
Automatic modular design of robot
swarms using behavior trees as a control
architecture
Antoine Ligot1,*, Jonas Kuckling1,*, Darko Bozhinoski1,2 and Mauro
Birattari1

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
2 Cognitive Robotics, Delft University of Technology, Delft, Netherlands
* These authors contributed equally to this work.

ABSTRACT
We investigate the possibilities, challenges, and limitations that arise from the use
of behavior trees in the context of the automatic modular design of collective
behaviors in swarm robotics. To do so, we introduce Maple, an automatic design
method that combines predefined modules—low-level behaviors and conditions—
into a behavior tree that encodes the individual behavior of each robot of the swarm.
We present three empirical studies based on two missions: AGGREGATION and
FORAGING. To explore the strengths and weaknesses of adopting behavior trees as a
control architecture, we compare Maple with Chocolate, a previously proposed
automatic design method that uses probabilistic finite state machines instead. In the
first study, we assess Maple’s ability to produce control software that crosses the
reality gap satisfactorily. In the second study, we investigate Maple’s performance as
a function of the design budget, that is, the maximum number of simulation runs
that the design process is allowed to perform. In the third study, we explore a number
of possible variants of Maple that differ in the constraints imposed on the structure of
the behavior trees generated. The results of the three studies indicate that, in the
context of swarm robotics, behavior trees might be appealing but in many settings do
not produce better solutions than finite state machines.

Subjects Adaptive and Self-Organizing Systems, Agents and Multi-Agent Systems,
Artificial Intelligence, Computer Aided Design, Robotics
Keywords Swarm robotics, Automatic design, Behavior trees, Finite state machines,
Evolutionary robotics, AutoMoDe, Optimisation-based design

INTRODUCTION
In this article, we extend the original definition of AutoMoDe—the family of automatic
modular design methods proposed by Francesca et al. (2014)—to study the use of behavior
trees as a control software architecture for robot swarms.

In swarm robotics, a large group of autonomous robots cooperate to perform a mission
that is beyond the limited capabilities of a single robot (Beni, 2004; Şahin, 2004;
Brambilla et al., 2013; Garattoni & Birattari, 2016). A robot swarm is highly redundant,
self-organized, and decentralized in nature. These properties are appealing in applications
that, for example, imply a high risk of individual failure, take place in locations with limited
communication infrastructure, or require scalability (Dorigo, Birattari & Brambilla, 2014).

How to cite this article Ligot A, Kuckling J, Bozhinoski D, Birattari M. 2020. Automatic modular design of robot swarms using behavior
trees as a control architecture. PeerJ Comput. Sci. 6:e314 DOI 10.7717/peerj-cs.314

Submitted 25 June 2020
Accepted 16 October 2020
Published 9 November 2020

Corresponding authors
Antoine Ligot, aligot@ulb.ac.be
Mauro Birattari, mbiro@ulb.ac.be

Academic editor
Robertas Damaševičius

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.314

Copyright
2020 Ligot et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.314
mailto:aligot@�ulb.�ac.�be
mailto:mbiro@�ulb.�ac.�be
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.314
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Unfortunately, these properties have also a downside: it is difficult to conceive and
implement control software for the individual robots so that a desired collective behavior is
produced. As a general methodology is still missing, the design process is typically labor
intensive, time consuming, error prone, and difficult to reproduce (Brambilla et al., 2013;
Francesca & Birattari, 2016; Bozhinoski & Birattari, 2018).

Automatic design is a valid and promising alternative (Francesca & Birattari, 2016;
Birattari et al., 2019). In automatic design, the problem of designing control software
to perform a given mission is re-formulated into an optimization problem: an optimization
algorithm searches a space of candidate solutions so as to maximize an objective
function. In this context, a candidate solution is an instance of the control software to be
executed by each robot; and the objective function is a mission-dependent score that
measures the performance of the swarm on the given mission. Because the evaluation of
candidate solutions on physical robots is costly and time consuming, automatic design
methods typically rely on simulation.1 A major issue with the adoption of simulation in
automatic design is the so called reality gap (Brooks, 1992; Jakobi, Husbands & Harvey,
1995): the difference between simulation and reality, which is ultimately unavoidable. As a
result of the reality gap, it is possible, and even likely, that control software generated
in simulation suffers from a drop in performance when deployed in reality. The reality gap
is one of the most challenging issues in the automatic design of robot swarms (Francesca &
Birattari, 2016).

Evolutionary swarm robotics (Trianni, 2008, 2014)—the application of evolutionary
robotics (Lipson, 2005; Floreano, Husbands & Nolfi, 2008) to robot swarms—is a popular
automatic design approach. In evolutionary swarm robotics, an evolutionary algorithm
(Bäck, Fogel & Michalewicz, 1997) generates the control software of the robots, typically in
the form of an artificial neural network. The input of the artificial neural network are the
sensor readings; the output are the control actions that drive the actuators. Although
evolutionary swarm robotics has been successfully used to generate control software for
various missions (Quinn et al., 2003; Christensen & Dorigo, 2006; Hauert, Zufferey &
Floreano, 2009; Trianni & Nolfi, 2009), it presents some known limitations, among which
is its inability to cross the reality gap reliably (Silva et al., 2016). Francesca et al. (2014)
conjectured that the issues encountered by evolutionary robotics with the reality gap are
due to the high representational power of artificial neural networks. This leads the
design process to overfit characteristics of the simulator that do not have a counterpart in
reality. As a result, the control software produced fails to generalize to the real world.

Inspired by the notion of bias–variance tradeoff (Geman, Bienenstock & Doursat, 1992)
from the supervised learning literature, Francesca et al. (2014) developed AutoMoDe:
an automatic design approach in which control software is conceived by automatically
assembling predefined modules (that is, low-level behaviors and conditions) into a
modular software architecture. The rationale behind AutoMoDe is to lower the
representational power—and therefore the variance—of the control software it produces
by introducing bias: it is restricted to be combinations of predefined modules. This
restriction restrains the space of the possible instances of control software that can be

1 For the sake of completeness, we men-
tion here that some automatic design
methods do not rely on simulation. They
operate while robots are deployed in
their operating environment. We refer
the reader to Francesca & Birattari
(2016) for a discussion of advantages and
limitations of these methods.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 2/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

generated by AutoMoDe, with the intent of reducing the risk to overfit characteristics of
the simulator that are not a faithful representation of reality.

AutoMoDe is an abstract approach that, in order to be used, must be specialized to a
specific robotic platform by defining low-level behaviors and conditions, the specific
rules/constraints to combine them, and the optimization algorithm to search the space of
solutions. So far, all instances of AutoMoDe—that is, Vanilla (Francesca et al., 2014),
Chocolate (Francesca et al., 2015), Gianduja (Hasselmann, Robert & Birattari, 2018),
Waffle (Salman, Ligot & Birattari, 2019), Coconut (Spaey et al., 2019), Icepop (Kuckling,
Ubeda Arriaza & Birattari, 2019), and TuttiFrutti (Garzón Ramos & Birattari, 2020)—
that have been proposed target the e-puck robot (Mondada et al., 2009). To substantiate
their conjecture, Francesca et al. (2014) compared the performance of Vanilla and
Chocolate with EvoStick, an implementation of the classical evolutionary swarm
robotics approach. In their experiments, Francesca et al. (2014, 2015) observed that both
Vanilla and Chocolate are able to generate control software that crosses the reality gap
satisfactorily. In addition, they observed what can be called a rank inversion (Ligot &
Birattari, 2018, 2019): EvoStick outperforms Vanilla and Chocolate in simulation, but
Vanilla and Chocolate outperform EvoStick in reality.

In the original definition, Francesca et al. (2014) have characterized AutoMoDe as
an approach to generate control software in the form of a probabilistic finite-state
machine (Francesca et al., 2014, 2015). However, this characterization appears to be too
restrictive: the element that truly characterize AutoMoDe—whose name is the contraction
of automatic modular design—is that it generates control software by combining and
fine-tuning predefined modules. Indeed, according to the conjecture of Francesca et al.
(2014), its modular nature is the main reason why AutoMoDe has shown to be robust to
the reality gap: the architecture into which the modules are assembled appears to be a
secondary issue.

In this article, we aim at investigating the possibilities, challenges, and limitations that
arise from the use of behavior trees in the context of the automatic modular design of
collective behaviors in swarm robotics. Behavior trees are a popular control architecture
originally proposed for game development (Champandard, 2007; Champandard, Dawe &
Hernandez-Cerpa, 2010), and offer a number of advantages over finite-state machines,
such as enhanced expressiveness, inherent modularity, and two-way control transfers
(Colledanchise & Ögren, 2018). Moreover, Colledanchise & Ögren (2018) have shown that
behavior trees generalize a number of other architectures including the subsumption
architecture (Brooks, 1986) and decision trees (Nehaniv & Dautenhahn, 2002). Recently,
behavior trees have attracted interest from the domains of artificial intelligence and
robotics (Colledanchise & Ögren, 2018).

The main characteristics of behavior trees is the use of complex behavioral modules as
leaf nodes that return their state of execution: running, success, or failure. Behavior trees
are therefore a convenient way to implicitly model plans of execution: they define what
action needs to be taken if a given condition is met or not, and if a given behavior succeeds
or fails. The current practice of swarm robotics goes against the principle of planning
as the individual robots used are typically simple and reactive in the sense defined by

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 3/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

Brooks (1991). In the reactive paradigm, a low-level behavior is executed indefinitely until
an external event triggers the indefinite execution of another low-level behaviors, and
so on. Due to this cultural legacy, the low-level behaviors typically operated by robots
within swarms do not have natural termination criteria, and therefore do not have
success/failure states. In addition, the hardware limitations of the simple individual robots
typically used in swarm robotics does not give them the capabilities of assessing natural
termination criteria of the low-level behaviors they are executing. It is nonetheless
possible to use behavior trees as a control software architecture for robot swarms, as it has
already been done by Jones et al. (2018). However, to do so, design choices are needed
and possibly only a subset of the functionalities of the behavior trees can be used, which
forces one to renounce the implicit planning that they offer. For example, Jones et al. (2018)
considered atomic commands as action nodes (i.e., move forward, turn left/right, or
store data) that always return success after the second execution of the behavior, and never
return failure. Despite not benefiting from the full potential of behaviors trees when
combining low-level behaviors without natural termination criteria, it remains that the
inherent modularity that they offer makes behavior trees a control architecture that is well
worth exploring in the context of automatic design of robot swarm. Indeed, because each
subtree is a valid structure, behavior trees are more easily manipulated than finite-state
machines (Colledanchise & Ögren, 2018). Therefore, one could conceive tailored
optimization algorithms based on local manipulations that explore the possible collective
behaviors obtained by selecting, combining, and fine-tuning predefined modules into
behavior trees more efficiently than into finite state machines.

In this work, we study the use of behavior trees in fully automatic off-line design of
robot swarms (Birattari, Ligot & Hasselmann, 2020). We do so by developing a method
that uses low-level behaviors that are more complex than those of Jones et al. (2018),
but yet less complex than those typically used in applications of behaviors tree to other
domains. Indeed, rather than using atomic commands and assuming the artificial return of
success after a given time, we use low-level behaviors as they are typically conceived in
swarm robotics, that is, without the notion of success or failure. We devised Maple,
a novel instance of AutoMoDe that has at its disposal the same low-level behaviors and
conditions used by Vanilla and Chocolate, with the goal of understanding the
conditions under which it is beneficial to adopt behavior trees over finite state machines in
modular automatic design. Maple is in many aspects similar to Chocolate: in fact,
we only substituted probabilistic finite state machines with behavior trees. This way,
differences in performance between the two methods can only be attributed to the different
control architecture they adopt. Because the behavioral modules adopted in Maple only
return running, Maple produces control software in the form of behavior trees with
predetermined structure that only use a subset of the behavior trees functionalities. In this
structure, a conditional module is combined with a low-level behavior in order to act
as a termination criterion for the said low-level behavior. We present three empirical studies
conducted on two missions. In the first one, we study the robustness of automatically
generated control software in the form of behavior trees by comparing its performance in
simulation and in reality. The results show that the control software generated by Maple

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 4/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

performs similarly to the one generated by Chocolate, and that it crosses the reality gap
more satisfactorily than the one generated by EvoStick. This confirms Francesca et al.’s
(2014) conjecture that AutoMoDe is robust to the reality gap due to its modular nature.
In the second study, we investigate the impact of different design budgets on the
performance of the control software produced by Maple and Chocolate. The results
indicate that Maple converges to satisfactory solutions faster than Chocolate. However,
it appears that the expressiveness of the control structure adopted in Maple is reduced with
regard to the one of finite state machines: Maple cannot produce solutions as complex
as those produced by Chocolate for one of the missions considered. In the third study,
we explore multiple alternatives to the structure of the behavior trees adopted in Maple.
All these alternatives are predefined, restricted behavior trees structures that can be used
with low-level behaviors that do not have a natural termination criterion. The results
show that none of the explored structures outperform the one adopted in Maple in both
missions considered. This paper extends on preliminary results presented in a conference
(Kuckling et al., 2018a). We present here the complete description of the automatic design
method and justifications of the design choices, together with more experimental results.

The work of Jones et al. (2018) brought initial evidence that behavior trees are a viable
control architecture to be adopted in swarm robotics when considering atomic commands
as action nodes. Our studies highlight the strengths and weaknesses of behavior trees
when applied low-level behaviors as they are typically conceived in this domain: our results
suggest that, although behavior trees might be appealing under some settings, under
other they do not produce better results than finite state machines and might be even
outperformed by the latter. What hinders the application of behavior trees to swarm
robotics is the absence of the notion of success and failure in the low-level behaviors
typically adopted in swarm robotics. We believe that, in order to develop low-level
behaviors that are appropriate for behavior trees, one should overcome technical issues
(that is, use robots whose hardware capabilities enable them to infer natural termination
criteria) and a cultural legacy.

Behavior trees
In this section, we give a brief description of behavior trees and their functioning.
We adopt the framework that Marzinotto et al. (2014) proposed to unify the different
variants of behavior trees described in the literature. We refer the reader to the original
description of the framework for more details.

The original idea of behavior trees was proposed for the Halo 2 video game (Isla, 2005).
Since then, behavior trees have found applications in many computer games, for example,
Spore and Bioshock (Champandard, Dawe & Hernandez-Cerpa, 2010). Recently,
behavior trees have attracted the interest of the research community. Initial research focused
on the automatic generation of behaviors in video games, for example, the commercial
game DEFCON (Lim, Baumgarten & Colton, 2010) and the Mario AI competition
(Perez et al., 2011). Even more recently, behavior trees have found applications in the
control of unmanned aerial vehicles (Ögren, 2012), surgical robots (Hu et al., 2015), and
collaborative robots (Paxton et al., 2017).

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 5/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

A behavior tree is a control architecture that can be expressed as a directed acyclic graph
with a single root. With a fixed frequency, the root generates a tick that controls the
execution. The tick is propagated through the tree and activates each node that it visits.
The path that the tick takes through the tree is determined by the inner nodes, which are
called control-flow nodes. Once the tick reaches a leaf node, a condition is evaluated or
an action is performed. Then, the leaf node immediately returns the tick to its parent
together with one of the following three values: success, failure, or running. A condition
node returns success, if its associated condition is fulfilled; failure, otherwise. An action
node performs a single control step of its associated action and returns success, if the action
is completed; failure, if the action failed; running, if the action is still in progress. When a
control-flow node receives a return value from a child, it either immediately returns
this value to its parent, or it continues propagating the tick to the remaining children.
There are six types of control-flow nodes:

Sequence (!): ticks its children sequentially, starting from the leftmost child, as long as
they return success. Because it does not remember the last child that returned running, it is
said to be memory-less. Once a child returns running or failure, the sequence node
immediately passes the returned value, together with the tick, to its parent. If all children
return success, the node also returns success.

Selector (?): memory-less node that ticks its children sequentially, starting from the
leftmost child, as long as they return failure. Once a child returns running or success, the
selector node immediately passes the returned value, together with the tick, to its parent.
If all children return failure, the node also returns failure.

Sequence� (!�): version of the sequence node with memory: resumes ticking from the
last child that returned running, if any.

Selector� (?�): version of the selector node with memory: resumes ticking from the last
child that returned running, if any.

Parallel (!!): ticks all its children simultaneously. It returns success if a defined fraction of
its children return success; failure if the fraction of children return failure; running otherwise.

Decorator (δ): is limited to a single child. It can alter the number of ticks passed to
the child and the return value according to a custom function defined at design time.

In the context of automatic modular design, the most important properties of behavior
trees are their enhanced expressiveness, the principle of two-way control transfers, and
their inherent modularity (Ögren, 2012; Colledanchise & Ögren, 2018). Ögren and
coworkers have shown that behavior trees generalize finite-state machines only with
selector and sequence nodes (Ögren, 2012; Marzinotto et al., 2014). With parallel nodes,
behavior trees are able to express individual behaviors that have no representation in
classical finite-state machines. The principle of two-way control transfers implies that
the control can be passed from a node to its child, and can also be returned from the child,
along with information about the state of the system. Finally, behavior trees are inherently
modular: each subtree is a valid behavior tree. Due to this property, behavior trees can
be easily manipulated as one can move, modify, or prune subtrees without compromising
the structural integrity of the behavior tree. The modularity of behavior trees could
simplify the conception of tailored optimization algorithm based on local manipulations.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 6/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

AUTOMODE—MAPLE
Maple is an automatic modular design method that generates control software in the form
of behavior trees. It does so by selecting, combining, and fine-tuning a set of predefined
modules: the six low-level behaviors and the six conditions defined by Francesca et al.
(2014) for Vanilla, and later used in Chocolate (Francesca et al., 2015). We introduce
Maple with the purpose of exploring the use of behavior trees as a control architecture in
the automatic modular design of robot swarms. To conduct a meaningful study on the
potentials of behavior trees as a control architecture, we compare Maple with Chocolate,
a state-of-the-art automatic modular design method that generates control software in
the form of probabilistic finite-state machines (Francesca et al., 2015; Francesca &
Birattari, 2016). We conceived Maple to be as similar as possible to Chocolate so that
differences in performance between the two methods can only be attributed to the different
control architecture they adopt. Maple and Chocolate generate control software for
the same robotic platform, they have at their disposal the same set of modules, and they use
the same optimization algorithm.

In a probabilistic finite-state machine generated by Chocolate, a state is an
instantiation of a low-level behavior and a transition is an instantiation of a condition.
Because low-level behaviors (the states of the finite-state machine) are executed until an
external condition (a transition) is enabled, they do not have inherent termination criteria.
The absence of natural termination criteria implies that, when used as action nodes in a
behavior tree generated by Maple, the low-level behaviors of Chocolate can only return
running. As a result, part of the control-flow nodes of behavior trees do not work as
intended. With Maple, we chose to use the unmodified modules of Chocolate, and force
the generated behavior trees to adopt a restricted structure that only uses a subset of the
control-flow nodes.

Robotic platform
Maple produces control software for the e-puck robot (Mondada et al., 2009) equipped
with several extension boards (Garattoni et al., 2015), including the range-and-bearing
board (Gutiérrez et al., 2009). The predefined modules on which Maple operates have
access to a subset of the capabilities of the e-puck robot that are formally defined by the
reference model RM 1.1 (Hasselmann et al., 2018)—see Table 1.

Table 1 Reference model RM1.1 (Hasselmann et al., 2018). Sensors and actuators of the e-puck
robot. Period of control cycle: 100 ms.

Sensor/Actuator Variables Values

Proximity proxi, with i ϵ {0,…,7} [0,1]

Light lighti, with i ϵ {0,…,7} [0,1]

Ground groundi, with i ϵ {0,…,2} {black, gray, white}

Range-and-bearing n {0,…,19}

Vd ([0,0.7]m, [0,2π] radian)

Wheels vl, vr [−0.12, 0.12]ms−1

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 7/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

The modules can adjust the velocity of the two wheels (vl and vr) of the robot, detect the
presence of obstacles (proxi), measure the intensity of the ambient light (lighti), and
identify whether the ground situated directly beneath the robot is black, gray, or white
(groundi). The modules have also access to the number n of surrounding peers within a
range of up to 0.7 m, as well as to a vector Vd ¼

Pn
m¼1 1=rm; ffbmð Þ where rm and are

distance and bearing of the m-th neighboring peer (Spears et al., 2004).

Set of modules
Maple has at its disposal the same set of modules used by Vanilla (Francesca et al., 2014)
and Chocolate (Francesca et al., 2015). Some of the modules are parametric so that the
optimization algorithm can fine-tune their behavior on a per-mission basis. The set
comprises six low-level behaviors and six conditions. A low-level behavior is a way in
which the robot operates its actuators in response to the readings of its sensors.
A condition is a context that the robot perceives via its sensors. Conditions contribute to
determine which behavior is executed at any moment in time.

In the behavior trees generated by Maple, an action node is selected among the six
low-level behaviors and a condition node is selected among the six conditions. In the
following, we briefly describe the low-level behaviors and conditions. For the details, we
refer the reader to their original description given by Francesca et al. (2014).

Low-level behaviors
Exploration: if the front of the robot is clear of obstacles, the robot moves straight. When
an obstacle is perceived via the front proximity sensors, the robot turns in-place for a
random number of control cycles drawn in 0;…; sf g. τ is an integer parameter
2 0;…; 100f g.

Stop: the robot does not move.
Phototaxis: the robot moves towards the light source. If no light source is perceived, the

robot moves straight while avoiding obstacles.
Anti-phototaxis: the robot moves away from the light source. If no light source is

perceived, the robot moves straight while avoiding obstacles.
Attraction: the robot moves towards its neighboring peers, following αVd, where the

parameter a 2 1; 5½ � controls the speed of convergence towards them. If no peer is
perceived, the robot moves straight while avoiding obstacles.

Repulsion: the robot moves away from its neighboring peers, following −αVd, where the
parameter a 2 1; 5½ � controls the speed of divergence. If no peer is perceived, the robot
moves straight while avoiding obstacles.

Conditions
Black-floor: true with probability β, if the ground situated below the robot is perceived as
black.

Gray-floor: true with probability β, if the ground situated below the robot is perceived
as gray.

White-floor: true with probability β, if the ground situated below the robot is perceived
as white.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 8/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

Neighbor-count: true with probability z nð Þ ¼ 1þ egðn�nÞ� ��1
, where n is number of

detected peers. The parameters g 2 0; 20½ � and n 2 0;…; 10f g control the steepness and
the inflection point of the function, respectively.

Inverted-neighbor-count: true with probability 1� z nð Þ.
Fixed-probability: true with probability β.

Control software architecture
The low-level behaviors of Chocolate have no inherent success or failure criterion and
can only return running when used as action nodes in behavior trees. To use Chocolate’s
low-level behaviors as action nodes, we constrained Maple to generate behavior trees
that have a particular, restricted structure. This restricted structure only uses a subset of
the control-flow nodes of the classical implementation of behavior trees. The top-level
node is a sequence� node (!�) and can have up to four selector subtrees attached to it.
A selector subtree is composed of a selector node (?) with two leaf nodes: a condition node
as the left leaf node, and an action node as the right leaf node. Figure 1 illustrates a
behavior tree with the restricted structure adopted here. We limit the maximal number
of subtrees, and therefore the number of action nodes, to four so as to mimic the
restrictions of Chocolate, which generates probabilistic finite-state machines with up to
four states.

In the example of Fig. 1, the left-most selector subtree (highlighted by the dashed box) is
first ticked and action A1 is executed as long as condition C1 returns failure. If condition C1

returns success, the top-level node (!�) ticks the second selector subtree, and A2 is
executed, provided that C2 returns failure. Because the top-level node is a control-flow
node with memory, the tick will resume at the second subtree in the following control
cycle. A2 is therefore executed as long as C2 returns failure. Although actions A1 and A4

are not in adjacent sub-trees, A4 can be executed directly after A1 granted that conditions
C1, C2, and C3 return success and C4 returns failure. When condition C4 of the last
selector subtree returns success, the top-level node of the tree also returns success and no

→∗

?

C1 A1

?

C2 A2

?

C3 A3

?

C4 A4

Figure 1 Illustration of a behavior tree with restricted structure that Maple can produce. Maple
generates a behavior tree by defining first the number of selector subtrees (highlighted by the
dashed box), and by then specifying and fine-tuning the condition and action nodes that compose each
selector subtree. Full-size DOI: 10.7717/peerj-cs.314/fig-1

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 9/27

http://dx.doi.org/10.7717/peerj-cs.314/fig-1
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

action is performed. In this case, the tree is ticked again at the next control cycle, and the
top-level node ticks the left-most selector subtree again.

The size of the space spanning all possible instance of control software that can be
produced by Maple is in O jBj4jCj4Þ�

, where B and C are the sets of low-level behaviors
and conditions, respectively (Kuckling et al., 2018b). The search space can be formally
defined as:

T;#Nð2Þ;Nð2Þ
i ;#Li; Lij; L

p
ij

h i
; with i ¼ 1;…;#Nð2Þ

n o
; j ¼ 1;…;#Lif g;

where T 2 sequence�f g is the type of the top-level node;#Nð2Þ 2 1;…; 4f g is the number
of level 2 nodes;Nð2Þ

i 2 selectorf g is the type of the level 2 node i;#Li 2 2f g is the number
of leafs of node i; Lij is the type of the j-th leaf of node i, with Li1 2 C and Li2 2 B; and Lpij
are the parameters of leaf Lij.

Optimization algorithm
Maple uses Iterated F-race (Balaprakash, Birattari & Stützle, 2007; López-Ibáñez et al.,
2016) as an optimization algorithm. Iterated F-race searches the space of all possible
candidate solutions for the best one according to a mission-specific measure of
performance. The Iterated F-race algorithm comprises multiple steps, each of which is
reminiscent of a race. In the first race, a uniformly distributed set of candidate solutions is
sampled. These candidates are initially evaluated on a set of different instances. Typically,
an instance describes the configuration of the arena at the beginning of an experiment
(that is, positions and orientations of the robots, positions of eventual obstacles or objects
of interest, or color of the floor). After the initial set of evaluations is performed, a
Friedman test (Friedman, 1937, 1939; Conover, 1999) is performed on the performance
obtained by the candidate solutions. The candidate solutions that perform significantly
worse than at least another one are discarded. The algorithm keeps evaluating the
remaining candidate solutions on new instances and discards those that are statistically
dominated. The race terminates when only one surviving candidate solution remains, or
when the maximal number of evaluation defined for the race is reached. In the following
races, the new set of candidate solutions is sampled with a distribution that gives
higher priority to solutions that are similar to the surviving solutions of the previous one.

EXPERIMENTAL SETUP
In this section, we describe the experimental setup that is common to the three studies
conducted. In particular, we describe the previously proposed automatic design methods
against which we compare Maple, the missions for which we generate control software,
and the protocol we follow. Further details are given in each of the sections dedicated to the
specific studies.

Automatic design methods
In Study 1 and 2, we compare Maple with two previously proposed methods: Chocolate
and EvoStick. Maple is described in the previous section. Here, we briefly describe

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 10/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

Chocolate and EvoStick: we refer the reader to Francesca et al. (2014, 2015) for the
details.

Chocolate (Francesca et al., 2015) is an automatic modular method that selects,
combines, and fine-tunes the same twelve predefined modules as Maple. In Chocolate,
the architecture of the control software is a probabilistic finite-state machine. In this
context, a state is an instance of low-level behavior and an edge is an instance of condition.
Similarly to Maple, Chocolate adopts Iterated F-race as an optimization algorithm. With
Chocolate, the search space of Iterated F-race is restricted to probabilistic finite-state
machines that comprise up to four states, and up to four outgoing edges per state. The size
of the search space defined by the control architecture of Chocolate is in OðjBj4jCj16Þ,
whereB andC are the sets of low-level behaviors and of conditions, respectively (Kuckling
et al., 2018b).

EvoStick (Francesca et al., 2014, 2015) is a straightforward implementation of the
evolutionary swarm robotics approach. In EvoStick, the architecture of the control
software is a fully-connected, single layer, feedforward neural network. The neural network
comprises 24 input nodes for the readings of the sensors described in the reference model
RM 1.1: 8 for the proximity sensors, 8 for the light sensors, 3 for ground sensors, and
5 for the range-and-bearing board. Out of the five input nodes dedicated to the range-and-
bearing board, one is allocated to the number of detected peers and the four others are
allocated to the scalar projection of the vector Vd on four unit vectors. The neural network
comprises 2 output nodes controlling the velocities of the wheels. The topology of the
neural network is fixed, and an evolutionary algorithm fine-tunes the 50 weights of the
connections between the input and the output nodes. Each weight is a real value in the
range �5; 5½ �. In EvoStick, the population is composed of 100 individuals that are
evaluated 10 times per generation.

Missions
We consider two missions: FORAGING and AGGREGATION. The two missions must be
performed in a dodecagonal arena delimited by walls and covering an area of 4.91. The
swarm is composed of 20 e-puck robots that are distributed uniformly in the arena at the
beginning of each experimental run, and we limit the duration of the missions to 120.

FORAGING

Because the robots cannot physically carry objects, we consider an idealized form of
foraging. In this version, we reckon that an item is picked up when a robot enters a source
of food, and that a robot drops a carried item when it enters the nest. A robot can only
carry one item at a time. In the arena, a source of food is represented by a black circle,
and the nest is represented by the white area (see Fig. 2). The two black circles have a radius
of 0.15, they are separated by a distance of 1.2, and are located at 0.45 from the white area.
A light source is placed behind the white area to indicate the position of the nest to
the robots.

The goal of the swarm is to retrieve as many items as possible from the sources to the
nest. In other words, the robots must go back and forth between the black circles and

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 11/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

the white area as many times as possible. The objective function is FF = I where I is the
number of items deposited in the nest.

AGGREGATION

The swarm must select and aggregate in one of the two black areas (see Fig. 3). The two
black areas have a radius of 0.3 and are separated by a distance of 0.4. The objective
function is FA = max(Nl, Nr)/N, where Nl and Nr are the number of robots located on the

Figure 2 FORAGING. (A) Simulated arena. (B) Real arena. The red glow visible in the picture is due to a red
gel we placed in front of the light source. With the red gel, the light does not disturb the overhead camera
that is used to track the position of the robots and compute the objective function. Yet, the light is still
perceived by the robots that use their infrared sensors to sense it.

Full-size DOI: 10.7717/peerj-cs.314/fig-2

Figure 3 AGGREGATION. The objective function FA is computed as the maximal fraction of robots situated
either on the left area (Nl/N) or on the right area (Nr/N). It is evaluated at the end of an experimental run.
(A) Simulated arena, with FA = 0.1 as 2 robots stand on the left black area (Nl = 2) and no robot stands on
the right one (Nr = 0). (B) Real arena, with FA = 0.65 as Nl = 5 and Nr = 13.

Full-size DOI: 10.7717/peerj-cs.314/fig-3

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 12/27

http://dx.doi.org/10.7717/peerj-cs.314/fig-2
http://dx.doi.org/10.7717/peerj-cs.314/fig-3
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

left and right black area, respectively; and N is the total number of robot in the swarm.
The objective function is computed at the end of a run and is maximized when all the
robots have aggregated in the same black area.

Dummy control software
Throughout the three studies, we compare the performance of automatically generated
control software to the one of two instances of control software—one per mission—that we
call “dummy” control software. They perform a simple, naive, and trivial behavior that
we can consider as a baseline for each mission. With this comparison, we assess whether
the automatic design methods can produce behaviors that are more sophisticated than
trivial solutions. To produce the two instances of dummy control software, we used the
same low-level behaviors and conditions that Maple and Chocolate have at their disposal
to generate control software. For FORAGING, we consider a strategy in which the robots
move randomly in the environment. We obtained this strategy by using the low-level
behavior exploration. For AGGREGATION, we consider a strategy in which the robots explore
the environment randomly, and stop when they encounter a black spot. We obtained
this strategy by combining the modules exploration, black-floor, and stop. To fine-tune
the parameters of the modules, we used Iterated F-race with a design budget of 1k
simulation runs.

Methodology
To account for the stochasticity of the design process, we execute each design method
several times, and therefore produce several instances of control software. The number of
executions of the design methods varies with the study. To evaluate the performance
of a design method, each instance of control software is executed once in simulation.
In Study 1, each instance of control software is also executed once in reality.

Simulations are performed with ARGoS3, version beta 48 (Pinciroli et al., 2012;
Garattoni et al., 2015). In the experiments with the robots, we use a tracking system
comprising an overhead camera and QR-code tags on the robots to identify and track
them in real time (Stranieri et al., 2013). With this tracking system, we automatically
measure the performance of the swarm, and we automatically guide the robots to the
initial position and orientation for each evaluation run. During an evaluation run, the
robots may tip over due to collisions. To avoid damages, we intervene to put them
upright.

In the three studies, we present the performance of the design methods in the form of
box-and-whiskers boxplots. In addition, we present the median performance of the
dummy control software assessed in simulation with a dotted horizontal line. In each
study, statements such as “method A is significantly better/worse than B” imply that
significance has been assessed via a Wilcoxon rank-sum test, with confidence of at least
95%. The instances of control software produced, the experimental data collected in
simulation and in reality, and videos of the behavior displayed by the swarm of physical
robots are available online as Supplemental Material (Ligot et al., 2020).

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 13/27

http://dx.doi.org/10.7717/peerj-cs.314#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

STUDY 1: PERFORMANCE IN SIMULATION AND REALITY
In this section, we evaluate Maple’s ability to produce control software that crosses the
reality gap satisfactorily. To do so, we compare the performance of control software
generated by three design methods—Maple, Chocolate and EvoStick—both in
simulation and in reality. Previous research (Francesca et al., 2015) indicates that
Chocolate crosses the reality gap more satisfactorily than EvoStick. Francesca et al.
(2014, 2015) argue that Chocolate’s ability to cross the reality gap is mainly due to its
modular nature. Because Maple shares with Chocolate the same modular nature and
differs from it only in the control architecture adopted, we expect Maple to also experience
smaller performance drops than EvoStick.

We executed each design method 10 times, and thus produced 10 instances of control
software. The design budget allocated to each method is 50k simulation runs. The results
are depicted in Fig. 4.

FORAGING

In simulation, the performance of the control software produced by the three automatic
design methods is similar, and is significantly better than the one of the dummy strategy.
In reality, EvoStick is significantly worse than Maple and Chocolate. The performance
of all three methods drops significantly when passing from simulation to reality, but
EvoStick suffers from the effects of the reality gap the most. See Fig. 4A.

Most of the instances of control software generated by Maple and Chocolate display
similar strategies: the robots explore the environment randomly and once a black area
(that is, a source of food) is found, they navigate towards the light to go back to the white

A

Maple EvoStickChocolate

0

10

20

30

40

P
er

fo
rm

an
ce

B

Maple EvoStickChocolate

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4 Results of Study 1. The gray boxes represent the performance assessed in simulation; the white
boxes the one assessed in reality. The dotted line represents the median performance of the dummy
control software assessed in simulation. Full-size DOI: 10.7717/peerj-cs.314/fig-4

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 14/27

http://dx.doi.org/10.7717/peerj-cs.314/fig-4
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

area (that is, the nest). One instance of control software produced by Maple uses the
anti-phototaxis low-level behavior to leave the nest faster once an item has been dropped.
Three instances of control software produced by Chocolate display an even more
sophisticated strategy: the robots only explore the gray area in the search for the sources of
food. In other words, the robots always directly leave the nest if they enter it, independently
of whether they dropped an item or not.

In simulation, the instances of control software generated by EvoStick display
drastically different behaviors than the ones produced by Maple and Chocolate: the
robots navigate following circular trajectories that cross at least one food source and the
nest. In reality, the robots follow circular trajectories that are much smaller than those
displayed in simulation. As a result, the robots tend to cluster near the light. Contrarily to
Maple and Chocolate, and with the exception of few cases, the instances of control
software generated by EvoStick do not display an effective foraging behavior.

AGGREGATION

In simulation, EvoStick performs significantly better than Maple and Chocolate, which
show similar performance. In reality, we observe an inversion of the ranks: Maple and
Chocolate perform significantly better than EvoStick. Indeed, the performance of
EvoStick drops considerably, whereas the performance drop experienced by Maple and
Chocolate is smaller. See Fig. 4B.

The instances of control software produced by Maple and Chocolate efficiently search
the arena and make the robots stop on the black areas once they are found. In simulation,
with the control software produced by EvoStick, the robots follow the border of the
arena and then adjust their trajectory to converge towards neighboring peers that are
already situated on a black spot. In reality, the control software generated by EvoStick

does not display the same behavior: robots are unable to find the black areas as efficiently
as in simulation because they tend to stay close to the borders of the arena. Moreover,
the robots tend to leave the black areas quickly when they are found. Although the
three design methods perform significantly better than the dummy control software in
simulation, none of the methods produced control software that makes the physical robots
reach a consensus on the black area on which they should aggregate.

STUDY 2: PERFORMANCE VERSUS DESIGN BUDGET
In this section, we investigate the performance of Maple and Chocolate across different
design budgets. Because the search space (that is, all instances of control software that can
be generated) of Chocolate is significantly larger than the one of Maple—O jBj4jCj16� �
and O jBj4jCj4� �

, respectively (Kuckling et al., 2018b)—we expect Maple to converge to
high performing solutions faster than Chocolate.

We consider 6 design budgets: 0.5k, 1k, 5k, 10k, 50k and 200k simulation runs. For each
design budget, we executed each design method 20 times, and thus produced 20 instances
of control software. In total, the two design methods have been executed 120 times
each. The results are depicted in Fig. 5.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 15/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

FORAGING

The performance of the methods show different trends when the design budget increases.
For Maple, there is a significant improvement of the performance between design
budgets of 1k and 5k, and between 50k and 200k simulation runs. For Chocolate, the
performance increases significantly between design budgets of 5k and 10k, 10k and 50k,
and 50k and 200k simulation runs. See Fig. 5A.

With very small design budgets—0.5k and 1k simulation runs—Maple and Chocolate

show similar performance: they are unable to find solutions that are better than the
dummy control software. With a small design budget—5k simulation runs—Maple

performs significantly better than Chocolate. Also, with 5k simulation runs, Chocolate
and the dummy control software show similar performance. With a large design budget—
200k runs— Chocolate performs significantly better than Maple. Indeed, the instances of
control software generated by Chocolate display a more sophisticated foraging strategy
than those generated by Maple: to increase the rate of discovery of the food sources, the
robots only explore the gray area of the arena, and stay away from the nest. It appears that,
with Maple’s restrictions on the structure of the behavior trees, this strategy cannot be
produced. Indeed, in the instances of control software that can be produced by Maple, only
one condition can terminate the execution of the action performed, whereas in the ones
produces by Chocolate, up to four conditions can. Therefore, with Maple, the robots
are forced to explore the whole arena until they find the food sources (that is, the black
circles). However, it is important to notice that the behavior trees generated by Maple with

A

.5k 10k 200k1k 5k 50k
0

10

20

30

40

50

P
er

fo
rm

an
ce

Design budgets (simulation runs)

B

.5k 10k 200k1k 5k 50k
0.0

0.2

0.4

0.6

0.8

1.0

Design budgets (simulation runs)

Figure 5 Results of Study 2. Performance of Maple and Chocolate over multiple design budgets,
expressed in number of simulation runs. Light gray boxes represent the performance of Maple, dark gray
boxes the one of Chocolate. The dotted line represents the median performance of the dummy control
software. Full-size DOI: 10.7717/peerj-cs.314/fig-5

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 16/27

http://dx.doi.org/10.7717/peerj-cs.314/fig-5
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

a design budget of 5k simulation runs are only outperformed by probabilistic finite-state
machines when 200k simulation runs are allocated to Chocolate.

AGGREGATION

The performance of the control software generated by both methods increase almost
constantly with the design budget. Also for this mission, Chocolate requires a design
budget of at least 10k simulation runs in order to generate control software that is
significantly better than the dummy control software. Contrarily, Maple only requires 1k
simulation runs. With 1k and 5k simulation runs, Maple outperforms Chocolate. For
larger design budgets, Maple and Chocolate show similar performance. See Fig. 5B.

Although the design budgets considered allow the two methods to outperform the
dummy control software in multiple occasions, neither of them generated control software
that completed the mission satisfactorily. Indeed, the maximal median performance
obtained is FA ¼ 0:65, which means that only 13 out of the 20 robots were on the same
black spot.

STUDY 3: MAPLE AND SOME OF ITS POSSIBLE VARIANTS
In this section, we explore the changes in performance when variations to the control
architecture of Maple are introduced. Our exploration is not exhaustive: we only consider
variants that generate behavior trees whose structure is similar to the one of the behavior
trees generated by Maple. We limit our exploration to variants that generate trees with:
(i) 3 levels (top-level, inner, and leaf nodes); up to 4 branches connected to the top-level
node; and exactly 2 leaf nodes per branch. Many variants are possible, however,
because the action nodes of Maple can only return running, some variants are unable
to combine low-level behaviors into meaningful and elaborate individual behaviors.
Descriptions of these variants, as well as illustrations, are given as part of Supplemental
Material (Ligot et al., 2020). In the following, we describe variants that are promising and
explain how they behave with the modules considered in Maple. We tested the most
promising variants by generating control software and evaluating their performance in
simulation, and report the results.

Alternative behavior tree structures
ICFN (inverted control-flow nodes): The control-flow nodes are inverted with regard to the
ones of Maple: the top-level node is a selector� and the inner nodes are sequence nodes.
See Fig. 6A. In this variant, the action node of a subtree is executed as long as the condition
returns success, whereas it is executed until the condition returns success in Maple.

ND (negation decorator): A negation decorator node can be instantiated above a
condition node. See Fig. 6B. The negation decorator returns failure (success) if the
condition returns success (failure). With the set of conditions available, it is particularly
interesting to place a negation decorator above a condition on the color of the ground
perceived (that is black-, gray-, or white-floor). Indeed, placing a negation decorator node
above a neighbor-count condition is equivalent to having an inverted-neighbor-count
condition, and vice versa. Similarly, a negation decorator above a fixed-probability

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 17/27

http://dx.doi.org/10.7717/peerj-cs.314#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.314#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

condition with ρ is equivalent to a fixed-probability with 1 − ρ. However, a negation
decorator above a condition on a given color is equivalent to assessing the conditions for
the two other colors simultaneously.

FL (free leaves): Each leaf node is to be chosen between condition and action nodes.
See Fig. 6C. Four pairs of leaf nodes are possible: condition–condition (see first
branch), condition–action (which corresponds to the leaf pair imposed in Maple, see
second branch), action–condition (see third branch), and action–action (see fourth
branch). For each subtree, the optimization algorithm is free to chose any pair of leaf
nodes. The variant can express disjunction of conditions: a branch following a condition–
condition leaf pair is ticked if the first or the second condition is met. However, the variant
introduces dead-end states: when an action on the left hand side of a leaf pair is ticked,
the action is executed for the remaining of the simulation run.

CA|CC (condition–action or condition–condition): The right-hand side leaf node can be
a condition or an action node. Two pairs of leaf nodes are thus possible: condition–action,
condition–condition. With respect to FL, this variant can also express disjunction of
conditions, but does not allow for dead-end states.

?∗

→

C1 A1

→

C2 A2

A
→∗

?

δ

C1

A1

?

C2 A2

B

→∗

?

C1 C2

?

C3 A1

?

A2 C4

?

A3 A4

C

Figure 6 A few examples of Maple’s variants. (A) variant ICFN (inverted control flow nodes),
(B) variant ND (negation decorator), (C) variant FL (free leaves). The number of branches connected to
the top-level node, and their order, has been chosen arbitrarily.

Full-size DOI: 10.7717/peerj-cs.314/fig-6

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 18/27

http://dx.doi.org/10.7717/peerj-cs.314/fig-6
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

SP (success probability): Each action node has a probability ρ to return success.
The probability ρ is a real value in the range 0; 1½ � and is tuned by the optimization process.
With this probability, we simulate the capability of the action nodes to assess if the
low-level behaviors are successfully executed.

RESULTS
For each variant, we produced 20 instances of control software, all generated by the same
optimization process—Iterated F-race—with a design budget of 50k simulation runs.
We compare the performance of the variants to the one of Maple.

FORAGING

None of the variants outperformed Maple. Maple, ND, and CA|CC perform similarly;
moreover, they outperform ICFN, FL, SP, and the dummy control software. The variants
ICFN, FL, and the dummy control software show similar performance. See Fig. 7A.

All the instances of control software generated by Maple show similar behaviors: the
robots explore the arena until they find one of the food sources, then navigate towards the
nest using the light as a guidance. In some cases, the robots use the anti-phototaxis
low-level behavior to directly leave the nest once they have deposited an item.

With variant ND, we can manually design control software that displays an elaborate
strategy: the robots increase the rate at which they discover food sources by only exploring
the gray area of the arena. This behavior cannot be expressed by Maple (see Study 2).
An example of a behavior tree adopting variant ND that displays this strategy is illustrated
in Section 5 of the Supplemental Material (Ligot et al., 2020). In this example, the elaborate

A

Maple FL SPICFN ND CA|CC

P
er

fo
rm

an
ce

0

10

20

30

40

B

Maple FL SPICFN ND CA|CC

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7 Results of Study 3. Performance in simulation of different variants of Maple. The dotted line
represents the median performance of the dummy control software.

Full-size DOI: 10.7717/peerj-cs.314/fig-7

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 19/27

http://dx.doi.org/10.7717/peerj-cs.314#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.314/fig-7
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

strategy only emerges if the success probability of the condition node below the negation
decorator is set to 1. Indeed, if the success probability is slightly lower, the behavior
displayed is radically different, and more importantly, inefficient. It appears that, with the
allocated budget, this necessary condition makes it unlikely for Iterated F-race to produce
this strategy.

Iterated F-race was not able to take advantage of the disjunction of conditions that is
available in CA|CC to find better solutions that those of Maple. Indeed, we are unable to
do so ourself. However, the increased search space of CA|CC does not hinder the
optimization process as results obtained are similar to those of Maple.

In variant SP, the success probabilities, together with the conditions, are termination
mechanisms for the subtrees. The additional termination mechanisms makes it harder
for Iterated F-race to exploit correlations between conditions and actions that lead to
behaviors as efficient as those generated by Maple. Most of the produced control software
rely essentially on the exploration low-level behavior.

With variant ICFN, one can generate a behavior tree that expresses the same elaborate
strategies that can be generated with variant ND (see Section 5 of the Supplemental
Material (Ligot et al., 2020) for an example). However, ICFN is faced with a similar problem
as ND: the success probability of the conditions needs to be set to 1 in order for that
elaborate strategy to emerge. With a success probability set to a lower value, the condition
node might return failure even though its condition is met, and the subtree might therefore
terminate prematurely. The allocated design budget was not large enough for Iterated F-
race to find behavior trees with meaningful connections between the conditions and
behaviors, which resulted in poor performance.

The performance of the variant FL shows the highest variance. Sometimes, the behavior
trees generated are similar to those produced by Maple. However, in many cases, the
left leaf node of subtrees is an action node with an associated exploration low-level
behavior. Once this node is reached, this low-level behavior is executed until the end of the
experimental run. As a result, the performance observed is similar to the one of the dummy
control software.

AGGREGATION

Variant ICFN outperforms Maple. Maple, FL, ND, and SP show similar performance.
Maple outperforms CA|CC. Every variant produced behavior trees that outperform the
dummy control software. See Fig. 7B.

All the instances of control software generated by Maple and the different variants make
use of exploration and attraction as low-level behaviors to efficiently search for black
spots. Maple and FL use stop as a low-level behavior in order to keep the robots on the
discovered spot. Contrarily, the majority of the behavior trees adopting variant ICFN, ND,
SP, and CA|CC do not contain the stop low-level behaviors as action nodes. Instead, they
take advantage of the fact that, when no action node is executed, the robot stands still.
ICFN is the only variant for which Iterated F-race was able to exploit this feature to
outperform Maple.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 20/27

http://dx.doi.org/10.7717/peerj-cs.314#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.314#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

RELATED WORK
Originating from game development (Isla, 2005), behavior trees have found recent
applications in artificial intelligence (Perez et al., 2011) and robotics. Most of the robotics
research focuses on their use in manipulators. Bagnell et al. (2012) used behavior trees
to control a manipulator to perform simple manipulation tasks.Hu et al. (2015) used them
to control the Raven-II surgical robot to perform an abstract version of tumor ablation
surgery. Behavior trees have also been used as a control software for mobile robotics
systems. Marzinotto et al. (2014) designed a behavior tree to make a NAO robot move
towards a table and grasp an object. In all of the presented studies, behavior trees have been
manually designed.

To the best of our knowledge, the work of Jones et al. (2018) is the first and only
application of behavior trees in the context of automatic off-line design of robot swarms2, 3.
The authors proposed a method based on genetic programing that automatically generates
control software for a swarm of Kilobots in the form of behavior trees. The method has
been tested on a foraging task in simulation and in reality. Their results suggest that
behavior trees can be used as a control architecture in swarm robotics. Besides the different
optimization processes adopted in the method of Jones et al. (2018) and in Maple, another
major difference between the two methods lies in the action nodes used. In the method
proposed by Jones et al. (2018), low-level behaviors are atomic commands: for example,
move forward, turn left/right, or store data. Contrarily, the low-level behaviors that can be
combined by Maple are more complex actions. Regardless of this difference, the low-level
behaviors of the two methods lack natural success or failure termination criteria.
To use their atomic low-level behaviors as action nodes in behavior trees, Jones et al. (2018)
programed the action nodes such that they return success after the second execution of
the behavior, but failure is never returned. This solution allowed their method to have no
restrictions on the selection of the control-flow nodes. In Maple, the action nodes can only
return running, but the structure of the behavior trees, and the control-flow nodes, are
restricted such that an external condition terminates the execution of an action.

CONCLUSIONS
In this article, we presented Maple: an automatic modular design method that generates
control software for robot swarms in the form of behavior trees. Maple is part of the
AutoMoDe family: it generates control software by selecting, combining, and fine-tuning a
set of predefined modules. Previous instances of AutoMoDe have all used probabilistic
finite-state machines as a control architecture. In comparison to finite-state machines,
behavior trees offer a number of appealing features. However, most of these features only
emerge if the action nodes return their states of execution, that is, if the robot is able to tell
whether the low-level behavior it executes is terminated successfully, could not execute
normally, or still requires time to terminate. In the context of swarm robotics, the simple
and reactive robots typically used are not able to determine the state of execution of
the low-level behaviors they operate. With Maple, we have investigated the use of behavior
trees as a control architecture in the automatic modular design for robot swarms, and
have shown that they can still be used even if the low-level behaviors they combine do not

2 The authors also adapted their system for
the onboard evolution of a swarm of nine
Xpucks (Jones et al., 2019).

3 Neupane & Goodrich (2019) proposed a
method based on the grammatical
evolution of behavior trees for robot
swarms, but their experiments were
conducted in simulation only and the
focus of the paper is mainly ported on the
evolutionary approach rather than on
behavior trees.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 21/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

return success nor failure. It is our contention that, despite their potential is not exploited
in the context of the automatic modular design of robot swarms, behavior trees are a
control architecture that is worth exploring. In particular, we reckon that the inherent
modularity they offer could be exploited by future automatic modular design methods. In
fact, behavior trees can be easily manipulated without compromising their structural
integrity, which allows for the use of tailored optimization algorithms based on local
manipulations.

We devised Maple to be as similar as possible to Chocolate: the two methods share the
same optimization algorithm, the same set of predefined modules, and generate control
software on the basis of the same reference model. The only difference between Maple

and Chocolate is the control architecture adopted. We conducted three studies based on
two missions: FORAGING and AGGREGATION to assess the implications of adopting behavior
trees as a control architecture. In the first study, we assessed Maple’s ability to cross the
reality gap satisfactorily by comparing its performance in simulation and in reality against
Chocolate and EvoStick, an evolutionary swarm robotics method. In the second study,
we investigated the effect of the design budget on Maple and Chocolate. In the third
study, we explored different variants of Maple’s control architecture.

Our main findings are the following. (A) The results show that Maple is robust to the
reality gap. Indeed, Maple and Chocolate performed similarly, and they suffered from a
reduced performance drop with respect to EvoStick. These results confirm Francesca
et al. (2014) conjecture that AutoMoDe is robust to the reality gap due to its modular
nature. They also indicate that the architecture into which the predefined modules are
combined is a secondary issue. (B) The study on the effect of the design budget has shown
that: (i) the restrictions on the structure of Maple’s behavior trees inhibit its expressiveness,
indeed, for FORAGING, Maple is unable to express some efficient solution that Chocolate
could generate; (ii) Maple converges to efficient solutions faster than Chocolate because of
the smaller search space. The restrictions of Maple, imposed by the absence of natural
termination criteria in the low-level behaviors adopted, appear to be a double-edged sword:
they facilitate the initial search for efficient solutions, but curb the expressiveness of
behavior trees. When adopting the low-level behaviors of Chocolate, none of the variants
considered outperformed Maple in both missions. Overall, our three studies indicate that
behavior trees can be used in the particular context of swarm robotics in which low-level
behaviors typically do not have a natural termination criterion. However, they also suggest
that behavior trees only offer a benefit over probabilistic finite state machines when the
design budget is small.

Future work could develop along two avenues. The first one could be dedicated to
further investigate the use of Vanilla’s and Chocolate’s low-level behaviors as action
nodes of behavior trees. For example, the control software generated by Maple with
different design budgets could be assessed in robot experiments. The same holds for
control software generated by Maple’s variants. Also, further variants could be explored by
relaxing the restrictions on the number of levels, branches, and leaves. For the relevant
ones, the effect of the design budget could be investigated. As a second avenue, future work
could be devoted to developing an ad-hoc optimization algorithm that takes advantage

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 22/27

http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

of the inherent modularity of behavior trees. Local search algorithms, such as iterative
improvement and simulated annealing, have shown to be promising algorithms for the
automatic modular design of swarm behaviors (Kuckling, Ubeda Arriaza & Birattari, 2019;
Kuckling, Stützle & Birattari, 2020) and could serve as starting points.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement
No. 681872). Mauro Birattari and Jonas Kuckling received support from the Belgian Fonds
de la Recherche Scientifique—FNRS. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement
No 681872). Mauro Birattari and Jonas Kuckling received support from the Belgian Fonds
de la Recherche Scientifique—FNRS. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests
Mauro Birattari is an Academic Editor for PeerJ.

Author Contributions
� Antoine Ligot conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Jonas Kuckling conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.

� Darko Bozhinoski conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

� Mauro Birattari conceived and designed the experiments, authored or reviewed drafts of
the paper, directed the research, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data and code are available in the Supplemental Files and at IRIDIA:
http://iridia.ulb.ac.be/supp/IridiaSupp2020-009/index.html.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.314#supplemental-information.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 23/27

http://dx.doi.org/10.7717/peerj-cs.314#supplemental-information
http://iridia.ulb.ac.be/supp/IridiaSupp2020-009/index.html
http://dx.doi.org/10.7717/peerj-cs.314#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.314#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

REFERENCES
Bagnell JA, Cavalcanti F, Cui L, Galluzzo T, Hebert M, Kazemi M, Klingensmith M, Libby J, Liu

TY, Pollard N, Pivtoraiko M, Valois J-S, Zhu R. 2012. An integrated system for autonomous
robotics manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS, Piscataway: IEEE, 2955–2962.

Balaprakash P, Birattari M, Stützle T. 2007. Improvement strategies for the F-Race algorithm:
sampling design and iterative refinement. In: Bartz-Beielstein T, Blesa MJ, Blum C, Naujoks B,
Roli A, Rudolph G, Sampels M, eds. Hybrid Metaheuristics, 4th International Workshop, HM
2007. Vol. 4771. Berlin: Springer, 108–122.

Beni G. 2004. From swarm intelligence to swarm robotics. In: Şahin E, Spears WM, eds. Swarm
Robotics, SAB. Vol. 3342. Berlin: Springer, 1–9.

Birattari M, Ligot A, Bozhinoski D, Brambilla M, Francesca G, Garattoni L, Garzón Ramos D,
Hasselmann K, Kegeleirs M, Kuckling J, Pagnozzi F, Roli A, Salman M, Stützle T. 2019.
Automatic off-line design of robot swarms: a manifesto. Frontiers in Robotics and AI 6:59
DOI 10.3389/frobt.2019.00059.

Birattari M, Ligot A, Hasselmann K. 2020. Disentangling automatic and semi-automatic
approaches to the optimization-based design of control software for robot swarms.
Nature Machine Intelligence 2(9):494–499 DOI 10.1038/s42256-020-0215-0.

Bozhinoski D, Birattari M. 2018. Designing control software for robot swarms: software
engineering for the development of automatic design methods. In: Proceedings of the 1st
International Workshop on Robotics Software Engineering, RoSE, New York: ACM, 33–35.

Brambilla M, Ferrante E, Birattari M, Dorigo M. 2013. Swarm robotics: a review from the swarm
engineering perspective. Swarm Intelligence 7(1):1–41 DOI 10.1007/s11721-012-0075-2.

Brooks RA. 1986.A robust layered control system for a mobile robot. IEEE Journal on Robotics and
Automation 2(1):14–23 DOI 10.1109/JRA.1986.1087032.

Brooks RA. 1991. Intelligence without representation. Artificial Intelligence 47(1–3):139–159
DOI 10.1016/0004-3702(91)90053-M.

Brooks RA. 1992.Artificial life and real robots. In: Varela FJ, Bourgine P, eds. Towards a Practice of
Autonomous Systems. Proceedings of the First European Conference on Artificial Life. Cambridge:
MIT Press, 3–10.

Bäck T, Fogel DB, Michalewicz Z. 1997.Handbook of evolutionary computation. First. Bristol: IOP
Publishing Ltd.

Champandard AJ. 2007. Understanding behavior trees. Available at http://aigamedev.com/open/
articles/bt-overview/.

Champandard AJ, Dawe M, Hernandez-Cerpa D. 2010. Behavior trees: three ways of cultivating
game AI. Game Developers Conference, AI Summit. Available at https://www.gdcvault.com/
play/1012744/Behavior-Trees-Three-Ways-of.

Christensen AL, Dorigo M. 2006. Evolving an integrated phototaxis and hole-avoidance behavior
for a swarm-bot. In: Rocha LM, Yaeger LS, Bedau MA, Floreano D, Goldstone RL, Vespignani A,
eds. Artificial Life X: Proceedings of the Tenth International Conference on the Simulation and
Synthesis of Living Systems. Cambridge: MIT Press. A Bradford Book, 248–254.

Colledanchise M, Ögren P. 2018. Behavior Trees in Robotics and AI: An Introduction.
First Edition. Boca Raton: CRC Press.

Conover WJ. 1999. Practical Nonparametric Statistics. Third Edition. New York: JohnWiley & Sons.

Dorigo M, Birattari M, Brambilla M. 2014. Swarm robotics. Scholarpedia 9(1):1463
DOI 10.4249/scholarpedia.1463.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 24/27

http://dx.doi.org/10.3389/frobt.2019.00059
http://dx.doi.org/10.1038/s42256-020-0215-0
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1016/0004-3702(91)90053-M
http://aigamedev.com/open/articles/bt-overview/
http://aigamedev.com/open/articles/bt-overview/
https://www.gdcvault.com/play/1012744/Behavior-Trees-Three-Ways-of
https://www.gdcvault.com/play/1012744/Behavior-Trees-Three-Ways-of
http://dx.doi.org/10.4249/scholarpedia.1463
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

Floreano D, Husbands P, Nolfi S. 2008. Evolutionary robotics. First. Berlin, Heidelberg: Springer
Handbook of Robotics, Springer Handbooks, 1423–1451.

Francesca G, Birattari M. 2016. Automatic design of robot swarms: achievements and challenges.
Frontiers in Robotics and AI 3(29):1–9 DOI 10.3389/frobt.2016.00029.

Francesca G, Brambilla M, Brutschy A, Garattoni L, Miletitch R, Podevijn G, Reina A,
Soleymani T, Salvaro M, Pinciroli C, Mascia F, Trianni V, Birattari M. 2015.
AutoMoDe-Chocolate: automatic design of control software for robot swarms.
Swarm Intelligence 9(2–3):125–152 DOI 10.1007/s11721-015-0107-9.

Francesca G, Brambilla M, Brutschy A, Trianni V, Birattari M. 2014. AutoMoDe: a novel
approach to the automatic design of control software for robot swarms. Swarm Intelligence
8(2):89–112 DOI 10.1007/s11721-014-0092-4.

Friedman M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association 32(200):675–701
DOI 10.1080/01621459.1937.10503522.

Friedman M. 1939. A correction: the use of ranks to avoid the assumption of normality implicit in
the analysis of variance. Journal of the American Statistical Association 34(205):109.

Garattoni L, Birattari M. 2016. Swarm robotics. In: Webster JG, ed. Wiley Encyclopedia of
Electrical and Electronics Engineering. Hoboken: John Wiley & Sons, 1–19.

Garattoni L, Francesca G, Brutschy A, Pinciroli C, Birattari M. 2015. Software infrastructure for
e-puck (and TAM). Technical Report TR/IRIDIA/2015-004, IRIDIA, Université libre de
Bruxelles, Belgium. Available at http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2015-004.pdf.

Garzón Ramos D, Birattari M. 2020. Automatic design of collective behaviors for robots that can
display and perceive colors. Applied Sciences 10(13):4654 DOI 10.3390/app10134654.

Geman S, Bienenstock E, Doursat R. 1992. Neural networks and the bias/variance dilemma.
Neural Computation 4(1):1–58 DOI 10.1162/neco.1992.4.1.1.

Gutiérrez Á, Campo A, Dorigo M, Donate J, Monasterio-Huelin F, Magdalena L. 2009. Open e-
puck range & bearing miniaturized board for local communication in swarm robotics. In:
Kosuge K, ed. IEEE International Conference on Robotics and Automation, ICRA. Piscataway:
IEEE, 3111–3116.

Hasselmann K, Ligot A, Francesca G, Birattari M. 2018. Reference models for AutoMoDe.
Technical Report TR/IRIDIA/2018-002, IRIDIA, Université libre de Bruxelles,
Belgium. Available at http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2018-002.pdf.

Hasselmann K, Robert F, Birattari M. 2018. Automatic design of communication-based
behaviors for robot swarms. In: Dorigo M, Birattari M, Garnier S, Hamann H, Montes de Oca M,
Solnon C, Stützle T, eds. Swarm Intelligence—ANTS. Vol. 11172. Cham: Springer, 16–29.

Hauert S, Zufferey J-C, Floreano D. 2009. Evolved swarming without positioning information: an
application in aerial communication relay. Autonomous Robots 26(1):21–32
DOI 10.1007/s10514-008-9104-9.

Hu D, Gong Y, Hannaford B, Seibel EJ. 2015. Semi-autonomous simulated brain tumor ablation
with RavenII surgical robot using behavior tree. In: IEEE International Conference on Robotics
and Automation, ICRA, Piscataway: IEEE, 3868–3875.

Isla D. 2005. Handling complexity in the Halo 2 AI. In: Game Developers Conference, Vol. 12.

Jakobi N, Husbands P, Harvey I. 1995. Noise and the reality gap: the use of simulation in
evolutionary robotics. In: Morán F, Moreno A, Merelo JJ, Chacón P, eds. Advances in Artificial
Life: Third European Conference on Artificial Life. Vol. 929. Berlin: Springer, 704–720.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 25/27

http://dx.doi.org/10.3389/frobt.2016.00029
http://dx.doi.org/10.1007/s11721-015-0107-9
http://dx.doi.org/10.1007/s11721-014-0092-4
http://dx.doi.org/10.1080/01621459.1937.10503522
http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2015-004.pdf
http://dx.doi.org/10.3390/app10134654
http://dx.doi.org/10.1162/neco.1992.4.1.1
http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2018-002.pdf
http://dx.doi.org/10.1007/s10514-008-9104-9
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

Jones S, Studley M, Hauert S, Winfield A. 2018. Evolving behaviour trees for swarm robotics. In:
Groß R, Kolling A, Berman S, Frazzoli E, Martinoli A, Matsuno F, Gauci M, eds. Distributed
Autonomous Robotic Systems (DARS). Vol. 6. Cham: Springer, 487–501.

Jones S, Winfield A, Hauert S, Studley M. 2019. Onboard evolution of understandable swarm
behaviors. Advanced Intelligent Systems 1(6):1900031 DOI 10.1002/aisy.201900031.

Kuckling J, Ligot A, Bozhinoski D, Birattari M. 2018a. Behavior trees as a control architecture in
the automatic modular design of robot swarms. In: Dorigo M, Birattari M, Blum C,
Christensen AL, Reina A, Trianni V, eds. Swarm Intelligence—ANTS. Vol. 11172. Cham:
Springer, 30–43.

Kuckling J, Ligot A, Bozhinoski D, Birattari M. 2018b. Search space for AutoMoDe-Chocolate
and AutoMoDe-Maple. Technical Report TR/IRIDIA/2018-012, IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium. Available at http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2018-
012.pdf.

Kuckling J, Stützle T, Birattari M. 2020. Iterative improvement in the automatic modular design
of robot swarms. PeerJ Computer Science (In press).

Kuckling J, Ubeda Arriaza K, Birattari M. 2019. Simulated annealing as an optimization
algorithm in the automatic modular design of robot swarms. In: Beuls K, Bogaerts B,
Bontempi G, Geurts P, Harley N, Lebichot B, Lenaerts T, Gilles L, Van Eecke P, eds. Proceedings
of the Reference AI & ML Conference for Belgium, Netherlands & Luxemburg, BNAIC/
BENELEARN 2019. Vol. 2491. Aachen: CEUR Workshop Proceedings.

Ligot A, Birattari M. 2018. On mimicking the effects of the reality gap with simulation-only
experiments. In: Dorigo M, Birattari M, Garnier S, Hamann H, Montes de Oca M, Solnon C,
Stützle T, eds. Swarm Intelligence—ANTS. Vol. 11172. Cham: Springer, 109–122.

Ligot A, Birattari M. 2019. Simulation-only experiments to mimic the effects of the reality gap in
the automatic design of robot swarms. Swarm Intelligence 14(1):1–24
DOI 10.1007/s11721-019-00175-w.

Ligot A, Kuckling J, Bozhinoski D, Birattari M. 2020.Automatic modular design of robot swarms
using behavior trees as a control architecture. Available at http://iridia.ulb.ac.be/supp/
IridiaSupp2020-009/index.html.

Lim C-U, Baumgarten R, Colton S. 2010. Evolving behaviour trees for the commercial game
DEFCON. In: Di Chio C, Cagnoni S, Cotta C, Ebner M, Ekárt A, Esparcia-Alcázar AI, Goh C-K,
Merelo JJ, Neri F, Preuss M, Togelius J, Yannakakis GN, eds. Applications of Evolutionary
Computation. Vol. 6024. Berlin: Springer, 100–110.

Lipson H. 2005. Evolutionary robotics and open-ended design automation. In: Bar-Cohen Y, ed.
Biomimetics: Biologically Inspired Technologies. Vol. 17. Boca Raton: CRC Press, 129–155.

López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Birattari M, Stützle T. 2016. The irace
package: iterated racing for automatic algorithm configuration. Operations Research Perspectives
3:43–58 DOI 10.1016/j.orp.2016.09.002.

Marzinotto A, Colledanchise M, Smith C, Ögren P. 2014. Towards a unified behavior trees
framework for robot control. In: IEEE International Conference on Robotics and Automation,
ICRA, Piscataway: IEEE, 5420–5427.

Mondada F, Bonani M, Raemy X, Pugh J, Cianci C, Klaptocz A, Magnenat S, Zufferey J-C,
Floreano D, Martinoli A. 2009. The e-puck, a robot designed for education in engineering. In:
Gonçalves P, Torres P, Alves C, eds. Proceedings of the 9th Conference on Autonomous Robot
Systems and Competitions. Castelo Branco: Instituto Politécnico de Castelo Branco, 59–65.

Nehaniv CL, Dautenhahn K. 2002. Imitation in animals and artifacts. First Edition. Cambridge:
MIT Press.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 26/27

http://dx.doi.org/10.1002/aisy.201900031
http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2018-012.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2018-012.pdf
http://dx.doi.org/10.1007/s11721-019-00175-w
http://iridia.ulb.ac.be/supp/IridiaSupp2020-009/index.html
http://iridia.ulb.ac.be/supp/IridiaSupp2020-009/index.html
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.7717/peerj-cs.314
https://peerj.com/computer-science/

Neupane A, Goodrich M. 2019. Learning swarm behaviors using grammatical evolution and
behavior trees. In: Kraus S, ed. Twenty-Eighth International Joint Conference on Artificial
Intelligence (IJCAI-19). IJCAI, 513–520.

Ögren P. 2012. Increasing modularity of UAV control systems using computer game behavior
trees. In: Thienel J, ed. AIAA Guidance, Navigation, and Control Conference 2012. Reston: AIAA
Meeting Papers, 358–393.

Paxton C, Hundt A, Jonathan F, Guerin K, Hager GD. 2017. CoSTAR: instructing collaborative
robots with behavior trees and vision. In: IEEE International Conference on Robotics and
Automation, ICRA, Piscataway: IEEE, 564–571.

Perez D, Nicolau M, O’Neill M, Brabazon A. 2011. Evolving behaviour trees for the Mario AI
competition using grammatical evolution. In: Di Chio C, Cagnoni S, Cotta C, Ebner M, Ekárt A,
Esparcia-Alcázar AI, Merelo JJ, Neri F, Preuss M, Richter H, Togelius J, Yannakakis GN, eds.
Applications of Evolutionary Computation, Volume 6624 of Lecture Notes in Computer Science.
Berlin: Springer, 123–132.

Pinciroli C, Trianni V, O’Grady R, Pini G, Brutschy A, Brambilla M, Mathews N, Ferrante E, Di
Caro GA, Ducatelle F, Birattari M, Gambardella LM, Dorigo M. 2012. ARGoS: a modular,
parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence 6(4):271–295
DOI 10.1007/s11721-012-0072-5.

Quinn M, Smith L, Mayley G, Husbands P. 2003. Evolving controllers for a homogeneous system
of physical robots: structured cooperation with minimal sensors. Philosophical Transactions of
the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
361(1811):2321–2343 DOI 10.1098/rsta.2003.1258.

Şahin E. 2004. Swarm robotics: from sources of inspiration to domains of application. In: Şahin E,
Spears WM, eds. Swarm Robotics, SAB. Vol. 3342. Berlin: Springer, 10–20.

Salman M, Ligot A, Birattari M. 2019. Concurrent design of control software and configuration of
hardware for robot swarms under economic constraints. PeerJ Computer Science 5(4):e221
DOI 10.7717/peerj-cs.221.

Silva F, Duarte M, Correia L, Oliveira SM, Christensen AL. 2016. Open issues in evolutionary
robotics. Evolutionary Computation 24(2):205–236 DOI 10.1162/EVCO_a_00172.

Spaey G, Kegeleirs M, Garzón Ramos D, Birattari M. 2019. Comparison of different exploration
schemes in the automatic modular design of robot swarms. In: Beuls K, Bogaerts B, Bontempi G,
Geurts P, Harley N, Lebichot B, Lenaerts T, Gilles L, Van Eecke P, eds. Proceedings of the
Reference AI & ML Conference for Belgium, Netherlands & Luxemburg, BNAIC/BENELEARN
2019. Vol. 2491. Aachen: CEUR Workshop Proceedings.

Spears WM, Spears D, Hamann JC, Heil R. 2004.Distributed, physics-based control of swarms of
vehicles. Autonomous Robots 17(2):137–162 DOI 10.1023/B:AURO.0000033970.96785.f2.

Stranieri A, Turgut AE, Salvaro M, Garattoni L, Francesca G, Reina A, Dorigo M, Birattari M.
2013. IRIDIA’s arena tracking system. Technical Report TR/IRIDIA/2013-013, IRIDIA,
Université libre de Bruxelles, Belgium. Available at http://iridia.ulb.ac.be/IridiaTrSeries/link/
IridiaTr2013-013.pdf.

Trianni V. 2008. Evolutionary Swarm Robotics. Berlin: Springer.

Trianni V. 2014. Evolutionary robotics: model or design? Frontiers in Robotics and AI 1:13
DOI 10.3389/frobt.2014.00013.

Trianni V, Nolfi S. 2009. Self-organizing sync in a robotic swarm: a dynamical system view. IEEE
Transactions on Evolutionary Computation 13(4):722–741 DOI 10.1109/TEVC.2009.2015577.

Ligot et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.314 27/27

http://dx.doi.org/10.1007/s11721-012-0072-5
http://dx.doi.org/10.1098/rsta.2003.1258
http://dx.doi.org/10.7717/peerj-cs.221
http://dx.doi.org/10.1162/EVCO_a_00172
http://dx.doi.org/10.1023/B:AURO.0000033970.96785.f2
http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2013-013.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2013-013.pdf
http://dx.doi.org/10.3389/frobt.2014.00013
http://dx.doi.org/10.1109/TEVC.2009.2015577
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.314

	Automatic modular design of robot swarms using behavior trees as a control architecture
	Introduction
	Automode—maple
	Experimental setup
	Study 1: performance in simulation and reality
	Study 2: performance versus design budget
	Study 3: Maple and some of its possible variants
	Results
	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

