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Abstract

This thesis explores the application of the Map-Elites algorithm, an illumination
algorithm, for generating control software in the field of robotics. The aim is to
investigate whether Map-Elites can produce effective control software as part of
an automatic modular design method.

Hence, the research involves defining an encoding method and mutation strat-
egy to transform probabilistic finite state machines into binary strings. Further-
more, two search spaces, focusing on robot perception and robot positioning, are
utilized to define the exploration space. A comparative analysis is conducted
between Map-Elites, the two search spaces, and AutoMoDe-Chocolate, a state-
of-the-art automatic modular design method. The results show that Map-Elites
can outperform AutoMoDe-Chocolate in terms of control software performance.
However, Map-Elites exhibits reduced robustness when transitioning to a pseudo-
reality model. Additionally, variations in performance are observed between the
two search spaces, with the sensor and actuator-based feature set yielding supe-
rior results compared to the positional feature set.

These findings contribute to our understanding of the strengths and limitations of
the Map-Elites algorithm and shed light on the impact of different search spaces
on control software generation in robotics.

Keywords : swarm robotics, illumination algorithm, Map-Elites, AutoMoDe, E-
Puck, pseudo-reality



Abstract

french Cette thèse explore l’application de l’algorithme Map-Elites, un algorithme
d’illumination, pour générer des logiciels de contrôle dans le domaine de la robo-
tique. L’objectif est de déterminer si Map-Elites peut produire un logiciel de
contrôle efficace dans le cadre d’une méthode de conception modulaire automa-
tique.

La recherche consiste donc à définir une méthode d’encodage et une stratégie
de mutation pour transformer les machines probabilistes à états finis en chaı̂nes
binaires. De plus, deux espaces de recherche, axés sur la perception et le posi-
tionnement du robot, sont utilisés pour définir l’espace d’exploration. Une anal-
yse comparative est menée entre Map-Elites avec les deux espaces de recherche
et AutoMoDe-Chocolate, une méthode de conception modulaire automatique
de pointe. Les résultats montrent que Map-Elites peut surpasser AutoMoDe-
Chocolate en termes de performance du logiciel de contrôle. Cependant, Map-
Elites présente une robustesse réduite lors de la transition vers un modèle de
pseudo-réalité. En outre, des variations de performance sont observées entre les
deux espaces de recherche, l’ensemble de caractéristiques basé sur les capteurs et
les actionneurs donnant des résultats supérieurs à l’ensemble de caractéristiques
positionnelles.
Ces résultats contribuent à notre compréhension des forces et des limites de l’algorithme
Map-Elites et mettent en lumière l’impact des différents espaces de recherche sur
la génération de logiciels de contrôle en robotique.
Mot-clés : swarm robotics, algorithm d’illumination, Map-Elites, AutoMoDe, E-
Puck, réalité virtuelle
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Chapter 1

Introduction

Robotics [1] is a multidisciplinary field that involves the design, construction, and
application of mechanical robots. These robots can range from technical marvels
such as the Mars rover Curiosity to more common applications like robotic arms
used in manufacturing. However, designing the mechanical structure is only part
of the equation. Equipping robots with the ability to perform their intended tasks
is just as important.

Some tasks are too complex for a single robot to accomplish alone. Such tasks
require parallel computation or numerous actuators that are better handled by a
team of robots. This is where swarm robotics [2], a subfield of robotics, comes
into play. It involves a decentralized group of robots working locally together
to perform a task that no individual robot could accomplish alone. These char-
acteristics lead to interesting properties such as flexibility and resilience, making
swarm robotics an area of great interest in robotics research.

One problem that arises with the approach of swarm robotics is the challenge of
describing a global behavior for the group by only modifying the local behavior
of the robots, which can be seen as a micro-macro problem.

Currently, there is no general methodology for the design of such groups of
robots. However, two distinct design approaches can be identified: manual and
automatic. In the manual approach, a human expert in swarm robotics is in-
volved in creating the control software through a trial-and-error approach. In the
automatic design approach, once the specifications of the mission have been de-
fined, no human expert is needed [3, 4].

Design methods in swarm robotics typically rely on fitness functions to evaluate
the performance of a solution for a given task. However, these methods often ne-
glect the behavior of the robots in favor of only the most performing solutions. A
more interesting approach would be to observe the behavior of groups of robots
either from an external perspective, such as measuring the distance between ob-
jects and robots, or from an internal perspective, by examining the sensors of the
robots, rather than solely evaluating performance.

Humans can often come up with multiple solutions to a problem, and the same
approach could be applied to robots. Illumination algorithms are particularly
adept at exploring diverse solutions by mapping the behavior space [5]. Apply-
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ing such algorithms to swarm robotics could enable experts to better understand
swarm robotics and identify various ways to solve a particular problem such as
foraging food to a nest.

However, a critical question arises: Can these illumination algorithms enable the
creation of control software that is as efficient and effective as the most widely
used and high-performing algorithms in the current state of the art? The key
advantage offered by the illumination algorithm is the ability to select and ob-
serve various behaviors. The crucial question is whether these behaviors have
an impact on the development of high-performing control software for swarm
robotics.

1.0.1 Objective of this master thesis

This master’s thesis aims to investigate the applicability of the Map-Elites algo-
rithm in creating control software for swarm robots. The primary objective is to
evaluate the performance of the solutions generated by Map-Elites and compare
them to the state-of-the-art approaches. The second objective is to see if a differ-
ent behaviour set influence the creation of high-performing control software.

1.0.2 Contributions of the master thesis

During this master thesis, I delivered the following contributions to meet the pre-
vious goals:

1. The encoding of finite state machine following the architectures of AutoMoDe-
Chocolate.

2. An automatic modular design methods that uses an illumination algorithm
to create control software.

Both goals will be described and explained in the following chapters.
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Chapter 2

Related work

The following chapter provides an overview of the state of the art in swarm
robotics literature and the illumination repertoire-based algorithm literature.

Swarm robotics is an exciting and rapidly evolving field of study that draws in-
spiration from the collective behaviour of social animals such as ants, bees, and
termites [6]. In recent years, researchers have increasingly recognized the po-
tential of swarm robotics to address complex and challenging problems that are
difficult for traditional robotics approaches to solve.

The fundamental challenge in robotics is the design problem. Traditional robotics
systems rely on a centralized control system, where a single computer or opera-
tor is responsible for controlling all the robots. However, this approach is limited
in its scalability, flexibility, and adaptability to changing environments. Swarm
robotics offers a novel solution to this problem by using decentralized control,
where the individual robots in the swarm interact with each other and their envi-
ronment to achieve a collective goal.

2.1 Swarm Robotics

Swarm robotics is the study of swarm intelligence applied to groups of robots, as
well as how to operate and design them [7]. It is characterized by the emergence
of complex behaviour, which arises from the interactions that occur between the
individual robots within the swarm, as well as between the swarm and its sur-
rounding environment.

The robot swarm have as main properties [7, 8] :

• Scalability: the behaviour of each robot in a swarm is primarily influenced
by its immediate surroundings, meaning that each robot is only able to per-
ceive and interact with its neighboring robots and local environment. As
the size of a swarm increases, the neighborhood of each individual robot
within the swarm remains relatively constant. This advantage of swarm
robotics systems is what allows them to be scalable, since the behaviour of
the swarm can adapt to larger or smaller scales without requiring significant
changes to the behaviour of individual robots or the system as a whole.
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• Fault tolerance : the loss of an individual robot or part of the swarm should
not cause the whole system to fail. This is achieved through the use of de-
centralized control and redundancies in the system. The decentralized na-
ture of swarm robotics means that there is no single point of failure that can
bring down the entire system, since each individual robot within the swarm
is responsible for its own behaviour and interactions with the environment.
Additionally, redundancies in the system provide backup mechanisms to
ensure that the swarm can continue to operate even in the event of a failure
or malfunction of one or more individual robots.

• Flexibility: the ability of swarm robotics systems to operate effectively across
different environments and under varying working conditions is largely
due to their decentralized nature and local sensing capabilities. Since each
individual robot within the swarm is responsible for its own behaviour and
interactions with the environment, the swarm as a whole is able to adapt to
different conditions.

Swarm robotics has many potential applications in areas such as search and res-
cue, environmental monitoring, and agriculture. For example, swarms of robots
could be used to explore and map disaster zones or to monitor the health of crops
in a field [9, 10].

2.2 Automatic Design

The main difficulty of swarm robotics is to create the control software of individ-
ual robots to obtain the global behaviour desired.

While manual design method can be used to create control software for swarm
robotics systems, it typically requires an expert to design the behaviour of the
robots. This approach often involves a trial-and-error process to achieve the de-
sired results, and the resulting behaviour of the swarm may only be effective for
a specific mission or set of conditions [4, 11]. Despite these limitations, manual
design can still be a valuable approach in certain contexts, particularly when the
requirements of the mission are well-defined and the behaviour of the swarm can
be accurately predicted. However, as the complexity and variability of the envi-
ronment increase, manual design becomes less practical and scalable, which has
led to the development of more automated and adaptive approaches to swarm
robotics control.

Automatic design is a promising approach to swarm robotics in which the design
problem is framed as an optimization problem. Algorithms search through the
space of control software in order to find the most effective solutions, based on
a specified fitness metric to evaluate the performance of the control software.
This approach can be highly efficient, as it allows for the exploration of large and
complex design spaces that would be impractical to search manually.

2.2.1 Online and Offline Design

Automatic design is divided into two categories :
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• Online design is a dynamic approach to swarm robotics in which optimiza-
tion of the swarm’s behaviour is carried out in real time. This allows for a
high degree of adaptability to changes in the environment, as the swarm
can update its behaviour rapidly in response to new information. However,
one potential drawback of this approach is that the swarm requires time to
optimize its behaviour, and during the initial deployment phase, there may
be some instances of damaging behaviour as the system adjusts to its new
environment [12].

Pugh and Martinoli [13] designed an online method to create control soft-
ware using particle swarm optimization for an obstacle avoidance mission.

• Offline design involves creating control software for a swarm before de-
ploying it in a real environment. This can be done either by optimizing the
software with real robots or through simulation. Simulation is often pre-
ferred as it is less costly. However, the offline design method is susceptible
to the reality gap, which occurs when the optimization process fits the sim-
ulation too closely and leads to poor performance in the real world [8].

Francesca et al [14] designed a control software for an aggregation and a for-
aging mission using modular design method. The control software, AutoMoDe-
Vanilla, is the first method of the AutoMoDe family. The idea is to reduce
the reality gap by injecting bias into the design process by using pre-existing
modules.

In this thesis, we will focus on an offline design method.

2.2.2 Evolutionary Swarm Robotics

Evolutionary robotics is a type of automatic design method that relies on the prin-
ciples of natural selection first proposed by Darwin [15, 16]. This approach uses a
genetic algorithm to identify the optimal set of parameters for a candidate robot
controller, often represented by a neural network. When this algorithm is used in
conjunction with neural networks, it is referred to as neuro-evolutionary [17].

The use of evolutionary robotics for swarm design has been shown to be effec-
tive in optimizing control software. However, a major challenge in this approach
is the difficulty of transferring the solutions obtained in simulation to the real
world, due to the high variance in the parameters optimized by the neural net-
works. This high variance can lead to poor robustness of neuro-evolution when
the simulated solution is transferred to the real world, which is a common chal-
lenge in evolutionary swarm robotics [18].

Francesca et al [14] introduce EvoStick, an automatic design algorithm with evo-
lutionary robotics.

2.2.3 Automatic Modular Design

To mitigate the reality gap associated with evolutionary methods, one approach
is to use pre-designed modules in the optimization algorithm [19]. These mod-
ules can be combined into a high-level architecture, such as a probabilistic finite
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state machine or other methods, to form the control software. Automatic modu-
lar design is an offline method that is fully automatic.

The first challenge of this approach is to generate the modules themselves, as
the number and properties of the modules directly affect the swarm’s capabili-
ties. The second challenge is to determine the best way to combine the modules,
which has a significant impact on the overall performance of the swarm.

AutoMoDe

AutoMoDe is the family of automatic modular design methods proposed by Francesca
et al [14]. The version of AutoMoDe that will be mentioned and used in this thesis
are the following :

• AutoMoDe-Vanilla : Francesca et al [14] designed the first flavour of Auto-
MoDe where it designed a control software for an aggregation and a forag-
ing mission as said previously. The module are manually predefined and
divided in two types : the behaviour and transition modules. The behaviour
modules represent actions, they are described in Tables 2.1. And the transi-
tion modules allows to jump from one behaviour to another when a certain
condition is met, described in Tables 2.2. Vanilla selects, combines and fine-
tunes the pre-defined modules into control software in the form of a proba-
bilistic finite-state machine (pfsm). The states of the pfsm are the behaviour
modules and the edges of the pfsm are the transition modules.

F-Race is the algorithm used by AutoMoDe-Vanilla to optimise the pfsm, it
works by evaluating solutions in parallel on several instances and at each
instance, the statistically worse solutions are discarded. F-Race will con-
verge to a set of elite solutions [20].

In Francesca et al, the authors compared Vanilla to human experts. They
had to create a control software for a swarm of e-puck robots. The human
outperformed Vanilla when constrained to using the same modules, but lost
when they were free to code the control software by them self. The only dif-
ference between Vanilla and the human is the way the solution are searched
so the authors conjectured that using a better optimization algorithm could
improve Vanilla, this lead to AutoMoDe-Chocolate.

• AutoMoDe-Chocolate : Francesca et al [21] proposed an upgraded version
of the Vanilla version of AutoMoDe. The F-Race algorithm is replaced by
iterated F-Race, also called irace [22]. In all the other aspect, Chocolate is
identical to Vanilla.

The result obtained by Chocolate outperformed the human expert when
they had to use the same module as Chocolate.

• AutoMoDe-Demonstration-Cho : Gharbi et al [23] proposed an automatic
design method that combines inverse reinforcement learning with auto-
matic modular design of control software for robot swarms. The algorithm
is provided with a demonstration of how to perform. For example, if the
mission is to aggregate on a white spot. We provide an example where
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all the robots are on the white spot. The algorithm will then use inverse
reinforcement learning to infer the fitness function to optimize the control
software.

The result obtained are similar with AutoMoDe-Chocolate but it’s impor-
tant to note that no fitness function was given prior to the experience for
the AutoMoDe-Demonstration-Cho version.

For an in-depth introduction to the different flavour of AutoMoDe refer to: for
AutoMoDe-Gianduja [24], for AutoMoDe-Waffle [25], for AutoMoDe-Maple [26],
for AutoMoDe-Mate [27], for AutoMoDe-TuttiFrutti [28], for AutoMoDe-Coconut
[29], for AutoMoDe-Icepop [30], for AutoMoDe-Cedrata [31] and for AutoMoDe-
Arlequin [32, 33] and finally AutoMoDe-Nata [33]

Behaviour Parameter(s) Description

Exploration τ ∈ {1, 2, ..., 100} The robot moves straight. If proxi ≥ 0.1
for i ∈ {1, 2, 7, 8}, the robot turns on iself
for random number of cycles chosen in
{0, 1, ..., τ}.

Stop None The robot stays still.

Phototaxis k fixed to 5 The robot moves straight to light source
if perceived; otherwise, moves straight.
Obstacle avoidance is embedded and
depends on k.

Anti-phototaxis k fixed to 5 The robot moves away from light source
if perceived; otherwise, moves straight.
Obstacle avoidance is embedded and
depends on k.

Attraction α ∈ [1,5] and k
fixed to 5

The robot moves straight to the neigh-
bour robot thanks to the rang-and-
bearing device; otherwise, move
straight. Obstacle avoidance is embed-
ded and depends on k and α.

Repulsion k fixed to 5 The robot moves away from neighbour
robots; otherwise, moves straight. Ob-
stacle avoidance is embedded and de-
pends on k.

Table 2.1: This table represents the set of behaviour modules used in AutoMoDe-
Vanilla and AutoMoDe-Chocolate [14, 21]. These behaviour modules are the state
in the probabilistic finite state machine representing the behaviour of each robot
in the swarm. The behaviour modules were conceived for the E-puck’s reference
model RM1.1.

9



Condition Parameter(s) Description

Black-floor β ∈ [0,1] If gndi = 0 for i ∈ {1, 2, 3}, the transition
is enable with probability β.

Grey-floor β ∈ [0,1] If gndi = 0.5 for i ∈ {1, 2, 3}, the transi-
tion is enable with probability β.

White-floor β ∈ [0,1] If gndi = 1 for i ∈ {1, 2, 3}, the transition
is enable with probability β.

Neighbor-count η ∈ [0,20] and
ζ ∈ {0, 1, ..., 10}

The transition is enable with probability
z(n) = 1

1+eη(ζ−η) , where n is the number of
neighbouring robots.

Inverted-
Neighbor-count

η ∈ [0,20] and
ζ ∈ {0, 1, ..., 10}

The transition is enable with probability
1− z(n).

Fixed-
probability

β ∈ [0,1] The transition is enable with a fixed
probability of β.

Table 2.2: This table represents the set of transition condition modules used in
AutoMoDe-Vanilla and AutoMoDe-Chocolate [14, 21]. These transition condition
modules are the transition conditions in the finite state machine representing the
condition of transition of the behaviour of each robot in the swarm. The transition
condition modules were conceived for the e-puck’s reference model RM1.1

2.3 AutoMoDe-Demonstration-Cho

As explain earlier, AutoMoDe-Demonstration-Cho proposed by Gharbi et al [23]
is an automatic design method that combines inverse reinforcement learning with
automatic modular design of control software for swarm robotics.

To infer the fitness function from the demonstration, the inverse reinforcement
learning algorithm, called apprenticeship learning is used [34].

In inverse reinforcement learning, the reward function R is not provided as op-
posed to reinforcement learning algorithm which learns policies π that maximize
the reward function. But it is assumed that a ’true’ reward function R∗ exists and
it is such that the policy π∗ that maximizes the value function based on R∗ would
generate the given demonstrations. Furthermore, in apprenticeship learning, it
is assumed that a mapping between the state of the system to a k-dimensional
vector of features. The ’true’ reward function R∗ is assumed to be a linear combi-
nation of the features.

In order to represent the state of the entire swarm, the feature vector µ must in-
clude information related to the positions of the individual robots in relation to
specific ”landmarks.” For example, in the experiments, these landmarks took the
form of circular and rectangular floor patches placed within the arena where the
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swarm was operating. In addition to this positional information, Gharbi et al also
included data about the density of the swarm, such as the distance to the nearest
neighboring robot.

All the distances are normalized with the help of an exponential. It has two im-
pact on the features. It penalize more the robot that are the farthest as well as
limit the distance between [0,1]. It is define as follows :

ν = e−
2 ln 10

d x (2.1)

where ν is the normalized distance, x is the distance and d is the diameter of the
inner circle of the arena were the swarm perform. The function can be seen in the
figure 2.1.

Figure 2.1: From the paper of Gharbi et al [23], The x-axis is the distance taken
into account. The y-axis is the normalized distance ν. The green curve is the
exponential function described in Equation 2.1, and its decreasing speed is such
that when the distance is more significant than half of the arena’s inner radius
(equal to 3 meters in this graph), the value of ν is already below 0.1.

The features vector can be defined as follows :

µ = (µpatch11
, ..., µpatch1n

, ..., µpatchkn
) (2.2)

s.t. µpatchij
=


1, if robot i inside patch j;
0, if an obstacle is between robot i and patch j;

e
− 2 ln 10

d xpatchij otherwise; ∀i = 1, ..., n and ∀j = 1, ..., k;
(2.3)

AutoMoDe-Demonstration-Cho is a promising algorithm but still has a problem
which is that it doesn’t diversify its strategy which may leads to problem with
the reality gap.

2.4 Diversity algorithm

Many local optimization algorithms encounter a common issue, which is getting
stuck in local optima. Local optima occur when the algorithm finds a solution
that is better than its immediate neighbors but not the best solution in the en-
tire search space. This can lead to premature convergence, where the algorithm
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stops making progress towards finding the global optimum. To mitigate this is-
sue, many optimization algorithms employ strategies to encourage diversity in
the search process. Despite these efforts, search algorithms may still converge to
a limited number of solutions, which can hinder the discovery of novel and more
performing solutions [35, 36].

An alternative approach to addressing this issue is to abandon the idea of opti-
mization altogether and instead focus solely on exploring the search space in the
hope of finding new and improved solutions. This approach prioritizes explo-
ration over exploitation, with the aim of discovering previously unknown regions
of the search space that may contain better solutions.

2.4.1 Optimization vs. Illumination

As said previously, to class of algorithm appear when looking for good and new
solutions in a search space:

• Optimization algorithms are designed to find the highest-performing so-
lution(s) within a given search space. These algorithms typically aim to
identify one or a set of solutions that optimize a specific objective function
or a combination of multiple objectives. In multi-objective optimization, the
goal is often to find a set of solutions that represent the Pareto front, which is
the trade-off curve of optimal solutions that cannot be improved in one ob-
jective without sacrificing performance in another [37]. Optimization algo-
rithms use various techniques, such as mutation and crossover operations,
to explore the search space and converge towards optimal or near-optimal
solutions. The focus of these algorithms is on finding the best solutions
according to the defined optimization criteria.

• Illumination algorithms, in contrast to optimization algorithms, aim to iden-
tify the best solutions for each point in the feature space, also known as
the behavior space. These algorithms generate phenotype-fitness maps that
highlight regions of the map with high fitness values, providing a compre-
hensive view of the fitness landscape [38]. By illuminating areas with high
fitness values, illumination algorithms can reveal diverse solutions that may
not be found by traditional optimization algorithms.

2.4.2 Evolutionary Algorithm

From the many optimization algorithm, evolutionary algorithms are one of the
most successful families of search algorithms.

Definitions

This thesis will use the vocabulary used from evolutionary algorithm. A solu-
tion is a phenotype. These solutions are described by a genotype, and the action
performed by the phenotype are the solution’s behaviour. The performance of a
solution can be found by a fitness function which compute the fitness of the solu-
tion.
To produce new solutions, evolutionary algorithm will mutate the genome by al-
tering it randomly and to keep the influence of previous solutions, new solutions
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can be sampled from two parents solution, this process is called crossover.

Evolutionary algorithms are inspired by Darwin’s principle of natural selection
[35]. They start with a population of solutions and mimic the passage of time
by iteratively selecting the most performing solutions, which act as parents to
generate a new population through mutation and crossover operations. The in-
tuition is that, over time, only the fittest solutions will survive and propagate in
the population. To mitigate the issue of local optima, some approaches propose
increasing the mutation rates when the rate of performance improvement stag-
nates, allowing for more exploration of the search space [39].

Doncieux et al [40] demonstrate that the use of evolutionary algorithms is contin-
uously growing and evolving, with ongoing improvements in the field.
Francesca et al [41] proposed EvoStick, a neuroevolutionary automatic design
method, based on an evolutionary algorithm that have high performance in sim-
ulation but has some difficulties to keep the performance when transferring the
control software to reality.

2.4.3 Novelty Search

Novelty search is a type of illumination algorithm that aims to explore the fea-
ture space comprehensively. Instead of optimizing for a specific fitness objective,
it focuses on discovering as many different behaviors as possible according to a
distance metric. The distance metric is used to measure the dissimilarity between
behaviors. However, one limitation of novelty search is that it may face difficul-
ties when dealing with very large behavioral spaces, as it may require significant
computational resources to efficiently explore and evaluate a large number of be-
haviors [42]. Nonetheless, novelty search has gained attention as an effective ap-
proach for promoting diversity and exploration in evolutionary algorithms, and
has been applied in various domains to generate interesting and diverse solutions
[43].

2.4.4 Multi-dimensional Archive of Phenotypic Elites

In traditional search algorithms, such as hill climbing, simulated annealing or
evolutionary algorithms, the algorithm return a set of solutions that represent the
best tradeoffs between objectives [5].

In this thesis, the Map-Elites algorithm has been chosen as the diversity-quality
algorithm. This algorithm maintains a Multi-dimensional Archive of Phenotypic
Elites (MAP-Elites) that maps the performance of individuals onto a set of behav-
ioral descriptors, or dimensions. By doing so, Map-Elites promotes both diversity
and quality in the search space, and has been shown to be effective in a range of
optimization problems. This algorithm will thus maintain a repertoire of Elites
solutions.

The algorithm begins with the user specifying a fitness function, denoted as f (x),
which evaluates the performance of a given solution x. The user also selects N
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Algorithm 1 MAP-Elites

1: procedure MAP ELITE
2: P← Ø ▷ N-dimensional performances array
3: X ← Ø ▷ N-dimensional solutions array
4: for iter = 1→ I do
5: if iter < G then
6: x’ = random selection()
7: else
8: x = random selection(X)
9: x’ = random variation(x)

10: end if
11: b’ = feature descriptor(x’)
12: p’ = performance(x’)
13: if P(b’) = Ø or P(b’) < p’ then
14: P(b’) = p’
15: X(b’) = x’
16: end if
17: end for
18: end procedure

dimensions of interest that define the feature space. Each of these N dimensions
is discretized based on user-defined parameters or computational resources.
The algorithm then searches within the search space, which comprises all possible
values of x, and evaluates the performance of each solution x using the fitness
function f (x). In addition to the fitness function, the user also defines a feature
function denoted as b(x), which determines the value of x in each of the N feature
dimensions. The output of the feature function b(x) is an array of N dimensions,
representing the features of the solution x in the feature space.
The algorithm will initialize an empty N dimensional array P for the performance
of the solutions and an empty N dimensional array X for solutions. The algorithm
consists of two main steps:

1. Initialization Phase: Map-Elites generates G random solutions and deter-
mines their performance and features using the fitness function f (x) and
the feature function b(x). Each solution is then placed in the correspond-
ing cell in the feature space. It’s important to note that multiple solutions
may be mapped to the same cell, and only the highest-performing solution
is kept in that case.

2. Illumination Phase: The algorithm randomly selects a solution from the
feature space and applies various variation operations, such as mutation
and crossover, to generate a new solution. The performance and features of
the new solution are computed using the fitness function f (x) and the fea-
ture function b(x), and the new solution is placed in the feature space. This
step is repeated until a certain condition is met, such as a specified number
of iterations or when a certain portion of the feature space is explored.

The illumination phase is iteratively performed to explore the feature space, gen-
erate and evaluate new solutions, and update the cells in the feature space with
the best-performing solutions. This allows Map-Elites to efficiently explore and
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illuminate regions of the feature space that contain high-performing solutions,
leading to the discovery of diverse and optimal solutions.

Furthermore, it’s important to note that not all cells in the feature space will be
explored due to the inherent constraints of the problem. For instance, in the case
of robots where two features are computed based on the distance to landmarks,
it’s physically impossible for a robot to be in two places at the same time. There-
fore, certain regions of the feature space may remain unexplored, and Map-Elites
focuses on illuminating regions that are feasible and meaningful within the prob-
lem domain.

Mouret et al [5] conducted a study where they applied the Map-Elites algorithm
to simulated and real soft robots with the objective of discovering diverse and
viable designs. They compared Map-Elites with novelty search and random sam-
pling algorithms, and found that Map-Elites outperformed them in terms of ex-
ploration in simulation. Map-Elites was able to efficiently explore the feature
space and generate a wide range of diverse solutions. Even in the case of lim-
ited real-world experiments, Map-Elites demonstrated effectiveness in exploring
the feature space and discovering viable designs. This highlights the potential
of Map-Elites as a powerful algorithm for promoting diversity and exploration
in evolutionary algorithms, and its applicability in various domains including
robotics and design optimization.

Measuring Performance

Map-Elite can be evaluated through performance measures.

• Coverage: This performance measure calculates the ratio of the number of
cells in the feature space that have been explored by Map-Elites to the total
number of cells in the feature space. It provides an indication of the algo-
rithm’s ability to explore and cover the feature space. However, it’s impor-
tant to note that there may be areas in the feature space that are impossible
to explore due to constraints or limitations.

• Global performance: This measure is commonly used in optimization al-
gorithms and is computed by dividing the highest-performance solution
found by the algorithm so far by the highest performance possible in the
entire feature space. It gives an indication of how close the algorithm is to
achieving the best possible performance in the feature space.

• Global reliability: This measure is calculated as the average performance
of all the cells in the feature space, divided by the average of the highest
performance obtained by any run of the algorithm across all the cells in
the feature space. If a cell has not been explored, its value is replaced by
zero. It provides an indication of the algorithm’s reliability in consistently
achieving good performance across the entire feature space, accounting for
unexplored areas as well.
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2.5 Repertoires in Swarm Robotics

2.5.1 AutoMoDe-Nata

Hasselmann et al [empty citation] introduce Nata, a novel modular automatic de-
sign method that uses repertoires of behaviors and principled design to automat-
ically generate the modules, with the aim to reduce expert knowledge required
in the implementation of automatic design methods for robot swarms.

To automatically generate a vast amount of modules without the need of an ex-
pert in swarm robotics, AutoMoDe-Nata create a repertoire of modules with a
quality-diversity algorithm. The algorithm chosen is novelty search with local
with local competition that uses behavioral novelty of candidate behaviour as
the objective function of an optimization algorithm [44, 36].

The behaviour are represented by neural networks that can be used as control
software in a robot. The algorithm will generate an empty repertoire which will
hold the set of best candidate neural networks. Afterwards, all the neural net-
works will be evaluated in randomly generated environments by computing their
median behaviour and mean quality score. The randomly generated environ-
ments all have the same size and shape but may vary in having a light source,
an obstacle in the center of the arena or having multiple circular floor patch of
random color (white, grey, or black). The quality score represents the number of
collisions that occur during the simulation o fa neural network. The behaviour is
characterized by a feature vector composed of 14 real values: the mean and stan-
dard deviation of the linear and angular speed; the distance to walls/obstacles,
to other robots, and to the closest robot; the ambient light and the ground color
perceived.

The family of AutoMoDe works with control software in the form of probabilis-
tic finite state machine. The behavioral modules, which are the states, have been
generated with the archive, but to make a working pfsm, transition module are
needed. Nata automatically generate the transition module via a set of rules that
operates on the reference model of the robots 3.3.

AutoMoDe-Nata uses the same optimization algorithm as AutoMoDe-Chocolate,
iterated f-race [22], to generate the control software by assembling behaviour and
transition modules into probabilistic finite state machine.

Hasselmann has tested his automatic modular design method to create control
software of swarm robot on the same set of mission that Francesca et al [21] used
to test AutoMoDe-Chocolate. AutoMoDe-Nata did not reach the performance
level of Chocolate. In contrast to Chocolate, Nata is fully automatic and did not
need the help of expert in swarm robotics to create the behavioral and transitional
modules. The performance of Nata exceeded the performance of the evolutionary
algorithm Evostick [41].
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2.5.2 Other Repertoires in Swarm Robotics

Novelty Search in Swarm Robotics

Gomes et al [45] proved that quality-diversity algorithm with the use of task-
agnostic behaviour and quality metric can be used to create repertoire of control
software for swarm robots. They demonstrated the use of such an algorithm
for 8 different missions such as aggregation, coverage, ... And for each of those
mission, a single repertoire was able to provide good results.

Map-Elites for multi-objective optimization

Engebraaten et al [46] proposed to use Map-Elites to generate a repertoire of so-
lution candidates, with the idea of finding the Pareto front for a multi-objective
optimization. They tried to combine two behaviours into one control software
for robot swarm, the tasks are perimeter surveillance and communication net-
work creation.

Engebraaten demonstrated that it is possible to automatically synthesize swarm
controllers for a multi-function swarm system.
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Chapter 3

Methodology

This chapter presents various methods utilized in this thesis, including the adapted
version of the Map-Elites algorithm, the encoding method employed to convert
the finite state machine into binary strings compatible with the Map-Elites algo-
rithm, the description of the feature set utilized, the technical assets employed,
and an explanation of the pseudo-reality model.

3.1 Map-Elites

The main algorithm employed in the thesis is the Multi-dimensional Archive of
Phenotypic Elites (MAP-Elites). MAP-Elites was chosen for its unique property
of ”illumination,” which involves exploring phenotypes and mapping their be-
haviors in a discretized space known as the behavior space. The algorithm re-
tains only the elite solutions for each point in this search space, thus maintaining
a repertoire of elite solutions. This approach allows for a comprehensive explo-
ration of the phenotypic space and the identification of high-performing solutions
across multiple dimensions or behaviors, leading to a diverse and robust set of
elite solutions.

To relate to the vocabulary of optimization algorithm, a phenotype/solution is a
control software for robot swarm. These control software are described by prob-
abilistic finite state machine (pfsm) which are thus called genotype. The fitness
function will be the objective function of each missions, they will be described in
the section 3.3.3.
The algorithm of MAP-Elites described in the algorithm 1 is a simple version of
the algorithm which may not be efficient time-wise. The algorithm is modified
to be able to handle batch of solutions that can be parallelized to efficiency. The
initialization of the algorithm has also been removed from the main-loop. The
modified version of the algorithm can be found in the algorithm 2.

3.1.1 Encoding of the Probabilistic Finite State Machines in a
Grammar

AutoMoDe-Chocolate uses pfsm that are encoded as chains of characters written
in a language that consists in the succession of variable-value pairs [47].
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Algorithm 2 Parallelized MAP-Elites

1: procedure MAP ELITE
2: P← Ø ▷ N-dimensional performances array
3: X ← Ø ▷ N-dimensional solutions array
4: P,X = initialization(G)
5: batch = select population(p)
6: x’ = random variation(batch)
7: for iter = 1→ I do
8: for i = 1→ p do ▷ Parallelized loop
9: b’ = feature descriptor(x′i)

10: p’ = performance(x′i)
11: if P(b’) = Ø or P(b’) < p’ then
12: P(b’) = p’
13: X(b’) = x′i
14: end if
15: end for
16: batch = select population(p)
17: x’ = random variation(batch)
18: end for
19: end procedure

A pfsm start by indicating the number of states S (−−nstates) then it is followed
by the description of the behaviour modules. The description of the behaviour
module is composed of the encoding of the behaviour itself as well as the encod-
ing of its outgoing transition modules. Each variable of the module consists of a
concatenation of a variable identifier with the index b (b ∈[0,S)) of the module in
the pfsm. The encoding of a behaviour module is composed of the behavior iden-
tifier (−−sb), its potential parameter (see Table 3.1), and the number of outgoing
transitions Tb (−−nb). The encoding of the transitions module of a behaviour
module are written as the concatenation of the variable identifier, the index of the
behaviour module and the index of the outgoing transition tb (tb ∈ [0,Tb)) withing
the behavior module. The index of the behaviour and transition are separated by
the character x. For the potential parameters of the outgoing transition, see Ta-
ble 3.2. An example of such grammar used to create a pfsm can be seen in the
figure 3.1a, the grammar has also been transform into a schema to allow a better
understanding of the pfsm, see figure 3.1b.

Identifier Behaviour Parameter
0 Exploration –rwmb
1 Stop none
2 Phototaxis none
3 Anti-Phototaxis none
4 Attraction –attb
5 Repulsion –repb

Table 3.1: Identifier and parameters of the behavior modules with b ∈ [0, S),
where S is the number of state
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Identifier Condition Parameter
0 Black floor –pbxtb
1 Gray floor –pbxtb
2 White floor –pbxtb
3 Neighbors-count –pbxtb and –pbxtb
4 Inverted-neighbors-count –pbxtb and –pbxtb
5 Fixed-probability –pbxtb

Table 3.2: : Identifier and parameters of the transition modules with b ∈ [0, S) and
tb ∈ [0, Tb), where S is the number of state and T is the number of transition for
the state b.

(a)

(b)

Figure 3.1: (a) The grammar of a pfsm : it has two states and one transition from
the state 0 to 1. (b) The pfsm in schema, by reading it, we can see that they are
two states (the circles) and one transition that has a conditions. The robot starts
with the behaviour Attr, Attraction, and once the condition Wflr is met, when the
robot walks on a white floor, it switches behaviour to Exp, an exploration phase
where the robot will make random walk.

3.1.2 Encoding of the Probabilistic Finite State Machines in a Bi-
nary String

The important step to allow the illumination of the behaviour space in the Map-
Elites algorithm is the operation of mutation and cross-over. Mutating a grammar
is not a simple operation. To avoid any complication, the grammar will be trans-
formed into a binary string to allow easy mutation and crossover.
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To create the binary string, we always try to map the actual pfsm to a pfsm that
has the maximum number of states, maximum number of transitions and for each
variable, the maximum value possible. By doing so, it is possible to map any pfsm
that has the grammar of AutoMoDe-Chocolate to a binary string of length 622.
The pfsm represented by a grammar in the figure 3.1a is transformed into the fol-
lowing binary string :

011000000000000000011111010000000000000000000100010000000
000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000100110000
000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000

In the context of binary strings, mutation refers to the random swapping of ’0’
and ’1’ bits, either by changing ’0’ to ’1’ or vice versa. .

Once the probabilistic finite state machine (pfsm) representations have been mod-
ified through mutation and crossover operations, they can be reconverted into
grammar strings. This allows them to be read by the AutoMoDe-Chocolate con-
trol software.

3.2 Features

The primary objective of this thesis is to investigate the capability of the Map-
Elites algorithm in generating control software. To accomplish this, a feature set
is required to define the search space utilized during the illumination and opti-
mization processes. The underlying concept of the feature set is to describe and
quantify the behavior of a swarm of robots.

In the literature, two sets of features have been employed and proven effective
in their respective domains. These features can be categorized as either external
or internal. When speaking about external, it’s features that can be obtained by
observing the whole swarm, they are features focused on distances [23]. For in-
ternal features, they are features that can be obtained by the sensors of the robots
[33]. The two sets of features are defined as follows :

• Sensory features: Hasselmann et al [33] defined a set of 14 features to ex-
plain the behaviour of robot swarm. They were used in AutoMoDe-Nata,
which used novelty search with local competition to generate behaviour
modules, described by neural networks, that are later one assembled with
transition modules with the help of the algorithm irace used in AutoMoDe-
Chocolate. With this set of features, they were able to create a vast amount
of different behaviour module which could then be used to perform various
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missions.

This set of feature will be referenced as sensory features because each fea-
ture of the set are taken directly from what the robot is able to sense. The
robot is the e-puck model RM1.1, and as described in the Table 3.3, and has
multiple sensors: a proximity sensor used to sense objects that are closed,
a light sensor which detect the amount of light, a ground sensor that de-
tect color and a range-and-bearing sensor to detect the neighboring robots.
Hasselmann defined 7 features and for each features, the mean and stan-
dard deviation is computed and used in the set of sensory features. Those
features are defined as follows:

1. the linear speed,

2. the angular speed,

3. the distance to wall and obstacle,

4. the distance to robots,

5. the distance to the closest robot,

6. the amount of light,

7. the color of the ground.

• Positional features: Gharbi et al [23] defined a set of features that are related
to the position of the robot to each other as well as their positions in the
arena. This set is composed of 40 features. These features were used to ex-
tract the behaviour of the swarm to reverse engineer the objective function
of a mission with the help of the apprenticeship learning algorithm. This al-
gorithm is part of AutoMoDe-Demonstration-Cho which showed that this
set of positional features it is possible to reverse engineer the objective func-
tion and that can be used to create an automatic modular design of control
software for swarm robotics.

These 40 features are composed of two main features computed for each
robot. The main features are defined as follows:

1. The normalized distance to landmarks, where a landmark is the center
of a floor patch which can either be circular or rectangular.

2. The normalized distance to the closest robot which, in this case, is not
computed by using the range-and-bearing sensor of the e-puck but ex-
ternally.

These set of features is only influenced by the position of the robot in the
arena. Therefore, even if another type of robot would be used, this set of
features could still be applied because there is no need to access the sensor
values.

The positional features are modified in this thesis to keep a consistency with
the sensory features. For each feature, the mean and standard deviation will
be kept. It means that the positional feature set has a size of 80.
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Due to the broader range of missions employed in this thesis compared to
the study by Gharbi et al., the feature ”distance to a landmark” is duplicated
for each patch floor present on the arena. The number of patch floors can
range from 1 to 3, resulting in a variation in the size of the positional feature
set from 80 to 160.

3.3 Technical assets

3.3.1 E-puck

Francesco et al [48] of the EPFL developed the e-puck. A small differential-drive
robots created with the idea of becoming the ideal tool for research and education.
It is equipped with several sensors and actuators. It has three ground sensors to
read the gray-scale color of the ground. It has eight infrared transceivers posi-
tioned to be able to detect the presence of surrounding obstacles and/or measure
the intensity of the ambient light.

The model used in this thesis has been enhanced by a range-and-bearing which
allows the robot the sense the neighboring robots, an omnidirectional camera as
well as an overo gumstix board, the e-puck can be seen in figure 3.2 [49].
AutoMoDe use a reference model that formalises what the robot can do and
sense, it is the reference model RM1.1 given in Table 3.3. The range-and-bearing
device provides the attraction vector defined as follows:

V =

{
∑n

m=1(
1

1+rm
, ̸ bm), if robots are perceived

(1, ̸ 0), otherwise
(3.1)

where range rm ∈ [0,0.7]m and the bearing ̸ b ∈ [0,2π]rad are to the distance and
the angle to the neighbour m.

The output of the reference model are the velocity of the two wheels actuators, vl
and vr are for the left and right wheels.

3.3.2 Simulator

The simulator used in this thesis is ARGoS [50], which is a simulator conceived
specifically for robot swarms. To be able to use the reference model RM1.1 of
the e-puck robot describe in the previous section, ARGoS is used along with the
ARGoS-Epuck library [51].

ARGoS use XML file with the extension .argos to launch an experience, it is struc-
tured with tags as follows:

• <experiment> allows to determine the duration of the experience as well
as the frequency of the update cycle of ARGoS with the option ticks per second.

• <loop functions> section in the experiment refers to a script that contains
details of the loop functions that will be used during the simulation. These
loop functions are responsible for various aspects of the simulation environ-
ment, such as setting the floor color, initializing the positions of the robots,
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Input Value Description

proxi∈1,...,8 [0,1] Reading of proximity sensor i

lighti∈1,...,8 [0,1] Reading of light sensor i

groundi∈1,...,8 black, gray,
white

Reading of ground sensor i

n [0,20] number of neighboring robots perceived

V ([0.5,20],[0,2π]) attraction vector

Output Value Description

vl,r [-0.12,0.12]ms−1 target linear wheel velocity

Table 3.3: Reference model RM1.1 for the modified version of the e-puck

Figure 3.2: The modified e-puck used for the reference model

and defining landmarks on the ground of the arena. The landmarks can
be in the form of rectangles or circles, and they are included in the script
to facilitate parsing of this information in the Python script for further pro-
cessing or analysis.

• <controller> allows to tell what library to use to read the control software
as well as all the parameters for the sensors and actuators of the e-puck
robots.

• <arena> is the tag that will handle the disposition of the arena such as wall
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and light. It also tells how to distribute the e-puck in the arena.

• <physics engines> defines which physic engine ARGoS will use for the
simulation.

• <media> defines the information about the LED used during the experi-
ment as well as the parameter of the range-and-bearing of the e-puck.

• <visualisation> allows to enable the visualisation of ARGoS. If it’s not de-
fined, the simulation will run in the background.

3.3.3 Missions

Iridia lab has created a comprehensive list of missions to explore the behaviour
of swarm robotics. The list is composed of the following missions:

• Stop: The swarm must stop whenever a signal is emitted. This signal can
be initiated when a robot steps on a certain floor patch [24, 28, 31].

• Shelter: The swarm must find and aggregate inside of a shelter [52]. Their
may be ambient cues or constrained access to the shelter [53][21].

• Foraging: The swarm must collect a maximum number of objects from two
sources and drop them in the nest. In this mission, an object is considered as
retrieved when an individual robot visit a source, and an object is dropped
when a robot visits the nest. A light source is placed outside the arena to
give a cue for the robots [25, 26, 28, 30, 31, 32, 52].

• Aggregation: The robots must aggregate in a specific locations such as, for
example, a white spot on the ground [24, 25, 26, 28, 31, 32, 52]. A variant of
the aggregation is the aggregation with ambient cues where a light source
is put outside the arena to give a cue to robots [30, 53, 21].

• Directional-Gate: The robots must pass through a gate in the correct sense
[52].

• Coverage: The swarm has to spread as much as possible in the arena to
cover the biggest area possible. There exists variants of this mission such as
coverage with forbidden areas, coverage with the largest covering network
or coverage of specific region[53, 21].

• Homing: The robots start on one side of the arena and must aggregate on a
floor patch on the other side, there is also no ambient cue to help the robot
[52].

• Decision: The swarm must relocate them-self in one-half of the arena de-
pending on the color of a patch in the center of the arena [24].

• Anytime-Selection: The robot must aggregate on one of the two floor patches
disposed in the arena. Once a robot enter a patch, it cannot leave the patches
because the performance is measured over time [25].
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3.4 Pseudo-reality

One of the main concern that was raised in the section 2.2.1 is the reality gap that
appears when transferring a control software generated on a simulation to the
reality. The difference of protocol that appears between the simulation and the
reality often leads to a drop of real-world performance.

Ligot [54] introduced the concept of pseudo-reality which is a secondary simula-
tion model, different from the one used to create the control software, that is used
for the evaluation of control software and which plays the role of reality. The
pseudo-reality model differ from the original simulation model by the amount of
noise injected to the sensors and actuators of the robots.

The model used to create the secondary simulation model is called MB while the
original model used to create the control software is called MA. Both of these
models can be seen in the table 3.4.

Actuator/Sensor Parameter MA MB Range R

Wheels pg 0.05 0.15 [0.00,0.20]

Proximity pu 0.05 0.05 [0.00,0.10]

Light pu 0.05 0.90 [0.00,1.50]

Ground pu 0.5 0.05 [0.00,0.10]

Range-and-bearing p f ail 0.85 0.90 [0.70,1.00]

Table 3.4: This table represent the models MA, MB, and the ranges of possible
values for models within the range R used by Ligot [54]. The values correspond
to the parameters of ARGoS3 controlling the noise applied to the actuator values
and sensor readings.

A good practice is to inject noise in the sensors and actuators of the simulated
robots [55]. The simulator ARGoS [50] use a uniform white noise for the readings
of the proximity, light, and ground sensors of the e-puck robot. The parameter
pu controls the level of noise, a value is sampled uniformly in the range [-pu,pu]
which is added to the reading. A Gaussian white noise is applied to the velocities
of each wheel, it has a mean of 0 and a standard deviation of pg. Furthermore, for
the range-and-bearing module, a robot fails to estimate the relative position of a
neighboring robot with a probability of p f ail.

It was observed that in AutoMoDe-Chocolate a rank inversion occurs when pass-
ing from simulation to reality. Ligot was able to reproduce the effect of the reality-
gap with the help of the pseudo-reality model.
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The concept of pseudo-reality can be applied to grasp the change of performance
between reality and simulation without the need of running experiment in the
real-world.
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Chapter 4

Experimental Protocol

This chapter provides an overview of the experimental protocol used in the con-
ducted experiments for each mission.

In this thesis, the main goal is to compare the performance of Map-Elites and the
state of the art AutoMoDe-Chocolate as well as to see if a different feature set can
influence the performance of the control software generated by Map-Elites. The
two behavioural sets used are the following:

1. The positional set of feature defined by Gharbi et al [23],

2. The sensory set of feature defined by Hasselmann [33].

The experimental protocol is the following for all the missions :

1. Run Map-Elites for the two different feature sets to generate control soft-
ware.

2. Retrieve the 10 best control software from each missions obtained from the
two different feature set and run these control software on a pseudo-reality
experiment.

3. Take the control software obtained for AutoMoDe-Chocolate in the litera-
ture with the same budget as the one used for the first step and run these
control software on the missions as well as on the pseudo-reality experi-
ment.

4. Construct notched box-and-whiskers plots to analyse the previous results
as well as a Friedman test to aggregate the result.

To avoid introducing any bias, robot experiments were randomized and no ex-
perimental run performed was discarded.

4.1 Missions

As part of this thesis goal, which is to validate two different feature set that have
been used by AutoMoDe-Demonstration-Cho [23] and AutoMoDe-Nata [33]. This
thesis will use the same mission used by both version of AutoMoDe. Those mis-
sions are aggregation with ambient cues, homing, sheltering with ambient cues
and coverage with forbidden areas and foraging.
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The following mission all have the same disposition for the arena, they are com-
posed of twelves walls of length equal to 66cm forming a regular dodecagon.

Aggregation with Ambient Cues

There are two circular patches disposed inside the arena, one white and one black.
The radius of those circle is of 30cm. A light source is placed outside of the arena
on the side of the black circle and aligned with the two circular patches.

The goal is for the swarm to aggregate on the black spot as quickly as possible.
The light source is there as a cue for the robots while the white spot is there to
disturb the swarm. The robots are randomly distributed in the arena. The ideal
result can be seen in the figure 4.1.

The objective function of this mission is defined as follows [21]:

FAAC =
T

∑
t=1

N(t) (4.1)

where N(t) is the number of robots on the black spot at time t and T = 120 seconds.

This parameters of Map-Elite for this missions are launched with 3125 iterations
and a population size of 32 to make a budget of 100 000 simulations to be able to
compare the result with the one’s from the literature.

Figure 4.1: Final and best position a swarm can achieve for the aggregation with
ambient cues mission.

Homing

In this mission, there is a black circular patch of radius of 60cm placed on one
side of the arena.

The goal is for the swarm to gather on the black spot as quickly as possible on the
black spot. There is no ambient cue to help the swarm. The initial position of the
robot is on the other side of the arena. The ideal result can be seen in the figure 4.2.
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The objective function of this mission is defined as follows [52]:

FHoming =
1
N

N

∑
i=1

Ii(T) (4.2)

Ii(T) =

{
1, if the robot i is in the black area at time T
0, otherwise

(4.3)

where the number of robots N = 20 and T = 120 seconds.

This parameters of Map-Elite for this missions are launched with 6250 iterations
and a population size of 32 to make a budget of 200 000 simulations.

Figure 4.2: Final and best position a swarm can achieve for the homing mission.

Sheltering with Ambient Cues

One half of the arena is completely covered by a black patch. At the border of the
black patch and in the middle of the arena, a white rectangle floor patch of 25cm
and 15cm in width and height respectively. Two walls of 35 cm in length and one
of 50 in length are placed around the white floor patches, leaving an opening far
away from the black part of the arena. A light is placed outside of the arena on
the side of the opening of the shelter in the center of the arena.

The goal is for the swarm to aggregate inside of the shelter as fast as possible.
The outside light source is there to guide the swarm. The robots are randomly
distributed in the arena. The ideal result can be seen in the figure 4.3.

The objective function of this mission is defined as follows [21]:

FSAC =
T

∑
t=1

N(t) (4.4)

where N(t) is the number of robots in the shelter at time t and T = 120s.

This parameters of Map-Elite for this missions are launched with 6250 iterations
and a population size of 32 to make a budget of 200 000 simulations.
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Figure 4.3: Final and best position a swarm can achieve for the sheltering with
ambient cues.

Coverage with Forbidden Areas

There are three black circle floor patches with a radius of 30cm within the arena.
They are placed in a triangular formation around the center of the arena’s center.

The goal of the swarm is to spread as much as possible across the arena while
avoiding the black spots. There are no ambient cues to help guide the robot. The
robots are randomly distributed in the arena. The ideal result can be seen in the
figure 4.4.

The objective function of this mission is defined as follows [21]:

FCFA = 25000− E[d(T)] (4.5)

where E[d(T)] is the expected distance between a generic point in the arena and
the closest robot not on a black spot, at the end of T, and T = 120s. The objective
function has been modified so that it can be maximized like the other missions.

This parameters of Map-Elite for this missions are launched with 6250 iterations
and a population size of 32 to make a budget of 200 000 simulations.

Foraging

There are two black circle floor patches with a radius of 15cm within the arena.
There disposed in on the top and bottom of the arena. The right side of the arena
is covered in a white zone that represent the nest of the swarm. A light is placed
outside of the arena on the side of the nest.

The goal of the swarm is to find the black spot which represent the food sources,
and to go back to the white zone which is the nest. The outside light source is
there to guide the swarm. The robots are randomly distributed in the arena. The
overall configuration of this mission can be sen in the figure 4.5.
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Figure 4.4: Final and best position a swarm can achieve for the coverage with
forbidden areas.

The objective function of this mission is defined as follows [21]:

FForaging = K (4.6)

where K is the total number of round trips performed.

This parameters of Map-Elite for this missions are launched with 6250 iterations
and a population size of 32 to make a budget of 200 000 simulations.

Figure 4.5: The view of the foraging mission.

T = 180s for this mission to be consistent with the mission used in AutoMoDe-
Nata [33].
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Chapter 5

Result

In the upcoming chapter, he results obtained from conducting the experimental
protocol outlined in Section 4 will be presented and analyzed. The experiments
were carried out for various missions, including aggregation with ambient cues,
homing, sheltering with ambient cues, coverage with forbidden areas, and for-
aging. The budget allocated for the Map-Elites and Chocolate algorithms during
these missions was 200,000, except for the aggregation with ambient cues, which
followed the budget of 100,000 as per a previous study in the state-of-the-art lit-
erature [28, 52].

Box plots are utilized to summarize the performance of the generated control
software for each mission across the three compared algorithms. The box plots
represent the top 10 performance results obtained from simulations, indicated
by thinner boxes, as well as results from a pseudo-reality environment, repre-
sented by thicker boxes. These box plots are constructed as notched box plots,
which enable statistical comparisons between the three automated design pro-
cesses. The notches in the box plots represent the 95% confidence interval of
the median value. Therefore, if the notches of two box plots do not overlap, it
signifies a statistically significant difference between the performance of the two
methods.

In order to combine the results of all missions into a single ranking test, the Fried-
man test [56] was utilized, with the task serving as a blocking factor. The Fried-
man test is a rank-based non-parametric test that does not necessitate scaling
the performance measures or making assumptions about the underlying distri-
bution of the data. To conduct the test, the objective functions of all tasks were
transformed into equivalent minimization problems by applying a rank order in-
version function. This transformation is straightforward due to the rank-based
nature of the Friedman test. For maximization problems, the inverse of the orig-
inal objective function was used as the new objective function for minimization
[21].

The results of the Friedman test are graphically represented by a plot that illus-
trates the expected rank achieved by each design method, accompanied by a 95%
confidence interval. When the confidence intervals of two methods do not over-
lap, it indicates a statistically significant difference in the expected ranks between
the two methods. This graphical representation facilitates an intuitive compari-
son of the design methods based on their expected performance ranks.
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To visualize the explored space, the Principal Component Analysis (PCA) algo-
rithm is employed to reduce the dimensionality [57]. The sensory feature set
consists of 14 features, whereas the positional feature set varies in size from 80
to 160 features. The first three components, which capture the majority of the
variance in the search space, are utilized to generate plots of the obtained control
software. The color variation in the plots represents the corresponding fitness
levels achieved by each control software.

5.1 Aggregation with Ambient Cues

Figure 5.1a illustrates the obtained search space for the sensory feature set. No-
tably, a distinct cluster of control software representing the aggregation with am-
bient cues mission is concentrated in one corner of the search space. The visual-
ization of the search space for the positional feature set is depicted in Figure 5.1b.
The shape of the search space appears more rectangular and linear compared to
the sensory feature set, which exhibits a more compact distribution, this particu-
larity comes from the fact that the positional set has a high dimensionality (120
dimensions). However, similar to the sensory set, it is evident that a significant
concentration of high-performing control software for the aggregation with am-
bient cues mission can be found in one corner of the search space.

An hypothesis can be obtained from the previous result. This mission require
a specific set of sensory features values or positional features values to achieve
optimal performance. This hypothesis will be checked for the following missions
as well.

(a) The sensory feature set (b) The positional feature set

Figure 5.1: The visual representation of the Map-Elites algorithm for the aggre-
gation with ambient cues mission obtained with the PCA algorithm to reduce the
dimensionality.

The comparison between AutoMoDe-Chocolate and the two versions of Map-
Elites is illustrated in the figure 5.2. It can be observed that both versions of
Map-Elites exhibit higher performance in simulations compared to AutoMoDe-
Chocolate. However, when transitioning to the pseudo-reality environment, Map-
Elites experiences a larger reality-gap, resulting in a significant drop in perfor-
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mance. In contrast, AutoMoDe-Chocolate demonstrates greater resilience to the
reality-gap, as it maintains relatively stable performance despite one control soft-
ware performing significantly worse.

Figure 5.2: Comparison of the performance of the three design methods in simu-
lation and pseudo-reality.

5.2 Homing

The search space of the sensory feature set depicted in the figure 5.3a is compact
and has one corner that contain all the performing control software. The fig-
ure 5.3b shows the search space for the positional feature set. The space is more
sparsely distributed due to the high dimensionality (80 features) but it can still be
seen that one of the side of the space contain all the good control software, even
though it is not as clustered as for the sensory set.

The analysis of the notched box-plots representing the performance of each de-
sign method , as seen in figure 5.4, reveals interesting insights. In the case of
the sensory feature set, the performance of Map-Elites is statistically comparable
to AutoMoDe-Chocolate, as indicated by the overlapping notched parts of the
box-plots. However, for the positional feature set, the Map-Elites algorithm ex-
hibits lower performance in simulation. Moreover, the Map-Elites algorithm is
more affected by the reality-gap when transitioning from simulation to a pseudo-
reality model. Although it achieves good results, such as in the case of the sen-
sory feature set, the variance of the outcomes remains higher compared to the
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(a) The sensory feature set (b) The positional feature set

Figure 5.3: The visual representation of the Map-Elites algorithm for the homing
mission obtained with the PCA algorithm to reduce the dimensionality.

AutoMoDe-Chocolate version.

Figure 5.4: Comparison of the performance of the three design methods in simu-
lation and pseudo-reality.

5.3 Shelter with Ambient Cues

The behavioral space of the sensory feature set, as depicted in the figure 5.5a,
exhibits a pattern of control software arranged in rows. The distribution of high-
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performing solutions shows some dispersion across the entire space, although
there is a higher concentration observed at the end of two of the rows. In contrast,
the search space of the positional feature set for the shelter with ambient cues
mission, shown in the figure 5.5b, takes on a more square-shaped form. In this
space, there is no apparent cluster of high-performing solutions; instead, they are
scattered throughout the entire space. This suggests that the algorithm has not
yet discovered a specific combination of features that leads to highly performing
control software for this mission.

(a) The sensory feature set (b) The positional feature set

Figure 5.5: The visual representation of the Map-Elites algorithm for the shelter-
ing with ambient cues mission obtained with the PCA algorithm to reduce the
dimensionality.

Additionally, the figure 5.6 provides a comparison of the performance of the top
10 control software obtained by the three design methods. In simulation, the
performance of the two versions of Map-Elites is statistically comparable, while
AutoMoDe-Chocolate exhibits lower average performance and higher variance.
However, when transitioning to the pseudo-reality model, a reality-gap is ob-
served across all three design methods. Interestingly, the positional feature set
for Map-Elites appears to demonstrate greater resilience to the reality-gap com-
pared to the other design methods.

5.4 Foraging

The search space for the sensory feature set, as depicted in the figure 5.7a, exhibits
a high density of control software configurations. Notably, one side of the space
is dominated by a majority of high-performing solutions. On the other hand,
the search space for the positional feature set, shown in the figure 5.7b, takes
on a biological hexagonal shape. In this case, the performing control software
configurations are not concentrated in a single specific location. This outcome
was anticipated due to the nature of the foraging mission. Unlike the missions
considered by Gharbi et al. [23], the foraging mission, studied by Hasselmann
[33], does not lend itself to a demonstration based on a single general position.
As a result, there is no specific set of positional feature values that correspond to
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Figure 5.6: Comparison of the performance of the three design methods in simu-
lation and pseudo-reality.

highly performing control software configurations.

(a) The sensory feature set (b) The positional feature set

Figure 5.7: The visual representation of the Map-Elites algorithm for the foraging
mission obtained with the PCA algorithm to reduce the dimensionality.

By analyzing the results obtained from the three design methods, as depicted in
the figure 5.8, it can be observed that the sensory and positional feature sets for
the Map-Elites algorithm yield statistically similar results in both simulation and
pseudo-reality evaluations. In contrast, AutoMoDe-Chocolate exhibits compara-
ble average performance but with higher performance variance. Additionally, all
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three design methods experience a small decline in performance when transition-
ing from simulation to the pseudo-reality model.

Figure 5.8: Comparison of the performance of the three design methods in simu-
lation and pseudo-reality.

5.5 Coverage with Forbidden Areas

In the figure 5.9a, the search space for the sensory feature set is depicted, reveal-
ing a densely compact shape. Notably, one side of the space contains the major-
ity of high-performing control software. In contrast, the figure 5.9b displays the
search space of the positional feature set, which exhibits a more geometric shape
resulting from the higher dimensionality of the feature set (160 features). The
high-performing control software is scattered throughout the entire space with-
out any specific clusters emerging. This suggests that there is no particular com-
bination of values within the positional feature set that leads to high-performance
control software. Moreover, when comparing the different design methods, both
versions of Map-Elites demonstrate higher results with lower variance in simu-
lation compared to AutoMoDe-Chocolate. However, AutoMoDe-Chocolate ap-
pears to be less affected by the reality gap when transitioning to a pseudo-reality
model. In terms of performance, the sensory feature set consistently yields better
solutions in both simulation and pseudo-reality scenarios.

39



(a) The sensory feature set (b) The positional feature set

Figure 5.9: The visual representation of the Map-Elites algorithm for the cover-
age with forbidden area mission obtained with the PCA algorithm to reduce the
dimensionality.

Figure 5.10: Comparison of the performance of the three design methods in sim-
ulation and pseudo-reality.

5.6 Ranking

As previously mentioned, a Friedman test is employed to rank the three design
methods: Map-Elites with the sensory feature set, Map-Elites with the positional
feature set, and AutoMoDe-Chocolate [56]. This test combines the results across
missions and scenarios to generate a comprehensive ranking of the methods. This
test can be seen in the figure 5.11. The Map-Elites algorithm with the sensory
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feature set is considerably better than the two other design method. Furthermore,
the Map-Elites with positional feature set has a better average ranking than the
AutoMoDe-Chocolate method but it’s not statistically better than the latter.

Figure 5.11: Friedman test on aggregate data of the five missions.

Code, results, and data is available as supplementary material at
https://github.com/LaurentColpaert/thesis supp.git.
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Chapter 6

Discussion and Further Work

The goal of this master thesis is to produce a new method to create control soft-
ware. This method is based on an illumination algorithm which has for priority
to prioritize the exploration of the space before the optimization of the control
software. In this chapter, the success of this method is discussed.

As discussed in the previous chapter, the Map-Elites algorithm demonstrates its
capability to produce control software that is comparable or even superior to the
AutoMoDe-Chocolate algorithm. Among the two feature sets utilized, the po-
sitional feature set yields results similar to AutoMoDe-Chocolate, whereas the
sensory feature set yields overall improved results.

The primary factor that can potentially explain the variation in rankings, as de-
picted in the figure 5.11, is the difference in dimensionality between the two fea-
ture sets. The sensory feature set comprises 14 features, whereas the positional
feature set ranges from 80 to 160 features. The Map-Elites algorithm optimizes
the control software by selecting elite solutions within each cell. However, when
considering the extent of the explored space, a higher number of features results
in a larger space being explored. Consequently, the probability of multiple control
software falling within the same cell decreases, thereby limiting the promotion of
exclusively high-performing solutions.

Nevertheless, reducing the dimensionality of the positional feature set requires
further investigation. Since this feature set employs distance measurements, omit-
ting certain robots from the calculations could potentially lead to the loss of crit-
ical information about the swarm. Thus, a comprehensive study is necessary to
explore potential strategies for addressing this issue.

Moreover, when examining the explored space for the two feature sets across
various missions, noticeable differences can be observed. The sensory feature set
exhibits a distinct cluster of high-performing solutions, indicating a concentrated
region of favorable outcomes. On the other hand, the positional feature set show-
cases smaller and more dispersed clusters, suggesting a less prominent grouping
of successful solutions. An ad hoc study exploring the meaning of the feature set
can be found in the Appendix A.

Ultimately, another notable distinction between the Map-Elites algorithm and
AutoMoDe-Chocolate emerges when considering their resilience to the reality
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gap during the transition from simulation to a pseudo-reality model. AutoMoDe-
Chocolate demonstrates greater resistance to this phenomenon compared to Map-
Elites. This observation suggests that the Map-Elites algorithm may have a ten-
dency to overfit the specific missions at hand. One potential explanation for this
behavior is that by exclusively retaining elites, the algorithm disregards the op-
portunity to generalize control software that perform well on average but may
not excel in specific scenarios. An investigation was conducted to analyze the
convergence behavior of the Map-Elites algorithm in order to identify potential
average solutions that exhibit similar performance and resilience to the reality
gap as AutoMoDe-Chocolate. However, the study yielded inconclusive results.
Further details of this investigation can be found in Appendix B.
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Chapter 7

Conclusion

In the present era, robots play an increasingly significant role in our daily lives.
It is crucial to be able to specify the behavior of these robots, whether they oper-
ate individually or in a swarm. Ultimately, being able to automate the process of
generating the desired behaviour of robots is the ideal goal. This thesis primarily
concentrates on investigating the efficacy of an illumination algorithm known as
Map-Elites in generating control software within an automated modular design
framework.

In order to utilize the aforementioned algorithm, it was necessary to establish an
encoding method for the control software, as well as a mechanism for their muta-
tion. This was accomplished by converting probabilistic finite state machines into
binary strings. Additionally, a search space had to be defined, with a particular
emphasis on capturing the collective behavior of robot swarms. Two previously
utilized search spaces from the literature were employed: one focused on the
sensory perception of individual robots, while the other focused on their spatial
positioning in relation to their environment and neighboring robots.

A comparison was conducted to assess the performance of the Map-Elites algo-
rithm in two different search spaces, as well as a third design method known as
AutoMoDe-Chocolate. AutoMoDe-Chocolate is an advanced automatic modular
design method that employs the iterated race algorithm as an optimizer. Through
this comparison, it was discovered that Map-Elites has the potential to outper-
form AutoMoDe-Chocolate. However, Map-Elites exhibited a lower robustness
when transitioning from simulation to a pseudo-reality model, resulting in a loss
of performance. Moreover, notable differences in performance were observed be-
tween the two search spaces. The search space utilizing sensors and actuators as
its feature set outperformed the search space based on positional features.
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Appendix A

Ad hoc

This annexe is an ad hoc study with the goal of trying to understand the differ-
ence that might arise from different feature set and understand each feature set
better.

Hence, the PCA algorithm will be used to find the features that allows to explain
the best the variance of the search space while a random forest regression algo-
rithm will be used to see which features has a higher impact on the performance
of each control software. This study will be made on the homing mission (it is an
arbitrary choice).

A.1 Feature to explore

The PCA algorithm uses as underlying principles a combination of features to
explain as much variance as possible [57]. Thus, it is possible to classify which
combination of features has a higher impact on exploring the space.

A.1.1 The positional feature set

In the figure A.1, the amount of explained variance per principal component. The
first component explains 45% of the variance while the second explains 30% of the
variance. By taking into account the first four component, almost all the search
space is explained.

Furthermore, in the figure A.2, the first four component are depicted. Due to the
principle of the positional feature set, each feature is repeated for all the robots,
which normally imply that they all have the same impact. It can directly be seen
in that figure. The feature which is the most impact is the distance to the closest
robot, firstly the mean and afterward the standard deviation.

A.1.2 The sensory feature set

In the figure A.3, the explained variance per principal component is shown. Com-
pared to the positional feature set, more component are needed to explain the
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Figure A.1: The amount of explained variance per principal component

(a) The first component (b) The second component

(c) The third component (d) The fourth component

Figure A.2: The importance of features for each component. In blue, the mean of
the feature. In green, the standard deviation of the feature
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whole behaviour space. The first component takes into account 35% of the vari-
ance while the second component explains 20%.

Figure A.3: The amount of explained variance per principal component

Furthermore, in the figure A.4, for the first component, the features using dis-
tances are the more impactful, the distance to the closest robot and the distance
to other robots. It can also be observed that the color and light have an impact
on the exploration. For the distance feature, the mean of these feature has more
impact while for the feature about the color and light, the standard deviation has
more impact. Finally some feature seems to have no impact on the exploration
such as the linear velocity, the angular velocity and the distance to walls.

A.2 Feature to perform

The random forest regression algorithm has the property to explain which fea-
ture was the more impactful for the regression ??. It means that it’s possible to
see which feature has a direct impact on the performance of the control software.

A.2.1 The positional feature set

In the figure A.5, the importance of the feature to distinguish between perform-
ing and non performing control software. The 10 most important feature are
composed of only the mean distance to the closest robot.

A.2.2 The sensory feature set

In the figure A.6, the feature based on the sensor are ranked by importance to
classify the performance of control software. The two most important features are
the mean color and the standard deviation of the color. It seems normal because
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(a) The first component (b) The second component

(c) The third component (d) The fourth component

Figure A.4: The importance of features for each component. In blue, the mean of
the feature. In green, the standard deviation of the feature

the main goal of the homing mission is to aggregate on a black spot. Furthermore,
the following features are the distance to other robot and to the closest robot,
which again make sense because to aggregate on a spot, the robot must be close
to each other, if that is not the case, it’s impossible to have a high performing
control software. Finally it’s important to notice that the feature mean distance
to walls has an impact in classifying the control software but none to explore the
space.

A.3 Conclusion

By looking at the two features set and the mission homing, it seems that some
features could be removed because they have no impact and the exploration and
distinction of performing solution. However no conclusion can be drawn be-
cause this conclusion might not be the same for different missions. Further study
is needed to understand the underlying concept behind those feature set. How-
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Figure A.5: The 10 most impactful features on the fitness of the control software

ever this ad hoc study demonstrate that the feature set could be reduce to a more
impactful feature set.
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Figure A.6: The 10 most impactful features on the fitness of the control software
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Appendix B

Evolution

(a) The sensory feature set

(b) The positional feature set

Figure B.1: The evolution of the 10 best control software throughout the iteration
of the algorithm for the aggregation with ambient cues mission.
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(a) The sensory feature set

(b) The positional feature set

Figure B.2: The evolution of the 10 best control software throughout the iteration
of the algorithm for the foraging mission.
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(a) The sensory feature set

(b) The positional feature set

Figure B.3: The evolution of the 10 best control software throughout the iteration
of the algorithm for the homing mission.
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(a) The sensory feature set

(b) The positional feature set

Figure B.4: The evolution of the 10 best control software throughout the iteration
of the algorithm for the shelter mission.

54



(a) The sensory feature set

(b) The positional feature set

Figure B.5: The evolution of the 10 best control software throughout the iteration
of the algorithm for the coverage with forbidden area mission.
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