
AutoMoDe-Arlequin: Neural Networks as
Behavioral Modules for the Automatic Design

of Probabilistic Finite-state Machines

Antoine Ligot[0000−0001−7388−2866], Ken Hasselmann[0000−0002−8196−9889], and
Mauro Birattari[0000−0003−3309−2194]

IRIDIA, Université libre de Bruxelles, Belgium
mbiro@ulb.ac.be

Abstract. We present Arlequin, an off-line automatic design method
that produces control software for robot swarms by combining behav-
ioral neural-network modules generated via neuro-evolution. The neural-
network modules are automatically generated once, in a mission-agnostic
way, and are then automatically assembled into probabilistic finite-state
machines to perform various missions. With Arlequin, our goal is to
reduce the amount of human intervention that is required for the imple-
mentation or the operation of previously published modular design meth-
ods. Simultaneously, we assess whether neuro-evolution can be used in a
modular design method to produce control software that crosses the real-
ity gap satisfactorily. We present robot experiments in which we compare
Arlequin with Chocolate, a state of the art modular design method, and
EvoStick, a traditional neuro-evolutionary swarm robotics method. The
preliminary results suggest that automatically combining neural-network
modules into probabilistic finite-state machines is a promising approach
to the automatic conception of control software for robot swarms.

1 Introduction

Swarm robotics is an approach to controlling groups of autonomous robots [13].
A robot swarm is a decentralized system in which individual robots do not
have predefined roles and act solely based on the local information collected
through their sensors or shared by nearby peers. A collective behavior in a swarm
emerges from the interactions between the robots, and between the robots and
the environment. These interactions depend on how the system evolves and
are therefore unknown at design time. Designing the individual behavior of the
robots to obtain the desired collective behavior is a challenging task as there is
no general methodology to do so [8].

For specific missions in specific cases, experts can use principled manual
design methods to obtain the desired collective behavior [26, 31, 2, 1, 7, 44, 37, 42,
25]. In the general case, however, experts usually proceed by trial and error. An
alternative to manual design exists: optimization-based design, which consists in
searching among a set of possible individual behaviors the one that maximizes a

2 A. Ligot et al.

mission-depend objective function that measures the performance of the swarm.
These methods can be classified as online or offline [18, 9]: in the first case,
the optimization is performed while the robots operate in the environment; in
the second one, it is performed before deployment, typically using computer
simulations. The work presented in this paper belongs in offline automatic design.

A popular approach to the offline automatic design of robot swarms is neuro-
evolutionary swarm robotics [47], in which individual behaviors are artificial
neural networks whose weights, and possibly their topologies, are fine-tuned by
an evolutionary algorithm [5, 12, 46, 48, 18]. Unfortunately, neuro-evolutionary
swarm robotics suffers from a major drawback: it typically does not cope well
with the so-called reality gap, that is, the intrinsic difference between simulation
and reality [10, 30, 46]. As a result, the performance of the generated control
software is likely deceiving in reality and drops significantly with respect to the
one observed in simulation [41, 16]. Despite the effort made to handle the re-
ality gap [39, 30, 17, 28, 29, 6, 32], none of the ideas explored so far appears to
be the ultimate solution [46, 18, 35]. Other approaches to the offline automatic
design of robot swarms, based on modularity, have been proposed: they generate
control software by assembling low-level behavioral modules [15, 14, 20]. In this
paper, we present a novel automatic modular design method: Arlequin. This
method belongs to the AutoMoDe family [20, 19, 27, 33, 45]. The novelty of Ar-
lequin is that, contrarily to the previous instances of AutoMoDe that automat-
ically combine behavioral modules conceived by hand, it automatically combines
behavioral modules that were themselves automatically generated a priori via
neuro-evolutionary swarm robotics. With Arlequin, our goal is two-fold: (i) to
conceive a method that requires less human expertise during its implementa-
tion than the current instances of AutoMoDe, and (ii) further corroborate the
conjecture of Francesca et al. [20] that lead to the creation of AutoMoDe.

Francesca et al. [20] conjectured that the reality gap problem faced in evo-
lutionary swarm robotics bears a resemblance to the generalization problem of
machine learning, and that the performance drop observed when porting con-
trol software to physical robots is due to a sort of overfitting of the conditions
experienced during the design. According to the bias/variance tradeoff [22, 49],
the expected generalization error of a learning algorithm can be decomposed
into a bias and a variance factor. High-complexity learning algorithms have high
variance and low bias, whereas low-complexity ones have low variance and high
bias. For an increasing level of complexity, the generalization error typically first
decreases then increases again. To minimize the generalization error, one must
find the optimal level of complexity of the learning algorithm. Based on this
reasoning, Francesca et al. conjectured that the difficulty of evolutionary swarm
robotics to cross the reality gap is due to an excessively high representational
power that entails a sort of overfitting of the idiosyncrasies of simulation [41, 16].
The authors therefore created AutoMoDe to have a higher bias than the neuro-
evolutionary approaches in order to decrease the representational capability of
the control architecture, and to hopefully reduce the performance drop experi-
enced. In AutoMoDe, the bias is injected by restricting to the control software

Neural Networks as Modules for the Design of Finite-state Machines 3

to be a combination of pre-existing modules. So far, the empirical evidence in-
dicates that manually conceiving modules in simulation and validating them on
physical robots can effectively limit the overall performance drop caused by the
module level. With Arlequin, we investigate whether the principles of modular-
ity also hold true when the behavioral modules are automatically generated by a
neuro-evolutionary method. That is, we investigate whether the bias injected by
restricting the control software produced to be combination of neural-network
modules is enough to cross the reality gap satisfactorily.

We created Arlequin to be similar in many aspects to Chocolate, a previ-
ously presented instance of AutoMoDe [19]. Indeed, the two methods only differ
in the behavioral modules used. We did so to single out the aspect we wish to
investigate: the relative advantages and disadvantages of generating behavioral
modules automatically. Chocolate has at his disposal six hand-coded behavioral
modules, which are replaced by six neural-network modules in Arlequin. To gen-
erate these neural-network modules, we inferred an objective function describing
each of the six hand-coded behavioral modules of Chocolate, and fed these ob-
jective functions to a neuro-evolutionary design method called EvoStick [20].
Similarly to the modules of Chocolate, the neural-network modules are gen-
erated once, independently of the specific missions Arlequin will then solve.
We evaluate the performance of Arlequin on two missions involving 20 e-puck
robots. To assess whether the conjecture of Francesca et al. on the bias/variance
tradeoff also holds true when the predefined behavioral modules are generated
automatically via neuro-evolution, we compare the performance of Arlequin

with the ones of EvoStick and Chocolate.

2 AutoMoDe-Arlequin

Arlequin generates control software for a version of the e-puck [40]—a small,
circular, two-wheeled robot—equipped with a range-and-bearing board [24], a
ground sensor module, and an Overo Gumstix board [21]. We considered a subset
of the capabilities of the robot. In particular, the control software that can
be generated has access to the ground sensor module to detect the color of
the ground situated below the robot (i.e., black, gray, or white); the infrared
sensor module to detect the presence of nearby obstacles and of a light source;
the range-and-bearing module to detect the presence of peers within a range
of approximately 0.7 m and to infer a vector Vd indicating their direction of
attraction; and the wheels actuators to move the robot.

Arlequin generates control software by automatically combining predefined
modules into probabilistic finite-state machines. The modules comprise six low-
level behaviors (i.e., simple actions performed by the robot) and six conditions
(i.e., situations experienced by the robot). The low-level behaviors are associated
to states of the probabilistic finite-state machine, whereas the conditions are
associated to transitions. The low-level behavior associated with the active state
is executed as long as the conditions associated with all its outgoing transitions
are evaluated as false. Once a condition associated with an outgoing transition

4 A. Ligot et al.

is evaluated as true, the active state is updated and the corresponding low-level
behavior is executed. Arlequin has many commonalities with AutoMoDe-Choc-
olate [19]. The two methods adopt irace [4, 38] as optimization algorithm to
select and combine the different modules into a probabilistic finite-state machine.
The two methods also impose the same constraints on the probabilistic finite-
state machines produced: they can comport up to four states with up to four
outgoing transitions per states. Finally, Arlequin and Chocolate have at their
disposal the same hand-coded condition modules. We refer the reader to the
original description of these conditions [20].

Arlequin and Chocolate differ in the predefined behavioral modules adopted:
Chocolate combines hand-coded parametric modules, whereas Arlequin com-
bines neural-network modules generated by EvoStick [20]. EvoStick is a rel-
atively simple implementation of the classical neuro-evolutionary robotics ap-
proach: it generates control software in the form of neural networks whose synap-
tic weights are obtained via an evolutionary process. In EvoStick, the produced
neural networks are fully connected, do not contain hidden layers, and have 25
input and 2 output nodes. The neural networks are therefore characterized by a
total of 50 parameters, each being a real value in [−5, 5]. The 25 input nodes are
organized as follows: 3 are dedicated to the readings of the ground sensors, 8 to
the readings of the proximity sensors, 8 to the readings of the light sensors, 5 to
the readings of the range-and-bearing sensors (4 for the scalar projections of the
vector Vd pointing to the neighboring peers on four unit vectors, and 1 for the
number of detected robots), and one serves as bias. The 2 output nodes control
the speed of the left and right wheels of the robot. EvoStick uses populations
of 100 individuals and evaluates each individual 10 times per generation.

To obtain behaviors that are similar to the six hand-coded low-level behav-
iors of Chocolate via neuro-evolution, we inferred an objective function for each
of them. We fed these objective functions to EvoStick to generate control soft-
ware for a swarm of 20 simulated e-puck, and considered simulation runs of 120
seconds. For each of the low-level behaviors, EvoStick generated 10 instances of
control software. We then evaluated each instance of control software 20 times
in simulation using different initial conditions, and selected the ones with the
highest average performance to be used as low-level behaviors for Arlequin. The
design budget allocated to EvoStick is 20 000 execution runs, which corresponds
to 20 generations. The six hand-coded low-level behaviors of Chocolate and the
corresponding objective functions we devised to obtain the automatically gener-
ated modules of Arlequin are described in Section 2.1.

2.1 Low-level Behaviors

Exploration: In Chocolate, the robot moves straight until an obstacle is per-
ceived by its front proximity sensors, then turns on the spot for a random number
of steps drawn in {0, 1, ..., π}. The parameter π ∈ {0, 1, ..., 100} is meant to be
afterwards tuned by the optimization algorithm on a per-mission basis. In Ar-

lequin, the environment is discretized into a two-dimensional grid G, and the
objective function considered rewards the number of cells visited individually.

Neural Networks as Modules for the Design of Finite-state Machines 5

The objective function, to be maximized, is
∑N

r=1

∑X
i=1

∑Y
j=1Gr[i][j], where

Gr[i][j] = 1 if robot r visited cell Gr(i, j) at least once, 0 otherwise; N is the num-
ber of robots in the swarm; and X = 20 and Y = 20 are the numbers of rows and
columns in grid G, respectively. Stop: In Chocolate, the robot does not move.
In Arlequin, the objective function penalizes the displacement of the individual

robots. The objective function, to be minimized, is
∑T

t=1

∑N
r ||Pr(t)−Pr(t−1)||,

where Pr(t) is the position of robot r at time t, and T is the duration of the ex-
perimental run. Phototaxis: In Chocolate, the robot moves towards the light,
if perceived. Otherwise, the robot moves straight. In Arlequin, the objective
function penalizes the distance between the individual robots and the light. The
objective function, to be minimized, is

∑T
t=1

∑N
r=1 ||Pr(t)−Plight||, where Pr(t)

and Plight are the positions of robot r at time t and of the light, respectively.
Anti-phototaxis: In Chocolate, the robot moves away from the light, if per-
ceived. Otherwise, the robot moves straight. In Arlequin, the objective function
rewards the distance between the individual robots and the light. The objective
function, to be maximized, is

∑T
t=1

∑N
r=1 ||Pr(t)−Plight||, where Pr(t) and Plight

are the positions of robot r at time t and of the light, respectively. Attraction:
In Chocolate, the robot moves towards the neighboring peers (Vd), if perceived.
Otherwise, the robot moves straight. A parameter α ∈ [1, 5] controls the speed
of convergence towards the detected peers and is meant to be afterwards tuned
by the optimization algorithm on a per-mission basis. In Arlequin, the objective
function penalizes the distance between each pair of robots within the swarm.
The objective function, to be minimized, is

∑T
t=1

∑N−1
i=1

∑N
j=i+1 ||Pi(t)−Pj(t)||,

where Pi(t) and Pj(t) are the positions of robot i and j, respectively. Repulsion:
In Chocolate, the robot moves away from the neighboring peers, if perceived.
Otherwise, it moves straight. A parameter α ∈ [1, 5] controls the speed of di-
vergence and is meant to be afterwards tuned by the optimization algorithm
on a per-mission basis. In Arlequin, the objective function rewards, for each
individual robot, the distance from its closest peer. The objective function, to
be minimized, is

∑T
t=1

∑N
r=1 ||Pr(t) − Prmin(t)||, where Pr(t) is the position of

robot r and Prmin
(t) is the one of the robot closest to robot r at time t.

3 Experiments

We generated control software with Arlequin, Chocolate, and EvoStick for
two missions: foraging and aggregation-xor [20]. We considered a swarm
of 20 e-puck robots that operate in a dodecagonal arena of 4.91 m2 delimited
by walls. For each mission, the design budget allowed to each method is 200 000
simulation runs. For each mission, we executed each design method 10 times
and collected the best instance of control software produced by each execution.
We assessed the performance of each instance of control software twice: once
in simulation and once on physical robots [3]. We present the results in the
form of notched boxplots: the notches represent the 95% confidence interval
on the position of the median. If the notches of two boxes do not overlap, the
difference between the respective medians is significant [11]. All simulation runs

6 A. Ligot et al.

aggregation-xor

foraging

aggregation-xor

Arlequin
Chocolate

EvoStick

P
er

fo
rm

a
n
ce

Simulation

Reality0.0

.2

.4

.6

.8

1.0

foraging

Arlequin
Chocolate

EvoStick

Simulation

Reality0

10

20

30

40

50

60

70

Fig. 1. The arenas and the results of the experiments.

were performed with ARGoS [43], which allowed us to directly port the control
software generated to the physical robots without any modifications. All the
control software generated, the raw data collected, and the experimental runs
recorded are available online as supplementary material [36].

aggregation-xor. The robots must aggregate on one of the two black areas.
After 180 s, the performance measured by the function FA = max(Nl, Nr)/N ,
where Nl and Nr are the number of robots located on each of the two black
area; and N is the total number of robots. In simulation, Arlequin and Choco-

late show similar performance, but Arlequin is outperformed by EvoStick. In
reality, Arlequin and EvoStick suffer from a significant performance drop, with
EvoStick suffering from the reality gap the most. Indeed, the drop experienced
by Arlequin is at most 0.48, whereas the one experienced by EvoStick is at least
0.55, which makes the performance drop experienced by Arlequin significantly
lower than the one experienced by EvoStick (95% confidence computed with
a paired Wilcoxon test). Chocolate shows similar performance in simulation
and in reality. The performance drop experienced by the three methods when
crossing the reality gap is such that, in reality, Arlequin outperforms EvoStick,
but is outperformed by Chocolate.

foraging. The robots must retrieve objects from two source areas (black cir-
cles) and deposit them in a nest (white area). The objects are virtual: a robot is

Neural Networks as Modules for the Design of Finite-state Machines 7

deemed to carry an object after it enters one of the source areas and to retrieve
the object when it then enters the nest. A light source is placed behind the nest.
The performance measured by the function FF = No, where No is the total num-
ber of objects retrieved after 180 s. In simulation, Arlequin is outperformed by
EvoStick and Chocolate. In reality, the three methods suffer from a significant
performance drop, with EvoStick suffering the most, followed by Arlequin, then
Chocolate. The drop of Arlequin is at most 26, whereas the one of EvoStick

is at least 42, which makes the drop of Arlequin significantly lower than the
one of EvoStick (95% confidence computed with a paired Wilcoxon test). As a
result, Arlequin outperforms EvoStick, but is outperformed by Chocolate.

4 Conclusions

We presented Arlequin, a novel instance of AutoMoDe that differs from the pre-
viously presented ones by the nature of the predefined behavioral modules to be
combined: Arlequin uses neural network modules generated via neuro-evolution,
whereas the others use hand-coded ones. The behavioral modules of Arlequin

were generated via EvoStick, a neuro-evolutionary method. We compared the
performance of the control software generated by Arlequin with the one of Evo-
Stick and Chocolate on two missions. In both missions, the control software
produced by Arlequin suffered from a significant performance drop. However,
the control software generated by EvoStick suffered from a significantly larger
drop than the one produced by Arlequin, and as a result, Arlequin outper-
formed EvoStick in reality. This corroborates the conjecture of Francesca et
al. [20]: restricting the control software to be a combination of low-level, simple
behaviors yields better results in reality than the traditional neuro-evolutionary
approach, despite being the other way around in simulation. Our results show
that this holds true also when the low-level behaviors are neural networks.

Future work will explore different ways of generating and selecting the pool
of modules to be combined into probabilistic finite-state machines (i.e., select the
modules on the basis of their performance assessed in pseudo-reality [34, 35] or
on physical robots, generate them with the transferability approach [32]). Future
work will also be dedicated to further reducing the human expertise required
during the implementation of Arlequin. Recently, Gomes and Christensen [23]
proposed an approach to conceive low-level behaviors in a completely automated
fashion. Their approach is based on repertoires of behaviors obtained in a task-
agnostic fashion with a diversity algorithm. We wish to investigate how one
could automatically produce control software for swarm robotics by combining
behavioral modules selected from these repertoires.

Author Contributions. The experiments were conceived by the three authors
and performed by AL and KH. The article was drafted by AL and revised by
the three authors. The research was directed by MB.

8 A. Ligot et al.

Acknowledgements. The project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 681872). MB acknowledges support
from the Belgian Fonds de la Recherche Scientifique – FNRS.

References

1. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggre-
gate: languages for spatial computing. In: Marjan, M. (ed.) Formal and Practical
Aspects of Domain-Specific Languages: Recent Developments, pp. 436–501. IGI
Global, Hershey, Pennsylvania, USA (2012). https://doi.org/10.4018/978-1-4666-
2092-6.ch016

2. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially in-
homogeneous robot swarms with application to commercial pollination. In: IEEE
International Conference on Robotics and Automation, ICRA. pp. 378–385. IEEE,
Piscataway, NJ, USA (2011). https://doi.org/10.1109/ICRA.2011.5980440

3. Birattari, M.: On the estimation of the expected performance of a metaheuris-
tic on a class of instances. how many instances, how many runs? Tech. Rep.
TR/IRIDIA/2004-01, IRIDIA, Université libre de Bruxelles, Belgium (2004)

4. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and Iterated F-race: An
overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336.
Springer, Berlin, Germany (2010). https://doi.org/10.1007/978-3-642-02538-9 13

5. Bongard, J.C.: Evolutionary robotics. Communication ACM 56(8), 74–83 (2013)

6. Bongard, J.C., Lipson, H.: Once more unto the breach: co-evolving a robot and its
simulator. In: Pollack, J.B., Bedau, M.A., Husbands, P., Watson, R.A., Ikegami,
T. (eds.) Artificial Life IX: Proceedings of the Conference on the Simulation and
Synthesis of Living Systems. pp. 57–62. MIT Press, Cambridge, MA, USA (2004)

7. Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design
for swarm robotics: a design method based on prescriptive modeling and model
checking. ACM Transactions on Autonomous Adaptive Systems 9(4), 17:1–17:28
(2014). https://doi.org/10.1145/2700318

8. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013).
https://doi.org/10.1007/s11721-012-0075-2

9. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collec-
tive robotics: a review. Frontiers in Robotics and AI 5, 12 (2018).
https://doi.org/10.3389/frobt.2018.00012

10. Brooks, R.A.: Artificial life and real robots. In: Varela, F.J., Bourgine, P. (eds.)
Towards a Practice of Autonomous Systems. Proceedings of the First European
Conference on Artificial Life. pp. 3–10. MIT Press, Cambridge, MA, USA (1992)

11. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods
For Data Analysis. CRC Press, Belmont, CA (1983)

12. Doncieux, S., Mouret, J.B.: Beyond black-box optimization: a review of selective
pressures for evolutionary robotics. Evolutionary Intelligence 7(2), 71–93 (2014).
https://doi.org/10.1007/s12065-014-0110-x

13. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014). https://doi.org/10.4249/scholarpedia.1463

Neural Networks as Modules for the Design of Finite-state Machines 9

14. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira,
S.M., Christensen, A.L.: Evolution of collective behaviors for a real
swarm of aquatic surface robots. PLOS ONE 11(3), e0151834 (2016).
https://doi.org/10.1371/journal.pone.0151834

15. Duarte, M., Oliveira, S.M., Christensen, A.L.: Evolution of hierarchical controllers
for multirobot systems. In: Sayama, H., Rieffel, J., Risi, S., Doursat, R., Lipson,
H. (eds.) Artificial Life 14. Proceedings of the Fourteenth International Confer-
ence on the Synthesis and Simulation of Living Systems. pp. 657–664. MIT Press,
Cambridge, MA, USA (2014). https://doi.org/10.7551/978-0-262-32621-6-ch105

16. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B.,
Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1423–1451. Springer Hand-
books, Springer, Berlin, Heidelberg, Germany (2008). https://doi.org/10.1007/978-
3-540-30301-5 62

17. Floreano, D., Mondada, F.: Evolution of plastic neurocontrollers for situated
agents. In: Maes, P., Matarić, M.J., Meyer, J.A., Pollack, J.B., Wilson, S.W. (eds.)
From Animals to Animats 4: Proceedings of the Fourth International Conference
on Simulation of Adaptive Behavior (SAB). pp. 402–410. MIT Press, Cambridge,
MA, USA (1996)

18. Francesca, G., Birattari, M.: Automatic design of robot swarms: achieve-
ments and challenges. Frontiers in Robotics and AI 3(29), 1–9 (2016).
https://doi.org/10.3389/frobt.2016.00029

19. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Pode-
vijn, G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F.,
Trianni, V., Birattari, M.: AutoMoDe-Chocolate: automatic design of con-
trol software for robot swarms. Swarm Intelligence 9(2–3), 125–152 (2015).
https://doi.org/10.1007/s11721-015-0107-9

20. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intelligence 8(2), 89–112 (2014). https://doi.org/10.1007/s11721-014-0092-
4

21. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software
infrastructure for e-puck (and TAM). Tech. Rep. TR/IRIDIA/2015-004, IRIDIA,
Université libre de Bruxelles, Belgium (2015)

22. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and
the bias/variance dilemma. Neural Computation 4(1), 1–58 (1992).
https://doi.org/10.1162/neco.1992.4.1.1

23. Gomes, J., Christensen, A.L.: Task-agnostic evolution of diverse repertoires of
swarm behviours. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Reina, A., Trianni, V. (eds.) Swarm Intelligence – ANTS. LNCS, vol. 11172, pp.
225–238. Springer, Cham, Switzerland (2018). https://doi.org/10.1007/978-3-030-
00533-7 18

24. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open e-puck range & bearing miniaturized board for local commu-
nication in swarm robotics. In: Kosuge, K. (ed.) IEEE International Conference
on Robotics and Automation, ICRA. pp. 3111–3116. IEEE, Piscataway, NJ, USA
(2009). https://doi.org/10.1109/ROBOT.2009.5152456

25. Hamann, H.: Swarm robotics: a formal approach. Springer, Cham, Switzerland
(2018). https://doi.org/10.1007/978-3-319-74528-2

26. Hamann, H., Wörn, H.: A framework of space–time continuous models for al-
gorithm design in swarm robotics. Swarm Intelligence 2(2–4), 209–239 (2008).
https://doi.org/10.1007/s11721-008-0015-3

10 A. Ligot et al.

27. Hasselmann, K., Robert, F., Birattari, M.: Automatic design of communication-
based behaviors for robot swarms. In: Dorigo, M., Birattari, M., Garnier, S.,
Hamann, H., Montes de Oca, M., Solnon, C., Stützle, T. (eds.) Swarm Intelli-
gence – ANTS. LNCS, vol. 11172, pp. 16–29. Springer, Cham, Switzerland (2018).
https://doi.org/10.1007/978-3-030-00533-7 2

28. Jakobi, N.: Evolutionary robotics and the radical envelope-
of-noise hypothesis. Adaptive Behavior 6(2), 325–368 (1997).
https://doi.org/10.1177/105971239700600205

29. Jakobi, N.: Minimal simulations for evolutionary robotics. Ph.D. thesis, University
of Sussex, Falmer, UK (1998)

30. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.)
Advances in Artificial Life: Third european conference on artificial life. Lecture
Notes in Artificial Intelligence, vol. 929, pp. 704–720. Springer, Berlin, Germany
(1995). https://doi.org/10.1007/3-540-59496-5 337

31. Kazadi, S.: Model independence in swarm robotics. International Jour-
nal of Intelligent Computing and Cybernetics 2(4), 672–694 (2009).
https://doi.org/10.1108/17563780911005836

32. Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the
reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Compu-
tation 17(1), 122–145 (2013). https://doi.org/10.1109/TEVC.2012.2185849

33. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic modular design of robot swarms. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) Swarm
Intelligence – ANTS. LNCS, vol. 11172, pp. 30–43. Springer, Cham, Switzerland
(2018). https://doi.org/10.1007/978-3-030-00533-7 3

34. Ligot, A., Birattari, M.: On mimicking the effects of the reality gap with
simulation-only experiments. In: Dorigo, M., Birattari, M., Garnier, S., Hamann,
H., Montes de Oca, M., Solnon, C., Stützle, T. (eds.) Swarm Intelligence –
ANTS. LNCS, vol. 11172, pp. 109–122. Springer, Cham, Switzerland (2018).
https://doi.org/10.1007/978-3-030-00533-7 9

35. Ligot, A., Birattari, M.: Simulation-only experiments to mimic the effects of the
reality gap in the automatic design of robot swarms. Swarm Intelligence pp. 1–24
(2019). https://doi.org/10.1007/s11721-019-00175-w

36. Ligot, A., Hasselmann, K., Birattari, M.: AutoMoDe-Arlequin: neural networks
as behavioral modules for the automatic design of probabilistic finite state
machines: Supplementary material. http://iridia.ulb.ac.be/supp/IridiaSupp2020-
005/index.html (2020)

37. Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Groß, R.: Supervisory
control theory applied to swarm robotics. Swarm Intelligence 10(1), 65–97 (2016).
https://doi.org/10.1007/s11721-016-0119-0

38. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M.,
Stützle, T.: The irace package: Iterated racing for automatic algo-
rithm configuration. Operations Research Perspectives 3, 43–58 (2016).
https://doi.org/10.1016/j.orp.2016.09.002

39. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in sim-
ulated and real environments. Artificial Life 2(4), 417–434 (1995).
https://doi.org/10.1162/artl.1995.2.4.417

40. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for

Neural Networks as Modules for the Design of Finite-state Machines 11

education in engineering. In: Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings
of the 9th Conference on Autonomous Robot Systems and Competitions. pp. 59–
65. Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal (2009)

41. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press, Cambridge, MA, USA (2000)

42. Pinciroli, C., Beltrame, G.: Buzz: A programming language for robot swarms. IEEE
Software 33(4), 97–100 (2016). https://doi.org/10.1109/MS.2016.95

43. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla,
M., Mathews, N., Ferrante, E., Di Caro, G.A., Ducatelle, F., Birattari, M.,
Gambardella, L.M., Dorigo, M.: ARGoS: a modular, parallel, multi-engine
simulator for multi-robot systems. Swarm Intelligence 6(4), 271–295 (2012).
https://doi.org/10.1007/s11721-012-0072-5

44. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLOS ONE 10(10), e0140950 (2015).
https://doi.org/10.1371/journal.pone.0140950

45. Salman, M., Ligot, A., Birattari, M.: Concurrent design of control software and
configuration of hardware for robot swarms under economic constraints. PeerJ
Computer Science 5, e221 (2019). https://doi.org/10.7717/peerj-cs.221

46. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open is-
sues in evolutionary robotics. Evolutionary Computation 24(2), 205–236 (2016).
https://doi.org/10.1162/EVCO a 00172

47. Trianni, V.: Evolutionary Swarm Robotics. Springer, Berlin, Germany (2008).
https://doi.org/10.1007/978-3-540-77612-3

48. Trianni, V.: Evolutionary robotics: model or design? Frontiers in Robotics and AI
1, 13 (2014). https://doi.org/10.3389/frobt.2014.00013

49. Wolpert, D.: On bias plus variance. Neural Computation 9, 1211–1243 (1997).
https://doi.org/10.1162/neco.1997.9.6.1211

