Universite Libre de Bruxelles

Institut de Recherches Interdisciplinaires
IRIDIANN ot de Développements en Intelligence Artificielle

4)

AutoMoDe, NEAT, and EvoStick:
Implementations for the E-puck Robot in
ARGo0S3

A. LicoT, K. HASSELMANN, B. DELHAISSE, L.
\ GARATTONI, G. FRANCESCA, and M. BIRATTARI /

/
IRIDIA — Technical Report Series

Technical Report No.
TR/IRIDIA /2017-002

January 2017
_ Last revision: April 2018)

IRIDIA — Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

UNIVERSITE LIBRE DE BRUXELLES

Av F. D. Roosevelt 50, CP 194/6

1050 Bruxelles, Belgium

Technical report number TR/IRIDIA /2017-002

Revision history:

TR/IRIDIA/2017-002.001 January 2017
TR/IRIDIA/2017-002.002 April 2018
TR/IRIDIA/2017-002.003 April 2018
TR/IRIDIA /2017-002.004 April 2018

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA —
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

AutoMoDe, NEAT, and EvoStick:
Implementations for the E-puck Robot in
ARGoS3

Antoine L1GoT; Ken HASSELMANN, Brian DELHAISSE,
Lorenzo GARATTONI, Gianpiero FRANCESCA, and Mauro BIRATTARI

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium.

January 2017

1 Introduction

This document describes the packages ARGoS3-AutoMoDe and ARGoS3-NEAT,
the implementations of AutoMoDe and NEAT for the ARGoS3 simulator and
the e-puck robot. This document also describes EvoStick, a specific instance
of NEAT.

ARGoS3 (Pinciroli et al., 2012) is a widespread swarm robotics simulator.
The main advantages over competitors are its modular architecture, its efficiency
with large groups of robots and the ease it provides when transferring control
software from simulation to real robots.

The e-puck (Mondada et al., 2009) is a small two-wheeled robot initially
developed for education purposes. Its low price and multiple functionalities
make this robot commonly used in swarm robotics research.

The e-puck robot can be used in ARGoS3 via the e-puck plugin for ARGoS3
described in Garattoni et al. (2015). This plugin enables the use of a particular
version of the original e-puck robot in both simulation and reality. This version
of the e-puck comprises 8 infrared transceivers, 3 ground sensors, a range-and-
bearing board, an omnidirectional camera and 3 colored LEDs. The infrared
transceivers are used by the e-puck to detect the presence of close obstacles and
measure the intensity of surrounding light. The ground sensors allow the e-puck
to detect the color of the ground below itself. The range-and-bearing board al-
lows the e-puck to communicate with robots in a range of approximately 0.70m.
For each received message, the range-and-bearing board computes the distance
(range) and relative angle (bearing) of the emitting e-puck. The omnidirec-
tional camera offers a 360 degree view of the surrounding of the e-puck. More
details on the capabilities of the improved version of the e-puck can be found
in Garattoni et al. (2015).

*corresponding author: aligot@ulb.ac.be

The rest of the document is organized as follows: Section 2 is dedicated to
the description of the ARGoS3-AutoMoDe package. Section 3 is dedicated to
the description of the ARGoS3-NEAT package. Section 4 is dedicated to the
description of EvoStick. Section 5 is dedicated to the description of an aggre-
gation mission used as a running example in the different packages descriptions.

2 The ARGoS3-AutoMoDe package

AutoMoDe (automatic modular design) is an automatic design approach for
robot swarms. AutoMoDe generates, via an optimization algorithm, control
software in the form of a probabilistic finite state machine (PFSM). These PF-
SMs are created by searching for the best combination of preexisting modules
and the values of their parameters.

In the ARGoS3-AutoMoDe package, we implemented the six behaviors and
the six conditions modules described in Francesca et al. (2014) and Francesca
et al. (2015) as constituent modules of Vanilla and Chocolate. One will also
find the necessary elements needed to run the five different experiments de-
scribed in Francesca et al. (2015). These elements comprise the experiment
configurations files, the loop functions classes and the adaptations to irace
(Lépez-Ibénez et al., 2011).

The remaining of this section is articulated as follows: Section 2.1 describes
the installation procedure and Section 2.2 explains how ARGoS3-AutoMoDe
works.

2.1 Installation

In this section, we describe how the user has to proceed in order to download and
compile the ARGoS3-AutoMoDe package. The steps to follow will only work if
the requirements described in Section 2.1.1 are met. Instructions for compiling
the ARGoS3-AutoMoDe package for simulations and real robots purposes are
described in Sections 2.1.3 and 2.1.4 respectively.

2.1.1 Requirements

The user needs a GNU/Linux or UNIX-like operating system as Windows in
not supported.

Additionally, the user will need to download, compile and install the latest
version of ARGoS3 (Pinciroli et al., 2012):

https://github.com/ilpincy/argos3

and the plugin for the E-pucks robots, ARGoS3-Epuck (Garattoni et al.,
2015):

https://github.com/lgarattoni/argos3—epuck

Finally, the user should follow the installation instructions of irace (Lopez-
Ibdnez et al., 2011) in its user guide!.

ISee http://iridia.ulb.ac.be/irace/

2.1.2 Downloading
The development sources are accessible through git:

$ git clone https://github.com/demiurge—project /ARGoS3—
AutoMoDe argos3—AutoMoDe

2.1.3 Compiling for the simulator

The following commands will result in the creation of an executable, automode_main.
This executable will be placed in the bin folder? and can be used to launch an
experiment with a description of a PSFM.

cd argos3—AutoMoDe
mkdir build

cd build

cmake

make

&ShH H P PP

2.1.4 Compiling for the robots

cd argos3—AutoMoDe

mkdir build

cd build

cmake —DCMAKE TOOL.CHAIN=../src /cmake/TargetEPuck.cmake
make

&ShH L P PP

2.2 Example

In this section we explain how to use the ARGoS3-AutoMoDe package. In Sec-
tion 2.2.1 we describe the different options that can be used with ARGoS3-
AutoMoDe, Section 2.2.2 illustrates the functioning of ARGoS3-AutoMoDe
through a small example and Section 2.2.4 explains how to use ARGoS3-AutoMoDe
with irace.

2.2.1 Options

The ARGoS3-AutoMoDe options can be specified by command line of the ex-
ecutable created (i.e. ~/argos3-AutoMoDe/bin/automode_main) using flags or
by setting them in the experiment configuration file (.argos) 3. In the latter case,
the options have to be specified in the params node of the controllers section
of the experiment configuration file. The following list contains the different
options for AutoMoDe.

fsm-config flag: ——fsm-config default: "" [MANDATORY]
The description of a PFSM.
2That is ~/argos3-AutoMoDe/bin

3See http://www.argos-sim.info/user_manual.php for more details about ARGoS3 and how
it works.

radom_seed flag: ——seed or -s default: 0 [OPTIONAL]

The random seed that is used by ARGoS3.

If not present or set to 0, the value of the random seed used is taken
from the internal clock time. Specifying a value is necessary to obtain
the same results for repetitions of an experiment.

Differently from the other options, the value of random_seed has to be
specified in the experiment node of the framework section of the config-
uration file.

Specifying a value for the random seed as command line argument will
overwrite the value specified in the configuration file.

readable flag: --readable-fsmor -r default: "false" [OPTIONAL]

When set to true, AutoMoDe will display a URL containing a DOT
description of the PFSM given in parameter. The user can copy-paste
this URL in its favorite web browser to have a graphical representation
of the PFSM. See Figure 2 for an example.

It is important to note that the URL will be displayed as many times as
there are robots when this option is specified via the experiment file.

history default: "false" [OPTIONAL]

Enable/disable the recording of the visited states of the PFSM.

When enabled, ARGoS3-AutoMoDe will create a file for each epuck con-
taining its behavioral history. This history file will contain, for each time
step, the behavioral module controlling the robot along side with the
conditional modules tested and their values (either O or 1).

Currently, this option can only by specified from the experiment file (.ar-

g08).

history-folder default: "./" [OPTIONAL]
The folder where the history of each robot will be saved.

2.2.2 Running the example

In this section we show how to use ARGoS3-AutoMoDe with an example. The
example is the aggregation mission described in Section 5. ARGoS3-AutoMoDe
requires two elements in order to work: an experiment configuration file (.argos)
and a loop functions class. The user can find these two elements for the example
mission in a designated folder in the experiments and loop-functions folders of
the package .

For the loop functions class, the user has to create a class that inherits
from the AutoMoDeLoopFunctions® and that implements at least two methods:
GetObjectiveFunction() and GetRandomPosition(). The first method should re-
turn the fitness of the controller while the second one is in charge of returning a
position vector for a robot in the arena. Our implementation of the GetRandom-
Position() method allows number_robots robots to be uniformly distributed in

4That is ~/argos3-AutoMoDe/experiments/example/example_aggregation_visu.argos for
the experiment configuration file and ~/argos3-AutoMoDe/experiments/example/ExampleAg
gregationLoopFunc.* for the loop functions class.

5Located in ~/argos3-AutoMoDe/src/core/

a circle of radius dist_radius. The value of these parameters can be changed
in the params node of the loop_functions section in the experiment configuration
file.

For convenience, the provided experiment configuration file contains a PFSM
description. In order to use that PFSM as the robots controller, the user can
follow the steps:

$ cd "“/argos3—AutoMoDe/experiments/example
$ argos3 —c example_aggregation_visu.argos

The user can also launch the same experiment with the executable automode—
main. In this case, the PFSM configuration has to be specified as command line
argument (see Section 2.2.1). In the instructions below, the PFSM following
the —-fsm-config flag consists in a single state machine.

$ cd "“/argos3—AutoMoDe/experiments/example
$../../bin/automode—main —c example_aggregation_visu.argos
—fsm—config —nstates 1 —s0 4 —att0 5

2.2.3 Encoding of the Probabilistic Finite State Machines

The PFSM considered by AutoMoDe are encoded as chains of characters written
in a language that consists in the succession of variable-value pairs.

A PFSM description is composed of the specification of the number of states
S (--nstates), followed by the successive description of the behavior modules.
The description of the behavior modules comprises the encoding of the behavior
itself and the encoding of its outgoing transition modules. The nomenclature
of the variables composing the description of a behavior module consists of the
concatenation of a variable identifier with the index of the module in the PFSM.
We note b the index of the behavior modules, with b € [0,S). The encoding of
a behavior module is composed of the behavior identifier (--sb), its potential
parameter (see Table 1), and the number of outgoing transitions T}, (--nb).

Similarly, the variables describing the outgoing transitions of a behavior
module are written as the concatenation of the variable identifier, the index of
the behavior module and the index of the outgoing transition within the behavior
module, with both indexes separated by the character x. We note t; the index of
the transitions going out of behavior module b, with t;, € [0,T}), and we define
V4 as the vector containing the possible behavior indexes to which a transition
tp can point. Since the origin and destination behaviors of a transition should
be different, we have V, = {0,...,S—1} \ {b}. The description of an outgoing
transition is composed of the index of an arrival behavior module in V;, (--nbxty),
the transition identifier (--cbxt;) and its potential parameters (see Table 2).

Identifier Behavior Parameter
0 Exploration --rwmb
1 Stop none
2 Phototaxis none
3 Anti-Phototaxis none
4 Attraction --atth
5) Repulsion —--repb

Table 1: Identifier and parameters of the behaviour modules with b € [0, S) .

--nstates 2 --s0 4 --att0O 5 --n0 1 -\-nOxO 0 --cOx0 2 --pOx0 O.g--sl 0 --rvm1 20
Y

k Transition 0 J
Y

State 0 State 1

Figure 1: Example of PFSM description. The PFSM is composed of two behav-
ior modules — attraction and exploration — and one transition module — white
floor. The destination behavior index of the transition, specified by --n0x0,
equals to 0. Since V, = {0,1} \ {0} = {1}, the transition goes to the state 1,
hence from attraction to exploration.

Attraction
att=5

WhiteFloor
p=0.5

Exploration
rwm=20

Figure 2: Example of a PFSM generated with the readable option. Corre-
sponds to the description of the PFSM of Figure 1. The robots starts in the
behavior circled twice.

Identifier Condition Parameter
0 Black floor --pbxty,
1 Gray floor -—pbxty
2 White floor ——pbxty
3 Neighbors-count —-pbxt, and --wbxt,
4 Inverted-neighbors-count | --pbxt, and --wbxt
) Fixed-probability --pbxty

Table 2: Identifier and parameters of the transition modules with b € [0,.5) and
ty € [0, Tb).
2.2.4 Optimization

In the ~/argos3-AutoMoDe/optimization/example folder, one can find the nec-
essary elements to optimize a PFSM controller for the aggregation mission pre-

sented in Section 5. The optimization algorithm used is irace (Lépez-Ibdnez
et al., 2011). The user should refer to the irace user guide for more information
on how irace worksS.

One can also find a useful bash script that generates the grammar used by
irace to build PFSM. This script takes three parameters: the maximal number
of states, the maximal number of transitions and the file name in which the
grammar will be written.

In order to start the optimization process, the user can simply execute

$ c¢d “/argos3—AutoMoDe/optimization /example
$ S$IRACE_HOME/bin/irace

6See http://iridia.ulb.ac.be/irace/

3 The ARGoS3-NEAT Package

ARGO0S3-NEAT is an implementation of NEAT for ARGoS3 simulator and e-
puck robotic platform. This package allows to optimize neural networks with
the NEAT evolutionary algorithm and to test it in simulation and on real robots.
NEAT (Stanley and Miikkulainen, 2002) is a method of neuroevolution in which
an evolutionary algorithm optimizes a neural network. In NEAT, differently
from other methods, the topology of this neural network is not fixed.

The remaining of this section is organized as follows: Section 3.1 is dedicated
to instruct the user on how to install ARGoS3-NEAT. Section 3.2 illustrates
how ARGoS3-NEAT works and Section 3.3 is dedicated to the configuration
and output files of ARGoS3-NEAT.

3.1 Installation

In this section we describe how the user has to proceed in order to download
and compile the ARGoS3-NEAT package. The user has to make sure the re-
quirements described in Section 3.1.1 are met before following the compiling
instructions of Sections 3.1.3 and 3.1.4.

3.1.1 Requirements

Currently we support only UNIX-like operating systems. Windows in currently
not supported. The following procedures applies to GNU/Linux but are similar

in all UNIX-like systems.

The lastest version of the ARGoS3 simulator should be installed and com-
piled. See, https://github.com/ilpincy/argos3 for details on installation. The
specific plugin for the E-puck robots (ARGoS3-Epuck) is also required. See,
https://github.com /lgarattoni/argos3-epuck for details on installation.

3.1.2 Download
$ git clone https://github.com/demiurge—project/ARGoS3-NEAT
argos3 —NEAT

For multiprocessing support for running parallel jobs, the user should also install
openmpi :
$ sudo apt install openmpi—bin

3.1.3 Compiling for the Simulator

cd argos3-NEAT
mkdir build
cmake

make

.1.4 Compiling for the Robots

W L L L

cd argos3-NEAT

mkdir build

cd build

cmake —DCMAKE TOOL.CHAIN=../src /cmake/TargetEPuck.cmake
make

&hHLhH P PP

3.2 Example

In this section, we illustrate how ARGo0S3-NEAT works with the help of an
example mission. The mission used as example is the one described in Section
5. The goal of the mission is to make robots aggregate on a black spot in a
dodecagonal arena. We use 5 e-puck robots and an experiment duration of 60
seconds.

3.2.1 Running the Example

The user can train the neural network with the evolutionary process with NEAT
and ARGoS3:

$ bin/train experiments/example/example_aggregation.xml params
/evostickParams.ne startgen/evostickstartgenes

The first argument is the argos xml file that describes the experiment.
The second one is the configuration file that drives the evolutionary process of
NEAT.
The third one is the genome that describes the topology of the neural network.

For running jobs in parallel, the user can change the previous command with
the following :

$ bin/train experiments/example/example_aggregation.xml params
/evostickParams.ne startgen/evostickstartgenes N bin/
scheduler

where N is the number of parallel jobs.

After the end of the process (after few minutes), the user will find the cham-
pion genomes under the gen/ folder.
The files are named with the number of the generation (the last generation’s
name contains the word ”last”), the number of the run and the ” _champ” suffix
for the champion.

Finally, in order to run a simulation with a specified genome (e.g. to visualize
a champion genome) the user can launch the following command:

$ bin/evostick_launch —c experiments/example/
example_aggregation_visu.xml —g gen/gen_last_1_champ

3.3 Configuration and Output Files
3.3.1 NEAT parameters file

The parameter file (.ne) contains the configuration for neuroevolution for NEAT.
The different options are the following :

TRAITS:
e trait_param_mut_prob: probability to mutate a trait parameter.

e trait_mutation_power: power of mutation on a single trait parameter,
that is, power about how much a trait can change/mutate.

e linktrait_mut_sig: Amount that mutation_num changes for a trait
change inside a link.

e nodetrait_mut_sig: Amount a mutation_num changes on a link connect-
ing a node that changed its trait.

e weigh_mut_power: power about how much a weight can change.

e recur_prob: probability that a link mutation which does not have to be
recurrent will be made recurrent.

COMPATIBILITY - SAME SPECIE:

e disjoint_coeff: coefficient used to determine the compatibility between
2 genomes.

e excess_coeff: coefficient used to determine the compatibility between 2
genomes.

e mutdiff_coeff: coefficient used to determine the compatibility between
2 genomes.

e compat_thresh: threshold under which 2 genomes are considered to be-
long to the same species.

e age_significance: How much does age matter? If it’s = 1 then young
species will get no fitness boost.

e survival_thresh: only the top survival_thresh*100\% of each species
is allowed to reproduce.

MUTATION:

e mutate_only_prob: probability of mutating without reproduction.
e mutate_random_trait_prob: probability to mutate a random trait.
e mutate_link_trait_prob: probability to change a link’s trait.

e mutate_node_trait_prob: probability to change a node’s trait.

e mutate_link weights_prob: probability to mutate a link’s weight.

e mutate_toggle_enable_prob: probability to toggle genes/connections
on/off.

e mutate_gene_reenable_prob: probability to reenable a gene/connection/link
between 2 nodes.

e mutate_add_node_prob: probability to add a node.
e mutate_add_link_prob: probability to add a link between two nodes.
MATING (type of mating):

e interspecies_mate_rate: probability of a mate being outside species.

10

mate_multipoint_prob: probability that the mating between 2 genomes
will be a multipoint crossover, that is, for every point in each Genome,
where each Genome shares the innovation number, the Gene is chosen
randomly from either parent. If one parent has an innovation absent in
the other, the child will inherit the innovation. Interspecies mating leads
to all genes being inherited. Otherwise, excess genes come from the most
fit parent.

mate_multipoint_avg_prob: probability that the mating is like the mul-
tipoint but instead of selecting one or the other genome when the innova-
tion numbers match, it averages their weights.

mate_singlepoint_prob’: probability that the mating is a single crossover
point.

mate_only_prob: probability of mating without mutation.

recur_only_prob: probability of forcing selection of ONLY links that are
naturally recurrent. Decide whether to make the link recurrent (It seems
that this parameter is replacing the recur_prob parameter defined above).

pop_size: size of the population.

dropoff_age: age at which a species starts to be penalized if it is not
making any progress, that is, it is no longer allowed to reproduce.

newlink_tries: number of tries mutate_add_link will attempt to find
an open link.

print_every: print at every print_every generations, a population file
containing the species/organisms at the current generation.

babies_stolen: number of offsprings to steal from poorer species and to
redistribute to better species. The more babies stolen, the more biased
the search.

num_runs: number of times to run the experiment.

NEW PARAMETERS (was not present in the original version):

num_gens: number of generations (This parameter has been added from
the original version).

num_runs_per_gen: number of times to run the experiment before going
to the next generation. It is useful when we want to compute the average
score of a neural network.

num_runs_post_eval: number of times to run the experiment to reeval-
uate the whole population. This is the post-evaluation, that is, it will be
run after the whole evolutionary process.

weight_lower_bound: lower bound for the weights.
weight_upper_bound: upper bound for the weights.

elitism_percentage: Percentage of the population that is copied un-
changed to the next generation.

Tmate_multipoint_prob + mate_multipoint_avg_prob + mate_singlepoint_prob = 1

11

3.3.2 Genome Description

In evolutionary robotics the genome is the description of the structure of a neural
network. In NEAT the genome is described in a genome file. A genome file is
needed to run an experiment since the training algorithm uses it as a starting
point for the evolution algorithm. The different organisms (individuals) created
by the algorithm share the structure of the initial genome file.

Each genome file contains traits, nodes and genes and looks like this:

genomestart id
trait

node

gene

ééﬁomeend id

where id is a natural number representing the id of the genome.

TRAITS:
In the future, traits will allow the system to evolve highly complex neural mod-
els, much more sophisticated than the simple sigmoidal neurons currently used.
The neurons will be able to evolve plasticity parameters (like real neurons in
the brain) by pointing to a trait that describes the plasticity of the neuron.

trait traitld x y y y yyyy

e traitlId: id of the trait, this natural number should be unique.
e x: todo
e y: todo

NODES:
list of nodes that are present in the neural network.

node id traitld nodeType geneticNodeType

e id: id of the node, this natural number should be unique
e traitlId: id of the trait to use.
e nodeType: 0 if neuron, 1 if sensor.

e geneticNodeType: 0 if hidden, 1 if input, 2 if output, and 3 if bias.

GENES:
list of connections between nodes.

gene traitld connectInNode connectOutNode weight recur_flag

innov# mutation# enableBit

e traitId: id of the trait to use.

12

e connectInNode: id of the inNode.
e connectOutNode: id of the outNode.
e weight: weight of the connection. Real number.

e recur_flag: flag for the recurrence. 0 no recurrence, 1 there is a recur-
rence.

e innov#: innovation number - historical marking. This natural number
should be unique.

e mutation#: Redundant parameters, it is the same as the weight of the
connection.

e enableBit: 1 if the connection is enabled, 0 if disabled.

3.3.3 Population Description

A population file contains all the organisms at a certain generation.
The population file starts with the species:

Species <<id>> : (Size <<size>>) (AF <<AF>>) (Age <<age>>)

e id: id of the species.

e size: size of the species.

e AF: average fitness of the species.
e age: age of the species.

Followed by the description of the organisms inside this species.

Organism <<id>> Fitness: <<fitness>> Error: <<error>>

e id: id of the organism inside the population (not the one inside the specie).
e fitness: the value of its fitness.
e error: how many times it got it wrong.

Each organism is then described by its genome (see section 3.3.2 for more in-
formation)

4 EvoStick

EvoStick is implemented as a specific instance of NEAT. The neural networks
generated by EvoStick have a predefined and fixed topology. The neural net-
works are feed-forward and do not contain hidden neurons. To generate such
neural networks with NEAT, we disabled the parameters that have an impact
on the topology. More precisely, the following parameters are set to zero:
mutate_add_node_prob, mutate_add_link_prob, interspecies_mate_rate,
mate_multipoint_prob, mate_multipoint_avg_prob, and mate_only_prob.
Furthermore, the following parameters are set to 1.0: mutate_only_prob and
mutate_link_weights_prob.

13

5 Example: Aggregation mission

In this section, we describe the aggregation experiment used as example in the
packages ARGoS3-AutoMoDe and ARGoS3-NEAT. The goal of this mission is
to have as many robots as possible positioned on a single circular black spot
placed on the ground, as depicted in Figure 3. The dodecagonal area in which
the robots are evolving is delimited by walls of length equal to 66 centimeters.
The black spot has a 30 centimeter radius and is placed on the center of the
arena. The epucks can detect the color of the ground below them (i.e. gray or
black) thanks to their ground sensor.

The objective function of this mission is the fraction of the robots situated
on the black spot and has to be maximized: Fup; = %, where N, represents
the number of robots on the black spot and N represents the total number of
robots. This function is evaluated at the end of the experiment.

Figure 3: Screenshot of ARGoS3 when simulating 20 epucks on the aggregation
mission that we use as illustrative example.

6 Concluding remarks

This document is not the final version and it will be updated along with the tech-
nical development of the packages ARGoS3-AutoMoDe and ARGoS3-NEAT.

References

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Pode-
vijn, G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Tri-
anni, V., and Birattari, M. (2015). AutoMoDe-Chocolate: automatic design
of control software for robot swarms. Swarm Intelligence, 9(2/3):125-152.

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M.
(2014). AutoMoDe: a novel approach to the automatic design of control
software for robot swarms. Swarm Intelligence, 8(2):89-112.

Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., and Birattari, M.

14

(2015). Software infrastructure for e-puck (and TAM). Technical Report
2015-004, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

Lépez-Ibénez, M., Dubois-Lacoste, J., Stiitzle, T., and Birattari, M. (2011). The
irace package, iterated race for automatic algorithm configuration. Technical
report, Citeseer.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Mag-
nenat, S., Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009). The e-
puck, a robot designed for education in engineering. In Proceedings of the 9th
Conference on Autonomous Robot Systems and Competitions, pages 59—65,
Castelo Branco, Portugal. IPCB: Instituto Politécnico de Castelo Branco.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gam-
bardella, L. M., and Dorigo, M. (2012). ARGoS: A modular, parallel, multi-
engine simulator for multi-robot systems. Swarm Intelligence, 6(4):271-295.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Fvolutionary Computation, 10(2):99-127.

15

