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Abstract. One issue in the automatic design of control software for
robot swarms is the so-called reality gap—the difference between real-
ity and the simulation models used in the automatic design process.
It is commonly understood that the reality gap manifests itself as a
drop in performance when control software developed in simulation is
used to control physical robots. Yet, often disregarded is the relative
nature of this performance drop: the reality gap does not affect equally
all instances of control software. Indeed, one might observe a rank in-
version: control software A might perform better than control software
B in simulation, but perform worse on robots. The possibility of rank
inversion undermines any performance comparison made in simulation.
It would thus seem the only way to assess control software is in robot
experiments, which are costly and time consuming. We argue it is un-
necessary to assume reality is more complex than simulation models for
the effects of the reality gap to occur. Indeed, we show that perfor-
mance drop and rank inversion can occur if one automatically designs
control software in simulation using a model and then assesses it in sim-
ulation on another model—what we call a pseudo-reality. Our results
suggest that an appropriately conceived pseudo-reality could be used to
test automatically-generated control software for performance drop and
rank inversion, without performing robot experiments.

? All experiments were performed by AL. The paper was drafted by AL and revised
by the two authors. The research was directed by MB.
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Introduction

The reality gap is one of the main issues in the automatic design of robot
swarms [17]. A robot swarm is a highly redundant, self-organized, and decen-
tralized system [1, 39, 13]. Designing the individual rules that lead to the desired
collective behavior is difficult. Methods to guide the designers exist for some
specific collective behaviors and under some hypotheses [23, 2, 8, 38]. However, a
generally applicable methodology is still missing.

Automatic design methods [17, 7] eliminate the burden of manually decom-
posing the desired global behavior into the appropriate microscopic behaviors of
the individuals. By maximizing a mission-dependent performance measure, an
optimization algorithm searches for an appropriate instance of control software
to be installed on each individual robot. Generally, the optimization process re-
lies on simulation. Methods have been proposed that (could possibly or have
been demonstrated to) operate directly on robot hardware [30, 43, 28, 9, 22, 41,
12]. Although these methods are promising to adapt/fine-tune behaviors to the
environment, they do not appear to be an alternative to simulation-based design
due to safety concerns and to the limited solution space they can explore [17].
When the design is performed in simulation, a resulting instance of control soft-
ware is likely to be fine-tuned to the specific simulation model [15], which should
not be expected to perfectly reproduce the real world. Due to the differences
between simulation and reality, which are commonly referred to as the reality
gap [10, 27], a performance drop typically occurs when an instance of control
software designed in simulation is assessed on physical robots.

An issue that is often overlooked is that the occurrence of performance drops
due to the reality gap is a relative problem: each instance of control software
might be affected to a different extent. The relative nature of performance drops
might result in what we shall call a rank inversion: control software A outper-
forms control software B in simulation, but B outperforms A when assessed on
the physical robots. Rank inversions can be observed when comparing instances
of control software produced by different design methods [19], or by the same one
at different steps along the optimization process [4]. Indeed, Birattari et al. [4]
observed a phenomenon that they called overdesign: past an optimal number of
steps of the optimization process, the performance obtained in reality diverges
from the one obtained in simulation.

In the literature, performance drops due to the reality gap are commonly ex-
plained by saying that reality is more complex than simulations—or equivalently,
that simulations are too simplistic [35, 29].

In this work, we argue that it is not necessary to assume that reality is
more complex than simulation for the effect of the reality gap to occur. More
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precisely, we contend that performance drops that lead to rank inversion can
be observed even if the model under which control software is designed is not a
simplistic version of the context/conditions under which it is eventually assessed.
We support our contention with a set of simulation-only experiments in which
we create an artificial reality gap.

Creating an artificial, simulation-only reality gap is not a novel contribution
we make here for the first time. Koos et al. [29] already created a simulation-
only reality gap between a simple simulator—used to design control software—
and an accurate one—used for assessing it. The choice of creating a reality gap
between a simple and a more complex simulator clearly reflects the common
understanding discussed above, which is precisely what we challenge here. We
maintain that it is not necessary to assume that control software is assessed
under context/conditions that are more complex than those experienced in the
design for the effects of the reality gap to manifest.

The artificial reality gap we create is based on two robot models: MA and MB .
We design control software in simulation on model MA and then we assess it,
always in simulation, but relying on model MB . We shall call a pseudo-reality any
secondary model that we use for assessing control software—and that therefore
plays the role of reality. Model MA has been proposed by Francesca et al. [19]
who used it to design control software that was eventually assessed on robots.
We introduce here model MB , which we conceived so that, when used as pseudo-
reality to assess control software designed on MA, it produces performance drops
and rank inversions that are qualitatively similar to those observed by Francesca
et al. [19].

A priori, it could be argued that MA and MB are equally complex as they
share the same nature—see Section 2. Nonetheless, to completely exclude the
possibility that the observed effects are the results of an undesired higher com-
plexity of MB , we consider both the case in which we use MA for the design and
MB for the assessment, and the case in which we invert the roles of the two mod-
els. As we show in Section 3, qualitatively similar drops and inversions appear
in both cases. This substantiates our contention, and indicates that the effects
of the reality gap can manifest even when the design model is not a simplistic
version of the one used in the assessment, possibly due to the fact that control
software overfits the former.

Besides shedding further light on the nature of the reality gap, this study
suggests that creating an artificial, simulation-only version of it could have useful
practical implications. For example, it would dispense researchers from costly
and time consuming robot experiments that, at the moment, are necessary to tell
whether a design method is more prone than another one to performance drops,
whether a rank inversion should be expected, or whether to stop an optimization
process to prevent the overdesign phenomenon to occur.
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Table 1. Taxonomy of the most significant approaches proposed in the literature to
cross the reality gap. We group the approaches according to the main line of reasoning
followed in their development.

Focus on
Reducing differences between

simulation and reality
Enhancing robustness

of control software

Simulation models

Miglino et al. [33]

Jakobi et al. [27]

Bongard and Lipson [6]

Zagal and Ruiz-Del-Solar [44]

Jakobi [25, 26]

Design methods Koos et al. [29]
Floreano et al. [16, 42, 14]

Francesca et al. [19, 18]

1 Related Work

Several approaches have been proposed to cross the reality gap effectively—
that is, to limit the performance drop of control software. However, none of
these approaches have been studied in details, no extensive comparison has been
made, and the reality gap remains a major issue in the automatic design of robot
control software [17, 40]. Approaches to cross the reality gap have mainly been
proposed in the context of evolutionary robotics for single robots. Nonetheless,
they are typically general enough to be relevant to any design method based on
off-line simulation, both for single- and multi-robot systems.

Behind these approaches, we see two main lines of reasoning. On the one
hand, some researchers have aimed at reducing the differences between simula-
tion and reality as much as possible [33, 27, 6, 44, 29]. They were driven by the
assumption that a smooth transition from simulation to reality would occur if
simulation reproduced relevant real-world dynamics accurately. On the other
hand, other researchers have striven to make control software robust to differ-
ences [25, 26, 42, 19, 18]. They were driven by the assumption that differences
between simulation and reality are eventually unavoidable. Each of these lines of
reasoning were developed with a focus either on simulation models [33, 27, 25, 6,
44] or on the design method [42, 29, 19, 18]. In the first case, researchers focused
on making simulation models more realistic or more general so as to render the
design process more robust. In the second case, researchers focused on conceiving
methods that either exploit regions of the search space that are accurately re-
produced by the simulator or that are intrinsically more robust than traditional
methods. See Table 1 for a taxonomy.

Reducing differences between simulation and reality—focus on sim-
ulation models. Miglino et al. [33] were the first to propose guidelines for
reducing differences between simulation models and reality. They suggested to
(i) use samples from the robot’s sensors and actuators; (ii) add conservative
noise to models; and (iii) continue the design process in reality, should an unac-
ceptable performance drop be observed. Similarly, Jakobi et al. [27] insisted on
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the importance of adding appropriate levels of noise to models. Since then, using
real data in simulation and fine-tuning noise models have become common prac-
tice [40]. Bongard and Lipson [6] proposed a method based on the co-evolution
of control software and simulator. While optimizing the control software, the
method improves the simulation models using sensor readings gathered in robot
experiments. Zagal and Ruiz-Del-Solar [44] developed a method in which dif-
ferences between performance observed in simulation and in reality are used to
tune the parameters of the simulation.

Reducing differences between simulation and reality—focus on design
methods. Koos et al. [29] proposed a multi-objective method that aims at con-
straining the design process to instances of control software whose behavior is
accurately simulated. The method relies on a model to estimate the differences
between performance in simulation and reality. The model is updated based on
physical-robot evaluations of instances of control software generated by the de-
sign process. To assess the proposed method, the authors performed experiments
with two different robotic platforms. They also performed experiments in a fully
simulated setting in which the role of the physical-robot evaluations was played
by highly-realistic simulations. In other terms, the authors artificially created
a simulation-only reality gap problem between a simple and a more accurate
simulator.

Enhancing robustness of control software—focus on simulation mod-
els. Jakobi [25, 26] was the first to explicitly aim at producing control software
that is robust to differences between simulation and reality. The method he
proposed is based on two devices: (i) model only the robot-robot and robot-
environment interactions that are meaningful to obtain the desired behavior,
and (ii) apply random variations on all aspects of the simulation.

Enhancing robustness of control software—focus on design methods.
Floreano et al. [16, 42] applied an on-line adaptation mechanism to the param-
eters of a neuro-controller. The behavior developed was observed to transfer
smoothly from simulation to reality [14]. Francesca et al. [19, 18] observed that
the reality gap resembles the generalization problem of supervised learning. They
conjectured that evolutionary robotics is seriously affected by the reality gap
due to an excessive representational power of neural networks. As a result, it
overfits the conditions experienced during the design process. Guided by their
conjecture, the authors developed design methods with restricted representa-
tional power: Vanilla [19] and Chocolate [18]. Their experiments have shown
that the control software produced by these methods crosses the reality gap
more satisfactorily than a traditional evolutionary robotics method they called
EvoStick [19, 18].
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Table 2. Reference model RM1.1 [24]. Sensors and actuators of the extended version
of the e-puck robot simulated in the experiments.

sensor/actuator variables

proximity prox i ∈ [0, 1], with i ∈ {0, ..., 7}
light lighti ∈ [0, 1], with i ∈ {0, ..., 7}
ground ground i ∈ {white, gray , black}, with i ∈ {0, ..., 2}
range-and-bearing n ∈ {0, ..., 19} and Vd ∈ ([0, 0.7]m, [0, 2π])
wheels vl, vr ∈ [−0.12, 0.12]m/s

2 Materials and Methods

In this section, we describe the robots, the automatic design methods, the sim-
ulation models and the protocol used in the experiments presented hereafter.

Robots (simulated). We simulate an extended version of the e-puck robot
[20, 34] using the ARGoS3 simulator [36] (version 3.0.0-beta45). For the purpose
of this study, we consider a subset of the sensors and actuators the robot is
equipped with. The control software has access to variables that abstract sen-
sors and actuators. These variables are updated every 100 ms. The reference
model RM1.1 [24] of Table 2 formally defines the sensors and actuators and the
corresponding variables.

The accessible sensors comprise eight infrared proximity sensors for detect-
ing obstacles (prox i) and for measuring ambient light (light i), three ground sen-
sors for sampling the grayscale color of the ground situated under the robot
(ground i), and a range-and-bearing board used for local communication between
robots [21]. Upon reception of a message via the range-and-bearing board, an e-
puck can estimate the relative distance and angle of the emitting robot. At each
time step, the relative distance and angle of all perceived neighbors are lumped
into a vector (Vd) representing a virtual attraction force towards the neighbors.
In addition to this direction vector Vd, the control software has also access to
the number of perceived neighbors (n).

The control software also controls actuators: the motors of the wheels. The
e-pucks are driven by a two-wheeled differential steering system. The control
software dictates the displacement of the robot via two velocity variables (vl
and vr).

Design methods. In this section, we briefly describe the three automatic de-
sign methods considered in the experiments: EvoStick [19], Vanilla [19], and
Chocolate [18]. We refer the readers to the original papers for their detailed
description. The implementations are publicly available [31].

EvoStick is an implementation of the classical evolutionary robotics setup.
An evolutionary algorithm optimizes the parameters of a fully connected, feed-
forward, neural network. The neural network comprises 24 input and 2 output
nodes that are directly connected. The inputs and outputs are defined on the
basis of the reference model RM1.1 (see Table 2). More precisely, the inputs
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are allocated as follows: 8 for the readings of the proximity sensors, 8 for the
readings of the light sensors, 3 for the readings of the ground sensors, 1 for the
number of neighbors, and 4 for the scalar projections of the vector Vd on four
unit vectors distributed around the robot. The outputs of the neural network
are the speed of the left and right wheels of the e-puck.

Vanilla produces control software in the form of probabilistic finite state
machines by assembling preexisting modules. A module is either a behavior or
a transition. A behavior is an action that can be performed by the robot, while
a transition is a condition on the environment perceived by the robot. All mod-
ules operate on the variables presented in the reference model RM1.1 of Table 2,
and some of the modules have parameters that adjust their functioning. In a
probabilistic finite state machine, the transitions (i.e., the edges) regulate the
succession of behaviors (i.e., states) that alternatively control the robot by de-
termining the values of the output variables.

Similarly to Vanilla, Chocolate is a modular automatic design method. The
methods differ by the optimization algorithm they use: Vanilla uses F-race [5,
3] and Chocolate uses Iterated F-race [32]. In order to conceive probabilistic
finite state machines, Vanilla and Chocolate have at their disposal the same
set of preexisting modules: six behaviors and six transitions. In addition to the
topology of the probabilistic finite state machine, Vanilla and Chocolate also
tune the parameters of the modules. The design space explored by the two
methods is restricted to all possible probabilistic finite state machines composed
of up to four states (i.e., behaviors) and up to four edges (i.e., transitions)
departing from each state. Chocolate has been shown to outperform Vanil-

la [18].

Models. We use the two e-puck models, namely MA and MB , described in
Table 3. Model MA is the same model used during the design process of the
experiments ran by Francesca et al. [19]. We generated model MB by modifying
actuator and sensor noise of model MA. We did so via trial-and-error so that,
when model MB is used as a pseudo-reality to assess the performance of control
software automatically generated on the basis of model MA, we obtain a rank
inversion that qualitatively resembles the one observed by Francesca et al [19].

Protocol. We consider two missions: aggregation and foraging. For each
mission, we define an objective function to be maximized. The same objective
function is used for both designing control software and assessing its perfor-
mance. We run experiments in which the control software is designed by the
three design methods described above: EvoStick, Vanilla, and Chocolate. We
consider a homogeneous swarm composed of N = 20 robots operating in a do-
decagonal arena for a time period of 250 s. The arena is delimited by walls and
its surface area is 4.91 m2.

For each mission, we consider two stages: SAB and SBA. In stage SAB , each
automatic design method produces control software via simulations based on
model MA; the control software is then assessed with simulations based on model
MB . To study the generalization capability of the control software produced, the
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Table 3. The two e-puck models. The values for the proximity, light and ground sensors
are the range of the uniform white noise added to the readings of the sensors. The value
for the range-and-bearing sensor is the probability of failing to receive a message sent by
a robot within communication range. The value for the wheels actuator is the standard
deviation of Gaussian white noise added to the speed of the left and right wheels.

sensor/actuator MA MB

proximity [−0.05, 0.05] [−0.05, 0.05]
light [−0.05, 0.05] [−0.90, 0.90]
ground [−0.05, 0.05] [−0.05, 0.05]
range-and-bearing 0.85 0.90
wheels 0.05 0.15

performance evaluated on model MB is compared to the one evaluated on model
MA. In stage SBA, the roles of the two models are inverted: control software is
produced on MB and then assessed on MA. Also in this case, the performance
on MA is compared to the one on MB to study the generalization capability of
the control software. In other terms, in stage SAB the pseudo-reality is model
MB ; whereas in stage SBA, it is model MA.

Each design method is run with a design budget of 200 000 simulations. For
each mission and each stage Sxy—where by x and y we indicate A and B,
or viceversa—each design method is run 20 times on model Mx and produces
therefore a total of 20 instances of control software. For the assessment, each of
these instances is evaluated 20 times on model Mx, and 20 times on model My

to study their generalization capability.
We present the results by means of notched box-and-whiskers boxplots. The

notches indicate the 95% confidence interval around the median. If the notches of
two boxes do not overlap, the difference between their medians is significant [11].
Moreover, we aggregate the results of the two stages to estimate the performance
drop experienced by each design method. For each method, we report a 95% con-
fidence interval on the difference between the performance observed on models
Mx and My.1 We also highlight a lower bound D on the difference between
the performance drop of EvoStick and Vanilla—confidence 95%. We focus on
EvoStick and Vanilla as Francesca et al. [19] assessed their performances for
the same mission in robot experiments.

3 Experiments

In this section, we provide details on the two missions considered and we report
the results of our experiments. Figure 1 shows the simulated environments in
which the swarm operates. The missions have already been studied in [19]. We

1 Confidence intervals are computed based on the statistic of the paired Wilcoxon
signed rank test. The normal approximation is adopted as the sample size is larger
than 50. The implementation used is the one of R’s stats package [37].
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Fig. 1. Simulated environments: aggregation (left) and foraging (right).

report in the following only the information that is strictly needed to understand
the results. We refer the reader to the original paper for the details.

3.1 aggregation

In this experiment, the swarm must aggregate on one of two black areas, named
a or b. These black areas have a radius of 0.35 m. The performance of the swarm
is measured via the following objective function:

Fa = max(Na, Nb)/N,

where N = 20 is the total number of robots composing the swarm; and Na and
Nb are the number of robots that at the end of the experimental run are located
on a and b, respectively. The objective function is maximized when, at the end
of a run, all robots are either on a or on b.

The results of this experiment show a rank inversion—see Figure 2 (left and
center). In each stage Sxy, EvoStick performs significantly better than both
Vanilla and Chocolate when the performance of the control software they
produced is assessed on model Mx. On the other hand, EvoStick performs sig-
nificantly worse than both Vanilla and Chocolate when the performance is
assessed on model My.

Indeed, the performance of the control software designed by EvoStick drops
noticeably when assessed in pseudo-reality: the drop is at least 0.55 (confidence
95%). In the case of Vanilla and Chocolate, the drop is significantly smaller:
at most 0.00 and 0.02 respectively (confidence 95%). See Figure 2 (right).

In both stages, the rank inversion between EvoStick and Vanilla is similar
to the one observed by Francesca et al. [19] on the same mission. This corrobo-
rates further the conjecture of Francesca et al. [19] according to which EvoStick

is affected by the reality gap more seriously than Vanilla and Chocolate be-
cause of its higher representational power. At least in this experiment, the artifi-
cial reality gap we created with the models MA and MB was able to qualitatively
predict performance drop and rank inversion for EvoStick and Vanilla.
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Fig. 2. aggregation. Left and center : narrow boxes represent the performance as-
sessed on the model used during the design step; wide boxes represent the performance
assessed in pseudo-reality. Gray boxes represent performance assessed on model MA;
white boxes represent performance assessed on model MB . Right : the segments repre-
sent a 95% confidence interval on the performance drop experienced by each method—
aggregated across the two stages. D is a bound on the difference between the perfor-
mance drop of EvoStick and Vanilla.

3.2 foraging

In this experiment, the swarm must perform an idealized form of foraging. We
consider that an individual robot has retrieved an object when it enters the
nest after having visited a foraging source. Two sources are available, and are
represented by black circular areas of radius 0.15 m. The nest is represented by
a white area situated at a distance of 0.45 m from the two black areas. A light
source is placed behind the nest to help the robots locate it.

The performance of the swarm is measured by the number of objects retrieved
during the whole experimental run. It is computed via the following objective
function:

Ff = No,

where No is the total number of objects retrieved.
Also in this experiment, we observe a rank inversion—see Figure 3 (left and

center). EvoStick performs significantly better than Vanilla and Chocolate

when the performance of the control software produced is assessed on model
Mx, but significantly worse when the performance is assessed on model My.

When assessed in pseudo-reality, the performance of the control software
designed by EvoStick drops by at least 48 objects (confidence 95%), whereas in
the case of Vanilla and Chocolate, the drop is at most of 1 object (confidence
95%). See Figure 3 (right).

Also on this mission, the rank inversion between EvoStick and Vanilla is
similar to the one observed by Francesca et al. [19], which corroborates fur-
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Fig. 3. foraging. See caption of Figure 2 for the explanation of width and color of
boxes.

ther their conjecture. Also here, the artificial reality gap yields good qualitative
predictions.

4 Conclusions

With this paper, we shed further light on the reality gap. Specifically, we inves-
tigated how and under what conditions the effects of the reality gap manifest.
We contend that, for the effects of the reality gap to manifest, it is unnecessary
to assume that the control software is assessed under context/conditions that
are more complex than those experienced in the design.

To substantiate our contention, we conceived a set of simulation-only exper-
iments in which we created an artificial reality gap based on two robot models
MA and MB . We used MA for the design and MB for the assessment; we then
inverted the role of the two models. In both cases, we observed performance drop
and rank inversion: a design method (EvoStick) performed significantly better
than the others (Vanilla and Chocolate) when the control software they pro-
duced was assessed on the same model used in the design, but significantly worse
on the other one. Having observed performance drop and rank inversion both
when (i) designing on MA and assessing on MB , and when (ii) designing on MB

and assessing on MA, we can exclude that the effects of the reality gap emerge
only due to the fact that the design is performed on a simplistic model that fails
to reproduce the complexity of the environment in which the final assessment is
performed.

Furthermore, our results indicate that simulation-only experiments could be
used to tell whether and to what extent automatic design methods are prone to
performance drop and rank inversion. This might have useful practical implica-
tions. Indeed, we foresee that an artificial, simulation-only reality gap could be
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used to validate automatically-generated control software and to predict its real-
world performance. We have in mind here a development process that mimics
the classical machine learning procedure based on training, validation, and test
set. We imagine a development process in which control software is generated
using a model, validated on another model to predict its ability to cross the
reality gap, and eventually tested in the real world.

Future work will be dedicated to study whether an artificial reality gap can
reliably predict real-world performance. Moreover, future work should be ded-
icated to defining reliable and meaningful ways to generate a pair of models
that can properly serve as an artificial reality gap. In this work, we considered
two models that differ in the noise level. Other differences between the models
could be considered, which could be more appropriate. Finally, future research
should be dedicated to quantifying the difference between two models. A quan-
tity measuring the difference between two models could be used to characterize
the severity of the artificial reality gap associated with them.
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Université libre de Bruxelles, Belgium (2015)
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