m/s. The 3 ground sensor mea-

7

Table 1: RM3.1. Novelties with respect to RM1.1 are highlighted in gray. The possible
values of rprox , rlight , rR&B, rcam are given in the form (range, bearing).

Input Value Description

rprox ([0, 1] ,∠[0, 2]π rad) proximity direction vector

rlight ([0, 1] ,∠[0, 2]π rad) light direction vector

rR&B ([0, 1] ,∠[0, 2]π rad) neighboring robot direction vector

n [0,20] number of neighboring robots
perceived, n ∈ {1, .., 20}

gnd {black, gray,white} reading of the ground sensor

rcam ([0, 1] ,∠[0, 2]π rad) camera direction vector

Output Value Description

vi [−0.12,0.12] target linear wheel velocity (m/s),
with i ∈ {left, right}

led {on, off } LEDs emitting cyan light

Period of the control cycle: 0.1 s.

8

surements (gnd) indicate whether the robot is on black, gray, or white floor.
The robot can detect nearby objects using its 8 proximity sensors; their read-
ings are aggregated by the vector rprox = ∑8

i=1(|rproxi |,∠rproxi), if objects are
detected; and rprox = (1,∠0), otherwise. The 8 light sensors indicate the
direction of an ambient light source, if present. These sensors are sensitive
to infrared light and do not perceive the LEDs of other robots. The readings
of the light sensors are aggregated in the vector rlight = ∑8

i=1(|rlighti|,∠rlighti),
if light is detected; and rprox = (1,∠0), otherwise. The vectors rprox and rlight
are defined in the range ([0, 1] ,∠[0, 2]π rad). The range-and-bearing board
allows the robot to locate neighboring peers. The readings of the range-and-
bearing board are aggregated in the vector rR&B = ∑n

k=1(|rR&Bk |,∠rR&Bk),
if neighbors are detected; and rR&B = (1,∠0), otherwise. In this case,
|rR&Bk | = (1 + rk)−1, where rk ∈ [0, 0.4] m is the distance between a robot
and the kth neighboring robot (with k ∈ {1, ..., 20}) perceived by its range-
and-bearing board. The robot can also estimate the number of neighboring
robots in a range of 0.4 m. The LEDs of the robot (led) can be turned on
or off . When turned on, they emit cyan light. The omnidirectional camera
can perceive the LEDs of neighboring robots and can estimate their rela-
tive position. The vector rcam aggregates the readings of the camera in a
unique direction vector that is computed by using the Lennard-Jones force
law—details of this computation are given later in Section 3.2, Equation 2.

3.2. Pre-defined software modules
Mate includes the six low-level behaviors and six transitions originally

conceived for Vanilla and then adopted in Chocolate—for an in-depth de-
scription, see Francesca et al. [11, 12]. In addition to these modules, we
include in Mate a new low-level behavior named formation. The module
formation enables pattern formation. First, we briefly describe all modules
included in Mate and then we present formation in detail.

Behaviors:
- exploration: the robot randomly explores the environment;

- stop: the robot stands still;

- phototaxis: the robot goes towards the ambient light source, if per-
ceived;

9

- anti-phototaxis: the robot goes away from the ambient light source,
if perceived;

- attraction: the robot goes towards its neighboring peers, if per-
ceived;

- repulsion: the robot goes away from its neighboring peers, if per-
ceived;

- formation: the robot maintains a fixed distance from its neighboring
peers, if perceived.

exploration, phototaxis, anti-phototaxis, attraction, and repul-
sion, and formation embed an obstacle avoidance sub-behavior that pre-
vents the robots to collide with their peers or with objects in their environ-
ment.

Transitions:
- black-floor: transition triggered if the floor is black;

- gray-floor: transition triggered if the floor is gray;

- white-floor: transition triggered if the floor is white;

- neighbor-count: transition triggered if sufficiently many neighbor-
ing robots are perceived;

- inverted-neighbor-count: transition triggered if sufficiently few
neighboring robots are perceived;

- fixed-probability: transition triggered with a fixed probability.

3.2.1. formation: a module for robot pattern formation
formation is a behavior in which the robot is subject to virtual forces

that are computed through the Lennard-Jones potential [36]. As in other
implementations of the artificial potential field approach [45], a group of
robots executing formation tends to adopt a spatial configuration that
minimizes its overall potential energy. That is, robots aim to remain in
equilibrium positions that are reached when the swarm is homogeneously
distributed in space. A robot executing formation reacts to virtual forces
that originate from one or more neighboring peers executing formation as

10

well. formation aggregates all the virtual forces acting on the robot and
computes a desirable displacement vector.

The Lennard-Jones force law (fik) can be used to conceive a highly
parametrizable behavior model [51]—see Equation 1.

fik = −2αε
dik

(d∗ik
dik

)2α

−
(
d∗ik
dik

)α . (1)

It allows the definition of an arbitrary target distance (d∗ik) between the
robot i and any kth neighboring peer, the intensity (ε) of the forces acting
on the robot, and the steepness (α) of the transition between attraction and
repulsion forces. If the distance between two robots is larger than the target
distance, the robots will be subject to an attractive force. Conversely, if the
distance is shorter, the robots will be subject to a repulsive force. When the
robots are separated by the target distance, they remain in equilibrium and
no force acts on them. Indeed, the model enables the individual parametriza-
tion of the attraction and repulsion forces [51, 68] and facilitates a smooth
transitions between them [69].

In our implementation, e-pucks that execute formation display the color
cyan with their LED’s. An e-puck can perceive and locate neighboring peers
executing formation with its omnidirectional camera. The vector rcam
(Equation 2) is computed through an average sum of the Lennard-Jones force
on the set of vectors rcamk = (|rcamk | ,∠rcamk), for the all robots k perceived
with the camera.

rcam =

 −
1
n

n∑
k=1

(
2αε
dk

[(
d∗

dk

)2α
−
(
d∗

dk

)α]
,∠rcamk

)
,

(1,∠0) ,

n ≥ 1;
n = 0.

(2)

The parameter d is the distance measured by the camera, dk ∈ [0.05, 0.30] m,
∠rcamk ∈ [0, 2]π rad, for each robot k in the set of robots k ∈ {1, ..., n}
perceived by the camera. We set α = 2 and ε = 2.5 according to values
reported in the literature [51]. Robots executing formation aim to remain
equidistant at a target distance (d∗) with respect to neighboring peers. We
expect that by doing so, they will tend to form hexagonal patterns—as it has
been previously reported [70]. The size and density of the patterns depend
on the target distance specified by d∗. Large values of d∗ form large and
sparse lattices of robots, and conversely, small values form small and dense

11

ones. In our experiments, the target distance (d∗) between robots is tuned
by the automatic design process in the range d∗ ∈ [0.07, 0.25] m.

formation sums the effects of the Lennard-Jones force law and a short-
range obstacle avoidance sub-behavior that is also embedded in the module.
The desirable displacement vector (r) is the sum of a displacement vector
computed through the Lennard-Jones force law (rcam) and a repulsion vector
computed through the proximity sensors of the robot (rprox)—see Equation 3.
The vector (r) is afterward translated into velocity commands according to
RM3.1:

r = rcam − 5rprox . (3)

We consider the Lennard-Jones force law as an appropriate model to build
a new software module for Mate: it requires a minimal set of sensors and
actuators to be implemented [45]; and it only relies on local interactions [35].
We expect that the automatic design process will select the module and
fine-tune the target distance between robots to better address missions with
spatial distribution constrains.

3.3. Design of control software
Mate designs control software using Iterated F-race [71]—the optimiza-

tion algorithm originally used in Chocolate. Other AutoMoDe methods
have been conceived with alternative optimization algorithms—for example,
simulated annealing [16] and iterative improvement [21]; yet, Iterated F-
race remains a de facto standard optimization algorithm in the AutoMoDe
family [34]. Iterated F-race explores and evaluates possible combinations of
the software modules according to a mission-specific performance metric—a
measure of the degree of success of the swarm in the mission at hand. When
the design process starts, Iterated F-race samples the design space for can-
didate control software. More precisely, Iterated F-race samples candidate
finite-state machines that result from the various combinations of the 15
software modules available in Mate (7 behaviors and 6 transitions) and the
possible instantiation of their parameters. Mate, likewise Chocolate, can as-
semble finite-state machines of up to four behaviors—each of which with four
outgoing transitions at most. During the optimization process, Iterated F-
race evaluates each finite-state machine over a set of independent simulation
runs and ranks the candidate solutions according to a series of Friedman
tests [72]. Iterated F-race iteratively fine-tunes high-performing candidate

12

solutions and discards those solutions that have low performance and that
are consistently outranked by others. The design process terminates when
Iterated F-race has exhausted a maximum number of simulation runs. After
that, Mate returns the best instance of control software found so far—which
is then ported to the physical robots without undergoing any modification.
For a more detailed discussion on the optimization process in the automatic
modular design of robot swarms, we refer the reader to Francesca et al. [11],
Kuckling et al. [16, 21], and Birattari et al. [34].

4. Experimental setup

We conduct our research both in simulation and with physical e-pucks.
In this section, we describe the missions we consider and the experimental
protocol we follow to assess Mate.

4.1. Missions
We conceived three missions to assess Mate: any-point closeness,

networked coverage, and conditional coverage. any-point close-
ness and networked coverage are variants of missions already proposed
by Francesca et al. [12], and conditional coverage is a mission that we
propose here for the first time and that has been inspired by a collective deci-
sion making mission proposed by Hasselmann et al. [15]. The three missions
present challenges that are similar to those that one would face in real-world
coverage missions [46, 48] like monitoring and surveillance [45, 46] and dis-
tributed sensing and actuation [47]. As detailed later in this section, the
missions we selected impose spatial constrains to the operation of the robot
swarm and differ in complexity with respect to each other.

We focused on abstracting challenges related to how the robots would
be required to selectively cover and maintain presence in certain areas of
their operating environment. In any-point closeness, the robots must
engage in uniformly covering a specific designated region in their operating
environment during a limited time frame. This mission resembles those pos-
sible in monitoring and surveillance, in which the swarm should be capable
of (i) maintaining a continuous and uniform presence in the designated area
and of (ii) devoting all resources (i.e., robots) available to it. networked
coverage grows in complexity with respect to any-point closeness. In
networked coverage, in addition to cover a designated region, the robot
swarm must establish a network of robots that maintain an arbitrary distance

13

between themselves. This challenge is particularly relevant to the deployment
and operation of sensor networks: a robot swarm should maximize the sens-
ing (covered) area while maintaining the robots in a sufficiently close distance
so that the information can be continuously transmitted between them. Fi-
nally, we believe that conditional coverage is the more complex of the
three missions. In conditional coverage, the swarm is presented with
two designated regions from which only one must be covered. The complex-
ity of this mission lies in the fact that the region to be covered is determined
by the initial conditions of the mission—which differ from one execution to
the other. In this sense, the robots should be capable of operating in the
two cases, and collectively select the appropriate behavior each time. As one
could expect in a real-world deployment, a robot swarm should be capable to
adopt different behaviors without the need of being reprogrammed. For ex-
ample, this could be the case of monitoring missions in which the swarm can
autonomously adopt different coverage strategies that fit the characteristics
of the region to be covered (e.g., size, terrain).

We expected that Mate would design collective behaviors that allow the
swarm to achieve a meaningful spatial organization and effectively perform
the missions. In our experiments, we produce control software for a swarm of
20 e-pucks—a swarm size consistently used in automatic design studies [11,
12, 14, 15, 17, 18, 20]. In most AutoMoDe methods demonstrated so far, the
number of robots is a parameter that is given to the design process—although
it is possible to tune it alongside the control software of the robots [13]. In
Mate, the number of robots is part of the specifications of the mission and it
is not fine-tuned by the optimization process, although an extension in this
sense—inspired by [13]—would be readily possible. In the three missions,
the e-pucks operate in a dodecagonal arena of about 4.9 m2 surrounded by
walls. The floor is gray, and might contain black and white regions. The
presence of black and/or white regions is specified on a per-mission basis and
they denote the target region where robots must operate while exhibiting spa-
tially-organizing behaviors. All missions are executed in a time T = 120 s.
Fig. 1 shows the configuration of the arena in the three missions.

4.1.1. any-point closeness
In this mission, the robot swarm must uniformly cover a target region in

the arena. The target region is a black square area of 1 m2. At the beginning
of each experiment, the robots are randomly positioned in the right side of
the arena—see Fig. 1a.

14

(a) any-point closeness (b) networked coverage (c) conditional coverage

Figure 1: Simulated and real arena for the missions: any-point closeness, networked
coverage, and conditional coverage. The images show an example of the initial
position of the robots. In (a,b), the black area indicates the target region where the
robots must operate. In (c), the black and white areas are both target regions, but only
one is designated at a time. See Section 4.1 for details.

15

The best performance is achieved when the following objective function
is minimized

f1(T) = E[d(T)]2, (4)

where f1(T) is the square of the expected distance E[d(T)], measured only
once at the end of the experiment. E[d(T)] is the expected distance, at time
T , between a generic point within the target region and its closest robot inside
the target region [12]. We estimate/approximate E[d(T)] by computing the
average distance between any point within the target region (in practice,
a sufficiently large set of randomly sampled points) and its closest robot
inside the target region. More precisely, E[d(T)] ≈ ∑P

p=1 mini(dip)/P ; where
p ∈ [1, 1000] is a point in a set of points randomly and uniformly sampled
from within the target region; and i ∈ [1, 20] is a robot in the set of robots
that are inside of the target region at time T . The distance dip is, therefore,
the distance between a random point p and a robot i that are both within
the target region.

4.1.2. networked coverage
In this mission, the swarm must establish a network of robots that covers

a target region in the arena. The target region is a black area of about 1 m2.
The robot swarm must maximize, at every time, the ratio between the area
covered by the robots in the network and the total area of the target region.
The coverage range for each robot is smaller than the distance at which the
robot can establish a network. We consider that each robot covers a circular
area of 0.15 m radius. When robots are in the target region, they establish
a network if they are at 0.3 m from each other. The area covered by the
swarm is the sum of the area covered by all the robots. At the beginning of
each experiment, robots are randomly positioned in the bottom side of the
arena—see Fig. 1b.

The best performance is achieved when the following objective function
is maximized

f2(t) =
T∑
t=0

ANB(t)/ATR, (5)

where f2(t) is the sum at every time step of the ratio between the area ANB(t)
of the target region that is covered by the network of robots NB, and the total
area of the target region (ATR = 1 m2). NB is the network of robots with

16

the largest number of individuals within the target region. The performance
is measured at every time step (∆t = 0.1 s).

4.1.3. conditional coverage
In this mission, the robot swarm must selectively cover one out of two

target regions in the arena. The target regions are a black and a white area
of about 1 m2—see Fig. 1c. The target region to cover is conditioned at each
experimental run by the starting position of the robots: if the robots start
the experiment in the black area, they must travel to the opposite side of
the arena and cover the white one; conversely, if robots start the experiment
in the white area, they must travel to the opposite side and cover the black
one. The robot swarm must maximize, at every time step, the ratio between
the area of the target region they cover and its total area. Each robot covers
a circular area of 0.15 m radius.

The best performance is achieved when the following objective function
is maximized

f3(t) =
T∑
t=0

Am(t)/ATR, (6)

where f3(t) is the sum at every time step of the ratio between the area Am(t),
covered by the m robots within the target region, and the total area of the
target region (ATR = 1 m2). The performance is measured at every time step
(∆t = 0.1 s).

4.2. Baseline methods: Chocolate and EvoSpace
Alongside Mate, we include in our study two baseline methods for the

automatic design of robot swarms: Chocolate and EvoSpace. The baseline
methods are the starting point from which we can draw some conclusions
about the relative performance of Mate with respect to the existing literature.
We expect that Mate will perform better than the baselines, as it is a method
specialized in the class of missions that are subject in our experiments.

4.2.1. Chocolate
Chocolate is the automatic design method that we extended to create

Mate, and both belong to the family of methods AutoMoDe. Originally
presented by Francesca et al. [12], Chocolate has been used as a baseline
to compare other instances of AutoMoDe [14–16, 20]. Mate and Choco-
late differ in the robot platform for which they design control software and

17

in the set of modules they include. Chocolate does not include the low-
level behavior formation and does not have access to the omni-directional
camera and LEDs of the robots. The rest of software modules and robot
hardware remains the same for the two methods.

In principle, Chocolate has the low-level behaviors that are required
enable the robots for maintaining a constant relative distance: attraction
and repulsion. The Lennard-Jones model we embed in formation enables
the robots to maintain a specific distance between each other by setting a
particular combination of attraction and repulsion forces. Chocolate could
generate finite-state machines that combine and instantiate attraction and
repulsion in a similar way. To produce such behavior, we expected that
Chocolate would produce a fine-tuned combination of software modules so
that the robots maintain the required constant relative distance between
each other—for example, by constantly transitioning between attraction
and repulsion. However, we also expected that Chocolate (being a non-
specialized method) would not perform as good as Mate and the Lennard-
Jones model.

In our research, we use the implementation of Chocolate described by
Francesca et al. [12]. Chocolate operates unmodified on the basis of the
RM1.1 of the e-puck, as defined earlier by the same authors [73].

4.2.2. EvoSpace
As shown in Section 2, many studies in the optimization-based design

of robot swarms belong to the neuro-evolutionary approach. For this rea-
son, we wished to investigate how a rather reasonable implementation of this
approach would perform on the set of missions on which we assess Mate.
We conceived EvoSpace: a neuro-evolutionary method for the automatic
design of robot swarms that integrates the virtual physics model of Mate.
Likewise Mate extends Chocolate, EvoSpace extends EvoStick —a neuro-
evolutionary method previously used as a baseline to study Chocolate [12].
The artificial neural network in EvoSpace, in contrast to EvoStick, includes
input information obtained from the Lennard-Jones model also embedded
in Mate’s formation; see Section 3.2. More precisely, it includes as an
input the projections of the direction vector rcam defined in Equation 2.
We expected that EvoSpace could, in principle, design control software that
benefits from this input information to produce similar spatially-organizing
behaviors than those that are expected from Mate. Analogous specializa-
tions of EvoStick have been used to investigate the automatic design of

18

communication behaviors for e-pucks that can communicate using the range-
and-bearing [15] and their omni-directional camera and LEDs [17].

EvoSpace is a method conceived to produce control software for the ref-
erence model RM3.1 of the e-puck. Likewise EvoStick, EvoSpace produces
control software in the form of a fully-connected feed-forward artificial neural
network. The neural network considered in EvoSpace integrates the Lennard-
Jones model defined in Equation 2. It has 15 input nodes, 4 outputs nodes,
and no hidden layers. The input nodes correspond to 4 inputs for a projec-
tion vector (rprox) of the proximity readings, 4 inputs for a projection vector
(rlight) of the ambient light readings, 4 inputs for a projection vector (rcam) of
the camera readings, 1 input for the number of robots perceived by the range-
and-bearing (n), 1 input for the readings of the ground sensor (gnd), and 1
bias input node. In all cases, the projection vector results from projecting the
sensor readings in four unit vectors that point at 45◦, 135◦, 225◦, and 315◦
with respect to the robot coordinate system. The output nodes correspond
to 2 outputs that control the velocity of the wheels (vi∈{left,right}), and 2 out-
puts that control the state of the LEDs (led). EvoSpace tunes the synaptic
weights of the neural network via artificial evolution—using the evolutionary
algorithm implemented for EvoStick [73]. Likewise Mate, EvoSpace opti-
mizes the neural network until a pre-defined budged of simulation runs is
exhausted.

Although more popular and advanced neuro-evolutionary methods exist
(e.g., CMA-ES [74], xNES [75], and NEAT [76]), it has been observed that their
advanced features do not provide any practical advantage over EvoStick [23]—
in both, the single-layer and multi-layer perception cases. For this reason,
we deemed EvoStick an appropriate starting algorithm to build EvoSpace.
Because of the results published in [23], we do not have any reason to ex-
pect that a more complex implementation of EvoSpace would yield higher
performance in the automatic design of robot swarms.

4.3. Protocol
We compare Mate, Chocolate, and EvoSpace. For each mission, we exe-

cute each design method 10 times to obtain 10 instances of control software.
All methods have a budget of 200 000 simulation runs to produce each in-
stance of control software. After obtaining all the instances of control soft-
ware, we assess their performance once in simulation and once with physical
robots. Simulations are performed using ARGoS3, version 48 [77], together

19

with the argos3-epuck library [78]. ARGoS3 is a fast, parallel, and multi-
engine simulator specifically designed for multi-robot systems and swarm
robotics [79]. In the experiments with physical robots, we use a tracking
system [80] to track the robots in the experimental arena. Both in sim-
ulation and in the experiments with the physical robots, we compute the
performance of the robot swarm on each experimental run using ARGoS3.
In simulation runs, ARGoS3 estimates the position of the simulated robots
at every time step, then it processes the information according to the ob-
jective function specified in each mission (see Section 4.1), and afterward it
returns the performance value. In experimental runs with physical robots,
the tracking system [80] provides ARGoS3 with the position of the physical
robots at every time step. Then, likewise the simulations, ARGoS3 processes
the information and returns the performance value. The computation made
by ARGoS to estimate the performance of the swarm does not vary between
the simulation and the experiments with physical robots.

We present numerical results with box-and-whiskers boxplots that show
the experimental results on a per-mission basis. For each method, we re-
port the performance obtained in simulation and with physical robots—thin
and thick boxes, respectively. We support the mission-specific performance
comparison of methods with Wilcoxon paired rank sum tests [72] at a 95%
of confidence. In addition, we present a Friedman test that aggregates the
overall performance of the methods across the three missions.

We also describe the spatial organization that the robots display in the
experiments—analysis conducted by visual inspection. In the context of this
paper, references to a stable state imply that the swarm remains in a state in
which we do not appreciate major disturbances in the relative positioning of
the robots. Conducting a particular stability analysis is not in the focus of
our study and is beyond the scope of this paper. We support our discussion
with the performance statistics defined above and with the videos we provide
as supplementary material [81].

We also provide additional information about the final spatial distribu-
tion of the robots on a per-mission basis. More precisely, we investigate if
the robots are prone to remain outside the target region and, if not, in which
ratio they cross the perimeter of the region. The perimeter of the target
region is the area of about 0.15 m (twice the diameter of the robot) that is
closer to the gray floor of the arena. We use pictures to illustrate the final
spatial distribution of the robots—the full set of pictures is provided as sup-
plementary material [81]. In the pictures, we overlay the target region (lined

20

in green) and the perimeter (lined in yellow) of the arena. For each mission,
we also estimate the percentage of the robots of the swarm that remain out-
side the target region at the end of each experimental run. We present the
results with cumulative frequency plots for the three design methods. Con-
sidering the robots that reach the target region, we estimate the percentage
of those robots that cross the perimeter. We also present these results with
cumulative frequency plots.

Finally, the analysis of the control software produced with Chocolate and
Mate is also supported with heat-map plots obtained in simulation (Fig. 8).
The plots show the average percentage of usage of all behavior modules in
the three missions. To produce the heat-map plots, we aggregate the time
that robots spend in all the behavior modules across the 10 experimental
runs. We display the results in windows of 100 time steps.

5. Results

In this section, we present the results of our experiments. First, we discuss
quantitatively and qualitatively the results for each mission and method.
Then, we elaborate on the aggregate results across the three missions.

5.1. any-point closeness
Fig. 2 (I) shows the numerical results of any-point closeness. The

control software produced by Mate performs significantly better than the
one produced by Chocolate—both in simulation and reality. If Mate is
compared with EvoSpace, there is no statistical evidence to conclude that
Mate performs better than EvoSpace when assessed in simulation. However,
Mate performs significantly better than EvoSpace in the experiments with
physical robots.

Fig. 2 (II) shows the cumulative frequency of the percentage of robots
that remained outside the target region at the end of each experimental run.
Fig. 2 (III) shows the cumulative frequency of the percentage of robots in
the target region that crossed the perimeter. The cumulative frequency plots
show that, among the three methods, Chocolate is less prone to leave robots
outside the target region at the end of the experiment, followed by Mate, and
then by EvoStick. Mate and EvoSpace appear to design collective behaviors
in which a similar percentage of the robots in the target region cross the
perimeter. The percentage of robots in the target region that cross the
perimeter tends to be higher for Mate and EvoSpace than for Chocolate.

21

Figure 2: any-point closeness. (I) Box-and-whiskers plots of the results obtained with
Mate, Chocolate and EvoSpace. Thin boxes represent results obtained in simulation and
thick boxes those obtained with physical robots. The lower, the better. (II) Cumulative
frequency of the percentage of robots that remained outside the target region at the end
of each experimental run. (III) Cumulative frequency of the percentage of robots in the
target region that crossed the perimeter.

Fig. 3 shows illustrative examples of the spatial distribution of the robots at
the end of four experimental runs of any-point closeness.

Mate designs collective behaviors in which the robots cover the target
region while maintaining a specific relative distance from their peers. The
robots explore the arena until they step into the target region. Then, they
position themselves considering nearby robots that also entered the region.
The swarm uniformly covers the space by steadily using formation; see
Fig. 3a (I–IV). Once the target region is highly dense, further robots remain
outside of it and do not disrupt the spatial distribution of their peers.

Chocolate mainly designs individualistic behaviors in which the robots
move into the target region without considering the position of their peers.
The robots explore the arena and when they step in the target region, they
stop after a certain period of time and remain still in place until the end of
the experiment (Fig. 3b). As the robots do not coordinate with their peers,
the swarm does not cover the target region uniformly; see Fig. 3b (I,II). In
some cases, the robots mostly remain in the perimeter of the target region
and form a barrier; see Fig. 3b (III,IV).

In the case of EvoSpace, the robots also explore the arena until they step
into the target region. Once a robot enters the region, it switches to an
in-place rotation behavior—we understand this behavior as a mean to stand
still in a fixed location. Contrary to the behavior observed in Chocolate, in
EvoSpace the robots remain reactive after stopping. Robots that reach the
target region react to the presence of incoming robots that push them further.
However, we do not observe a stable and uniform spatial distribution of

22

(a) Mate

(b) Chocolate

(c) EvoSpace

Figure 3: Illustrative examples of the final spatial distribution of robots in any-point
closeness. Each row shows results obtained with four different instances of control
software produced by (a) Mate, (b) Chocolate, and (c) EvoSpace. The target region is
lined in green and the perimeter is lined in yellow.

23

Figure 4: networked coverage. (I) Box-and-whiskers plots of the results obtained
with Mate, Chocolate and EvoSpace. Thin boxes represent results obtained in simulation
and thick boxes represent results obtained with physical robots. The higher, the better.
(II) Cumulative frequency of the percentage of robots that remained outside the target
region at the end of each experimental run. (III) Cumulative frequency of the percentage
of robots in the target region that crossed the perimeter.

robots; see Fig. 3c (III,IV). EvoSpace designed collective behaviors in which
the robots are not very efficient in exploring the arena. That is, a large
number of robots often do not reach the target region; see Fig. 3c (I,II).

As we expected, the performance of the swarm is highly conditioned by
the ability of the robots to position themselves with respect to their peers. In
this mission, the distribution of robots in the target region is more relevant
than the number of robots inside it. Mate designs collective behaviors that
distribute the robots more uniformly than those designed by Chocolate and
EvoSpace. The capability of Mate to design such behaviors reflected in a
better performance. Despite that Chocolate designed collective behaviors
in which more robots reach the target region, the swarm could not distribute
uniformly. Considering the results obtained in simulation and with physical
robots, the control software produced by Mate crosses the reality gap better
than the one produced by Chocolate and EvoSpace.

5.2. networked coverage
Fig. 4 (I) shows the numerical results of networked coverage. The

control software produced by Mate performs significantly better than the one
produced by Chocolate—both in simulation and reality. When assessed in
simulation, there is no significant difference between the control software pro-
duced by Mate and EvoSpace. On the other hand, when the design methods
are assessed with physical robots, Mate performs significantly better than
EvoSpace.

Fig. 4 (II) shows the cumulative frequency of the percentage of robots

24

that remained outside the target region at the end of each experimental
run. Fig. 4 (III) shows the cumulative frequency of the percentage of robots
in the target region that crossed the perimeter. When comparing the three
methods, the cumulative frequency plots show that Chocolate is less prone to
leave robots outside the target region at the end of the experiment—followed
by Mate, and then by EvoStick. A similar result to that observed in any-
point closeness. However, in this mission, the percentage of robots in the
target region that cross the perimeter tends to be higher for Mate, followed
by EvoSpace and then by Chocolate. Fig. 5 shows illustrative examples of
the spatial distribution of the robots at the end of four experimental runs of
networked coverage.

Mate designs collective behaviors in which the robots remain at a fixed
distance between each other; see Fig. 5a (I–IV). By doing so, the swarm estab-
lishes networks of robots that maintain connectivity in a range of 0.3 m—as
required in the specifications of the mission. The robots establish/join a
network by executing formation once they enter the target region. The
network remains stable as the robot density in the target region increases,
and robots outside progressively join the network without affecting the over-
all distribution of the swarm.

Chocolate designs collective behaviors in which the robots may adopt two
roles: (i) robots that randomly walk and locate within the target region—see
Fig. 5b (I,II); and (ii) robots that remain in a standstill behavior on the edge
of it—see Fig. 5b (III-IV). The combination of robots adopting the two roles
allows the swarm to place together a large number individuals. The barrier
of robots that line up along the border of the target region encloses the
robots that move inside of it, and cause them to establish a network. After a
visual inspection, we argue that this solution has two drawbacks: first, robots
have difficulties to enter the target region and join the network once the
barrier of robots is settled; and second, the networks are not stable because
robots inside the target region continuously move and do not maintain the
connectivity. As a result, the swarm fails to establish a network of robots
that efficiently covers the entire target region.

EvoSpace mainly designs collective behaviors in which the robots explore
the arena until they step into the target region, and afterwards, they remain
in place by continuously rotating. Most of the control software produced by
EvoSpace relies on fine-tuned exploration behaviors that let the robots navi-
gate the arena—e.g., wall following behaviors. When this control software is
ported to the physical robots, it strongly suffers the effects of the reality gap

25

(a) Mate

(b) Chocolate

(c) EvoSpace

Figure 5: Illustrative examples of the final spatial distribution of robots in networked
coverage. Each row shows results obtained with four different instances of control
software produced by (a) Mate, (b) Chocolate, and (c) EvoSpace. The target region
is lined in green and the perimeter is lined in yellow.

26

Figure 6: conditional coverage. (I) Box-and-whiskers plots of the results obtained
with Mate, Chocolate and EvoSpace. Thin boxes represent results obtained in simulation
and thick boxes represent results obtained with physical robots. The higher, the better.
(II) Cumulative frequency of the percentage of robots that remained outside the target
region at the end of each experimental run. (III) Cumulative frequency of the percentage
of robots in the target region that crossed the perimeter.

and turns ineffective; see Fig. 5c (I,II). In fewer cases, EvoSpace designed a
similar collective behavior to that observed in any-point closeness. The
robots explore the arena until they step into the target region. Once a robot
enters the region, it switches to an in-place rotation behavior. Robots that
reach the target region react to the presence of incoming robots that push
them further. This behavior is more efficient at placing robots in the tar-
get region; see Fig. 5c (III,IV). However, we do not find that the robots are
capable of establishing the desired networks.

The ability of the robots to remain at a fixed distance with respect to their
peers plays an important role in this mission. To cover a large area, the robots
should maximize the relative distance between each other. However, they
must constrain this distance to avoid losing the connectivity of the network.
Robot swarms designed by Mate self-organize in the form of repetitive and
cohesive lattices of robots—being effective in the execution of the mission.
On the contrary, although the swarms designed by Chocolate are capable of
establishing small networks, they neither maintain a stable connectivity nor
properly cover the target region.

5.3. conditional coverage
Fig. 6 (I) shows the numerical results of conditional coverage. The

control software produced by Mate performs significantly better than the one
produced by Chocolate and EvoSpace—both in simulation and reality.

Fig. 6 (II) shows the cumulative frequency of the percentage of robots
that remained outside the target region at the end of each experimental run.

27

Fig. 6 (III) shows the cumulative frequency of the percentage of robots in
the target region that crossed the perimeter. The cumulative frequency plots
show that Chocolate and Mate are less prone than EvoStick to leave robots
outside the target region at the end of the experiment. Chocolate and Mate
appear to design collective behaviors in which a similar percentage of the
robots reach the target region. Likewise networked coverage, in this
mission, the percentage of robots in the target region that cross the perimeter
tends to be higher for Mate than for EvoSpace and Chocolate. However, in
this mission, EvoSpace and Chocolate tend to have a similar percentage
of robots crossing the perimeter. Fig. 7 shows illustrative examples of the
spatial distribution of the robots at the end of four experimental runs of
conditional coverage.

The robot swarms designed by Mate selected and uniformly covered the
target region indicated by the initial conditions of the experiment in most
cases; see Fig. 7a (III,IV). Yet, in some experimental runs, the robots failed
on identifying the appropriate target region or attempted to cover both the
black and the white area; see Fig. 7a (I,II). In the more successful runs, as
in the two other missions, the robots uniformly distribute in the region in
which they arrive (i.e., the target region) by steadily executing formation.

In the case of Chocolate, the swarm often fails to select the appropriate
target region; see Fig. 7b (I-II). Unfortunately, in the successful runs, the
swarm does not display an uniform coverage; see Fig. 7b (III, IV). This
behavior is consistent with those observed in the two other missions.

Robots executing the control software produced by EvoSpace randomly
walk in the arena and do not react when they enter the white or black area.
Indeed, the robots seem to disregard the information provided by the color
of the floor and/or the interaction with their peers. Consequently, the swarm
fails to cover the target region and performs poorly; see Fig. 7c (I–IV). This
behavior is consistent across all runs.

In this mission, formation also contributed to designing spatially-orga-
nizing behaviors in which the robots efficiently cover the target region—which
ultimately is reflected in the better performance of Mate. On the other hand,
the performance of Chocolate and EvoSpace is strongly affected by the
individualistic behavior of the robots. As the robots act without considering
the presence of their peers, they are less likely to achieve a meaningful spatial
distribution. When compared with the other two missions, conditional
coverage turned to be more challenging for the design methods. As we
originally expected, this is probably due to the decision making component

28

(a) Mate

(b) Chocolate

(c) EvoSpace

Figure 7: Illustrative examples of the final spatial distribution of robots in any-point
closeness. Each row shows results obtained with four different instances of control
software produced by (a) Mate, (b) Chocolate, and (c) EvoSpace. In all cases, the target
region in (I,III) is black and the target region in (II,IV) is white. The target region is
lined in green and the perimeter is lined in yellow.

29

of the mission. The percentage of robots that remain outside the target
region at the end of the experimental run increased for the three methods.
The highest increment was observed in the results obtained by Chocolate,
and the lowest increment was observed in the results obtained by Mate.

5.4. Aggregate results
We first discuss general aspects of the controls software produced by Mate

and Chocolate, and afterwards, we present results on the aggregated perfor-
mance of Mate, Chocolate and EvoSpace across the three missions.

5.4.1. Control software analysis
Fig. 8 shows heat-map plots that represent the overall usage of the behav-

ior modules available to Mate and Chocolate. In all cases, we observe that
the swarm performs the missions in two phases: an initial phase in which
the robots mostly explore the arena—about the first 30 s; and a later phase
in which the robots distribute in the space according to the specification of
each mission—the remaining time after the first 30 s.

The heat-map plots show that Mate produces control software that uses
exploration, phototaxis, anti-phototaxis for exploration, and for-
mation to position the robots. This set of behaviors consistently appears
across the three missions. As defined in Chocolate, the implementations of
anti-phototaxis and phototaxis embed default exploration schemes that
execute a ballistic motion in the absence of an ambient light source [14]. The
missions we propose do not consider an ambient light source, and therefore,
anti-phototaxis and phototaxis operate in practice as random walk be-
haviors. The robots explore the arena until they identify the target region
with the help of the environmental cues—i.e., the color of the floor. We orig-
inally expected that the robots would also use attraction and repulsion
to interact with their peers at large distances, and stop to adopt steady
positions. However, results show that the robots mainly rely on formation
to establish the spatially-organizing behaviors specified in each mission.

Chocolate produces control software that mostly uses phototaxis and
anti-phototaxis for exploration, and stop to position the robots. This
set of behaviors repeatedly appears in the three missions. We expected that
Chocolate, in the absence of formation, could design collective behaviors
in which the robots would continuously transition between attraction and
repulsion. By doing so, the robots would maintain a rather fixed distance
between each other. However, Chocolate often converges to a simpler but

30

Mate Chocolate

Figure 8: Heat-map plots of the average usage of Mate’s (left) and Chocolate’s (right)
behavior modules in the three missions: any-point closeness (top), networked cov-
erage (middle), and conditional coverage (bottom).

31

Figure 9: Friedman test on the aggregate results of the three missions. The lower rank,
the better.

less effective solution: the robots rely on phototaxis, anti-phototaxis,
and the color of the floor to find the target region, and once there, they
transition to stop to maintain a standstill behavior and remain inside.

We argue that by including formation, Mate is a more suitable option
than Chocolate to address missions that require the design of spatially-orga-
nizing behaviors with constrains on the distance between robots.

5.4.2. Friedman test and reality gap
Fig. 9 shows the aggregate results of the experiments with physical robots

across the three missions. The plot represents the average rank of the three
methods and their 95% confidence interval. In our experiments, Mate per-
formed significantly better than Chocolate and EvoSpace. As previously
described, Mate designed collective behaviors that achieved a better spatial
distribution of robots than the baseline methods. The class of missions we
studied highly depends on such ability, and therefore, Mate outranked the
two baseline methods.

We observed the effects of the reality gap while assessing the control soft-
ware produced by the three methods: in the three missions, there was a
performance drop when the control software was ported from the simulation
to the e-pucks. The reality gap manifested itself differently for the design
methods—Mate and Chocolate were less prone to suffer its effects in compar-
ison to EvoSpace. These results are consistent with those reported in other
studies that compare the modular and the neuro-evolutionary approaches to
the automatic off-line design of robot swarms [12, 22, 23].

32

As originally noticed by Francesca et al. [11], automatic design meth-
ods appear to face a problem that is similar to the generalization prob-
lem [82] encountered in machine learning. That is, design methods with a
high representational power can yield a sort of overfitting to the simulation
environment—which then typically hinders the performance of the control
software when assessed with physical robots [22, 34]. In this context, it is
expected that methods that differ in their representational power might also
overfit to different extent the simulation and, therefore, show a different drop
in performance due to the effects of the reality gap [22]. Neuro-evolutionary
methods have a higher representational power than modular methods. In
neuro-evolutionary methods, the artificial neural networks and evolutionary
algorithms are known to have a high representational power that exploits the
idiosyncrasies of the simulator to produce high-performing solutions [83, 84].
A large body of the literature has previously reported this phenomenon and
has shown that control software evolved in simulation most often performs
well in simulation but badly when ported to physical robots [23, 85]. As
shown in our experiments, EvoSpace was capable of producing control soft-
ware that performs well in simulation but that suffered a large performance
drop in reality. The performance drop of EvoSpace is considerably larger
than the one observed in Mate and Chocolate—although the methods are
tested under the same experimental conditions. The modular nature of Mate
and Chocolate intrinsically limits the representational power of the design
methods: these methods can only produce the control software that results
from the combination of the given parametric software modules. The space
of possible control software is considerably smaller in Mate and Chocolate
than the one that results from the implementation of the artificial neural net-
work in EvoSpace. In consequence, we argue that Mate and Chocolate are
less prone to overfit the simulation environment and, therefore, they suffer
less from the effects of the reality gap when ported to the physical robots.
For a more detailed discussion on the effects of the reality gap in modular
and neuro-evolutionary methods, see [22, 23, 34].

In a few experimental runs executed with Mate, one or two robots mal-
functioned because they either (i) got stuck due to imperfections in the floor
of the arena or because (ii) they run out of battery. Still, in all cases, the
swarm remained operative, achieved the mission at hand, and did not consid-
erably decrease its performance. These observations suggest that the control
software produced by Mate might not be severely affected in case of failure of
individual robots. Previous studies conducted with AutoMoDe methods have

33

reported being robust against changes in the number of operative robots [14].
The observations made in our experiments suggest that this property might
also be a property of Mate. However, further experimentation is required to
corroborate this conjecture. Examples of the aforementioned issues can be
observed in the videos we provide as supplementary material [81].

6. Conclusions

We studied the design of spatially-organizing behaviors in the context of
the automatic off-line design of robot swarms. To this purpose, we presented
Mate: a modular method conceived to address missions in which the robot
swarm must operate under spatial distribution constrains. With Mate, we
introduced formation: a behavior module that enables the stable formation
of robots in hexagonal patterns.

We assessed Mate in simulation and with physical e-puck robots in three
missions: any-point closeness, networked coverage and condi-
tional coverage. In these missions, the robots must operate while consid-
ering environmental cues and the relative distance that they maintain with
respect to their peers. The control software designed by Mate resulted effec-
tive in the three missions. In any-point closeness, the robots uniformly
covered an indicated target region in the arena. In networked coverage,
the robots established coverage networks while maintaining connectivity at
a fixed distance. Finally, in conditional coverage, Mate designed col-
lective behaviors that allowed the swarm to selectively cover one out of two
possible target regions.

We compared Mate with two baseline methods: Chocolate—a state-of-
the-art modular method; and EvoSpace—a method of the neuro-evolutionary
approach. The aggregated results show that the control software produced
by Mate performs significantly better than the one produced by the baseline
methods. Our study also evaluated the portability of the control software
produced by Mate from the simulation to the physical robots. In this case, our
results are in-line with recent findings that illustrate how modular methods
are more robust to the effects of the reality gap than the neuro-evolutionary
approach. Indeed, the performance drop was smaller in Mate and Chocolate
than in EvoSpace.

Initially, we expected that Chocolate and EvoSpace would be capable
of addressing the missions that we conceived to assess Mate. Chocolate in-
cludes behaviors modules that could emulate the effects of formation. Yet,

34

the collective behaviors designed by Chocolate did not exhibit the spatial
distribution properties observed in those designed by Mate. In a like manner,
EvoSpace incorporates the model of virtual physics that we used to conceive
formation. Yet, we did not notice any meaningful use of this informa-
tion in the behavior displayed by the robots. We conclude that the inability
of Chocolate and EvoSpace to design behaviors in which robots maintain
specific relative positions with respect to each other translated in a lower
performance.

We argue that the aforementioned results highlight limitations of exis-
tent automatic methods for the design of spatially-organizing behaviors for
robot swarms. First, although design methods based on neuro-evolution have
been used to design spatially-organizing behaviors in the past (e.g., pattern-
formation and flocking), they strongly suffer from the effects of the reality
gap. Second, promising alternative approaches like the modular design do
not provide yet the means to design complex spatially-organizing behaviors
with particular robot positioning schemes. For example, existing modular
design methods (including Mate) cannot produce control software for the
organization of robot swarms in complex patterns or chains of robots.

By introducing Mate, we go a step further in that direction. In this paper,
we focused on demonstrating that automatic modular design can effectively
address missions that require a specific and constrained spatial organization
of the robots in the environment. We will devote future work to enlarge
the number of parameters that are fine-tuned in Mate, which could enable
the design of new and more complex spatially-organizing behaviors. For
example, we plan to address classes of missions related to the formation of
chains of robots and the formation of swarms that move in patterns. Also,
we wish to investigate the effects of robot malfunctioning on the stability of
the spatially-organizing behaviors designed by Mate, and propose strategies
to mitigate its effects.

As of today, most research in swarm robotics has been conducted with
manual design methods that target a single platform and that focus on a
specific mission. Recent perspectives on the future of swarm robotics endorse
the conception of design methodologies that facilitate sharing and replicating
experiments with different robot platforms [6]. Certainly, an important open
issue in automatic design is how to conceive design methods like Mate and
make them portable to a wide class of robots. The reference model introduced
with AutoMoDe is, in a sense, a level of abstraction with respect to the
underlying robotic platform that can facilitate the portability of the methods.

35

In this paper, we limited the scope of the study to the design of spatially-
organizing behaviors for a version of the e-puck that is compliant with the
reference model RM3.1. In principle, Mate can be adapted to produce control
software for other robots that share the same functional capabilities defined
in this reference model. We believe that conceiving design methods that
target robots that are formally defined by a reference model is a first step
to enable portability and ease the replication of experiments. In our future
work, we will investigate how to extend further this idea within the context
of the automatic design of robot swarms.

Ethical approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Funding

The project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (DEMIURGE Project, grant agreement No 681872) and from
Belgium’s Wallonia-Brussels Federation through the ARC Advanced project
GbO-Guaranteed by Optimization. MB acknowledges support from the Bel-
gian Fonds de la Recherche Scientifique – FNRS. DGR acknowledges support
from the Colombian Ministry of Science, Technology and Innovation – Min-
ciencias. FJM, AMNL and MRAM acknowledge support from the Coordina-
tion for the Improvement of Higher Education Personnel (CAPES-Brazil) and
the National Council for Scientific and Technological Development (CNPq-
Brazil).

36

Availability of data and materials

The control software produced during the experiments, associated demon-
strative videos with physical robots, and pictures of the final positioning of
the robots for each experimental run are available online at https://iridia.
ulb.ac.be/supp/IridiaSupp2020-008.

The source code is available as free and open-source. Otherwise indicated,
the software is available under the MIT License in the following repositories:
(i) ARGoS3-AutoMoDe for the implementation of Mate3 and Chocolate4;
(ii) ARGoS3-NEAT for the implementation of EvoSpace5; (iii) ARGoS36

for the ARGoS3 simulator; (iv) argos3-epuck7 for the ARGoS3 plugin to
simulate and operate the e-puck; (v) demiurge-epuck-dao8 for the software
interface that enables the operation of the e-puck with Mate, Chocolate
and EvoSpace; (vi) experiments-loop-functions9 for the implementations of
any-point closeness, networked coverage, and conditional cov-
erage; (vii) and irace10 for the implementation of Iterated F-race (GNU
General Public License).

CRediT authorship contribution statement

Fernando J. Mendiburu: Conceptualization, Methodology, Software,
Validation, Investigation, Data curation, Writing - original draft, Writing -
review & editing, Visualization. David Garzón Ramos: Conceptualiza-
tion, Methodology, Validation, Investigation, Writing - original draft, Writ-
ing - review & editing, Visualization. Marcos R.A. Morais: Methodology.
Antonio M.N. Lima: Methodology. Mauro Birattari: Conceptualiza-
tion, Methodology, Writing - review & editing, Supervision.

3https://doi.org/10.5281/zenodo.5893277
4https://doi.org/10.5281/zenodo.4849541
5https://doi.org/10.5281/zenodo.4849517
6https://doi.org/10.5281/zenodo.4889111
7https://doi.org/10.5281/zenodo.4882714
8https://doi.org/10.5281/zenodo.5893406
9https://doi.org/10.5281/zenodo.5893411

10https://doi.org/10.5281/zenodo.4888996

37

Declaration of Competing Interest

The authors declare no conflict of interest. The funders had no role in
the design of the study; in the collection, analyses, or interpretation of data;
in the writing of the manuscript, or in the decision to publish the results.

References

[1] G. Beni, From swarm intelligence to swarm robotics, in: E. Şahin, W. M.
Spears (Eds.), Swarm Robotics, SAB, Vol. 3342 of LNCS, Springer,
Berlin, Germany, 2004, pp. 1–9. doi:10.1007/978-3-540-30552-1_1.

[2] E. Şahin, Swarm robotics: from sources of inspiration to domains
of application, in: E. Şahin, W. M. Spears (Eds.), Swarm Robotics,
SAB, Vol. 3342 of LNCS, Springer, Berlin, Germany, 2004, pp. 10–20.
doi:10.1007/978-3-540-30552-1_2.

[3] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a
review from the swarm engineering perspective, Swarm Intelligence 7 (1)
(2013) 1–41. doi:10.1007/s11721-012-0075-2.

[4] M. Dorigo, M. Birattari, M. Brambilla, Swarm robotics, Scholarpedia
9 (1) (2014) 1463. doi:10.4249/scholarpedia.1463.

[5] M. Dorigo, G. Theraulaz, V. Trianni, Reflections on the fu-
ture of swarm robotics, Science Robotics 5 (2020) eabe4385.
doi:10.1126/scirobotics.abe4385.

[6] M. Dorigo, G. Theraulaz, V. Trianni, Swarm robotics: past, present,
and future [point of view], Proceedings of the IEEE 109 (7) (2021) 1152–
1165. doi:10.1109/JPROC.2021.3072740.

[7] H. Hamann, M. Schranz, W. Elmenreich, V. Trianni, C. Pinciroli,
N. Bredeche, E. Ferrante, Editorial: designing self-organization in
the physical realm, Frontiers in Robotics and AI 7 (2020) 164.
doi:10.3389/frobt.2020.597859.

[8] M. Birattari, A. Ligot, D. Bozhinoski, M. Brambilla, G. Francesca,
L. Garattoni, D. Garzón Ramos, K. Hasselmann, M. Kegeleirs, J. Kuck-
ling, F. Pagnozzi, A. Roli, M. Salman, T. Stützle, Automatic off-line

38

design of robot swarms: a manifesto, Frontiers in Robotics and AI 6
(2019) 59. doi:10.3389/frobt.2019.00059.

[9] S. Nolfi, D. Floreano, Evolutionary Robotics: The Biology, Intelligence,
and Technology of Self-Organizing Machines, 1st Edition, MIT Press,
Cambridge, MA, USA, 2000, a Bradford Book.

[10] V. Trianni, Evolutionary Swarm Robotics, Springer, Berlin, Germany,
2008. doi:10.1007/978-3-540-77612-3.

[11] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, M. Birattari,
AutoMoDe: a novel approach to the automatic design of control
software for robot swarms, Swarm Intelligence 8 (2) (2014) 89–112.
doi:10.1007/s11721-014-0092-4.

[12] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch,
G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F. Mas-
cia, V. Trianni, M. Birattari, AutoMoDe-Chocolate: automatic design
of control software for robot swarms, Swarm Intelligence 9 (2–3) (2015)
125–152. doi:10.1007/s11721-015-0107-9.

[13] M. Salman, A. Ligot, M. Birattari, Concurrent design of control soft-
ware and configuration of hardware for robot swarms under economic
constraints, PeerJ Computer Science 5 (2019) e221. doi:10.7717/peerj-
cs.221.

[14] G. Spaey, M. Kegeleirs, D. Garzón Ramos, M. Birattari, Evaluation
of alternative exploration schemes in the automatic modular design of
robot swarms, in: B. Bogaerts, G. Bontempi, P. Geurts, N. Harley,
B. Lebichot, T. Lenaerts, G. Louppe (Eds.), Artificial Intelligence and
Machine Learning: BNAIC 2019, BENELEARN 2019, Vol. 1196 of
CCIS, Springer, Cham, Switzerland, 2020, pp. 18–33. doi:10.1007/978-
3-030-65154-1_2.

[15] K. Hasselmann, M. Birattari, Modular automatic design of collective be-
haviors for robots endowed with local communication capabilities, PeerJ
Computer Science 6 (2020) e291. doi:10.7717/peerj-cs.291.

[16] J. Kuckling, K. Ubeda Arriaza, M. Birattari, AutoMoDe-IcePop: auto-
matic modular design of control software for robot swarms using sim-
ulated annealing, in: B. Bogaerts, G. Bontempi, P. Geurts, N. Harley,

39

B. Lebichot, T. Lenaerts, G. Louppe (Eds.), Artificial Intelligence and
Machine Learning: BNAIC 2019, BENELEARN 2019, Vol. 1196 of
CCIS, Springer, Cham, Switzerland, 2020, pp. 3–17.

[17] D. Garzón Ramos, M. Birattari, Automatic design of collective behaviors
for robots that can display and perceive colors, Applied Sciences 10 (13)
(2020) 4654. doi:10.3390/app10134654.

[18] A. Ligot, K. Hasselmann, M. Birattari, AutoMoDe-Arlequin: neural
networks as behavioral modules for the automatic design of probabilistic
finite state machines, in: M. Dorigo, T. Stützle, M. J. Blesa, C. Blum,
H. Hamann, M. K. Heinrich, V. Strobel (Eds.), Swarm Intelligence –
ANTS, Vol. 12421 of LNCS, Springer, Cham, Switzerland, 2020, pp.
109–122. doi:10.1007/978-3-030-60376-2_21.

[19] F. Pagnozzi, M. Birattari, Off-policy evaluation of the performance of a
robot swarm: Importance sampling to assess potential modifications to
the finite-state machine that controls the robots, Frontiers in Robotics
and AI 8 (2021) 55. doi:10.3389/frobt.2021.625125.

[20] A. Ligot, J. Kuckling, D. Bozhinoski, M. Birattari, Automatic modular
design of robot swarms using behavior trees as a control architecture,
PeerJ Computer Science 6 (2020) e314. doi:10.7717/peerj-cs.314.

[21] J. Kuckling, T. Stützle, M. Birattari, Iterative improvement in the au-
tomatic modular design of robot swarms, PeerJ Computer Science 6
(2020) e322. doi:10.7717/peerj-cs.322.

[22] A. Ligot, M. Birattari, Simulation-only experiments to mimic the ef-
fects of the reality gap in the automatic design of robot swarms, Swarm
Intelligence (2019) 1–24doi:10.1007/s11721-019-00175-w.

[23] K. Hasselmann, A. Ligot, J. Ruddick, M. Birattari, Empirical assessment
and comparison of neuro-evolutionary methods for the automatic off-
line design of robot swarms, Nature Communications 12 (2021) 4345.
doi:10.1038/s41467-021-24642-3.

[24] L. Garattoni, M. Birattari, Swarm robotics, in: J. G. Webster
(Ed.), Wiley Encyclopedia of Electrical and Electronics Engineer-
ing, John Wiley & Sons, Hoboken, NJ, USA, 2016, pp. 1–19.
doi:10.1002/047134608X.W8312.

40

[25] M. Gauci, J. Chen, W. Li, T. J. Dodd, R. Groß, Self-organized ag-
gregation without computation, The International Journal of Robotics
Research 33 (8) (2014) 1145–1161. doi:10.1177/0278364914525244.

[26] L. Garattoni, M. Birattari, Autonomous task sequencing in
a robot swarm, Science Robotics 3 (20) (2018) eaat0430.
doi:10.1126/scirobotics.aat0430.

[27] S. Nouyan, A. Campo, M. Dorigo, Path formation in a robot swarm:
self-organized strategies to find your way home, Swarm Intelligence 2 (1)
(2008) 1–23. doi:10.1007/s11721-007-0009-6.

[28] M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly
in a thousand-robot swarm, Science 345 (6198) (2014) 795–799.
doi:10.1126/science.1254295.

[29] M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi,
T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy,
D. Burnier, A. Campo, A. L. Christensen, A. Decugnière, G. A.
Di Caro, F. Ducatelle, E. Ferrante, A. Förster, J. Martinez Gonzales,
J. Guzzi, V. Longchamp, S. Magnenat, N. Mathews, M. Montes de Oca,
R. O’Grady, C. Pinciroli, G. Pini, P. Retornaz, J. Roberts, V. Sperati,
T. Stirling, A. Stranieri, T. Stützle, V. Trianni, E. Tuci, A. E. Turgut,
F. Vaussard, Swarmanoid: a novel concept for the study of heteroge-
neous robotic swarms, IEEE Robotics & Automation Magazine 20 (4)
(2013) 60–71. doi:10.1109/MRA.2013.2252996.

[30] M. Gauci, J. Chen, W. Li, T. J. Dodd, R. Groß, Clustering objects
with robots that do not compute, in: Proceedings of the 2014 Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems –
AAMAS2014, AAMAS ’14, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, USA, 2014, pp. 421–428.
doi:10.5555/2615731.2615800.

[31] J. Werfel, K. Petersen, R. Nagpal, Designing collective behavior in a
termite-inspired robot construction team, Science 343 (6172) (2014)
754–758. doi:10.1126/science.1245842.

[32] W. M. Spears, D. Spears, R. Heil, W. Kerr, S. Hettiarachchi, An
overview of physicomimetics, in: E. Şahin, W. M. Spears (Eds.), Swarm
Robotics, SAB, Springer, Berlin, Heidelberg, Germany, 2005, pp. 84–97.

41

[33] M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M.
Oliveira, A. L. Christensen, Evolution of collective behaviors for a real
swarm of aquatic surface robots, PLOS ONE 11 (3) (2016) e0151834.
doi:10.1371/journal.pone.0151834.

[34] M. Birattari, A. Ligot, G. Francesca, AutoMoDe: a modular approach
to the automatic off-line design and fine-tuning of control software for
robot swarms, in: N. Pillay, R. Qu (Eds.), Automated Design of Machine
Learning and Search Algorithms, Natural Computing Series, Springer,
Cham, Switzerland, 2021, pp. 73–90. doi:10.1007/978-3-030-72069-8_5.

[35] W. M. Spears, D. F. Gordon, Using artificial physics to control agents,
in: Proceedings 1999 International Conference on Information Intelli-
gence and Systems, IEEE Computer Society Press, Los Alamitos, CA,
USA, 1999, pp. 281–288. doi:10.1109/ICIIS.1999.810278.

[36] J. E. Jones, On the determination of molecular fields, Proceedings of
the Royal Society of London 106 (1924) 463–477.

[37] R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms
and theory, IEEE Transactions on Automatic Control 51 (3) (2006) 401–
420. doi:10.1109/TAC.2005.864190.

[38] M. J. Matarić, Interaction and intelligent behavior, Ph.D. thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA (1994).

[39] T. Balch, R. C. Arkin, Behavior-based formation control for multirobot
teams, IEEE Transactions on Robotics and Automation 14 (6) (1998)
926–939.

[40] M. Birattari, A. Ligot, K. Hasselmann, Disentangling automatic and
semi-automatic approaches to the optimization-based design of control
software for robot swarms, Nature Machine Intelligence 2 (9) (2020)
494–499. doi:10.1038/s42256-020-0215-0.

[41] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, R. Groß, Su-
pervisory control theory applied to swarm robotics, Swarm Intelligence
10 (1) (2016) 65–97. doi:10.1007/s11721-016-0119-0.

[42] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, R. Groß, Prob-
abilistic supervisory control theory (pSCT) applied to swarm robotics,

42

in: Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems – AAMAS2017, International Foundation for Au-
tonomous Agents and Multiagent Systems, Richland, SC, USA, 2017,
pp. 1395–1403.

[43] Y. K. Lopes, A. B. Leal, T. J. Dodd, R. Groß, Application of supervisory
control theory to swarms of e-puck and Kilobot robots, in: M. Dorigo,
M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon,
T. Stützle (Eds.), Swarm Intelligence – ANTS, Vol. 8667 of LNCS,
Springer, Cham, Switzerland, 2014, pp. 62–73. doi:10.1007/978-3-319-
09952-1_6.

[44] O. Khatib, Real-time obstacle avoidance for manipulators and mobile
robots, The International Journal of Robotics Research 5 (1) (1986)
90–98.

[45] W. M. Spears, D. Spears, J. C. Hamann, R. Heil, Distributed, physics-
based control of swarms of vehicles, Autonomous Robots 17 (2) (2004)
137–162. doi:10.1023/B:AURO.0000033970.96785.f2.

[46] B. Shucker, J. K. Bennett, Scalable control of distributed robotic
macrosensors, in: R. Alami, R. Chatila, H. Asama (Eds.), Distributed
Autonomous Robotic Systems, Springer, Tokyo, Japan, 2007, pp. 379–
388. doi:10.1007/978-4-431-35873-2_37.

[47] T. Lochmatter, E. Aydın Göl, I. Navarro, A. Martinoli, A plume track-
ing algorithm based on crosswind formations, in: A. Martinoli, F. Mon-
dada, N. Correll, G. Mermoud, M. Egerstedt, M. A. Hsieh, L. E. Parker,
K. Støy (Eds.), Distributed Autonomous Robotic Systems: The 10th In-
ternational Symposium, Springer, Berlin, Germany, 2013, pp. 91–102.
doi:10.1007/978-3-642-32723-0_7.

[48] A. Howard, M. J. Matarić, G. S. Sukhatme, Mobile sensor network de-
ployment using potential fields: a distributed, scalable solution to the
area coverage problem, in: H. Asama, T. Fukuda, T. Hasegawa (Eds.),
Distributed Autonomous Robotic Systems, Springer, Tokyo, Japan,
2002, pp. 299–308. doi:10.1007/978-4-431-65941-9_30.

[49] A. E. Turgut, H. Çelikkanat, F. Gökçe, E. Şahin, Self-organized flocking
in mobile robot swarms, Swarm Intelligence 2 (2) (2008) 97–120.

43

[50] F. J. Mendiburu, M. R. A. Morais, A. M. Nogueira Lima, Behavior
coordination in multi-robot systems, in: 2016 IEEE International Con-
ference on Automatica (ICA-ACCA), IEEE, Curico, Chile, 2016, pp.
1–7. doi:10.1109/ICA-ACCA.2016.7778506.

[51] E. Ferrante, A. E. Turgut, C. Huepe, A. Stranieri, C. Pinciroli,
M. Dorigo, Self-organized flocking with a mobile robot swarm: a novel
motion control method, Adaptive Behavior 20 (6) (2012) 460–477.

[52] G. Francesca, M. Birattari, Automatic design of robot swarms: achieve-
ments and challenges, Frontiers in Robotics and AI 3 (29) (2016) 1–9.
doi:10.3389/frobt.2016.00029.

[53] M. Duarte, S. M. Oliveira, A. L. Christensen, Evolution of hybrid robotic
controllers for complex tasks, Journal of Intelligent & Robotic Systems
78 (3) (2015) 463–484.

[54] M. Duarte, S. M. Oliveira, A. L. Christensen, Hybrid control for large
swarms of aquatic drones, in: H. Sayama, J. Rieffel, S. Risi, R. Doursat,
H. Lipson (Eds.), Artificial Life 14. Proceedings of the Fourteenth Inter-
national Conference on the Synthesis and Simulation of Living Systems,
MIT Press, Cambridge, MA, USA, 2014, pp. 785–792. doi:10.7551/978-
0-262-32621-6-ch105.

[55] M. Duarte, J. Gomes, V. Costa, S. M. Oliveira, A. L. Christensen, Hy-
brid control for a real swarm robotics system in an intruder detection
task, in: G. Squillero, P. Burelli (Eds.), Applications of Evolutionary
Computation, 19th European Conference, EvoApplications 2016, Vol.
9598 of Lecture Notes in Computer Science, Springer International Pub-
lishing, Cham, Switzerland, 2016, pp. 213–230. doi:10.1007/978-3-319-
31153-1_15.

[56] S. Hettiarachchi, W. M. Spears, Distributed adaptive swarm for obstacle
avoidance, International Journal of Intelligent Computing and Cyber-
netics 2 (4) (2009) 644–671.

[57] S. Hettiarachchi, W. M. Spears, DAEDALUS for agents with obstructed
perception, in: IEEE Mountain Workshop on Adaptive and Learning
Systems, IEEE, Logan, UT, USA, 2006, pp. 195–200.

44

[58] S. Hettiarachchi, W. M. Spears, Moving swarm formations through ob-
stacle fields, in: Proceedings of the 2005 International Conference on
Artificial Intelligence, ICAI’05, Vol. 1, Las Vegas, NV, USA, 2005, pp.
97–103.

[59] C. Pinciroli, M. Birattari, E. Tuci, M. Dorigo, M. del Rey Zapatero,
T. Vinko, D. Izzo, Self-organizing and scalable shape formation for a
swarm of pico satellites, in: 2008 NASA/ESA Conference on Adaptive
Hardware and Systems, IEEE, Noordwijk, Netherlands, 2008, pp. 57–61.

[60] C. Pinciroli, M. Birattari, E. Tuci, M. Dorigo, M. del Rey Zapatero,
T. Vinko, D. Izzo, Lattice formation in space for a swarm of pico satel-
lites, in: M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, A. Win-
field (Eds.), Ant Colony Optimization and Swarm Intelligence – ANTS
2008, Springer, Berlin, Germany, 2008, pp. 347–354. doi:10.1007/978-3-
540-87527-7_36.

[61] R. A. Brooks, Artificial life and real robots, in: Proceedings of the First
European Conference on Artificial Life, MIT Press, 1992, pp. 3–10.

[62] D. Floreano, P. Husbands, S. Nolfi, Evolutionary robotics, in: B. Sicil-
iano, O. Khatib (Eds.), Springer Handbook of Robotics, Springer Hand-
books, Springer, Berlin, Heidelberg, Germany, 2008, pp. 1423–1451, first
edition. doi:10.1007/978-3-540-30301-5_62.

[63] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klap-
tocz, S. Magnenat, J.-C. Zufferey, D. Floreano, A. Martinoli, The e-
puck, a robot designed for education in engineering, in: P. Gonçalves,
P. Torres, C. Alves (Eds.), Proceedings of the 9th Conference on Au-
tonomous Robot Systems and Competitions, Instituto Politécnico de
Castelo Branco, Castelo Branco, Portugal, 2009, pp. 59–65.

[64] W. Liu, A. Winfield, Open-hardware e-puck Linux extension
board for experimental swarm robotics research, Microprocessors
and Microsystems - Embedded Hardware Design 35 (2011) 60–67.
doi:10.1016/j.micpro.2010.08.002.

[65] Á. Gutiérrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-
Huelin, L. Magdalena, Open e-puck range & bearing miniatur-
ized board for local communication in swarm robotics, in: K. Ko-

45

suge (Ed.), IEEE International Conference on Robotics and Au-
tomation, ICRA, IEEE, Piscataway, NJ, USA, 2009, pp. 3111–3116.
doi:10.1109/ROBOT.2009.5152456.

[66] École polytechnique fédérale de Lausanne, Omnidirectional vision tur-
ret for the e-puck, http://www.e-puck.org/index.php?option=com_
content&view=article&id=26&Itemid=21 (2010).

[67] K. Hasselmann, A. Ligot, G. Francesca, D. Garzón Ramos, M. Salman,
J. Kuckling, F. J. Mendiburu, M. Birattari, Reference models for Au-
toMoDe, Tech. Rep. TR/IRIDIA/2018-002, IRIDIA, Université libre de
Bruxelles, Belgium (2018).

[68] D. Spears, D. Thayer, D. V. Zarzhitsky, A multi-robot chemical source
localization strategy based on fluid physics: theoretical principles,
in: W. M. Spears, D. Spears (Eds.), Physicomimetics: Physics-Based
Swarm Intelligence, Springer, Berlin, Germany, 2012, pp. 223–249.
doi:10.1007/978-3-642-22804-9.

[69] T. Apker, M. A. Potter, Physicomimetic motion control of physically
constrained agents, in: W. M. Spears, D. Spears (Eds.), Physicomimet-
ics: Physics-Based Swarm Intelligence, Springer, Berlin, Germany, 2012,
pp. 413–437. doi:10.1007/978-3-642-22804-9.

[70] J. Kellogg, C. Bovais, J. Dahlburg, R. J. Foch, J. H. Gardner, D. F.
Gordon, R. L. Hartley, B. Kamgar-Parsi, H. Mcfarlane, F. Pipitone,
R. Ramamurti, A. Sciambi, W. M. Spears, D. Srull, C. Sullivan, The
NRL micro tactical expendable (MITE) air vehicle, The Aeronautical
Journal (2002) 431–441.

[71] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari,
T. Stützle, The irace package: iterated racing for automatic algo-
rithm configuration, Operations Research Perspectives 3 (2016) 43–58.
doi:10.1016/j.orp.2016.09.002.

[72] W. J. Conover, Practical Nonparametric Statistics, 3rd Edition, Wiley
series in probability and statistics, applied probability and statistics
section, John Wiley & Sons, New York, NY, USA, 1999.

46

[73] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch,
G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, V. Tri-
anni, M. Birattari, An experiment in automatic design of robot swarms:
AutoMoDe-Vanilla, EvoStick, and human experts, in: M. Dorigo,
M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon,
T. Stützle (Eds.), Swarm Intelligence – ANTS, Vol. 8667 of LNCS,
Springer International Publishing, Cham, Switzerland, 2014, pp. 25–37.
doi:10.1007/978-3-319-09952-1_3.

[74] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in
evolution strategies, Evolutionary Computation 9 (2) (2001) 159–195.
doi:10.1162/106365601750190398.

[75] T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, J. Schmidhuber, Expo-
nential natural evolution strategies, in: Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, GECCO, ACM,
2010, pp. 393–400. doi:10.1145/1830483.1830557.

[76] K. O. Stanley, R. Miikkulainen, Evolving neural networks through aug-
menting topologies, Evolutionary Computation 10 (2) (2002) 99–127.
doi:10.1162/106365602320169811.

[77] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. A. Di Caro, F. Ducatelle, M. Bi-
rattari, L. M. Gambardella, M. Dorigo, ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems, Swarm Intelligence 6 (4)
(2012) 271–295. doi:10.1007/s11721-012-0072-5.

[78] L. Garattoni, G. Francesca, A. Brutschy, C. Pinciroli, M. Birat-
tari, Software infrastructure for e-puck (and TAM), Tech. Rep.
TR/IRIDIA/2015-004, IRIDIA, Université libre de Bruxelles, Belgium
(2015).

[79] L. Pitonakova, M. Giuliani, A. Pipe, A. Winfield, Feature and perfor-
mance comparison of the V-REP, Gazebo and ARGoS robot simula-
tors, in: M. Giuliani, T. Assaf, M. E. Giannaccini (Eds.), Towards Au-
tonomous Robotic Systems, LNCS, Springer, Cham, Switzerland, 2018,
pp. 357–368. doi:10.1007/978-3-319-96728-8_30.

47

[80] A. Stranieri, A. E. Turgut, M. Salvaro, L. Garattoni, G. Francesca,
A. Reina, M. Dorigo, M. Birattari, IRIDIA’s arena tracking system,
Tech. Rep. TR/IRIDIA/2013-013, IRIDIA, Université libre de Bruxelles,
Belgium (2013).

[81] F. J. Mendiburu, D. Garzón Ramos, M. R. A. Morais, A. M.
Nogueira Lima, M. Birattari, AutoMoDe-Mate: automatic off-line de-
sign of spatially-organizing behaviors for robot swarms: supplementary
material, https://iridia.ulb.ac.be/supp/IridiaSupp2020-008
(2020).

[82] S. Geman, E. Bienenstock, R. Doursat, Neural networks and the
bias/variance dilemma, Neural Computation 4 (1) (1992) 1–58.
doi:10.1162/neco.1992.4.1.1.

[83] A. Eiben, Real-world robot evolution: why would it (not) work?, Fron-
tiers in Robotics and AI 8 (2021) 243. doi:10.3389/frobt.2021.696452.

[84] S. Doncieux, N. Bredeche, J.-B. Mouret, A. Eiben, Evolutionary
robotics: what, why, and where to, Frontiers in Robotics and AI 2
(2015) 4. doi:10.3389/frobt.2015.00004.

[85] F. Van Diggelen, E. Ferrante, N. Harrak, J. Luo, D. Zeeuwe, A. Eiben,
The influence of robot traits and evolutionary dynamics on the real-
ity gap, IEEE Transactions on Cognitive and Developmental Systems
(2021) 1doi:10.1109/TCDS.2021.3112236.

48

