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The thesis

Understanding that the reality-gap problem is akin to overfitting (as it is
encountered in machine learning), enables more principled and accurate
ways to evaluate automatic methods for the design of robot swarms.
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Summary

Which off-line fully-automatic optimization-based design method produces control soft-
ware that will yield the best performance once executed on a swarm of physical robots?
This fundamental question cannot currently be answered due to the lack of two ele-
ments: i) an appropriate experimental protocol for the evaluation and comparison of
fully-automatic design methods, and ii) a procedure that reliably predicts the real-
world performance of control software. This dissertation focuses on addressing this
void.

The literature on optimization-based design of robot swarms suffers from the ab-
sence of a clearly established state of the art. It is in fact, for the most part, a
collection of feasibility studies, and little effort has been devoted to the systematic
empirical evaluation and comparison of the methods or ideas proposed. Recent papers
have formally characterized two approaches to the optimization-based design that were
entangled in the literature: the fully-automatic and the semi-automatic approaches.
In light of this novel categorization, we show that the experimental protocols employed
so far for the evaluation and comparison of design methods do not respect the tenets
of fully-automatic design, and we propose one that does.

One of the most challenging issues when designing control software off-line on the
basis of a simulation model is the reality gap: the unavoidable discrepancies between
the design model and reality. It is generally understood that, because of the reality
gap, the design model overestimates the performance that control software eventually
yields when executed on physical robots. As a result, conducting expensive and time
consuming tests on physical robots is mandatory to reliably assess control software.
We introduce the concept of pseudo-reality: a simulation model, different from the one
used in the design, whose purpose is to evaluate control software. With this concept,
we show via a series of experiments that the reality-gap problem is to be understood
as a generalization problem, akin to the one encountered in machine learning. We also
use it to conceive several simulation-only predictors of real-world performance, and
we assess their accuracy with a large dataset of observations collected from previous
studies. Results show that the pseudo-reality predictors we propose are more accurate
than the current practice for predicting the expected performance of control software
for robot swarms.
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Original contributions

The following is a summary of the original contributions in this thesis:

Review of the literature on optimization-based design: We classify the rel-
evant literature on the basis of the semi-automatic/fully-automatic classification. In
particular, we focus on the elements of the existing works that classify them as be-
longing to the semi-automatic approach or the fully-automatic one, and on the exper-
imental protocols used. We then reckon that works that belong to the semi-automatic
approach do not compare the performance of design methods, and that works that
belong to the fully-automatic one adopt experimental protocols that are appropriate
when one aims at evaluating the performance of design methods for specific missions,
but not for a whole class of mission, as it should be.

An experimental protocol for fully-automatic design: We propose an experi-
mental protocol for the evaluation and comparison of fully-automatic design methods.
This protocol is characterized by two notable elements: a way to define benchmarks
for the evaluation and comparison of design methods, and a sampling strategy that
minimizes the variance when estimating their expected performance.

MG1, the first mission generator for swarm robotics: We illustrate the con-
cept of mission generator by presenting one we named MG1, short for mission gen-
erator 1. We use MG1 in an illustrative study in which we compare two off-line
fully-automatic design methods that were presented in previous publications. MG1
is, to the best of our knowledge, the first generator of missions for swarm robotics.
MG1 is shared publicly.

A taxonomy for approaches to handle the reality gap: We propose a novel
taxonomy for the classification of approaches proposed to limit the performance drops
suffered by generated control software when going from simulation to reality. This
taxonomy stands on the working hypothesis that drove the creation of each approach,
and on the element of the design process that is targeted.

The concept of pseudo-reality: We introduce the concept of pseudo-reality, which
refers to a secondary simulation model, different from the one used in the design
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process, that is used for the evaluation of control software and hence plays the role of
reality. In this thesis, we conduct experiments with swarms of e-puck robots and use
the ARGoS3 simulator to simulate them. We consider pseudo-reality models that differ
from the design model by the amount of noise injected to the sensors and actuators of
the robots.

Disproof of the complexity assumption: We call the complexity assumption the
common belief that emerges from the literature that claims that effects of the reality
gap are due to the fact that the simulation conditions in which control software is
designed are too simplistic with respect to the real-world environment in which it
is eventually evaluated. We disprove the complexity assumption via experiments in
which we create a simulation-only, artificial reality gap between the design model and
a pseudo-reality we named MB.

Three pseudo-reality predictors: We propose three simulation-only predictors of
real-world performance of control software for robot swarms created on the basis of
the concept of pseudo-reality. The first one, PMB

, consists in the evaluation of control
software on the fixed and handcrafted simulation model MB. The second one, PR1 ,
consists in the evaluation of an instance of control software on a single model sampled
from a range R of possible ones. The third one, PRk

, consists in the evaluation of an
instance on k > 1 models sampled from R.

DS1, the first dataset of reused control software for swarm robotics: We
assess the accuracy of the three aforementioned pseudo-reality predictors. To perform
a meaningful assessment, a large amount of instances of control software is necessary.
Rather than generating enough instances of control software and evaluating them on
physical robots ourselves, we collected and reused data from 7 previously published
studies in off-line optimization-based design (i.e., a total of 1021 instances of control
software generated by 18 different design methods for 45 missions). Reusing control
software for a different purpose than the one it was originally produced is, to the best
of our knowledge, a first in swarm robotics. We create the dataset DS 1—short for
dataset 1—containing the data collected and the predictions of real-world performance
made by our pseudo-reality predictors. DS 1 is shared publicly.
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Chapter 1

Introduction

The first robot, Unimate, was created in 1959. Unimate is a mechanical arm that
quickly became popular in the industry as it was able to repeat tasks that required
strength, rapidity, and precision over and over again. The novelty of Unimate with
respect to the industrial machines that appeared in the 18th century was the fact that
it was digitally programmable: the same machine could be used to accomplish mul-
tiple tasks. Unimate could not adapt itself to different tasks, but its behavior could
be redefined by a human. It is with advancements in technologies such as sensors,
manipulators, transistors, and artificial intelligence that robots gained the ability to
sense their environment and act upon it in real time—to become autonomous. Today,
robots have not only allowed to completely automate most assembly lines, they also
spread beyond industry: they are now used in transportation, agriculture, construc-
tion, space exploration, health care, and surgery. Robots, in the form of automatic
vacuum machines or lawn mowers, have also discreetly entered many households.

Roboticists have for vocation to create robotic systems that solve problems ever
more complex; often to free humans from difficult, unpleasant, or dangerous tasks.
Most of the research in robotics has been dedicated to push the capabilities of individ-
ual robots; to make them more competent, more intelligent, and more autonomous.
In many applications however, a single robot is not appropriate. An example of such
applications is search and rescue (e.g., extracting people from a collapsed building
after an earthquake or from a sinking ship during a tempest). One can easily imagine
that a single robot would have to be extremely agile, rapid, strong, and precise to
accomplish alone search-and-rescue missions in hazardous conditions. In addition to
the conception of this robot to be exceptionally challenging, this solution would not
be viable because the robot represents a single point of failure of the whole rescue
system. This solution is also not satisfactory and possibly unfeasible: if the number
of imperiled persons exceeds the capabilities of the robot, not all will be saved. A
new, better robot should then be devised. In this application, and in many others, the
solution is a system composed of multiple robots that operate in parallel.

Swarm robotics is the engineering discipline that studies how groups of autonomous
robots can coordinate to solve a problem (Beni, 2004; Şahin, 2004; Dorigo et al., 2014;
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2 CHAPTER 1. INTRODUCTION

Garattoni and Birattari, 2016; Hamann, 2018). In a swarm, robots have local sensing
and communication capabilities, and they do not rely on a predefined leader or on
external infrastructures. The robots are relatively simple with respect to the mission
they must accomplish; they must cooperate to perform tasks that are beyond their
individual capabilities. Robot swarms are meant to be robust to individual failure, to
be able to operate in areas where communication capabilities are limited (i.e., below the
ground or underwater), and to be scalable—that is, the system adapts itself seamlessly
to the increase or decrease of robots. These characteristics make for robotics systems
that are ideal solutions to problems that involve risks of damage and for which global
communication might not be achievable, such as the aforementioned search and rescue.

The literature on swarm robotics provides many successful and fascinating demon-
strations of swarms of different robots able to execute collective tasks (Dorigo et al.,
2013; Rubenstein et al., 2014; Werfel et al., 2014; Garattoni and Birattari, 2018; Li
et al., 2019; Zhou et al., 2022). These successes have propelled the domain to a notable
position in the scientific literature, with more and more of these works being published
in prestigious journals. Swarm robotics is now recognized as a technology that is likely
to have a major impact on robotics in the near future (Yang et al., 2018).

Despite the growing enthusiasm around swarm robotics, the research domain is still
in its infancy and robot swarms have yet to be applied to real-world scenarios. What
prevents swarm robotics to be of a major impact on robotics today is the challenge that
represents obtaining the desired collective behavior of a swarm, but most importantly,
the lack of a general methodology to do so (Brambilla et al., 2014; Dorigo et al., 2020).
The design problem in swarm robotics is indeed particularly difficult as it is not feasible
to directly program the desired collective behavior of a swarm: only the behaviors of
the individual robots can be programmed. Any collective behavior displayed by a
swarm is the result of many interactions between robots, and between robots and
the environment. Obtaining that a swarm behaves as desired requires the robots to
correctly react to these interactions, which depend on how the system evolves, and are
therefore unknown at design time.

A few principled manual design methods have been proposed, but, due to their
working hypotheses and constraints, their application is limited to specific classes of
missions (Hamann and Wörn, 2008; Berman et al., 2011; Brambilla et al., 2014;
Reina et al., 2015). Similarly, traditional multi-robot systems and software engineer-
ing techniques, which rely on the formal derivation of the individual behaviors from
specifications expressed at the collective level (Brugali, 2007; Di Ruscio et al., 2014;
Bozhinoski et al., 2015; Schlegel et al., 2015), cannot be applied to swarm robotics,
at least in the general case. Therefore, in most cases, designers proceed by trial and
error, and the design process is costly, time consuming, and hardly repeatable.

Optimization-based design is a possible alternative. In this approach, the prob-
lem of designing the control software that determines a robot’s behavior to perform
a given mission is re-formulated into an optimization problem: an optimization algo-
rithm searches for the instance of control software, among a finite space of possible
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ones, that maximizes a mission-dependent measure of the collective performance of
the swarm—or, at least, for one that scores sufficiently well with respect to the given
performance measure. Optimization-based design, because it effectively bypasses the
complex endeavor of deriving the individual rules from the desired collective behav-
ior, is deemed to have the potential to become a general engineering methodology to
conceive swarm behaviors (Dorigo et al., 2020).

Optimization-based design methods can be categorized according to two different,
independent characteristics. The commonly adopted categorization stands on the na-
ture of the design process and distinguishes between on-line methods and off-line ones.
In on-line methods, the design process takes place after the robots are deployed in the
target environment. A distributed optimization algorithm, running on the robots
themselves, iteratively improves the control software on the basis of their performance
while the robots operate on their mission in the target environment. In off-line meth-
ods, the design process takes place prior to the deployment, and it (most typically)
relies on evaluations of control software in simulations that ought to reproduce relevant
features of the target environment in which the robot will eventually operate.1

A second classification exists; it stands on the way a optimization-based method
is utilized, and it distinguishes between semi-automatic methods and fully-automatic
ones (Birattari et al., 2019, 2020). In semi-automatic design, the design method is used
as a tool by a human expert who is allowed to adapt any part of the design process to
the mission at hand so that the solution produced satisfies the requirements and the
expectations. The adaptation of the process is typically performed after the expert
evaluates the behavior of the swarm when executing control software produced, and a
new design must then be initiated. Examples of elements of the design process that can
be adjusted are the control software architecture, the parameters of the optimization
algorithm, the simulation models, and the performance measure to be maximized. In
fully-automatic design, the design method does not undergo any per-mission, manual
modifications. For a design method to qualify as fully-automatic, one should conduct
research reflecting the following tenets: the method should not be defined to solve a
specific mission, and its expected performance should be assessed on a class of missions

1In principle, one can do off-line design with physical robots and therefore without the need
for simulations—see, for example, the works of Regan et al. (2006) and Gongora et al. (2009). In
fact, one can upload and execute on the robots the candidate instances of control software that are
generated by the optimization algorithm that is itself running on a dedicated machine, and feed
the observed performance back to the algorithm. However, this process is extremely time consuming
given the several tens of thousands of evaluations commonly required to obtained the desired collective
behaviors (Regan et al. (2006) and Gongora et al. (2009) adopted this process, but only made use of
600 and 3000 evaluations, respectively, and for single robots—doing so for swarms of robots would
be considerably more time consuming). This design process would also be expensive and potentially
dangerous as harmful behaviors (for the robots and/or the environment) are likely to be uploaded on
the robots, especially in the early phases of the design process, if no damage prevention strategies are
manually included (Jones et al., 2019; Kaiser and Hamann, 2022; Wahby and Hamann, 2015). The
real interest of going off-line is to use simulations, which are (relatively) cheap, safe, and convenient.
For these reasons, it comes natural to identify off-line design with simulation.
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without providing any human intervention or modification to any phase of the design
processes initialized for each mission of the class.

The two classifications can be crossed to give four categories of approaches: on-
line semi-automatic, on-line fully-automatic, off-line semi-automatic, and off-line fully-
automatic. It should be noted that the aforementioned classifications of approaches
are not intended to be a rigid taxonomy. In fact, hybrids between on-line and off-
line approaches are possible: one could conceive a design method that consists in the
off-line conception of an instance of control software for which some parameters are
then adjusted on-line, while the swarm operates. Because the semi-automatic/fully-
automatic classification is based on the fashion a method is used, a same method
could possibly be utilized sometimes in a semi-automatic way and sometimes in a
fully-automatic one. We therefore expect achievements and progress in one approach
to have an impact on the other, and that both will grow at a somewhat similar pace.
Nonetheless, these classifications are conceptually important because they provide the
categories to navigate the literature and the possible approaches proposed. They are
also essential to the definition of the research questions and challenges relevant to
each approach, as well as to the definition of the appropriate expectations of what
they should achieve.

So far, off-line semi-automatic and fully-automatic approaches have received the
most attention from the community. On-line methods that could possibly or have been
demonstrated to operate directly on robot hardware have been proposed, but they do
not appear to be the ultimate solution the design problem of robot swarms. Indeed,
the relative small search space that can be explored, the risk of damaging robots
and/or environments by suboptimal control software, and the fact that it can address
only missions in which the robots can evaluate their own collective performance, limit
their applications. Designing control software off-line on the basis of simulations does
not suffer from the these drawbacks, and therefore appears to be a more effective and
viable approach than on-line design.

Yet, for off-line optimization-based design to become a general methodology to
conceive robot swarms, notorious issues that hinder its progress need to be overcome.
To the best of our knowledge, Francesca and Birattari (2016) were the first to warn
the community about the lack of a systematically applied empirical practice in the
optimization-based design of robot swarms. In fact, in their review of the relevant
literature, the authors highlighted the fact that it is composed of isolated studies, and
identified a few issues that need to be addressed. Like the authors, we strongly believe
that establishing a clear state of the art is the next crucial step that must be taken by
the community for optimization-based design to become a mature research domain.
This thesis is dedicated to providing tools that we deem necessary to make this step.

One of the issues highlighted by Francesca and Birattari (2016) is the absence of
benchmarks on the basis of which the community should assess design methods. We
go further in our critique towards the domain literature and show—both intuitively
and formally—that none of the experimental protocols employed in the current pa-
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pers respect the tenets of fully-automatic design. We propose one that does. Our
experimental protocol is characterized by two elements: (i) the notion of mission gen-
erator that allows for the creation of benchmarks of missions that mimic those a design
method will eventually have to solve, and (ii) a sampling strategy that minimizes the
variance when estimating the expected performance of design methods. We illustrate
the experimental protocol by comparing the performance of two off-line optimization-
based design methods on the basis of 30 missions that were automatically generated.

Another issue in the current literature on optimization-based design highlighted
by Francesca and Birattari (2016) is the lack of experiments performed with physical
robots. Robot experiments are expensive and time consuming. The financial costs
of running robot experiments include the price of the individual robots themselves,
but also the cost of maintenance of the robots (including required tools, spare parts,
and eventual shipping and repair services) and the cost of the equipment needed to
operate robot swarms (including laboratory space, batteries and charging stations,
and tracking cameras and desktop stations to record the positions of the robots and
compute performance metrics). The time consuming aspect of running robot exper-
iments includes the calibration of the robots and the setup of the environment, the
supervision and monitoring of the execution of the swarm by at least one researcher,
and the maintenance of the robots. These elements represent a heavy burden to the
assessment of control software on physical robots, and, to avoid this burden, many
studies skip robot experiments and only rely on the simulation model used during the
design to evaluate automatically generated control software (Gomes and Christensen,
2018; Salman et al., 2019; Pagliuca and Nolfi, 2019; Cambier and Ferrante, 2022). By
doing so, they overlook the most important and well-known problem faced by off-line
design: the reality gap (Brooks, 1991; Jakobi et al., 1995; Silva et al., 2016; Hasselmann
et al., 2021).

The reality gap is the difference between the simulations on the basis of which
control software is produced, and the real environment in which the control software is
eventually executed. These differences between simulation and reality might be sub-
tle, but they are unavoidable (Brooks, 1992; Jakobi et al., 1995). Due to the reality
gap, it is likely that robot swarms do not display the same behavior in simulation and
in reality (Floreano et al., 2008). These behavioral discrepancies often translate in
control software that performs poorly in reality despite giving good results in simu-
lation (Hasselmann et al., 2021). The true issue with the reality gap is the relative
nature of its effect: different instances of control software are prone to be affected by
different degrees of performance drop when moving from simulation to reality. The
relative nature of the reality gap might lead to a phenomenon of rank inversion: a
phenomenon in which, out a pair of instances of control software, the one that per-
forms best in simulation performs worst in reality. The possibility of observing a rank
inversion is insidious because it discredits any conclusion made on the basis of results
obtained on the simulation model used during the design. More importantly, it ques-
tions the validity of the off-line design process itself in that it relies on the assumption
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that the higher the performance in simulation, the higher the performance in reality.

Several approaches have been proposed to limit the performance drops caused by
the reality gap as much as possible, but none of them has been studied in detail, no
extensive comparison has been produced, and none of them appears to be the ultimate
solution. In the literature, effects of the reality gap are commonly explained by saying
that reality is more complex than simulations—or equivalently, that simulations are
too simplistic (Nolfi et al., 1994; Koos et al., 2013). We call this assumption the
complexity assumption, and we challenge it. Our working hypothesis is that the reality-
gap problem is somehow reminiscent of the generalization problem faced in machine
learning, and that drops in performance from simulation to reality are caused by a
sort of overfitting of the control software to the simulation model used in the design.
In other words, we consider performance drops to be due to the inability of the control
software to generalize to different contexts/conditions of executions. Following this
working hypothesis, we contend that performance drops can be observed even if the
simulation model under which control software is designed is not a simplistic version
of the context/conditions under which the control software is eventually assessed; they
only need to be sufficiently different.

We support our contention with a set of simulation-only experiments in which we
create an artificial reality gap: we replace reality with a simulation model into which
we insert discrepancies with respect to the model used in the design. We shall call any
secondary model that we use for assessing control software—and that therefore plays
the role of reality—a pseudo-reality. For these experiments, we created a pseudo-reality
via trial and error with the goal of observing a performance drop that is qualitatively
similar to the one previously observed on physical robots (Francesca et al., 2014b).
Our experiments have the logical structure of a reductio ad absurdum: traversing the
artificial reality gap we created in both directions—that is, generating control software
on the basis of one of the two models considered and evaluating it on the other one, and
vice versa—leads to similar effects of the (pseudo-)reality gap which, according to the
complexity assumption, would mean that one of the two models used is simultaneously
more and less complex than the other one; a contradiction. Our experiments therefore
bring empirical evidence that the effects of the reality gap appear even in cases in which
we can exclude that the evaluation is performed in a context that is more complex
than the one in which control software is designed.

Beside shedding light on the nature of the reality gap, the fact that we were able
to (re)produce a realistic performance drop with an artificial reality gap suggests
that the concept of pseudo-reality could have practical implications. As discussed
above, the reality-gap problem currently entails the necessity to conduct expensive
and time consuming tests on physical robots in order to reliably assess control soft-
ware; a simulation-only procedure to accurately predict real-world performance would
be extremely valuable. We conceive various predictors on the basis of the concept
of pseudo-reality, and compare them with the classical approach adopted to estimate
real-world performance, which relies on the evaluation of control software on the sim-
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ulation model used during the design. Results show that the pseudo-reality predictors
considered yield a more accurate estimation of the real-world performance than the
classical approach.

Overall, we believe that the two main contributions of this thesis—that is, the ex-
perimental protocol and the pseudo-reality predictors—will have a positive impact on
the research domain of optimization-based design of robots swarms. On the one hand,
the experimental protocol is a significant step towards addressing the current lack of
objective comparisons of design methods and, consequently, the lack of a clearly iden-
tified state of the art. On the other hand, we foresee that the pseudo-reality predictors
could considerably reduce the amount of tests with physical robots needed to validate
ideas and new design methods, and would therefore facilitate the research in the off-
line design of robot swarms. Together, the tools we discuss here enable researchers
to answer the following question more appropriately and with more confidence than
with the current practice: Which off-line fully-automatic design method produces con-
trol software that will yield the best performance once executed on a swarm of physical
robots? 2

The following is the structure of the thesis. In Chapter 2, we give an overview of the
domain of swarm robotics, and review the literature that is dedicated to optimization-
based design and to the reality-gap problem. In particular, we further discuss the two
categorizations of the approaches to optimization-based design—that is, off-line ver-
sus on-line, and semi-automatic versus fully-automatic—and we classify the relevant
literature according to the four categories that result from crossing these categoriza-
tions. We pay particular attention to the elements of the existing works that indicate
whether they belong to the semi-automatic or to the fully-automatic approach, and to
the experimental protocol employed. We also describe the functioning of the methods
proposed to handle the reality gap and propose a novel taxonomy.

In Chapter 3, we propose an experimental protocol for the comparison of fully-
automatic design methods. This protocol is characterized by two notable elements:
a generator of missions to define benchmarks for the evaluation and comparison of
design methods, and a sampling strategy that minimizes the variance when estimating
their expected performance. We illustrate the experimental protocol by comparing the
performance of two off-line fully-automatic design methods on 30 generated missions.

In Chapter 4, we disprove the aforementioned complexity assumption. We do so

2In this thesis, we focus on off-line fully-automatic design of control software for robot swarms.
However, the contribution has also the potential to have an impact on on-line fully-automatic, on
off-line semi-automatic, and on manual design. As the experimental protocol we propose aims at
estimating the expected performance of a design method following the tenets of fully-automatic
design, it is appropriate for both off-line and on-line ones, whereas the pseudo-reality predictors
might facilitate the tedious and time-consuming process that represents the conception of control
software via an off-line semi-automatic method. Also, human designers often use simulations to
conceive control software—being able to test their solutions in pseudo-reality rather than on physical
robots would also simplify their endeavor. Moreover, we believe that the contribution is also relevant
to the optimization-based design of single-robot systems or of centralized multi-robot ones as they
face issues that are similar in nature to the ones we face in swarm robotics.
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via a simulation-only experiment organized in two stages. In the first stage, we auto-
matically generate control software on the basis of MA, a model that has been used in
previous studies for the same purpose (Francesca et al., 2014b, 2015; Birattari et al.,
2016). We evaluate the control software on the basis of another model, MB, that we
chose via trial and error so as to qualitatively replicate real-world performance ob-
tained by two design methods on two missions (Francesca et al., 2014b). In the second
stage, we interchange the role played by the two models: we use MB as design model
to generate control software, and we use MA as pseudo-reality to assess it. Finally, we
evaluate the control software produced on the basis of both MA and MB on physical
robots to investigate whether they have an impact on the performance in reality.

In Chapter 5, we use multiple pseudo-reality models that we sample automatically,
and we replicate the two-stage simulation-only experiment of Chapter 4. We propose
multiple measures to quantify the difference between the design model and the pseudo-
reality one—we refer to the difference between these two models as the width of the
artificial reality gap they create. We study the correlation between the performance
drop experienced due to a given artificial reality gap and the width of that gap.

In Chapter 6, we quantitatively assess the accuracy of multiple predictors of real-
world performance of robot swarms. We consider (i) the design model MA, (ii) the
pseudo-reality model MB found via trial and error, and (iii) the automatically sampled
pseudo-reality models. To assess these predictors, we reuse 1021 instances of control
software generated by 18 off-line design methods for 45 missions and their associated
real-world performance that we collected from 7 previously published studies.

In Chapter 7, we conclude the thesis with a summary of the contributions and a
discussion on future research directions.



Chapter 2

State of the art

This chapter gives an overview of the swarm robotics literature. A number of works
have illustrated the principles of swarm robotics via fascinating demonstrations. For
example, Dorigo et al. (2013) presented a swarm of robots of different capabilities
that coordinate to localize, grab, and retrieve a book from a shelf. Rubenstein et al.
(2014) presented a swarm of a thousand coin-sized robots able to self-organize into
different complex shapes. Werfel et al. (2014) presented a swarm of robots able to
carry foam bricks and coordinate to build castles, towers, and pyramids. Garattoni
and Birattari (2018) presented a swarm of robots able to collectively determine a
sequence of actions whose order is a priori unknown. Li et al. (2019) presented a swarm
able to collectively move and push objects despite the fact that the individuals robots
are themselves incapable of locomotion. Very recently, Zhou et al. (2022) presented a
swarm of aerial robots able to fly through a dense forest while maintaining a formation
or tracking a target. These works are particularly impressive because there is currently
no methodology to follow to create these swarms; they are the products of ingenuity,
expertise, and countless hours of labor.

Optimization-based design is a promising solution to the current lack of general
methodology for the conception of robot swarms, and we focus our attention to this
approach in this chapter. We refer the reader to Hamann (2018) for an in-depth
introduction to the research domain of swarm robotics, to Brambilla et al. (2013) and
Garattoni and Birattari (2016) for comprehensive reviews of swarm robotics from an
engineering perspective, and to Schranz et al. (2020) for a recent survey of the swarm
behaviors developed so far. Finally, we refer the reader to Dorigo et al. (2021) for a
recent authoritative perspective on the future of swarm robotics.

2.1 Swarm robotics

Swarm robotics is an engineering discipline that originally found inspiration in swarm
intelligence (Dorigo and Birattari, 2007; Dorigo et al., 2014), and whose ultimate goal
is to design large groups of autonomous robots (Beni, 2004; Şahin, 2004; Hamann,

9
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2018)—what we call robot swarms.

In a swarm, robots are completely autonomous and act on the basis of the princi-
ple of locality: they take decisions based solely on local information collected through
their own sensors, or on information communicated by their neighboring peers. Local
sensing and communication capabilities promote scalability, the ability to perform a
task in different group sizes. In fact, as the robots are only aware of their nearby
surroundings, they are oblivious of what the whole swarm is doing or of the number
of robots in the swarm. Therefore, the addition or removal of robots does not influ-
ence the behavior of the system granted that it does not affect the robot density too
dramatically.

Robot swarms typically tackle missions that are beyond the capabilities of the
individual robots that compose the swarm; they therefore rely on cooperation and
coordination to reach their goal. Missions are often divided into sub-tasks that the
robots perform in parallel, switching from one sub-task to another depending on con-
tingencies. Cooperation, parallel execution, and autonomous task allocation promote
flexibility, the ability to cope with variations in the environment and to handle a large
variety of missions.

A robot swarm behaves in a self-organized way: robots do not have predefined
roles, nor is there a predefined leader that directs the others. No single robot is
therefore indispensable to the success of the swarm. In addition, swarms are typically
characterized by a high redundancy: many robots can perform any given sub-task.
Autonomy, self-organization, and redundancy promote fault-tolerance, the ability to
cope with damage or loss of individual robots.

The characteristics and properties of swarm robotics systems are particularly ap-
pealing for applications that involve a high risk of damage, that are subject to environ-
mental and conditional changes, and that take place in areas where deploying a com-
munication infrastructure is unfeasible. Common examples of applications are search-
and-rescue in hazardous areas, surveillance, underwater/underground/exoplanet ex-
ploration or monitoring, demining, and toxic-waste disposal.

However, these characteristics and properties make for complex systems that are
difficult to design. The design problem in swarm robotics is particularly challenging
as it is not feasible to directly program the collective behavior of a swarm: only
the individual-robot behaviors can be specified. Any collective behavior displayed by
a swarm is the result of interactions between robots, and between robots and the
environment. Obtaining the desired collective behavior requires therefore to master
the complex “what, where, when, and how” of these many robot-robot and robot-
environment interactions, which are unknown at design time.

Traditional multi-robot systems and software engineering techniques (Brugali, 2007;
Di Ruscio et al., 2014; Bozhinoski et al., 2015; Schlegel et al., 2015), which rely on
the formal derivation of the individual behaviors from specifications expressed at the
collective level, cannot be applied to swarm robotics, at least in the general case, due
to the aforementioned issues. A few principled manual design methods have been pro-
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posed (Hamann and Wörn, 2008; Kazadi, 2009; Berman et al., 2011; Beal et al., 2012;
Brambilla et al., 2014; Reina et al., 2015; Pinciroli and Beltrame, 2016), but their
application is limited to specific classes of missions due to their working hypotheses
and constraints. Therefore, experts in swarm robotics usually proceed by trial and
error to obtain the desired collective behaviors (Garattoni and Birattari, 2016).

2.2 Optimization-based design

A promising alternative to manually designing the control software exists: the adoption
of optimization-based design methods. With these methods, the design problem is
reformulated into an optimization problem: an optimization algorithm explores the
search space composed of all possible individual behaviors, with the objective of finding
one that maximizes a performance measure expressed at the collective level. The
optimization-based approach regroups different categories of design methods. In the
domain literature, the commonly adopted classification distinguishes between on-line
and off-line methods (Brambilla et al., 2013; Francesca and Birattari, 2016; Bredeche
et al., 2018). A second classification distinguishes between (fully-)automatic and semi-
automatic design methods (Birattari et al., 2019, 2020).

The on-line/off-line classification is widely used and understood by the commu-
nity. For this reason, in Sections 2.2.1 and 2.2.2 we only focus on describing the
two approaches and the main methods used. We refer the readers to recent reviews
of the literature for more details about the applications and achievements of these
methods (Francesca and Birattari, 2016; Bredeche et al., 2018). On the contrary, the
classification between automatic and semi-automatic is very recent and deserves more
attention.

The on-line/off-line and semi-automatic/automatic classifications are based on un-
related criteria and can be crossed to give four categories of approaches to the optimiza-
tion-based design: semi-automatic on-line, semi-automatic off-line, automatic on-line,
and automatic off-line. In Section 2.2.3, we review the literature on optimization-based
design for which ideas and methods have been tested on physical robots and classify
them according to these four categories.

2.2.1 On-line and off-line design

In on-line methods, the design process is distributed and operates on the physical
robots while they perform their mission. The main appeal of on-line design methods
is the autonomous and continuous adaptation of the system. In fact, the robots are able
to modify their behaviors on the fly to cope with possibly unexpected circumstances,
which makes the swarm intrinsically flexible. Another attractive aspect of on-line
design is the fact that is does not require the modeling of the robot-robot and robot-
environment interactions; on-line design methods are hence not subject to the reality
gap problem like their off-line counterpart.
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In on-line design, the search for the best possible instance of control software is
distributed to all robots in the swarm. Each robot conducts its own exploration of the
search space by executing a subset of instances of control software one after another for
a fixed or variable amount of time. The process is initialized with a random subset of
instances of control software. The robots evaluate their quality by assessing their own
individual performance with respect to the mission at hand. The subset of instances is
updated periodically according to rules that are proper to the optimization algorithm
employed. When sufficiently close to one another, robots might exchange information
about the optimization process their are conducting, such as the best instance found
so far and its associated performance. Upon reception of instances evaluated by peers,
robots might decide to incorporate them into their own subset of instances, possibly
after some mutations.

Among the notable works belonging to the on-line optimization-based literature,
the first is ascribed to Parker (1997) for L-ALLIANCE, a control architecture that
allows for the on-line adaptation of some parameters. The most popular approach is
called embodied evolution (Watson et al., 1999, 2002) and consists in the embodied
optimization of artificial neural networks parameters (i.e., the synaptic weights) via an
evolutionary algorithm. Recent embodied evolution frameworks include MEDEA (Bre-
deche et al., 2012), MONEE (Haasdijk et al., 2014), and odNEAT (Silva et al., 2015);
the last one allows for the on-line evolution of the topology of the neural networks
alongside the optimization of the synaptic weights. Methods that slightly distinguish
themselves from the classical embodied evolution exist: König et al. (2009) optimized
finite-state machines using a distributed evolutionary algorithm, and Di Mario and
Martinoli (2014); Di Mario et al. (2015) optimized recurrent neural networks using a
distributed particle swarm optimization algorithm.

On-line methods suffer from a number of drawbacks (Francesca and Birattari, 2016;
Bredeche et al., 2018). In the early steps of the design process, the instances of control
software executed are typically selected randomly. These instances are likely to be
suboptimal, and might cause damage to the robots or the environment if no damage
prevention strategies are manually included (Jones et al., 2019; Kaiser and Hamann,
2022; Wahby and Hamann, 2015). Moreover, only a small search space is likely to be
explored so as to avoid wasting time and energy executing large samples of suboptimal
instances. Finally, enabling the individual robots to assess the collective performance
of the swarm is not always feasible, which limits the application of on-line design. Let
us imagine a foraging mission in which a swarm of robots has to collect items from a
source and gather them to a location we shall call the nest. If the swarm density is
reasonably low, it is very likely that all robots are not able to know the total amount
of items collected to the nest by the swarm in real time. To the best of our knowledge,
all applications of on-line design use the performance of the individual robots to assess
the performance of the instance of control software executed at a given time. In
our foraging example, each robot would therefore aim at maximizing the number
of items they retrieved rather than the number of items collected collectively. This
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naturally promotes individualism, and cooperative behavior such as chain-based path
formation (Nouyan et al., 2008), in which some robots stand still to indicate to others
where the points of interests are located to increase efficiency, would never emerge.

In off-line methods, the design process is performed before the swarm is deployed in
the target environment. To evaluate the performance of control software, these meth-
ods rely on computer-based simulations that reproduce relevant features of the target
environment in which the robot will be eventually deployed. Because the assessment
of performance is much faster and cheaper in simulation than on physical robots, off-
line methods can explore a larger space of possible instances of control software in a
relatively short time. In addition, simulation provides a god’s-eye view of the swarm,
which allows off-line methods to evaluate any possible performance metric. Finally,
damaging robots or the environment is irrelevant when they are simulated entities.

Many off-line optimization-based methods have been presented in the literature.
They resemble the ones studied in the on-line approach, the major difference being the
centralization aspect of the optimization process. The most popular approach is neu-
roevolutionary (swarm) robotics (Lipson, 2005; Floreano et al., 2008; Trianni, 2008,
2014): robots are controlled by a neural network, the robot’s sensor readings are fed
to the neural network as inputs and the robot’s actuator values are dictated by the
network’s output. An evolutionary algorithm is used to search for the best possible
configuration of the neural network, that is, the parameters or synaptic weights, and
possibly the topology. Other approaches, based on modularity, have been proposed:
they generate control software by assembling low-level behavioral modules. Mod-
ules can be generated automatically (i.e., via neuroevolution) and combined manu-
ally (Duarte et al., 2015); conceived manually and combined automatically (Francesca
et al., 2014b); or both generated and combined automatically (Duarte et al., 2014;
Ligot et al., 2020a).

2.2.2 Semi-automatic and fully-automatic design

In semi-automatic design, a human designer utilizes an optimization algorithm as a tool
that they operate using their intuition and previous experience to solve the problem
at hand. Typically, the designer iterates through a series of steps, which include:
the execution of the optimization process, the evaluation and analysis of the behavior
produced using simulation and/or physical robot experiments, and the modification
of the optimization process. This three-step procedure is repeated until the control
software produced satisfies the designer and/or they feel that it cannot be improved
any further.

In automatic design, on the other hand, the design method does not undergo any
per-mission manual modifications.

Due to the difference in operational functioning between semi-automatic and fully-
automatic design, they address different contexts of application—see Figure 2.1 for an
illustration.
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Figure 2.1: Illustration of potential applications of semi-automatic and au-
tomatic design of robot swarms. (a) Illustration for the semi-automatic approach
inspired from the NASA’s tests in the Atacama desert (Tabor, 2017). Consider a
project aiming at deploying a swarm-based exploration and monitoring system on
Mars. The mission is complex, the challenges are legion. One can imagine that many
engineers are involved, and that sufficient time and resources are available for them
to be able to test, adjust, and repeat the design process multiple times until the
appropriate behavior is found. The multiple tests can be done in simulation, or in
mock-up environments that reproduce the conditions that the robots will experience
once deployed on Mars. (b) Illustration for the automatic approach inspired from
the Fiorella’s gardening swarm (Birattari et al., 2019). Consider a small one-person
business that uses a swarm to provide a service, here a gardening one. Everyday, the
swarm is deployed on different gardens. Each intervention is relatively simple, yet
they are all unique and benefit from a tailored design to maximize efficiency. Time
and monetary constraints do not allow for tests and manual interventions; Fiorella’s
business depends on a fully-automatic design method.
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Semi-automatic design is best suited for complex, one-of-a-kind missions. To suc-
cessfully accomplish such missions, it is reasonable to expect that sufficient time and
resources can be allotted to allow human designers to iteratively adjust the functioning
of a design method on the basis of evaluations of control software produced. The rela-
tive high cost of this human-in-the-loop process is justified by the exceptional nature
of the missions to be solved.

Fully-automatic is best suited when one must solve multiple missions repeatedly,
one after another, in such a way that the presence of a human expert in the design
loop would be unfeasible due to monetary and time constraints. In this fully-automatic
context, a design method is therefore expected to be able to design control software
for any mission belonging to a given class of mission without any intervention of a
human designer on a per-mission basis. By class of missions, we mean a set of mis-
sions characterized by different goals, constraints, and/or configurations. Differences
between two missions of a class might be qualified as minor, yet they can be sufficiently
important to benefit from a tailored design.

2.2.3 Four crossed categories

Crossing the on-line/off-line and semi-automatic/automatic classifications gives four
possible categories of approaches: off-line semi-automatic, on-line semi-automatic, off-
line automatic, and on-line automatic. They are depicted in Figure 2.2. In this
section, we review the existing works in optimization-based design, and we classify
them according to these four categories—a summary of this categorization is given
in Table 2.1. The distinction between on-line and off-line is straightforward as it
depends on the nature of the design method itself. On the other hand, the distinction
between semi-automatic and fully-automatic can be ambiguous as it depends on the
way the design methods are used. A same design method can therefore be used in an
semi-automatic or in a fully-automatic fashion.

Our review reveals that a majority of the works presented in the literature on neu-
roevolutionary swarm robotics belong in the semi-automatic approach. The authors
of these works usually do not describe how they devised the neuroevolutionary setup
they use (e.g., the configuration of the neural networks). However, it is commonly
believed that many evolutionary setups are found in an ad-hoc fashion (Christensen
and Dorigo (2006) and Doncieux et al. (2015) mention it explicitly in their respective
papers), and we highlight elements of these works that confirm this belief. The ele-
ment of the design process that is most often adapted manually after observing the
executions of behaviors produced in preliminary runs is the performance measure1 to
be optimized (Floreano and Urzelai, 2000; Doncieux and Mouret, 2014). Typically,
terms are added to reward the emergence of certain behaviors, to penalize those that
exploit aspects of the simulation that are not correctly modeled and that therefore do

1This performance measure is usually referred to as fitness function in the neuroevolutionary
jargon.
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Figure 2.2: Flowcharts of the four approaches to the optimization-based
design of robot swarms. The design processes are the parts contained in the red
boxes; the human interventions are depicted in blue.
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not cross the reality gap satisfactorily, or to speed up the convergence of the optimiza-
tion process. Besides the performance measure, some works report the need to adjust
parameters of the simulations, to adjust the output of the control software prior to
assigning it to actuators, to fine-tune parameters of the optimization algorithm, or to
adapt the configuration of the swarm to obtain a collective behavior that successfully
accomplish the mission they aim to solve.

In addition to the design process, we also pay attention to the protocols used
during the experiments described in the works belonging to the off-line optimization-
based design of robot swarms. An experimental protocol in off-line design consists
in the missions to be solved; the design methods used to solve them; the number of
executions of each of these design methods, with each execution typically resulting in
the production of one instance of control software; and the number of execution of
the produced instances of control software on the robots. The experimental protocols
described in works we classify as semi-automatic should give the reader the feeling
that the authors are indeed interested in solving a specific mission or to show that a
given methodology is able to do so, and that they are not interested in estimating the
expected performance of the method.

We mentioned above the possible ambiguity when classifying works to be either
considered as belonging to the semi-automatic or fully-automatic approach. As a mat-
ter of fact, we were not able to confidently classify several works. These works include
off-line design (Baldassarre et al., 2007; Hauert et al., 2009; Trianni and Nolfi, 2009;
Gauci et al., 2014a,b) and on-line design (Watson et al., 2002; Usui and Arita, 2003;
Di Mario and Martinoli, 2014), and we placed them in a gray area in Table 2.1. The
incertitude lies in the fact that despite the authors do not describe any human inter-
vention within the design process, which by itself would lean towards a classification
as fully-automatic, the methods described were tested on a single mission, which does
not provide evidence that they could be employed to generate satisfactory solutions
for other missions without the need to undergo per-mission, manual adaptations (that
is, in a fully-automatic fashion).

Off-line semi-automatic design

Quinn et al. (2003) were the first to use neuroevolutionary robotics to produce control
software for a robot swarm. They generated a formation-movement behavior in which
3 robots move as a group for a distance of 1 meter in any direction. To shape the
behavior they want to obtain, the authors use a performance measure that contains a
term that penalizes robots when they go outside of sensor range and one that penalizes
robots collisions. The authors instantiated 10 design processes; they terminated 4 of
them early as they judged them to be unpromising, the 6 others were terminated
when they did not show any sign of possible further improvement. The 6 resulting
instances of control software were tested in 5000 simulated runs; the highest-scoring
one was then evaluated in 100 trials on robots. There was, according to the authors,
no evidence of degradation of the performance between simulated runs and physical
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Table 2.1: Classification of the works in optimization-based design of robot
swarms. The gray area contains works for which no sufficient evidence allows us to
confidently place them in either category.

Off-line On-line

Semi-automatic

Quinn et al. (2003)

Dorigo et al. (2003)

Ampatzis et al. (2006)

Christensen and Dorigo (2006)

Trianni (2008)

Ampatzis et al. (2009)

Duarte et al. (2016)

Jones et al. (2018)

Bredeche et al. (2012)

Jones et al. (2019)

Baldassarre et al. (2007)

Hauert et al. (2009)

Trianni and Nolfi (2009)

Gauci et al. (2014a)

Gauci et al. (2014b)

Watson et al. (2002)

Usui and Arita (2003)

Di Mario and Martinoli (2014)

Fully-automatic

Waibel et al. (2009)

Francesca et al. (2014b)

Francesca et al. (2015)

Hasselmann et al. (2018b)

Kuckling et al. (2018)

Garzón Ramos and Birattari (2020)

Ligot et al. (2020a)

Spaey et al. (2020)

Hasselmann et al. (2021)

ones, but no quantitative results were reported. The 5 other instances were evaluated
on physical robots as well, although not in the same fashion as the highest-scoring
one, and no details is given about the procedure. The authors report that 2 of these
instances transferred well to the robots, the 3 others displayed noticeable performance
drop.

Dorigo et al. (2003) used neuroevolution to obtain aggregation and coordinated
motion behaviors. The authors used a different neuroevolutionary setup for each task:
for aggregation, neural networks have 12 sensory neurons connected; for coordinated
motion, neural networks have 5 sensory neurons. They added a term to the fitness
function devised to evolve aggregation behaviors to prevent the robots from turning
on the spot, a behavior that the authors judged to be undesirable. They instantiated
20 design processes resulting in 20 instances of control software, which they evaluated
on two simulation models: a ‘simple’ one that was used during the design, a more
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‘detailed’ one specifically made for testing. According to the authors, the produced
control software was robust to the differences between the two simulation models; the
performance drop between the two is described as tolerable.2

Ampatzis et al. (2006) used neuroevolution to generate control software for two
robots to perform phototaxis and get as close to a light source as possible. Two
environments are considered: one allows the robot to reach the light source, the other
does not. During the design process, each candidate solution is evaluated 15 times:
12 times on the environment that allows to robot to reach the light source, 3 times on
the one that does not. The design choice originates from a previous research in which
the authors studied the impact of the distribution of the two environments during the
design on the resulting performance (Tuci et al., 2004). The fitness function comports
a term that rewards the proper use of communication between the robots. 10 design
processes were performed, resulting in 10 instances of control software. Only 3 of these
instances performed the task successfully. One of them was then ported to physical
robots for 40 evaluation trials; 20 on each environment. To select the instance of control
software to be ported to the robots, the authors report having performed various tests
on robots and made their decision on the basis of what they considered to be ‘good’
sensory-motor coordination and ‘effective’ communication.

Christensen and Dorigo (2006) used neuroevolution to generate a phototaxis be-
havior with hole-avoidance in a group of physically connected robots. Contrarily to the
vast majority of works in neuroevolutionary robotics, the authors are very explicit in
their description of what elements of the evolutionary setup they sequentially tested to
eventually reach one that produced satisfactory results. For example, they report that
without incorporating in the fitness function a term that explicitly penalizes robots
for falling into a hole, the results were disappointing. The authors also report that
they added a term that promotes the minimization of the traction between the robots,
which they previously identified to be a determining factor to obtain coordinated mo-
tion (Trianni et al., 2004). Experiments with 3 connected robots were performed with
the best instances of control software generated. However, no details about how these
instances were selected are given, and the authors only state that the robots performed
the task successfully without reporting quantitative results.

Trianni and Dorigo (2006) used neuroevolutionary robotics to generate hole-avoi-
dance behaviors in physically connected robots. The authors studied and compared
three approaches to communication between the robots. The three different communi-
cation strategies are obtained via different evolutionary setups, namely different neural
network configurations. The fitness function (the same for the three communication
strategies) is composed of different terms, one of which promotes coordinated motion
by minimizing traction between robots, another one penalizes turn-on-the-spot be-

2Although the authors did not evaluate the performance of the generated control software on
physical robots, we included their work in our review of the literature as their experimental method-
ology is relevant to the content of Chapter 4. In particular, the fact that the authors use the adjectives
‘simple’ and ‘simplified’ (with respect to the model used for evaluation) to describe the simulation
model used during the design reflects the complexity assumption that we challenge in Chapter 4
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haviors and emphasizes small differences of speed between the robots’ wheels. The
authors performed 10 designs per communication strategy, resulting in the generation
of 10 instances of control software for each of them, and the best one is evaluated
30 times on 4 robots. The authors selected the best instances of control software on
the basis of a different performance metric than the one used during the design. This
performance metric only considers the distance covered by the connected swarm, and
is described by the authors to be “a more informative measure of the controller’s qual-
ity [with respect to the fitness function used to generate it]”. When executed on the
physical robots, two functions adjust the outputs of the neural networks to make the
system less reactive to external stimuli; according to the authors, these modifications
are necessary to prevent stress on the motors. Quantitative results show relatively
small differences of performance between simulation and reality.

In his book dedicated to neuroevolutionary swarm robotics, Trianni (2008) de-
scribes several uses of neuroevolution to obtain control software to perform different
tasks, such as self-organized aggregation, coordinated motion, hole avoidance, self-
organized synchronization, and decision making. Taken separately, some of the appli-
cations of the neuroevolutionary approach might be qualified as fully-automatic (Bal-
dassarre et al., 2007; Trianni and Nolfi, 2009). However, when compared to one an-
other, the evolutionary setups of each case study appear to be different one from the
others, and thus seem to be tailored to each of the tasks at hand. For what concerns
the genetic algorithm, we noticed differences in the number of generations (100, 200,
500, or 5000), the number of offsprings generated during reproduction (either 4 or 5),
the mutation probability (either 0.03 or 0.05), and the number of evaluations of the
candidate solutions per generation (5, 8, 10, 12, or 16). For the two decision making
tasks, the robots were controlled by continuous-time recurrent neural networks (for
one of the tasks, the neural network has a multi-layer topology); for the other tasks,
they are controlled by single-layer perceptrons.

Ampatzis et al. (2009) used neuroevolutionary robotics to generate self-assembly
behaviors for two autonomous robots. The fitness function used to guide the evolution
does not only reward the robots when they are able to connect to one another: it also
contains a term that promotes aggregation; one that penalizes collisions and promotes
straight displacements when robots approach one another, which is reported to improve
transferability to physical robots; and one that rewards the robots when they are able
to sense the presence of another robot with their special assembly sensor, which is
reported to bootstrap the design. This last term comprises a constant whose value
is not disclosed by the authors. The authors performed 20 designs and selected the
best performing instance of control software to be evaluated on physical robots. The
evolved solution showed good performance in reality.

Duarte et al. (2016) used neuroevolutionary robotics to generate control software
for 4 tasks: homing, dispersion, clustering, and monitoring. The authors executed
10 neuroevolutionary processes for each task; suitable instances of control software
were found after 100 generations for homing, dispersion, and monitoring, whereas for
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clustering 400 generations were required to generate solutions that met the author’s
expectations. For each task, the three instances that obtained the highest score in
simulation were selected to be executed on a swarm of 10 aquatic surface robots in a
semi-enclosed waterbody. Results showed good performance in all 4 tasks. The au-
thors eventually performed a proof-of-concept experiment in which the swarm executes
the behaviors sequentially to perform a water temperature monitoring mission. The
authors report the difficulty they faced to conceive a fitness function for the generation
of a behavior to perform the complex monitoring mission. Their solution was to adopt
a modular strategy: they divided the complex mission into the four aforementioned
tasks, generated behaviors for each of them, and finally combined them.

Jones et al. (2018) proposed an evolutionary algorithm to generate control software
in the form of behavior trees, which they used to solve a foraging mission. For their
method to operate, one must implement an interface between the behavior trees and
the robot, which include a trade-off between hard-coded capabilities and automatically
evolved one. This interface is therefore mission specific. The authors conducted 25 de-
sign processes; the instance of control software that produced the highest performance
in simulation out of the 25 ones produced by the different processes was uploaded to
real robots. The authors observed a statistically significant performance drop between
simulation and reality, yet the physical robots were able to forage effectively.

On-line semi-automatic design

Bredeche et al. (2012) proposed the mEDEA algorithm and validated it on a swarm of
robots. The authors focused on the emergence of consensus behaviors in an experiment
called “two-suns”. They list a number of technical issues that they had to address in
order for their algorithm to work on the physical robots. In particular, they had to
modify values of parameters with respect to those used in simulation experiments,
including the topology of the neural networks controlling the robots, the mutation
rate, and the number of candidate solutions each robot could store. They also had
to introduce a restart procedure in their algorithm to avoid robots to go idle. The
authors report running the conduction of 21 initial experiments to determine which
configuration of the swarm (e.g., number of robots, communication radius) would give
better results. The authors then studied in details the performance of their mEDEA
algorithm using the best configuration of the swarm on 8 runs.

Jones et al. (2019) used a distributed evolutionary algorithm to evolve behavior
trees to perform a task in which robots have to move a frisbee in a predefined di-
rection. In this approach, each robot performs its own design process in simulation
while executing in reality the best instance of behavior trees available. The robots also
periodically share information about the candidate solutions found to theirs peers, as
it is done in the classical embodied evolution approach. The authors report having
performed a few preliminary experiments with physical robots to adjust parameters of
the simulator used by the robots. Out of their observations, they acknowledge the dif-
ficulty of simulating collisions correctly, and they decided to include a built-in collision
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avoidance mechanism within all behavior trees generated. The authors also included
a term that penalizes no movements of the frisbee to bootstrap the evolution.

Off-line fully-automatic design

Waibel et al. (2009) compared and studied the ability of four neuroevolutionary
robotics methods to solve three variants of a foraging mission. In these tasks, robots
have to push objects of different sizes to one side of the environment in which they
operate. In the first variant, the environment contains light objects that can be pushed
by a single robot; in the second variant, the environment contains heavy objects that
can be pushed by two robots; in the third variant, the environment contains both light
and heavy objects. The four neuroevolutionary methods differ from one another by
the team composition and the level of selection of the swarm. The authors executed
each configuration of the neuroevolutionary method 20 times on each mission variant,
the resulting control software was then tested 10 times on robots. Results shows that
the different configurations of the method lead to significant performance differences
but that no configuration surpassed the others for all three variants of the mission
considered.

Francesca et al. (2014b) introduced the AutoMoDe approach that consists in auto-
matically selecting, combining, and fine-tuning predefined modules into a given con-
trol software architecture. The authors compared a proof-of-concept implementation
of their approach, called AutoMoDe-Vanilla, to an implementation of neuroevolu-
tionary robotics called EvoStick on two missions. For the two missions, the authors
evaluated the ability of the design methods to produce control software using three
levels of design budget—that is, the maximal number of simulated evaluations that
the optimization algorithm is allowed to perform. For each mission and each design
budget, the authors performed 20 executions of both Vanilla and EvoStick and kept
the best performing control software obtained after each execution. They then exe-
cuted all the obtained instances of control software once in simulation, and once on
physical e-puck robots. The authors did not adapt the methods to the missions nor
to the design budget they considered. Results showed that the method the authors
presented, Vanilla, outperformed the neuroevolutionary one.

In a follow up work, Francesca et al. (2014a) compared the same, unmodified two
automatic design methods Vanilla and EvoStick to two manual methods, namely
U-Human and C-Human. In U-Human, the human designer can conceive the control soft-
ware freely, whereas in C-Human they are constrained to use the Vanilla’s modules
and combine them into Vanilla’s control architecture under the same constraints.
The experimental protocol adopted by the authors is elaborate: 5 human designers
were involved, and each had to (1) define a mission, (2) solve a mission under U-Human,
and (3) solve another mission under C-Human. This way, the authors obtained 2 man-
ually conceived instances of control software for each of the 5 missions defined (one
of these instances was obtained via U-Human, the other via C-Human). They executed
Vanilla and EvoStick once on each mission as well, to obtain 2 automatically pro-
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duced instances per mission. All instances were then evaluated 10 times per mission
on a swarm of 20 robots. Results show that the control software produced by the
human designers under C-Human were the best performing one, and that Vanilla out-
performed EvoStick, which confirmed they previous observations (Francesca et al.,
2014b). The fact that C-Human outperformed Vanilla drove the authors to intro-
duce a second implementation of AutoMoDe they named Chocolate (Francesca et al.,
2015). The only difference between Vanilla and Chocolate lies in the optimization
algorithm they use: Vanilla uses F-race (Birattari et al., 2002), whereas Chocolate
uses an improved, more powerful version called Iterated F-race (Balaprakash et al.,
2007; Birattari et al., 2010; López-Ibáñez et al., 2016). Chocolate outperformed both
C-Human and Vanilla when applied to the 5 missions defined by the human designers.

The success of Chocolate has fueled the creation of more implementation of Auto-
MoDe methods (Hasselmann et al., 2018b; Kuckling et al., 2018; Salman et al., 2019;
Garzón Ramos and Birattari, 2020; Kuckling et al., 2020; Ligot et al., 2020a; Spaey
et al., 2020). These implementations typically differ from Chocolate or from one an-
other by a single element of the design process and comparisons of control software
produced by different implementations are performed to study the impact that these
elements have on performance. In the following, we review the studies that made
use of experiments on physical robots to evaluated the control software produced by
the different implementations of AutoMoDe. In all these studies, each design method
involved in the studies were executed 10 or 15 times on each mission and the best
instance of control software found during each design process was then evaluated once
on physical robots.

Hasselmann et al. (2018b), Garzón Ramos and Birattari (2020), Ligot et al. (2020a),
and Spaey et al. (2020) proposed methods that differ from Chocolate by the set of
modules available for combination. Hasselmann et al. (2018b) introduced Gianduja,
an implementation of AutoMoDe that, in comparison with Chocolate, enables the
robots to broadcast a single infrared message whose semantics is not defined a priori.
They also introduced EvoCom, an extension of the neuroevolutionary design method
EvoStick with the same communication capabilities as Gianduja. The authors com-
pared Gianduja, Chocolate and EvoCom on the basis of three missions, and the results
showed that Gianduja outperformed the other two methods. Similarly, Garzón Ramos
and Birattari (2020) introduced TuttiFrutti that also enables the robots with com-
munication capabilities, via RGB LEDs this time. The authors compared this imple-
mentation of AutoMoDe with the neuroevolutionary robotics counterpart EvoCol on
the basis of three missions, and the results showed that TuttiFrutti produced control
software that efficiently used the color-based information, and that it outperformed
EvoCol. In Ligot et al. (2020a), we introduced Arlequin that differs from Chocolate

by the nature of the modules it combines. In fact, in Chocolate the low-level behaviors
are hand-crafted; in Arlequin we replaced them with neural networks obtained via
the neuroevolutionary methods EvoStick. We compared Arlequin, Chocolate, and
EvoStick on the basis of 2 missions, and the results showed that Arlequin outper-
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formed EvoStick but was outperformed by Chocolate. Finally, Spaey et al. (2020)
introduced Coconut that can produce control software with multiple configurable ex-
ploration schemes; Chocolate only has one exploration scheme at its disposal. The
authors compared Coconut, Chocolate, and EvoStick on the basis of two variants of
three missions. In the first variant of each mission, the robots operate in a bounded
environment, like it is usually done in swarm robotics. In the second one, the environ-
ment is unbounded: 25% of the walls of the environment are removed, allowing the
robots to wander off the area where the mission is taking place. Results showed that
Coconut and Chocolate performed similarly, suggesting that the exploration scheme
of Chocolate is appropriate, at least for the missions studied.

In Kuckling et al. (2018), we studied the impact of the control architecture in which
the modules are assembled on the performance of the control software produced. In
Chocolate or any other implementations of AutoMoDe mentioned above, modules
are combined into probabilistic finite-state machines. We proposed Maple, an imple-
mentation of AutoMoDe that combines the same modules used in Chocolate into
behavior trees (Champandard, 2007; Colledanchise and Ögren, 2018). When used to
generate control software for two missions, Maple and Chocolate performed similarly
and outperformed the evolutionary robotics method EvoStick.

In Hasselmann et al. (2021), we assessed and compared the ability of the most ad-
vanced neuroevolutionary robotics methods to generate control software for a swarm of
20 robots for 5 missions. The neuroevolutionary robotics methods included two config-
urations of CMA-ES (Hansen and Ostermeier, 2001), two configurations of xNES (Glas-
machers et al., 2010), four configurations of NEAT (Stanley and Miikkulainen, 2002),
and the aforementioned EvoStick. The empirical study also included Chocolate and
a primitive behavior in which the robots move randomly in the environment—these
two were used as baselines. Each design method was applied 10 times on each mission,
and the best instance of control software after each execution was then evaluated once
on physical robots; the primitive behavior was evaluated 10 times on the robots for
each mission. Results showed that all neuroevolutionary methods suffered from an
important performance drop when comparing their performance in simulation to the
one obtained in reality, and that they produced control software that performed only
marginally better than the primitive behavior.

2.3 The reality gap

One of the most challenging issue to be faced by off-line methods is the so-called re-
ality gap: the difference between simulation and reality, which might be subtle but is
unavoidable (Brooks, 1992; Jakobi et al., 1995). Due to the reality gap, it is likely that
robot swarms do not display the same behavior in simulation and in reality (Floreano
et al., 2008)—see Figure 2.3. This difference of behavior usually results in a drop of
real-world performance with respect to the one observed in simulation. An issue that
is often overlooked is that the occurrence of performance drops due to the reality gap
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Figure 2.3: Illustration of the effects of the reality gap. (a) Shelter mission
in its initial configuration. The goal of the mission is for a maximal number of robots
to aggregate in the white area as fast as possible. The white area is surrounded by
walls on three of its sides. A source of light is placed outside the arena, facing the
open side of the shelter, and can be used by the robots to orient themselves. (b
and c) Traces of the trajectories of the robots when executing the same instance of
control software generated by the neuroevolutionary method EvoStick in simulation
and in reality, respectively. The darker the color of the spots, the longer a robot spend
on that position. The strategy of the instance of control software, which is clearly
visible in simulation (c) is to make the robots follow the walls in a anti-clock fashion
until they reach the light, then go away from the light source to hopefully reach the
shelter. The real robots are unable to properly execute the strategy: they follow
the walls, but remain on the left hand side of the light source (b). The difference
of behaviors displayed in the two environments results in an important performance
drop from simulation to reality. The occurrence of the effects of the reality gap is a
relative problem: other instances of control software might be able to display the same
behaviors (i.e., trajectories) in simulation and in reality.
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Table 2.2: Taxonomy of the approaches dedicated to handle the reality gap,
that is, to produce control software that suffers from the smallest possible drop between
the performance obtained in simulation and the one observed on physical robots.

To
Focus on Simulation

models
Design
methods

Reduce differences
between simulation

and reality

Miglino et al. (1995)

Jakobi et al. (1995)

Bongard and Lipson (2004)

Zagal et al. (2004)

Koos et al. (2013)

Enhance robustness
of control software

Jakobi (1997, 1998)

Boeing and Bräunl (2012)

Floreano and Mondada (1996)

Urzelai and Floreano (2000)

Floreano and Urzelai (2001)

Francesca et al. (2014b)

is a relative problem: each instance of control software might be affected to a different
extent. This relative nature can lead to a situation in which an instance of control
software CSA outperforms another instance CSB in simulation, but CSB outperforms
CSA when they are executed on physical robots. This phenomenon, which we call a
rank inversion, has been observed when comparing instances of control software pro-
duced by different design methods (Koos et al., 2013; Francesca et al., 2014b, 2015),
or by the same one at different steps along the optimization process (Birattari et al.,
2016). Indeed, Birattari et al. (2016) observed a phenomenon that they called overde-
sign: past an optimal number of steps of the optimization process, the performance
obtained in reality diverges from the one obtained in simulation. The phenomenon of
rank inversion is thus particularly insidious as it questions the validity of the off-line
design process in that it relies on the assumption that the higher the performance in
simulation, the higher the performance in reality.

A number of approaches have been proposed to handle the reality gap and reduce
the difference between the performance of control software assessed in simulation and
in reality. However, none of these approaches has been studied in details; as noticed by
Koos et al. (2013), some of them are not described with sufficient detail to be precisely
reproduced; no extensive comparison has been performed; and none of them appears
to be the ultimate solution to the reality gap. As a result, the reality gap remains
a major issue in the off-line automatic design of control software, as pointed out by
Francesca and Birattari (2016) and Silva et al. (2016) among others.

In the remainder of this section, we describe the functioning of the existing ap-
proaches and propose a taxonomy, which is summarized in Table 2.2. Note that here
we do not only consider the literature on swarm robotics. Approaches to cross the
reality gap have mainly been proposed and tested in the context of neuroevolution-
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ary robotics for single robots. Nonetheless, they are typically general enough to be
relevant to any design method based on off-line simulation, both for single- and multi-
robot systems. Some approaches aim at reducing the differences between simulation
and reality as much as possible (Miglino et al., 1995; Jakobi et al., 1995; Bongard
and Lipson, 2004; Zagal et al., 2004; Koos et al., 2013), whereas others aim at mak-
ing control software robust to these differences (Floreano and Mondada, 1996; Jakobi,
1997, 1998; Boeing and Bräunl, 2012; Francesca et al., 2014b). The first group of
approaches appears to be driven by the hypothesis that the more accurate the simula-
tion, the smoother the transition to reality; the second one, by the hypothesis that a
fully accurate simulation is impossible and overfitting is always a risk. The two groups
can be further detailed according to which element of the off-line design process is
targeted by the approach: either the simulation models (Miglino et al., 1995; Jakobi
et al., 1995; Jakobi, 1997; Bongard and Lipson, 2004; Zagal et al., 2004; Boeing and
Bräunl, 2012) or the design method (Floreano and Mondada, 1996; Koos et al., 2013;
Francesca et al., 2014b). Among the methods that focus on the simulation models,
some aim at increasing their realism. Others use them to enhance the robustness of
the design process. Among the methods that focus on the design process, some aim at
conceiving a design process that avoids exploiting features of simulation that do not
match reality. Others aim at making the design process intrinsically more robust. We
describe these methods in the following paragraphs.

Focus on simulation models to reduce differences between sim-
ulation and reality

Miglino et al. (1995) proposed guidelines for conceiving simulation models so that
they represent reality as accurately as possible. The authors recommend to (i) use
real-world data sampled from the robot’s sensors and actuators; and (ii) add noise to
models to account for imperfect sensing and actuation. Furthermore, if a performance
drop between simulation and reality is anyway observed, the authors suggest to con-
tinue the design process on physical robots for a few iterations. They demonstrated
their protocol by generating control software for a Khepera robot (Mondada et al.,
1994) on an obstacle avoidance task. Subsequently, Jakobi et al. (1995) automati-
cally generated control software that behaved almost identically in simulation and in
reality. Experiments were performed with a single Khepera robot on two tasks: ob-
stacle avoidance and light seeking. According to the authors, the key to this almost
perfect transition from simulation to reality is an appropriate fine-tuning of the levels
of noise within the simulation models. Since the publication of the work of Jakobi
et al. (1995), incorporating sampled data and fine-tuning the noise levels have become
common practice in the conception of simulation models (Silva et al., 2016).

Bongard and Lipson (2004) proposed an approach they called estimation-explora-
tion, which consists in the simultaneous evolution of control software and simulation
models. The authors generated control software for a quadrupedal robot so that it
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could walk the longest distance possible. The behavior produced crossed the reality gap
successfully. Zagal et al. (2004) proposed a similar approach they named back to reality.
The method was validated with a Sony AIBO robot on two tasks: gait optimization
and ball-kicking (Zagal and Ruiz-del Solar, 2007). The two aforementioned methods
rely on periodic evaluations of instances of control software on the target robot, but
differ in the data used to improve the simulation models: estimation-exploration uses
sensor samples from the physical robot; whereas back to reality uses the performance
drop experienced in reality.

Focus on simulation models to enhance robustness of control
software

Jakobi (1997, 1998) proposed the radical envelope-of-noise hypothesis: in order to
cross the reality gap satisfactorily, random variation should be applied to all aspects
of the simulation. In addition, the author suggested to restrict to minimal simulations :
simulators should reproduce only the elements of reality that are strictly needed to
generate the desired behavior. Jakobi demonstrated the validity of his proposal with
three experiments involving different robotic platforms and a fourth one in computer
vision. He automatically designed behaviors for: (i) a Khepera robot—turn left or
right at the end of a corridor, depending on the position of a light; (ii) a gantry
robot—recognize shapes; (iii) an octopod robot—walk efficiently and avoid obstacles;
and (iv) a computer vision system—track moving objects through a camera.

Although they do not directly cite the work of Jakobi, Peng et al. (2018) and
Andrychowicz et al. (2020) reintroduced his idea of applying random variation in the
simulation models. They proposed a technique called domain randomization in the
context of the application of reinforcement learning to robotics. Specifically, they
showed that, thanks to this technique, control software developed in simulation can
be successfully ported to physical robots: Peng et al. (2018) applied the technique to
a robotics arm that was required to push an object on a table; Andrychowicz et al.
(2020) to a five-fingered humanoid hand that was required to manipulate a cube.

Boeing and Bräunl (2012) simultaneously employed two simulators in the design
process to automatically generate control software for the Mako robot, an autonomous
underwater vehicle. Via an experiment in which the Mako robot has to follow a wall,
the authors showed that increasing the variance of the conditions experienced in the
design process leads to the generation of control software that crosses the reality gap
satisfactorily.

Focus on design methods to reduce differences between simu-
lation and reality

Koos et al. (2013) proposed what they called the transferability approach. In this
approach a bi-objective algorithm optimizes: (i) a mission-dependent performance
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metric; and (ii) a measure of disparity between performance in simulation and in real-
ity. The approach aims at constraining the design process to generate control software
that only exploits features of the simulator that accurately model reality. The ap-
proach uses a model to estimate the difference between performance in simulation and
reality. To build and update it, periodic robot evaluations of control software gener-
ated by the design process are required. The authors demonstrated their approach
in two experiments involving different robotic platforms. In the first one, the navi-
gation experiment of Jakobi (1997) was reproduced with an e-puck robot (Mondada
et al., 2009); the transferability approach was compared to the noise-based approach
of Jakobi (1997, 1998) described above. The instances of control software generated
by the transferability approach crossed the reality gap more satisfactorily than those
generated following the noise-based approach of Jakobi. In the second experiment,
the authors generated control software for a quadrupedal robot so that it could walk
as much distance as possible. In addition, the authors also performed simulation-only
experiments to further study the properties of the approach. To do so, they created
an artificial reality gap between a simple simulator and a more accurate one, with the
latter playing the role of reality.

Focus on design methods to enhance robustness of control soft-
ware

Floreano and Mondada (1996) deviated from the classical implementation of neuroevo-
lutionary robotics to propose an approach based on adaptive neurocontrollers called
plastic controllers. In the approach, the update rule of each neuron and its parameter
(learning rate) are selected off-line in simulation. The synaptic weights of the resulting
network are then adapted on-line, while the robot operates in the target environment.
Plastic controllers, evolved to control a Khepera robot in a light switching task, have
shown to cross the reality gap satisfactorily (Urzelai and Floreano, 2000; Floreano and
Urzelai, 2001).

Francesca et al. (2014b) have also deviated from traditional neuroevolutionary
robotics. They started from the conjecture that neuroevolutionary robotics is par-
ticularly affected by the reality gap due to the excessive representational power of
neural networks. As a result, neuroevolutionary robotics is likely to overfit the con-
ditions experienced during the design process. Guided by the notion of bias-variance
tradeoff (Geman et al., 1992), the authors introduced a novel approach to the off-line
automatic design of robot swarms: AutoMoDe. In this approach, robots are controlled
by a modular software architecture (e.g., a finite state machine, a behavior tree) auto-
matically generated by assembling and fine-tuning predefined, hand-crafted modules.
Compared to the neural networks used in neuroevolutionary robotics, the control soft-
ware generated by AutoMoDe features a lower representational power: it is restricted
to what can be obtained by assembling the predefined modules. The original method—
AutoMoDe-Vanilla—has shown to produce control software that crosses the reality
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gap more satisfactorily than those produced by EvoStick, an implementation of the
traditional neuroevolutionary robotics (Francesca et al., 2014b). These results were
further confirmed by follow-up studies (Francesca et al., 2015; Kuckling et al., 2018;
Hasselmann et al., 2018b; Ligot et al., 2020a). In particular, in Ligot et al. (2020a) we
assessed whether the conjecture of Francesca et al. on the bias/variance tradeoff also
holds true when the predefined behavioral modules are generated automatically via
neuroevolution or whether it is due to the fact that these modules are created by hand
like it is the case for AutoMoDe-Vanilla and all subsequent implementations of Auto-
MoDe. The method we created—AutoMoDe-Arlequin—corroborated the conjecture
as it also outperformed the neuroevolutionary method EvoStick in reality despite
being the other way around in simulation.

2.4 Discussion

The literature on the optimization-based design of control software for robot swarm
lacks a well-established and consistently applied empirical practice. In our review,
we highlighted the various experimental protocols adopted throughout the published
studies. What differentiate them from one another is the number of missions considered
(from 1 up to 5), the number of design process executed (from 1 up to 25), the
number of instances of control software resulting from the design processes that are
then executed on the physical robots (from a subset of one to all of them), and the
number of executions of these instances on the robots (from 1 to 100). Up until
recently, comparisons of design methods and ideas were almost nonexistent (Francesca
and Birattari, 2016). The fact that the first empirical comparison based on experiments
performed with real robots of off-line methods belonging to the neuroevolutionary
robotics approach (Hasselmann et al., 2021)—the most popular and most studied
approach of optimization-based design—came almost two decades after the first use
of this approach in swarm robotics (Quinn et al., 2003), is a blatant example of this
observation.

The categorization between semi-automatic and fully-automatic design is the first
step towards the establishment of a clear state of the art as it contributes to highlight-
ing the research questions relevant to each approach, to setting appropriate expecta-
tions of what each should achieve, and to defining the challenges to be faced by each
of them. The two approaches are both relevant to the development of swarm robotics
and we expect them to address different contexts of applications.

We reckon that a semi-automatic approach is relevant when one has to solve a
complex, one-of-a-kind mission for which reasonably large resources (time and budget)
are available. Our review of the works that we classify as belonging to this category
showed that, mainly thanks to the results of neuroevolutionary robotics obtained in
both on-line and off-line design, the semi-automatic approach is an effective way to
conceive robot swarms. However, none of the works in semi-automatic design comport
comparisons of design methods or of neuroevolutionary setups (objective comparisons
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is indeed problematic when human decisions intervene in the design process) and no
directives or guidance other than the ad hoc, trial-and-error approach emerges from
the current literature.

We reckon that a fully-automatic approach is relevant when one has to repeat-
edly solve missions belonging to a given class without the possibility for a human to
supervise the design process or to verify its output prior to the deployment of the
robots. When used in a fully-automatic off-line fashion, neuroevolutionary methods
have shown to suffer heavily from the reality gap; they produce control software that
perform very well in simulation, but poorly in reality. The aforementioned empirical
study showed that the reality gap has a devastating effect on all the most advanced
neuroevolutionary robotics methods: results were at most only marginally superior to
a random walk behavior. All the works we classified as belonging to the fully-automatic
approach compared the ability of multiple design methods to produce control software
to solve between 2 and 5 missions or configurations of a mission. In most of these
works, authors evaluate the expected performance of a design method by executing
it multiple times on the missions considered, and by evaluating the produced control
software once on the physical robots. This experimental protocol has been demon-
strated to minimize the variance of the estimated performance for the specific mission
considered (Birattari, 2004, 2020). However, this protocol fails to consider one of the
corner stones of the fully-automatic approach: the class of mission. It is therefore not
appropriate to estimate the expected performance of a fully-automatic design method.
In Chapter 3, we propose one that does.

The reality-gap problem has been the center of attention of many studies. Unfor-
tunately, the ideas proposed to solve it or mitigate its effects have not been sufficiently
studied nor compared. Moreover, with the exception of the AutoMoDe approach, none
of them has been applied to swarm robotics. It remains the most important problem
to be faced in off-line optimization-based design, and it entails the conduction of ex-
pensive and time consuming robot experiments to reliably assess control software. In
Chapter 4 and 5, we elaborate on simulation-only methodologies that could be used
to predict real-world performance; in Chapter 6 we perform a large-scale empirical
assessment of these methodologies.
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Chapter 3

A protocol for fully-automatic
design

In this chapter, we propose an experimental protocol for the comparison of off-line
fully-automatic design methods.

A fully-automatic design method is expected to be able to produce control software
for a whole class of mission without undergoing any human, per-mission adaptation.
Our review of the literature on optimization-based design in Chapter 2 revealed the
adoption of a variety of distinct experimental protocols. We argue that none of them is
appropriate for evaluating the expected performance of fully-automatic design meth-
ods.

The protocol we propose here is characterized by two notable elements: a way
to define benchmarks for the evaluation and comparison of design methods, and a
sampling strategy that minimizes the variance when estimating their expected perfor-
mance. Benchmarks are decisive tools in the identification of strengths and weaknesses
of a method, and they promote the consistent application of meaningful, coherent, and
well-defined evaluation criteria. Conceptually, a benchmark for the evaluation of fully-
automatic design methods is a (possibly infinite) class of missions: a set of missions
associated with a probability measure that determines their relative frequency of ap-
pearance. A class of missions might comprise both missions that are of different types
(i.e., that differ by the nature of their goals), and missions of the same type that differ
by minor variations. These minor variations can be at the level of the environment
in which the swarm operates (e.g., different density of robots, presence of a reference
point, number of points of interest), or at the level of the swarm itself (e.g., number
of robots, initial configuration of the swarm). For example, two missions are of dif-
ferent type if the goal of one is for the robots to aggregate at a point of interest, and
the one of the other is to gather objects initially scattered in the environment. For
example, two missions of the same type differ in minor variations if, ceteris paribus,
a task is to be accomplished in an environment in which a reference point such as a
light source is present, and in an environment without a reference point. Although the
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difference between the two given missions might be qualified as minor, it can be suffi-
ciently important that the two missions benefit from a tailored design. In the example,
a design method is likely to exploit the reference point to produce control software
that enables the robots to orient themselves in the environment and find the points
of interest faster than in the case where no reference point is present. An operational
definition of a class of missions can be given in the form of a mission generator : a
computer program that generates missions belonging to the class at hand. In other
terms, running a mission generator is effectively a way to sample the corresponding
class of missions—that is, selecting one of the missions of the set, according to the
associated probability measure, and independently of the design method to which it
applies. In this chapter, we illustrate the concept of mission generator by presenting
one we named MG1, short for mission generator 1. We use MG1 in an illustrative
study in which we compare two previously proposed design methods.

Concerning the second notable element of the protocol we propose, that is, the
sampling strategy, it should be noted that the performance of a fully-automatic design
method is a stochastic variable that is affected by three sources of randomness: the
mission to be solved, the realization of the design process, and the execution on the
robots of the instance of control software produced by the design process itself. Taking
for granted that multiple runs are needed to reduce the variance of the estimation of
the expected performance, the questions that arise are: How many missions should
one consider? How many design processes should one run on each mission? How
many times should one execute each of the instances of control software produced?
The obvious answer would be: the more the better! Indeed, by increasing indefinitely
the number of missions, number of design processes performed on each mission, and
the number of evaluations of each instance of control software generated, the variance
of the estimation would converge to zero. However, in practice one has typically (if
not always) to face constraints that limit the number of experiments that can be
performed. Indeed, running experiments with robots is time consuming and could
demand a large amount of resources. We argue that, in order to estimate the expected
performance of a fully-automatic design method under the assumption that a limited
number of executions of the control software on the physical robots can be performed
(and under a few other technical assumptions to be detailed in the following), the
sampling strategy to be adopted to minimize the variance of the estimate is the one
that maximizes the number of different missions considered. The sampling strategy
therefore implies that one design process should be run on each mission considered
and that the resulting instance of control software is executed once on the physical
robots. An intuitive explanation of this claim is given in the body of the chapter, and
a formal proof is provided as Appendix A.

It is our contention that the protocol we propose here is crucial for the development
of the optimization-based design of robot swarms into a mature scientific domain: it
will contribute to make clear and objective comparisons between different methods
that will allow to establish an objective state of the art. Eventually, this will promote
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the best ideas proposed so far and the elaboration of new ones. This protocol is to
be adopted when one evaluates design methods in the fully-automatic context and
thus wants to estimate their performance over a whole class of missions rather than
over specific ones (Birattari et al., 2019, 2020). The two components of the protocol
are fundamentally complementary: the sampling strategy recommends to evaluate a
design method on the maximal number of missions possible, and the notion of mission
generator allows one to sample as many missions as desired.

The remainder of the chapter is organized as follows: in Section 3.1, we describe
the implementation of the mission generator MG1; in Section 3.2, we elaborate on the
sampling strategy that minimizes the variance of the estimated performance of a fully-
automatic design method; and in Section 3.3, we present an illustrative experiment. In
the illustrative experiment presented in Section 3.3, we demonstrate the concepts in-
troduced by evaluating and comparing two previously proposed fully-automatic design
methods on 30 missions. We evaluate the two methods using the sampling strategy
described in Section 3.2 on the 30 missions generated by the mission generator MG1
described in Section 3.1.

3.1 A mission generator

In this section, we present MG1, a generator of missions for robot swarms. A mission
generator samples missions from a class of missions according to the associated prob-
ability measure. The class of missions is defined on the basis of the capabilities of a
robotic platform, which are described by a reference model that formally characterizes
the sensors and actuators of the platform (Francesca et al., 2014b). Indeed, it would
not be reasonable to consider a class of missions containing ground missions if aquatic
robots are expected to perform samples of this class, or missions that require sorting
objects according to their color by robots that are unable to distinguish colors. The
probability measure can be tuned so as to mimic a realistic frequency of appearance
of deployment conditions. For example, based on previous rescue missions at sea, it
could be determined that 80% were performed when the sea swell was high, 15% when
it was moderate, and 5% when it was low. These probabilities can be used to de-
fine a generator so that sampled missions reflect the conditions that the robot swarm
will face when deployed, and therefore enable a realistic estimation of the expected
performance of a design method.

MG1 samples missions defined on the basis of the capabilities of an enhanced
version of the e-puck robot (Mondada et al., 2009). This version of the e-puck robot
is capable of perceiving a light source, the presence of nearby obstacles, and the gray-
scale color of the ground directly below its body. It can also detect the presence and
estimate the relative position of neighboring peers. These capabilities are formally
described by the reference model RM1.1 (Hasselmann et al., 2018a) reproduced in
Table B.1 for the reader’s convenience. The missions take place in an enclosed area
surrounded by walls—what we call an arena. The ground of the arena is gray, with
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Source: Ligot A, Cotorruelo A, Garone E, Birattari M (2022)

Figure 3.1: Schemes of the possible arenas that can be generated by MG1.
Dotted circles, portions of circles, and rectangles represent placeholders for the possible
environmental elements. The triangle arena covers an area of 2.5m2; the square one,
an area of 3.76m2; and the hexagonal one, an area of 4.3m2. The dotted circles and
portions of circles represent placeholders for possible black or white areas. The red
circles are placeholders for circular areas of 0.3m radius; the green ones, for circular
areas of 0.15m radius; and the blue ones are placeholders for portions of circular areas
of 0.40m radius. The white dashed rectangles represent placeholders for possible
obstacles whose height and width are fixed to 0.07m and 0.026m, respectively. The
length of these obstacles depend on the shape of the arena: 0.25m, 0.45m, and 0.35m
for the triangle, square, and hexagonal one, respectively. The yellow sphere represents
the light source. For missions of type Foraging, the possible nest areas are restricted
to the circles positioned on the axis of the light source pictured by the yellow dashed-
and-dotted line.

some areas being black or white. Obstacles can be present within the arena, and a
unique source of light is positioned right outside the arena’s walls. The light source
is either on or off for the whole duration of the mission. Figure 3.1 illustrates the
possible arenas that can be generated by MG1 and provides details about the possible
positions and sizes of the colored areas (i.e., black or white) and the obstacles.

MG1 can instantiate missions of three types: Foraging, Homing, and Aggre-
gationXOR. To ensure the soundness of the instances created, we implemented
within MG1 several mission-specific conditions that guide the configuration of the
arenas. Independently of the type of mission to be accomplished, MG1 selects the
number of robots in the swarm, their initial distribution, and the duration of the
mission. We considered three families of initial random distribution for the robots:
(i) uniform, the robots are deployed anywhere in the arena; (ii) one-side, the robots
are deployed on one half of the arena, either close or far from the light and indepen-
dently of whether the latter is on or not; and (iii) not-on-colored-areas, the robots
are deployed anywhere in the arena, but not on the black or white areas. Table 3.1
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Table 3.1: The parameters, their possible values, and the corresponding
probability distributions in MG1. The swarm can comprise 15 or 20 robots.
There is a total of 5 different objective functions that can be selected by MG1: one
for Foraging, and two for both Homing and AggregationXOR. For the 5 objec-
tive functions to appear with equal probability, MG1 selects Homing and Aggre-
gationXOR with double the probability of Foraging. See Sections 3.1.1 to 3.1.3
for descriptions of the types of missions.

Parameter Possible values Probability distribution

mission type {Foraging,Homing,AggregationXOR} {0.2, 0.4, 0.4}
duration {60, 120, 180} uniform

# robots {15, 20} uniform

shape arena {triangle, square, hexagon} uniform

initial distribution {uniform, one-side,not-on-colored -areas} uniform

Mission type: Foraging

light {on, off } {0.85, 0.15}
# nests {1, 2} {0.95, 0.05}
color nest {black ,white} uniform

# food sources {1, 2, 3} {0.5, 0.4, 0.1}
# obstacles {0, 1, 2, 3} {0.2, 0.4, 0.3, 0.1}

Mission type: Homing

objective function {anytime, endtime} uniform

light {on, off } {0.30, 0.70}
# colored areas {1, 2, 3} {0.55, 0.30, 0.15}
color home {black ,white} uniform

# obstacles {0, 1, 2, 3} {0.20, 0.40, 0.30, 0.10}

Mission type: AggregationXOR

objective function {anytime, endtime} uniform

light {on, off } {0.30, 0.70}
# aggregation areas {2, 3} {0.80, 0.20}
color aggregation areas {black ,white} uniform

# distraction areas {0, 1} {0.60, 0.40}
# obstacles {0, 1, 2, 3} {0.2, 0.4, 0.3, 0.1}

summarizes the main parameters of MG1; the types of missions and their respective
conditions are described in the following subsections.

We created MG1 as an open-source library1 for the ARGoS3 simulator (Pinciroli
et al., 2012). It should be noted that the library we share does not only implement
MG1, but a whole family of mission generators. Indeed, by modifying the parameters
of MG1, such as the frequency of appearance of the missions, one can create a different
mission generator that would sample a different class of missions.

1Available as a GitHub repository: https://github.com/demiurge-project/
MissionGeneratorMG1

https://github.com/demiurge-project/MissionGeneratorMG1
https://github.com/demiurge-project/MissionGeneratorMG1
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3.1.1 Foraging

The robots must retrieve virtual items from food sources to nest areas. A robot is
deemed to pick up an item when it enters an area representing a food source, and
drop the item when it then enters an area representing a nest. There may be up to
two nests and up to three food sources. The nests areas may only be placed on the
axis perpendicular to the light source depicted as the yellow dotted-and-dashed line
in Figure 3.1. The food sources may be placed all around the arena. The size and
positions of the areas are selected randomly with equal probability. MG1 ensures
that the areas representing the nests and the ones representing the food sources are
of different color (i.e., if the nest is white, the food sources are black, and vice versa).
The objective function to be maximized is Fforaging = I, where I is the number of
items dropped in the nest areas after the duration of the mission.

3.1.2 Homing

The robots must aggregate on a black or white area designated as their home. MG1
places between one and three areas in the arena: one for the home, and possibly two
others to serve as distractions. MG1 ensures that the area designated as the home
is large enough so as to accommodate all the robots, and that the color of the dis-
traction areas differs from that of the home area. There are two possible objective
functions for this type of mission: anytime and endtime. The two objective functions
are to be maximized and depend on Nhome, the number of robots located in the ag-
gregation area. With anytime, the performance is measured by the objective function
F ′
home =

∑T/100ms
t=1 Nhome(t), where T is the duration of the mission (in seconds) and

100ms is the period at which Nhome is evaluated. With endtime, the performance is
measured once, at the end of the mission, and the objective function is F ′′

home = Nhome.

3.1.3 AggregationXOR

The robots must select and aggregate on a single area among multiple ones present in
the arena. MG1 configures the arena to have two or three aggregation areas of the same
color, large enough so that all robots can stand on each of them. If two aggregation
areas are placed, MG1 may place yet another one of different color, small or large,
that serves as a distraction. There are two possible objective functions for this type
of mission: anytime and endtime. The two objective functions are to be maximized
and depend on N , the total number of robots in the swarm; and Ni, the number of
robots located in the aggregation area i, with i ∈ {a, b} or {a, b, c}, depending on
the number of aggregation areas. If MG1 selects anytime, the objective function is
F ′
xor =

∑T/100ms
t=1 maxi(Ni(t))/N , where T is the duration of the mission (in seconds)

and 100ms is the period at which maxi(Ni)/N is evaluated. If MG1 selects endtime,
the objective function is F ′′

xor = maxi(Ni)/N , and it is computed at the end of the
mission.
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3.2 Sampling strategy for performance estimation

The performance of a fully-automatic design method is a stochastic variable and there-
fore estimating its expectation is a reasonable goal. The expectation should be com-
puted with respect to all the sources of randomness involved in the process. The
sources of randomness are the following:

The mission: the mission is randomly sampled from a class of missions according to
the associated probability measure. If the class of missions is sampled multiple
times, the missions to be solved will (likely) differ one from the other.

The design process: the design process is stochastic in nature. If it is performed
multiple times, it will (likely) produce different instances of control software.

The execution: the execution of an instance of control software on physical robots
is a stochastic event—the resulting performance is therefore a stochastic quan-
tity. If the same instance of control software is executed multiple times, the
performance observed will (likely) vary.

Let us assume that an upper bound N on the number of executions is given. This
assumption is realistic, as running experiments with robots is time consuming and
could demand a large amount of resources. It is also realistic to assume that the number
of executions is the real bottleneck in terms of demanded resources. Indeed, running
experiments with robots is a labor-intensive activity and the expensive and time-
consuming part in the research on the optimization-based design of control software
for robot swarms. On the other hand, the design process is fully automatic and
multiple instances can run in parallel on a high-performance computing cluster. We
can assume that the cost (in abstract terms: time and resources) of running a design
process is negligible compared to the one of running robot experiments. We can also
assume that sampling a mission from a class of instances is inexpensive. Finally, we
assume that, before running a design process on a given mission, we do not have any
prior information on how well the control software that can be generated automatically
will perform, on what will be the variance of the performance, and on what will be
the variances related to the three sources of randomness.

In a general case a sampling strategy requires that one defines the number of
missions, the number of design processes for each mission, and eventually the number
of executions per design. Under the assumption of a lack of previous knowledge of
ranges and variances of the performance, there is no reason to run a different number
of design processes per mission and/or a different number of executions per design. As
a consequence, a sampling strategy for estimating the expected performance of a design
method on a class of missions, given that a maximum number N of executions can be
performed, can be formally described by a triple ⟨nm, nd, nx⟩, with nm·nd·nx ≤ N . The
expected performance is estimated on the basis of nm missions, nd design processes per
mission (to generate nd instances of control software per mission), and nx executions
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of each of them. It has to be noticed that any triple ⟨nm, nd, nx⟩ yields an unbiased
estimate of the expected performance. Yet, different triples might differ for what
concerns the variance of the estimate they yield, and it is thus of interest to understand
which triple minimizes such variance.

In statistics, similar problems were studied since the early 1940s (Ganguli, 1941)
under the name of nested sampling.2 Classical results are based on the assumption
that the sampled variable can be written as a sum of three mutually independent
random variables—e.g., see (Hardeo and Ojeda, 2005b,a). Nested sampling has been
used in numerous and very diverse fields—e.g., food quality control (Marcuse, 1949),
agriculture (Kerry et al., 2010), blood pH of female mice (Sokal et al., 1995), premium
of insurance contracts (Bühlmann, 1967), estimation of income (Fay III and Herriot,
1979).

The theoretical foundation of this chapter is summarized in Theorem 1, which
shows that, given a maximum number of executions, the best strategy is to maximize
the number of missions to be considered. Note that, unlike the results available in
the literature (Ganguli, 1941; Hardeo and Ojeda, 2005b,a), this theorem does not
require that the sampled random variable is expressed as the sum of three mutually
independent random variables.

Theorem 1. Under the assumptions made above, given that a maximum number
N of executions can be performed, the sampling strategy described by the triple E =
⟨nm, nd, nx⟩, with nm = N , nd = 1, and nx = 1, is the one that minimizes the variance
of the estimate.

Proof. The variance of the estimator µ̂ associated with the sampling strategy E is:

E
[
(µ̂E − µ)2

]
=

σ2
AM

nm

+
σ̄2
AD

nm nd

+
σ̄2
WM

nm nd nx

, (3.1)

where σ2
AM is the across-mission variance and indicates how missions differ from one

another, σ̄2
AD is the expected across-design variance and indicates how designs dif-

fer from one another within a same mission (averaged across all possible missions),
and σ̄2

WM is the expected within-mission variance and indicates how scores differ from
one another within a same mission (averaged across all possible missions). Formal
definitions of these three variances and a formal proof of Equation 3.1 are given in Ap-
pendix A. Clearly, to minimize the variance of the estimator, the denominators need
to be chosen so as to be as large as possible. It is straightforward to conclude that
this happens when nm = N , nd = nx = 1 under the constraint nm · nd · nx ≤ N .

The same conclusion (i.e., that the triple ⟨N, 1, 1⟩ is the one that minimizes the
variance) is relevant also in the case one wishes to compare the expected performance
of two design methods—the reasoning can be generalized to more than two design

2Currently, the term nested sampling is in use in Bayesian statistics and refers to a completely
different and unrelated technique.
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methods, as well. When two methods are considered, the reasoning presented above
applies to the estimation of the expected value of the difference between the perfor-
mance of the control software produced by the two methods under analysis.

It should be noticed that, in the setting described above, the naive approach that is
often adopted and that consists in running multiple executions of the same instance of
control software hides some catches that could lead to misleading results. In particular,
it could lead to wrong conclusions when two (or more) design methods are compared.
By taking nx ≫ 1, one runs the risk of undersampling the space of the missions and
oversampling the space of the realizations of the design processes and/or the one of
the executions. Let us consider the comparison of two design methods, A and B. Let
us make the hypothesis that the expected performance of A over the given class of
mission is better than that of B. Let us also make the hypothesis that A typically
outperforms B on most of the missions of the class, whereas it is outperformed on a
small subset of missions. If the sampling strategy adopted undersamples the space of
the missions to allow multiple executions of the same instances of control software,
there exists the risk that the missions on which B outperforms A are over-represented
in the sample. If this happens, as nx ≫ 1, the risk exists that the observed differ-
ence of performance, which will be wrongly in favor of B, happens to be statistically
significant. By undersampling the space of the missions and oversampling the one of
the realizations of the design processes and/or of the executions, the confidence level
imposed does not apply anymore to the overall estimation of the differences over the
entire class of instances but rather to the subset of missions that have been sampled.
The above reasoning could possibly appear clearer if we push things to the extreme.
Let us sample a single mission (nm = 1), run a single design process (nd = 1), and use
all the N evaluations available to test the single instance of control software obtained.
The confidence level will refer to the performance difference on the specific mission
that has been sampled—rather than to the whole class, as we intend. If we happen
to sample one of the few missions on which B performs better than A, we will con-
clude that B is better than A and (if N is sufficiently large) that the difference will
be statistically significant. Clearly, this does not extend to the whole class, and the
results obtained will be wrong even if statistical significance was attained. A similar
wrong conclusion could be reached also if nm = 1, nd = N , and nx = 1. On the other
hand, if nm = N (and consequently nd = nx = 1), the issue does not arise and the
confidence level applies indeed to the significance of the difference across the whole
class of missions, as it should.

3.3 Illustrative experiment

In this section, we assess and compare the performance of two previously proposed
fully-automatic design methods following the sampling strategy described in Sec-
tion 3.2: we consider 30 missions generated with MG1, run each design method once
on each mission, and execute each instance of control software produced once on the
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Source: Ligot A, Cotorruelo A, Garone E, Birattari M (2022)

Figure 3.2: Pictures of the initial configurations of the missions generated by
MG1. Each image is labeled with the initial letter of the mission to be accomplished
(that is, F for Foraging, H forHoming, and A forAggregationXOR), the number
of robots in the swarm (that is, 15 or 20), and the status of the light (that is, on or
off).

physical robots. We allocated a design budget of 100 000 simulation executions for
each method on each mission: that is, each design process cannot exceed 100 000 sim-
ulation runs. To evaluate the intrinsic robustness of the methods, we also assess each
instance of control software produced in simulation under the same initial conditions
of the execution on the physical robots. Figure 3.2 shows pictures of the 30 arenas
generated by MG1.

We used EvoStick (Francesca et al., 2012, 2014b) and Chocolate (Francesca et al.,
2015) to design control software for the 30 missions in a fully-automatic off-line way.
EvoStick is a neuro-evolutionary robotics method that produces control software in
the form of fully-connected neural networks without hidden layers. The 25 input
nodes of these neural networks are fed with the readings of the sensors, as formally
described by the reference model RM1.1 described in Table B.1. The 2 output nodes
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determine the velocity of the wheels. The 50 synaptic weights that connect the input
nodes to the output nodes are real numbers in [−5, 5], and are optimized by a genetic
algorithm with a population size of 100 individuals and 10 evaluations per generation.
The design budget of 100 000 simulation executions allocated to the genetic algorithm
corresponds to 100 generations. Chocolate is a modular method that belongs to the
AutoMoDe framework. It produces control software in the form of probabilistic finite
state machines by selecting, fine-tuning, and combining pre-defined modules. The
modules are programmed by hand a priori in a mission-agnostic way. They include 6
low-level behaviors to be used as states of the probabilistic finite state machines, and
6 conditions to be used as transitions between states. The probabilistic finite state
machines produced can contain up to 4 states and 4 outgoing transitions per state,
and are optimized by the optimization algorithm Iterated F-race (Birattari et al., 2010;
López-Ibáñez et al., 2016). It is important to notice that the modules of Chocolate,
although programmed by hand, are defined once and for all in a mission-agnostic way,
and are not manually modified during the design process, which rightfully qualify
Chocolate as a fully-automatic design method. We refer the reader to the original
papers for further details on the methods Francesca et al. (2014b, 2015).

We chose EvoStick and Chocolate because the two methods have already been
compared in several studies (Francesca et al., 2015; Ligot et al., 2020b,a), and we wish
to keep the focus of this chapter on the experimental protocol used rather than on the
outcome of a novel comparison of design methods. In these previous studies, results
were always similar: EvoStick outperformed Chocolate in simulation, but Chocolate
outperformed EvoStick in reality—in both cases, differences were significant with a
confidence level of at least 95%. We expect to obtain similar results in our illustrative
experiments. The novelty of the comparison we present here lies in the experimental
protocol adopted. In the previously presented experiments, the experimental protocol
considered 2 (Ligot et al., 2020b,a) and 5 (Francesca et al., 2015) missions selected
by the experimenters, on which each method was executed 10 (Ligot et al., 2020b,a)
or 20 (Francesca et al., 2015) times. These experimental protocols are not wrong,
and the results obtained should not be disregarded. In fact, the adopted sampling
strategy minimizes the variance of the expected performance for the specific missions
considered (Birattari, 2004, 2020). However, as discussed in Section 3.2, the results
of these previous experiments strongly depend on the missions chosen, which, due to
specificities that might be unknown to the experimenters, could favor a given design
method over another. The protocol proposed in this chapter aims at evaluating and
comparing the performance of design methods over a whole class of missions rather
than over specific ones, and should therefore be adopted when one evaluates design
methods in the fully-automatic context (Birattari et al., 2019, 2020).

In simulation, EvoStick outperformed Chocolate in 18 out of the 30 considered
missions, and the two methods obtained the same score in 3 missions. In reality, Choc-
olate outperformed EvoStick in 29 missions, and was outperformed only in one—see
Fig. 3.3. Like in previous studies, EvoStick indeed produced control software that
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Figure 3.3: Scatter plot of the performance obtained for each mission. Gray
points represent the performance obtained in simulation, black ones represent the
performance obtained in reality. The performance is given in logarithmic scale. A
point on the diagonal indicates that the two methods performed similarly on a given
mission; a point below the diagonal indicates that Chocolate performed better than
EvoStick, and inversely.

suffered from larger performance drop than the one produced by Chocolate. The
configurations of the 30 missions generated, the instances of control software produced,
the raw data obtained, and videos of the physical robots executing the missions are
available as on-line supplementary material (Ligot and Birattari, 2022c).

Aggregating the performance observed on several different missions is not trivial
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Figure 3.4: Aggregated performance obtained in simulation and in reality. (a)
and (b) Expected rank and 95% confidence interval of the expected rank in simulation
and in reality, respectively. The lower the expected rank, the better the performance.
If two segments do not overlap, the expected ranks of the corresponding methods are
significantly different with a confidence level of at least 95%. (c) Box-and-whisker plots
of performance across all missions. Notches on the box represent the 95% confidence
interval on the median. If notches on different boxes do not overlap, the medians
of the corresponding methods differ significantly, with a confidence of at least 95%.
To aggregate across missions, we normalized the performance with the performance
obtained in simulation by a random walk behavior: they are computed as Prw(i)−P (i)

Prw(i)

for each mission i, where P is the performance of an instance of control software
generated to solve mission i and Prw is the performance of the random walk behavior
on that mission. The horizontal dashed line represent the normalized performance of
the random walk behavior. The higher, the better.

because the range of performance for different missions might vary greatly. Therefore,
naively averaging the performance could give misleading results as missions for which
the performance range is large would overshadow those for which it is small. Some
form of normalization is needed to aggregate the performance observed on different
missions. Here, for the purpose of this illustrative experiment, we address this issue
in two ways. The first one consists in aggregating the performance observed on the
different missions by reporting an estimation of the expected rank together with a
95% confidence interval—see Fig. 3.4a, b. By computing the ranks on a per-mission
basis, we put the results observed for the different missions on an equal footing, irre-
spectively of their possibly different ranges. The second one consists in normalizing
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the performance of the generated control software on the basis of the performance of a
baseline behavior: random walk—see Fig. 3.4c. As the random walk behavior we use
has shown to perform equally well in simulation and on physical e-puck robots (Has-
selmann et al., 2021), we normalize the performance for the different missions with the
simulation performance of the baseline behavior to avoid further robot experiments.
For both aggregation techniques, outcomes are similar: Chocolate and EvoStick per-
form similarly in simulation, whereas Chocolate performs significantly better than
EvoStick in reality.

3.4 Discussion

To the best of our knowledge, mission generator MG1 is the first generator of missions
for swarm robotics. Because its purpose is merely to illustrate the concepts introduced,
MG1 is relatively limited in the nature of the missions it generates: it generates
missions belonging to only three types of missions to be solved by specific robots with
specific capabilities. However, MG1 can be extended and generalized in many different
ways, and therefore can be the starting point for future generators. In fact, the core
idea of MG1 is to generate missions of different types that are characterized by specific
objective functions, and the definition of features of the environment together with
relationships between these features. These elements can be easily reused to create
mission generators dedicated to other robots, including robots of different nature (e.g.,
flying robots), under the condition that reasonable distributions can be devised for
every variable of the missions. It should be also noted that in MG1 we consider the
number of robot as a parameter of the mission. As an alternative, the definition of
the mission could impose a constraint on the maximum/minimum number of robots
comprised in the swarm and the selection of the most appropriate number of robots
could be left to the design process.3

To illustrate the protocol, we conducted an experiment in which we evaluated and
compared two previously proposed optimization-based design methods on 30 missions
generated by MG1. In this illustrative study, we allocated the same design budget to
the two methods for each mission they had to solve. A thorough assessment of the
capabilities of fully-automatic design methods would require the evaluation of these
methods under different levels of the design budget to understand which methods
performs best under which conditions. Further, in the illustrative study, we estimated
the performance of the methods under analysis on each mission, but the techniques
we used to compute the aggregate performance across the missions are not ideal.
The main difficulty when estimating the performance of a design method on different
missions is that the range of performance might vary greatly across the missions at
hand. Some sort of normalization prior to the aggregation of the performance is

3The idea of defining the size of swarm automatically within the design process has been already
explored by Salman et al. (2019).
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mandatory. Here, we aggregated the performance observed by reporting the expected
rank, which is an implicit form of normalization. The drawback of using ranks is
that they do not provide an estimation of the overall performance of each of the
design methods under analysis. As an alternative to using ranks we also considered
normalizing the performance obtained by the design methods on a given mission based
on the performance of a baseline behavior—namely, random walk—when executed on
the same mission. Although interesting, the normalization we performed is not optimal
as we used the performance of the random walk behavior observed in simulation rather
than the one observed on physical robots, as it should be. Yet, using the real-world
performance of the random walk behavior might not be the perfect solution either:
it would entail that an important part of the (bounded) number of executions of
control software on the physical robots are dedicated to the evaluation of the baseline
behavior rather than to the evaluation of the design methods themselves. Also, because
the normalization involves a division by the performance of the baseline behavior, it
cannot be computed if the performance of the baseline behavior is null. In our case, to
remediate to occasional cases in which a null performance was observed, we used the
average performance of the random walk behavior over five evaluations in simulation
for each mission. Assessing multiple times the baseline behavior only emphasizes the
aforementioned issue related to the executions on physical robots. Moreover, it does
not exclude divisions by zero. As an alternative, one could normalize the performance
on each mission based on the knowledge of the theoretical maximal and minimal
performance, or based on a reasonable estimate of them, including, for example, the
best and worse performance observed empirically (Hasselmann et al., 2021). However,
in this illustrative experiment, these alternatives did not appear to be appropriate as
no prior knowledge was available and only two methods were involved in the study,
providing therefore too little data to perform a meaningful normalization.
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Chapter 4

Challenging the complexity
assumption

In this chapter, we introduce the device that is at the basis of the real-world perfor-
mance predictors that we describe in the rest of the thesis: the pseudo-reality. Here, we
use this device to shed further light on the reality gap, the most challenging problem
in off-line design.

Off-line optimization-based methods are faced with the so-called reality gap: the
difference between simulation and reality, which might be subtle but is unavoid-
able (Brooks, 1992). Due to the reality gap, it is likely that robot swarms do not
display the same behavior in simulation and in reality. Several approaches have been
proposed to mitigate the effects of the reality gap, but none of them has been studied
in detail, no extensive comparison has been produced, and the reality gap remains an
important issue in off-line design.

According to the domain literature, the reality gap manifests itself in the form of
a performance drop when control software designed in simulation is ported to physical
robots. It is also understood that the performance drop is a relative problem: instances
of control software produced by different methods or under different conditions may
be affected to different degrees. This can lead to a phenomenon that we call rank
inversion: an instance of control software outperforms another one in simulation, but
is outperformed by the latter when they are evaluated on physical robots (Francesca
et al., 2014b; Birattari et al., 2016). On the other hand, what remains an open issue
is the true nature of the reality gap. Often, the effects of the reality gap are explained
by saying that the optimization process exploits inaccuracies of the simulation models
to produce unrealistic behaviors that achieve high performance. Indeed, simulators
often neglect some complex physical phenomena, which make them inaccurate but
fast. This is because accurate simulations would be too time-consuming—possibly
even more than experiments with real robots—which would lead to prohibitively long
optimization processes (Nolfi et al., 1994; Koos et al., 2013).

In the literature, the effects of the reality gap have only been observed when con-
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trol software has been developed in a relatively simpler setting for then being tested
in a more complex one. This holds true for the most common case in which control
software is developed in simulation and then tested on real robots. It also holds true
for two cases in which control software has been developed using a first simulator
and then tested using a second one. Indeed, to the best of our knowledge, Dorigo
et al. (2003) and Koos et al. (2013) have been the only ones to consider an artificial,
simulation-only reality gap, which they used to investigate the properties of automat-
ically generated control software. In both cases, their artificial reality gap relies on a
simplified simulator to be used in the design, and an accurate one to be used for the
evaluation.

In this chapter, we investigate whether, to observe the effects of the reality gap, it
is necessary to assume that the control software is evaluated in a context that is more
complex than the one in which it is designed. We call this assumption the complexity
assumption. Through our investigation, we bring empirical evidence that the effects
of the reality gap appear even in cases in which we can exclude that the evaluation is
performed in a context that is more complex than the one in which control software is
designed. Our results indicate that performance drops should be ascribed to a sort of
overfitting of the conditions experienced in the design phase, regardless of the fact that
these conditions are more or less complex than those faced in the evaluation phase.
The core device that enables the research we present in the chapter is an artificial,
simulation-only reality gap: control software is designed on the basis of a simulation
model Mx and evaluated on a second simulation model My, which we shall call a
pseudo-reality.

The concept of pseudo-reality refers to a simulation model that differs from the
one used in the design. It emerged from the contention that if an instance of control
software shows similar performance in the simulation model on which it has been
designed and in a different simulation model, it is somehow ‘intrinsically’ robust and it
can be expected to cross the reality gap more satisfactorily than another instance that
does not. By intrinsic robustness, we informally refer to the general ability of a design
method to produce control software that transfers seamlessly from any (reasonable)
model to reality, as opposite to the ability to produce control software that transfers
from a specific model to reality.

With the notion of pseudo-reality, we create an artificial, simulation-only reality
gap, and we investigate whether performance drop and rank inversion are to be neces-
sarily ascribed to the fact that control software is evaluated in a context that is more
complex than the one in which it is designed. We do so with a procedure that has the
logical structure of a reductio ad absurdum: we show that, in the light of empirical
results we produce, the complexity assumption leads to a contradiction—notably, that
one model should be more and less complex than the other, at once. The procedure
comprises two stages. In the first stage, we reproduce qualitatively, with simulation-
only experiments, the results of Francesca et al. (2014b): they observed a rank in-
version when comparing control software generated by two off-line design methods.
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In their experiments, the authors generated control software on the basis of a model,
which we shall call MA, and assessed its performance in reality. In our simulation-only
experiment, we also generate control software on the basis of the same model MA, but
we use a second model, which we shall call MB, as a replacement of reality; a pseudo-
reality. Here, we choose MB by trial and error so that, when used as pseudo-reality to
evaluate control software generated on MA, a rank inversion occurs between the same
off-line design methods studied by Francesca et al. (2014b). As designing on MA and
evaluating on MB produces performance drop and rank inversion, if we were to accept
the complexity assumption, we would conclude from this first stage that MB is more
complex than MA.

In the second stage, we invert the roles of the two models: we automatically de-
sign control software on MB and we evaluate it on the pseudo-reality MA. Also in
this second stage, we observe performance drop and rank inversion that are qualita-
tively similar to those reported by Francesca et al. (2014b). If we were to accept the
complexity assumption, we would conclude that MA is more complex than MB. The
clear contradiction between the conclusions of the first and second stage disproves the
complexity assumption: it is not necessary to assume that the effects of the reality
gap manifest because control software designed in simulation is evaluated in a more
complex (pseudo-)reality.

4.1 Experimental setup

In the following, we provide details on the experimental protocol, we characterize
MA and MB by giving the values of their parameters, and report the results. The
instances of control software produced, the raw data obtained, p-values resulting from
statistical tests, and videos illustrating the behaviors displayed by the control software
are available as on-line supplementary material (Ligot and Birattari, 2022c).

4.1.1 Protocol

We consider two missions described below: AggregationXOR and Foraging. For
each mission, we define an objective function to be maximized. The same objective
function is used for both designing control software and assessing its performance. We
run experiments in which the control software is designed by the same two design
methods used in the previous chapter: EvoStick and Chocolate. Their description
can be found in Section 3.3.

For each mission, we consider two stages: SAB and SBA—see Figure 4.1 for an
illustration. In stage SAB, each design method produces control software via simu-
lations based on model MA; the control software is then assessed with simulations
based on model MB. To study the generalization capability of the control software
produced, the performance evaluated on model MB is compared to the one evaluated
on model MA. In stage SBA, the roles of the two models are inverted: control software
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Figure 4.1: Schematic overview of the study. In stage SAB, control software is
generated on the basis of MA and evaluated on the pseudo-reality model MB. Model
MB was chosen via trial and error so that stage SAB results in performance drop
and rank inversion that are qualitatively similar to those observed by Francesca et al.
(2014b) when they generated control software on the basis of the same simulation
model MA and evaluated it on physical robots. In stage SBA, we invert the roles of
the two models: control software is generated on the basis of MB and evaluated on
the pseudo-reality model MA.

is produced on MB and then assessed on MA. Also in this case, the performance on
MA is compared to the one on MB to study the generalization capability of the control
software. In other terms, in stage SAB the pseudo-reality is model MB; whereas in
stage SBA, it is model MA.

Each design method is run with a design budget of 200 000 simulations. For each
mission and each stage Sxy—where by x and y we indicate A and B, or viceversa—
each design method is run 20 times on model Mx and produces therefore a total of
20 instances of control software. For the assessment, each of these instances is evalu-
ated 20 times on model Mx, and 20 times on model My to study their generalization
capability.

We present the results by means of box-and-whiskers boxplots, and statements such
as “method 1 is significantly better/worse than method 2” imply that significance has
been assessed via a paired Wilcoxon signed rank test, with confidence of at least 95%.
Moreover, to estimate the performance drop experienced in pseudo-reality, we present
95% confidence intervals, also computed via the paired Wilcoxon signed rank test.
Finally, we use the Pearson correlation test to study the statistical relationship between
performance drop experienced in pseudo-reality and performance on the design model.
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Table 4.1: The two e-puck models MA and MB. The values correspond to the
parameters of ARGoS3 controlling the noise applied to the actuator values and sensor
readings.

Actuator/Sensor parameter MA MB

Wheels pg 0.05 0.15

Proximity pu 0.05 0.05

Light pu 0.05 0.90

Ground pu 0.05 0.05

Range-and-bearing pfail 0.85 0.90

4.1.2 Models

As discussed in Chapter 2, it is considered to be good practice to inject noise in the
sensors and actuators of the simulated robots (Miglino et al., 1995; Jakobi et al., 1995).
In the ARGoS3 simulator (Pinciroli et al., 2012), a uniform white noise is applied to the
readings of the proximity, light, and ground sensors of the e-puck robot. A parameter
pu controls the level of noise: at every control cycle, for each sensor, a real value in
the range [−pu, pu] is uniformly sampled and added to the reading. A Gaussian white
noise is applied to the velocities of each wheel and parameter pg controls the level of
noise: at every control cycle, for each wheel, a value is sampled according to a Gaussian
distribution with mean 0 and standard deviation pg, and added to the velocity. Finally,
for the range-and-bearing module, a robot fails to estimate the relative position of a
neighboring peer with probability pfail .

We use the two e-puck models, namely MA and MB, described in Table 4.1. Model
MA is the same model used during the design process of the experiments ran by
Francesca et al. (2014b). We generated model MB by modifying actuator and sensor
noise of model MA. We did so via trial-and-error so that, when model MB is used as a
pseudo-reality to assess the performance of control software automatically generated
on the basis of model MA, we obtain a rank inversion that qualitatively resembles the
one observed by Francesca et al. (2014b).

4.1.3 Missions

We consider two missions: AggregationXOR and Foraging. These missions must
be performed by a swarm comprising 20 e-puck robots in a dodecagonal arena of
4.91m2 within a time of 250 s. At the beginning of an experimental run, we randomly
position and orient the robots uniformly in the arena. Figure 4.2 depicts the simulated
arenas for each mission.



54 CHAPTER 4. CHALLENGING THE COMPLEXITY ASSUMPTION

Figure 4.2: ARGoS3 representations and technical diagrams of the arenas.
Left : AggregationXOR. Right : Foraging. Measures are expressed in meters. For
Foraging, a light is placed behind the nest so that it is visible from everywhere in
the arena.

AggregationXOR

The robots must aggregate on one of the two black zones, namely a or b. The size
and position of the black zones are given in Figure 4.2. The objective function, to be
maximized, is

Fa = max(Na, Nb)/N,

where Na and Nb are the number of robots located on the zones a and b, respectively;
and N is the total number of robots in the swarm. The objective function is computed
at the end of an experimental run.

Foraging

We consider an idealized version of foraging in which the robots must retrieve to
the nest as many items as possible from either of two sources. The food sources are
represented by black circular zones, and the nest by a white zone. A robot is considered
to have picked up or dropped an item when it enters a black zone or the white zone,
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Figure 4.3: Results for AggregationXORmission. Left and center : Performance
in each stage—the higher, the better. Narrow boxes represent the performance assessed
on the design modelMx; wide boxes represent the performance assessed on the pseudo-
reality My. Gray boxes represent performance assessed on MA; white boxes represent
performance assessed on MB. Right : Performance drop, aggregated across the two
stages—the lower, the better. The segments represent the upper and lower bounds
on the performance drop experienced in pseudo-reality—bounds are computed using
Wilcoxon statistics, at 95% confidence.

respectively. A robot can only carry one object at a time. A light is placed behind
the nest at a height of 0.75m so that it is visible from everywhere in the arena. The
size and position of sources and nest are given in Figure 4.2.

The objective function, to be maximized, is

Ff = I,

where I is the number of items retrieved.

4.2 Results

In both stages SAB and SBA, we observe a noticeable performance drop for EvoStick,
which determines a rank inversion—see Figure 4.3 and 4.4. Indeed, when comparing
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Figure 4.4: Results for Foraging mission. Left and center : Performance in the
two stages—the higher, the better. Right : Performance drop, aggregated across the
two stages—the lower, the better. See caption of Figure 4.3 for a detailed description
of the figures.

the two design methods on the basis of their performance assessed on model Mx—
that is, the design model—EvoStick performs significantly better than Chocolate.
However, when comparing the methods on the basis of their performance assessed on
model My—that is, the pseudo-reality—Chocolate perform significantly better than
EvoStick.

For AggregationXOR, a same instance of control software generated by Evo-

Stick behaves in a qualitatively different way in Mx and in My—see Figure 4.5 (top
left) for an illustration. In Mx, the robots tend first to navigate along the walls of
the arena, and then to converge towards peers that are already located on one of
the black zones. Once robots are on a black zone, they remain there, spinning in
place. In My, the robots navigate in small circles without ever converging towards
their peers. Eventually, the majority of the robots fail to find the black zones and
to aggregate therein. Quantitatively, the performance drop that affects the control
software generated by EvoStick is of at least 0.55—see Figure 4.3 (right). On the
other hand, the control software produced by Chocolate behaves in a qualitatively
similar way in Mx and My: the robots converge towards their peers to form clusters,
and tend to remain on a black zone once they reach one—see Figure 4.5 (bottom left)
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Figure 4.5: Examples of trajectories of robots in Mx and My. For the two
missions, the traces represent the execution of an instance of control software produced
by EvoStick and Chocolate generated on the basis of MA and evaluated in MA (left-
hand side) and in MB (right-hand side). The darker the color of the spots, the longer
a robot spend on that position.

for an illustration. Quantitatively, the performance drop is much smaller than the one
experienced by EvoStick: at most 0.02—see Figure 4.3 (right).

The results for Foraging are similar to those of AggregationXOR. Indeed, the
behavior of a same instance of control software generated by EvoStick is qualitatively
different in Mx and My. In Mx, the robots navigate in circles of radius approximately
equal to half the one of the whole arena: they follow the walls around the nest and
cross the arena so that they navigate on at least one of the two food sources—see
Figure 4.5 (top right) for an illustration. In My, the robots navigate in much smaller
circles that often do not cross any of the food sources, which results in a drop of
performance of at least 48 items—see Figure 4.4 (right).

Contrarily to EvoStick, Chocolate produces control software that behaves sim-
ilarly in Mx and My: the robots randomly explore the gray area of the arena and,
as soon as they encounter one of the food sources, they navigate towards the light
to reach the nest—see Figure 4.5 (bottom right) for an illustration. The performance
drop experienced by Chocolate is at most 1 item—see Figure 4.4 (right).

The results also show a positive correlation between the performance drop ex-
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perienced in pseudo-reality and the performance assessed on the design model—see
Figure 4.6. This holds true for the two design methods. Nonetheless, some difference
should be noticed. For EvoStick and in the two missions, observations are concen-
trated in the top left quarter, which indicates a high performance on Mx, but a large
performance drop. On the other hands, for Chocolate the observations are close to
the center of the figure, which indicates a relatively lower performance on Mx with
respect to the one of EvoStick, but a performance drop that is centered around zero.

4.3 Discussion

With this chapter, we shed further light on the reality gap. Specifically, we investigated
how and under what conditions the effects of the reality gap manifest. We contend
that, for the effects of the reality gap to manifest, it is unnecessary to assume that
the control software is assessed under context/conditions that are more complex than
those experienced in the design.

To substantiate our contention, we conceived a set of simulation-only experiments
in which we created an artificial reality gap based on two robot models MA and MB.
We used MA for the design and MB for the assessment; we then inverted the role of
the two models. In both cases, we observed performance drop and rank inversion: a
design method (EvoStick) performed significantly better than another (Chocolate)
when the control software they produced was assessed on the same model used in the
design, but significantly worse on the other one. Having observed performance drop
and rank inversion both when (i) designing on MA and assessing on MB, and when (ii)
designing on MB and assessing on MA, we can exclude that the effects of the reality
gap emerge only due to the fact that the design is performed on a simplistic model
that fails to reproduce the complexity of the environment in which the final assessment
is performed.

The results of stage SAB—where control software designed on the basis of MA,
which has been used as design model for generating control software for robot swarms
in several studies (Francesca et al., 2014b; Birattari et al., 2016; Francesca et al., 2015;
Hasselmann and Birattari, 2020; Kuckling et al., 2018; Ligot et al., 2020a; Hassel-
mann et al., 2021), were evaluated on the pseudo-reality model MB—indicate that
simulation-only experiments could be used to tell whether and to what extent auto-
matic design methods are prone to performance drop and rank inversion, and even-
tually to predict real-world performance of control software. Here, we created MB

by hand via a trial-and-error approach so as that, when used as pseudo-reality, we
obtained effects of the reality gap that resembles the one previously observed in real-
ity. The trial-and-error approach we use is labor intensive and not easily reproducible,
and thus inappropriate to be adopted in a methodology dedicated to validating control
software or to predicting its real-world performance. In the Chapter 5, we discuss the
generation of an appropriate pseudo-reality in an automatic way.

Finally, the results of stage SAB might lead one to assume that the pseudo-reality
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Table 4.2: Performance drop experienced by the control software produced by Evo-

Stick and Chocolate when designed on the basis of MA and MB and assessed on the
physical robots. We report the performance drop across the two missions considered
with 95% confidence interval. To aggregate across the missions, we normalized the
performance drop with the performance obtained in simulation: they are computed as
Ps(i)−Pr(i)

Ps(i)
for each instance of control software i, where Ps and Pr are the performance

in simulation and reality, respectively. A normalized performance drop of 0.25 implies
that the performance in reality is 25% lower than the one obtained in simulation.

Method Design model Mean normalized
performance drop

EvoStick MA 0.81 [0.74,0.88]

EvoStick MB 0.86 [0.80,0.92]

Chocolate MA 0.29 [0.20,0.38]

Chocolate MB 0.25 [0.13,0.37]

modelMB is a more truthful representation of reality thanMA, and that automatically
generating control software on the basis of MA is a bad design choice. As mentioned
in Chapter 2, a number of approaches to handle the reality gap are motivated by the
working hypothesis that the more accurate the simulations, the smoother the transition
to reality. Following this hypothesis, one could assume that designing control software
on the basis of model MB rather than on MA would result in better performance in
reality. We conduct an experiment to put this inference to the test: we evaluate control
software generated by EvoStick and Chocolate on the basis of both MA and MB on
a swarm of 20-epuck robots.

Results reveal that designing control software on the basis of MB does not yield
better performance on the physical robots than designing them on the basis ofMA—see
Figure 4.7. In fact, effects of the reality gap occur to the same degree regardless of the
model used during the design: the control software designed by Chocolate suffers from
mild performance drops in reality, whereas the one designed by EvoStick suffers from
important ones—see Table 4.2. These results indicate that MA is not to be blamed
for performance drops eventually experienced by some design methods. Rather, these
results—together with those discussed in the previous section—substantiate the con-
tention that the effects of the reality gap are due to the fact that design methods might
overfit the model on the basis of which they operate, hence producing control software
that is not robust to the differences of conditions experienced once ported on physical
robots.
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Figure 4.6: Correlation between performance drop experienced in pseudo-
reality and performance assessed on the design model. The gray level of a
point indicates its frequency of observation: the darker, the higher the frequency. All
correlations are significantly different from 0 with confidence of at least 95%. For
AggregationXOR, the organization of the points in columns is due to the quantum
of Fa equal to 0.05 = 1/20, which corresponds to a difference of one robot, out of the
twenty comprised in the swarm, on the most populated black zone.
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Figure 4.7: Performance of control software automatically designed on the
basis of MA and MB assessed on physical e-pucks. The performance of Evo-
Stick and Chocolate on AggregationXOR and Foraging, to be maximized, is
represented by notched box-and-whiskers plots. Notches on the boxes represent the
95% confidence interval on the median, and allow for a convenient visual analysis of
the results: if the notches of two boxes do not overlap, the difference between the
two boxes is significant with a confidence of at least 95% (Chambers et al., 1983).
White areas represent the performance of control software designed on the basis of
model MA; gray areas represent the one of control software designed on model MB.
Narrow boxes represent the performance of the control software obtained in simulation,
that is, evaluated on the model Mx used during the design; wide boxes represent the
performance of the same control software in reality.
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Chapter 5

Sampling pseudo-reality models

In Chapter 4, we were able to find, by trial and error, a pseudo-reality that produced
a performance drop and rank inversion that are similar to those previously observed
when evaluating automatically generated control software on physical robots (Francesca
et al., 2014b). These results suggest that one could use an artificial, simulation-only
reality gap to conceive a methodology to predict the robustness of design methods
to the reality gap. This methodology would be able to predict which of the design
methods under analysis is more likely to produce control software that will suffer from
a performance drop; whether the observation of a rank inversion is to be expected;
and, eventually, which of the design methods under analysis is more likely to generate
control software that successfully performs a given real-world mission. The trial-and-
error approach we used in Chapter 4 to create a pseudo-reality is clearly inappropriate
to be adopted in the framework of the methodology we have in mind. The approach
is indeed labor intensive and not easily reproducible. To support the methodology,
we need a way to generate an appropriate pseudo-reality in an automatic and reliable
way.

In this chapter, we move a step in the direction of creating a pseudo-reality au-
tomatically. We investigate whether the results of Chapter 4 can be observed with
other pseudo-realities, or whether they are an artifact of the specific pseudo-reality we
employed there. We do so by reproducing the two-stage simulation-only experiment of
the previous chapter, but this time using multiple evaluation models—and therefore,
multiple pseudo-realities—to assess control software generated on the basis of model
MA. The different pseudo-realities are uniformly sampled from a range or predefined
set of models build around MA. We call this range of models R. In other words, we
create multiple artificial reality gaps between pairs of models: MA and a randomly
sampled one. Because some of the sampled models might be too similar to MA to yield
a noticeable performance drop, we do not expect that every single model sampled can
be used by itself as a pseudo-reality on which we can observe results analogous to those
observed in Chapter 4. Nonetheless, we expect that, by evaluating control software on
a sufficiently large number of such models, and by aggregating the results across all
of them, we could obtain a correct overall picture of which methods are more likely to

63



64 CHAPTER 5. SAMPLING PSEUDO-REALITY MODELS

suffer from a performance drop and of whether a rank inversion should be expected.

Finally, we propose multiple measures to quantify the width of the artificial reality
gap between a pair of models. By width of a reality gap, we mean some measure
of the difference between the model on which control software is designed and the
(pseudo-)reality in which it is evaluated.

5.1 Experimental setup

In the following, we detail the protocol followed, we describe the set of models from
which the pseudo-realities are sampled, and report the results. We also define the
measures of difference between models, and report and discuss the correlation between
width of pseudo-reality gap and performance drop.

5.1.1 Protocol

We consider two stages: SAR1 and SR1A. In stage SAR1 , an instance of control software
is automatically generated on the basis of model MA, and it is evaluated on MA itself
and on a pseudo-reality: one model uniformly sampled from the range R defined in the
following section—we refer to that one model sampled from R as R1. This process is
repeated 20 times, which therefore results in the generation of 20 instances of control
software on the basis of MA and in the sampling of 20 models R1. In stage SR1A, the
same 20 models R1 sampled in stage SAR1 are used to automatically generate control
software. For each design method and mission, a single instance of control software
is generated on the basis of each R1 model. This instance of control software is then
evaluated once on the same R1 used for the design, and once on a pseudo-reality, whose
role here is played by MA. We consider once again the missions AggregationXOR
and Foraging, and the design methods EvoStick and Chocolate with a design
budget of 200 000 simulation runs. The 20 uniformly sampled models R1 are the same
in each stage, for each mission, and for each automatic design method.

5.1.2 Models

Model MA is the same model used in Chapter 4. Models R1 are sampled from a
predefined set of models that we conceived such that (i) it comprises both model MA

and model MB used in the previous chapter, and (ii) it contains models that are more
noisy than MA and models that are less noisy. The set of models from which R1 are
sampled is given in Table 5.1, together with the parameters of MA and MB, which are
repeated here for the convenience of the reader.
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Table 5.1: The models MA, MB, and the ranges of possible values for models
within the range R. The values correspond to the parameters of ARGoS3 controlling
the noise applied to the actuator values and sensor readings—see Section 4.1.2 for a
description of the different noise parameters.

Actuator/Sensor parameter MA MB Range R

Wheels pg 0.05 0.15 [0.00, 0.20]

Proximity pu 0.05 0.05 [0.00, 0.10]

Light pu 0.05 0.90 [0.00, 1.50]

Ground pu 0.05 0.05 [0.00, 0.10]

Range-and-bearing pfail 0.85 0.90 [0.70, 1.00]

5.2 Measuring the width of an artificial reality gap

Because all models considered in this chapter differ only by the values of five parame-
ters, each model is fully identified by a vector in a five-dimensional space. Under this
condition, we conjecture that the width of an artificial reality gap can be quantified by
an appropriate distance measure between the vectors that identify the models involved
in the artificial reality gap itself. We consider a number of distance measures between
two vectors and the difference of a number of vector norms. We study their Pearson
correlation with the performance drop experienced when designing control software on
the model identified by one of the two vectors and evaluating it on the model identified
by the other one.

In this five dimensional space of the models, for a generic vector v, we consider its
norms ℓ1, ℓ2, and ℓ∞, where

ℓn = ∥v∥n = n

√√√√ 5∑
i=1

|vi|n.

In the case of the ℓ∞ norm, by taking the limit of the above, we have ℓ∞ = maxi |vi|.
Because each component of a vector defines the amount of simulation noise concerning
a specific sensor or actuator, the higher the norm, the higher the overall amount of
simulation noise.

As possible measures of the distance between two models x and y, we consider the
differences ∥y∥n − ∥x∥n between the ℓn norm of their corresponding vectors x and y,
and the ℓn norm of their difference ∥y − x∥n, both with n ∈ {1, 2,∞}. Differences of
norms can be negative, with a negative value indicating that the evaluation model is
less noisy than the design one. Moreover, differences of norms are anticommutative:
for example, the width of the gap from MA to MB and the one from MB to MA have
the same absolute value but opposite sign. It should be noted that a null value of
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a difference of norms does not ensure that the two models are identical. This is a
weakness of differences of norms as a measure of the width of the reality gap because
one would expect that a zero measure indicates that the gap is null and therefore
design and evaluation models are the same. On the other hand, norms of difference
are non-negative and commutative: the larger the norm, the wider the gap; and, for
example, the width of the gap from MA to MB and the one from MB to MA are equal.

As an alternative to measuring the width of an artificial reality gap, one could
measure how similar the design and evaluation models are. For example, this could
be done using the cosine similarity of models x and y:∑

i xiyi√∑
i x

2
i

√∑
i y

2
i

.

The cosine similarity is commutative and, in a positive space such as the one considered
here, is bounded between 0 and 1: zero indicates that the two vectors are orthogonal,
and one indicates that they have the same orientation. Hence, the lower the cosine
similarity, the wider the (pseudo-)reality gap.

For all the aforementioned measures, we consider both the unnormalized and nor-
malized versions. We normalize each term vi of a vector v with respect to the lower
and upper bounds of its range—Li and Ui, respectively. Ranges are given in Table 5.1.
In particular, when a vector m = {m1, ...,m5} represents a model, it is normalized
into a vector m = {m1, ...,m5} where:

mi =
mi − Li

Ui − Li

for i ∈ {1, ..., 5}. (5.1)

Each component of m ranges therefore between 0 and 1. When a vector d represents
a difference b− a, it is normalized into d where:

di =


bi − ai
Ui − ai

, if bi >= ai;

bi − ai
ai − Li

, if bi < ai;

for i ∈ {1, ..., 5}. (5.2)

Each component of d ranges therefore between -1 and 1.

5.3 Results

The results of this experiment are qualitatively similar to those observed in Chapter 4:
in both stages and for both missions considered, a rank inversion occurred between
EvoStick and Chocolate—see Figures 5.1 and 5.2. Indeed, the control software
generated by EvoStick performs significantly better than the one of Chocolate when
the evaluation is performed on the design model, but the one of Chocolate performs
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model MA; white boxes represent performance assessed on models R1 sampled from
the range R Right : Performance drop, aggregated across the two stages—the lower,
the better. The segments represent the upper and lower bounds on the performance
drop experienced in pseudo-reality—bounds are computed using Wilcoxon statistics,
at 95% confidence.

EvoStick Chocolate

Stage SAR1

P
er
fo
rm

an
ce

0
2
0

4
0

6
0

8
0

1
0
0

EvoStick Chocolate

Stage SR1A

P
er
fo
rm

an
ce

0
2
0

4
0

6
0

8
0

1
0
0

Stage Sxy

P
er
fo
rm

an
ce

d
ro
p

EvoStick Chocolate

0
1
0

2
0

3
0

4
0

5
0

Figure 5.2: Results for Foraging mission. See caption of Figure 5.1 for a detailed
description.



68 CHAPTER 5. SAMPLING PSEUDO-REALITY MODELS

significantly better than that of EvoStick when the evaluation is performed in pseudo-
reality. The control software generated, the models sampled, and the raw data obtained
are available as on-line supplementary material (Ligot and Birattari, 2022c).

Concerning the correlation between performance drop and the width of the artificial
reality gap, all measures we considered, both in the normalized and unnormalized ver-
sions, provided similar results. In the following, we only report the results concerning
the normalized and unnormalized version of the ℓ1 norm of difference, the difference of
ℓ1 norms, and the cosine similarity because trends are more apparent there. Figure 5.3
shows the correlation between the performance drop—aggregated across stages SAR1

and SR1A—and the unnormalized version of the difference of ℓ1 norms, the ℓ1 norm of
differences, and the cosine similarity. Figure 5.4 shows the correlation between the per-
formance drop and the normalized version of these three measures. Additional figures,
displaying the correlation between the performance drop and both the unnormalized
and normalized versions of the other measures of the width of the pseudo-reality gaps,
are available as on-line supplementary material (Ligot and Birattari, 2022c).

In all figures, a disparity can be noticed between the performance drop experienced
by EvoStick and Chocolate: for EvoStick, most observations are above the zero-drop
line; for Chocolate they are more equally spread above and below. Note that a posi-
tive performance drop indicates that the performance in pseudo-reality is worse than
the one obtained on the design model, whereas a negative drop indicates that the
performance in pseudo-reality is better than the one obtained on the design model.
Moreover, the results for AggregationXOR fail to show a clear trend. For Forag-
ing, differences of norms display a V-shape pattern. This is particularly evident for
EvoStick—see Figure 5.3a (bottom left). This is possibly due to the anticommutative
nature of the measure. Because of the V-shape pattern, the Pearson correlation fails
to be informative on the actual correlation between width of the reality gap and per-
formance drop. Nonetheless, the difference of norms has some merits as it highlights
an interesting fact: for EvoStick, the performance drop grows with the absolute value
of the width. In particular, we can observe that for negative width—that is, when
the evaluation model is less noisy than the design one—we register a noticeable per-
formance drop. This further corroborates our conjecture that performance drop is to
be explained as a sort of overfitting of the conditions experienced during the design,
rather than as the result of evaluating in a complex (pseudo-)reality control software
that has been designed on the basis of a simplistic simulation model.

Norms of differences, which are commutative and effectively fold negative widths
onto positive ones, highlight a correlation between width of the reality gap and per-
formance drop—see Figure 5.3b (bottom). Pearson correlation is significant both for
EvoStick and Chocolate, but is larger for EvoStick. Also the cosine similarity high-
lights a correlation between width of the reality gap and performance drop—more pre-
cisely, a negative correlation between similarity of the design and evaluation models
and performance drop—see Figure 5.3c (bottom). In this case, the Pearson correlation
is significant only for EvoStick.



5.3. RESULTS 69

-2 -1 0 1 2

Correlation = 0.18

-1
.0

-0
.5

0
.0

0
.5

1
.0

EvoStick

-2 -1 0 1 2

Correlation = 0.01

A
g
g
r
e
g
a
t
io
n
X
O
R

Chocolate

Difference of `1 norms

P
er

fo
rm

an
ce

d
ro

p
M

y

-2 -1 0 1 2

Correlation = 0.35

-1
0

0
-5

0
0

5
0

1
0

0

-2 -1 0 1 2

Correlation = 0.38

F
o
r
a
g
in
g

Difference of `1 norms

a

P
er

fo
rm

an
ce

d
ro

p
M

y

0.0 0.5 1.0 1.5 2.0

Correlation = 0.28

-1
.0

-0
.5

0
.0

0
.5

1
.0

EvoStick

0.0 0.5 1.0 1.5 2.0

Correlation = -0.04

A
g
g
r
e
g
a
t
io
n
X
O
R

Chocolate

`1 norm of difference

P
er

fo
rm

an
ce

d
ro

p
M

y

0.0 0.5 1.0 1.5 2.0

Correlation = 0.72

-1
0

0
-5

0
0

5
0

1
0

0

0.0 0.5 1.0 1.5 2.0

Correlation = 0.31

F
o
r
a
g
in
g

`1 norm of difference

b

P
er

fo
rm

an
ce

d
ro

p
M

y

0.0 0.2 0.4 0.6 0.8 1.0

Correlation = -0.26

-1
.0

-0
.5

0
.0

0
.5

1
.0

EvoStick

0.0 0.2 0.4 0.6 0.8 1.0

Correlation = 0.04
A
g
g
r
e
g
a
t
io
n
X
O
R

Chocolate

Cosine similarity

P
er
fo
rm

an
ce

d
ro
p
M

y

0.0 0.2 0.4 0.6 0.8 1.0

Correlation = -0.72

-1
0
0

-5
0

0
5
0

1
0
0

0.0 0.2 0.4 0.6 0.8 1.0

Correlation = -0.25

F
o
r
a
g
in
g

Cosine similarity

c

P
er
fo
rm

an
ce

d
ro
p
M

y

Figure 5.3: Pearson correlation between performance drop and unnormal-
ized measures of the width of the gaps created between the models used for
design and evaluation. (a) difference of ℓ1 norms, (b) ℓ1 norm of difference, (c) co-
sine similarity. Performance drop is aggregated across stages SAR1 and SR1A. Boldface
values indicate that the correlation is significantly different from 0 with confidence of
at least 95%.
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Figure 5.4: Pearson correlation between performance drop and normalized
measures of the width of the gaps created between the models used for
design and evaluation. (a) difference of ℓ1 norms, (b) ℓ1 norm of difference, (c) co-
sine similarity. Performance drop is aggregated across stages SAR1 and SR1A. Boldface
values indicate that the correlation is significantly different from 0 with confidence of
at least 95%.
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In R, the range of possible values for the noise applied to the light sensor is much
larger than the range of possible values for the other sensors and actuators. As a
result, it is likely that the difference of noise values applied to the light sensor between
two given models wipes out the differences between the noise values applied to other
sensors and actuators when considering the unnormalized vectors corresponding to
these models. Using the normalized vectors instead levels the differences of range sizes.
In this case, the same trends observed for the unnormalized version of the measures of
the width can be observed, yet these trends are less pronounced—see Figure 5.4. For
example, the V-shape pattern displayed by the difference of norms for EvoStick on
AggregationXOR is barely visible—see Figure 5.4a (bottom left). Moreover, the
Pearson correlation is lower for most cases, with the exception of the one between the
performance drop observed by EvoStick on AggregationXOR and the normalized
cosine similarity——see Figure 5.4a (top left).

All in all, norms of differences and the cosine similarity appear to be the most
appropriate choices among those we explored to measure the width of a (pseudo-)rea-
lity gap.

5.4 Discussion

In this chapter, we reproduced the experiment of Chapter 4, this time with multiple
artificial reality gaps. Although the results of the experiment conducted in this chapter
are similar to those observed in the previous chapter, they cannot be used to disprove
the complexity assumption. In fact, because we created the range R around modelMA,
it is likely that, in a same stage, some instances of control software were evaluated
on models that were more noisy than the design model, and that other instances
were evaluated on models that were less noisy. One could therefore argue that the
performance drop and rank inversion observed in stage SAR1 are due to the fact that
some of the R1 models used to evaluate the control software are more complex than the
design model MA, and that the performance drop and rank inversion observed in SR1A

are due to the fact that some of the R1 models used as design model are simpler than
the evaluation model MA. However, our analysis of the width of the artificial reality
gaps showed that some of the noticeable performance drop we registered resulted from
the evaluation of control software on models that were less noisy than the design model.
This does further corroborate our conjecture that performance drop is to be explained
as a sort of overfitting of the conditions experienced during the design, rather than as
the result of fact that control software is designed on the basis of a simulation model
that is less complex than the (pseudo-)reality in which it is eventually evaluated.

The results of the first stage, in which we automatically designed control software
on the basis of MA and evaluated it on models uniformly sampled from the range R,
are particularly interesting. In fact, they show that it is not only possible to mimic
effects of the reality gap using a single, handpicked evaluation model; it is also pos-
sible to do so using multiple ones sampled around the design model. Being able to
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reproduce realistic performance drop that leads to observed rank inversions between
design methods suggests that the concept of pseudo-reality could be used for assessing
the robustness of design methods. A simulation-only procedure to reliably predict
real-world performance would be highly valuable, if only to diminish the amount of
expensive and time-consuming experiments with physical robots needed to assess con-
trol software. In the following chapter, we define predictors on the basis of the concept
of pseudo-reality and we study their accuracy.



Chapter 6

Predictors of real-world
performance

In Chapter 4, we showed that it is possible to create a virtual, simulation-only reality
gap between the design model and a pseudo-reality model—which we named MB—
that yields a performance drop that is qualitatively similar to the one observed in
reality. In Chapter 5, we also obtained results that were qualitatively similar to the
ones observed on physical robots by using multiple virtual reality gaps between the
design model and pseudo-reality models randomly sampled from a range R. Although
promising, the evidence produced so far is insufficient to elaborate any claim about the
accuracy of these pseudo-reality predictors, nor about their superiority with respect
to the classical evaluations on the design model1. Indeed, in addition to the fact that
we only reported qualitative results, these results were obtained on the same data
used for the definition of the pseudo-reality predictors, which fails to communicate on
their generalization capability. Here, we address these flaws: we propose quantitative
metrics, and we perform a thorough investigation of whether the reliability of these
pseudo-reality predictors generalizes to control software produced by a wider range of
methods and on a wider range of missions.

To do so, we created DS 1, a dataset of performance of robot swarms assessed on
physical robots (Ligot and Birattari, 2022a). We gathered publicly available data—
that is, instances of control software and associated real-world performance—from
several studies in optimization-based design of robots swarms (Francesca et al., 2015;
Kuckling et al., 2018; Hasselmann et al., 2018b; Spaey et al., 2019; Ligot et al., 2020a;
Hasselmann et al., 2021; Ligot et al., 2022). In total, we collected 1021 instances

1Evaluations of control software on the design model is typically considered as a natural way to
estimate its real-world performance. In fact, roboticists commonly report the performance obtained
on the design model, alongside the one observed on physical robots (when available), to show whether
the control software crosses the reality gap satisfactorily or not. However, as discussed previously,
reports of severe performance drop and rank inversion suggest that the performance observed on the
design model does not yield an accurate and reliable prediction of the actual performance that one
will eventually obtain in the real world.

73
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of control software generated by 18 different off-line design methods for 45 missions.
By reusing data collected previously for other purposes—which, to the best of our
knowledge, is a premiere in the optimization-based design of control software for robot
swarms—we were able to perform an analysis that would have been quite costly, should
we had to generate the required data from scratch. Although they originate from
several distinct studies, all these instances were designed automatically on the basis of
the same ARGoS3 (Pinciroli et al., 2012) simulator modelMA and evaluated on swarms
of e-puck robots (Mondada et al., 2009). In addition to the real-world performance of
the collected control software, DS 1 also contains the predicted performance obtained
by evaluating the collected control software in simulation on the design model MA,
the pseudo-reality model MB, and 1380 pseudo-reality models uniformly sampled from
the range R.

In the following, we consider evaluations on the models MA and MB to correspond
to the process of obtaining performance forecasts by the predictors we refer to as PMA

and PMB
, respectively. Evaluations on the randomly sampled models allow us to re-

peatedly execute the process of the predictor PR1 which consists, for each instance of
control software, in sampling a model from the range of possible models R and evalu-
ating the instance of control software on it, similarly to what we did in Chapter 5. It
also allows us to define the predictor PRk

, a generalized version of PR1 that consists, for
each instance of control software, in sampling k models from R and evaluating on each
of them the instance of control software once. Details about DS 1, the predictors, the
optimization-based design methods, and the missions for which the considered control
software has been generated are given in Appendix B. Figure 6.1 gives a schematic
overview of the study conducted in this chapter.

In the remainder of this chapter, we compare the predicted performance with the
one observed on the physical robots, and we assess the accuracy of the predictors PMA

,
PMB

, and PR1 according to three evaluation criteria that we will present hereafter. We
also do so for PRk

with k ∈ {1, 3, 5, 10, 30, 50, 100, 500}.

6.1 Prediction of estimated performance: the error

The quantity error measures the accuracy of the predictions of the expected real-world
performance of control software. We compute the normalized differences between the
predicted performance θ̄ and the performance θ observed in reality, as reported in
DS 1, as

error =

(
θ̄ − θ

θ

)2

. (6.1)

Figure 6.2a reports the median error of the predictors PMA
, PMB

, and PR1 . Results
show that estimating the expected performance of control software on the basis of
evaluations on the same simulation model used in the design process yields less accurate
predictions than any of the two other pseudo-reality predictors. In fact, the median
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Figure 6.1: Schematic overview of the study. In black, the typical process for
generating control software for robot swarms consisting of a design phase, an evaluation
phase, and eventually a deployment phase. The design phase is performed on the
basis of a simulation model here named MA. The evaluation phase is performed in
simulation, on the same simulation model used during the design, and is a common way
of predicting the real-world performance of control software. We name this popular
predictor PMA

. During the deployment phase, in which control software is executed
on physical robots in the target environment, the actual performance θ of the control
software is observed. In blue, our evaluation of the control software with pseudo-
reality predictors. The predictor PMB

evaluates each instance of control software
on a single pseudo-reality model named MB. The previously defined predictor PR1

evaluates each of them once on a randomly sampled model from the set R, which
contains both MA and MB. We introduce PRk

, a generalized version of PR1 , which
evaluates each instance once on k randomly sampled models from R, and considered
k = {1, 3, 5, 10, 30, 50, 100, 500}. The observed performance that we collected from
previous studies, as well as the predicted performance given by the predictors we
considered, are part of the dataset DS 1. See Appendix B for details about DS 1 and
the predictors.
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Figure 6.2: Error, best, and regret of the predictors. In each plot, points repre-
sent the (a) median error (to be minimized), (b) mean best (to be maximized), and (c)
mean regret (to be minimized); lines represent the respective 95% confidence interval.

error of the predictor PMA
is at least 2.4 times greater than the one of the other

predictors: PMA
obtains a median error of 1.0, PMB

one of 0.26, and PR1 one of 0.41.
Although the two lines representing the 95% confidence interval of the median error
of PMB

and PR1 are close, they do not overlap. PMB
is therefore significantly more

accurate than both PMA
and PR1 .

6.2 Prediction of best instance of control software:

the best

The quantity best measures the ability of predictors to accurately predict the ranking
of two given instances of control software—that is, the ability to predict which instance
of control software performs better than the other in reality. To compute the best, we
consider all 43 520 possible pairwise comparisons of instances of control software within
the individual studies from which we collected them so as to ensure fair comparisons.
For each possible pair of instances {X, Y}, we compute the best as

best =

{
1, if argmaxX|Y

(
θ̄X, θ̄Y

)
= argmaxX|Y (θX, θY) ,

0, otherwise.
(6.2)
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where θ{X|Y} is the expected performance observed in reality, and θ̄{X|Y} is the one
estimated by a predictor. For a pair of instances of control software, the best is 1 if a
predictor correctly infers the better performing one; 0 otherwise.

We report in Figure 6.2b the mean best of each predictor over all possible pairs
{X, Y} of instances of control software, which is to be maximized. Results show that
evaluations on MA lead to the correct best performing method for less than 50% of the
possible pairs as it obtains a best of 0.47. The accuracy of the other predictors is slightly
above 50%, with a value of 0.54 for PMB

and 0.51 for PR1 . The improvement of PMB

over PMA
is of 14.4%, the one of PR1 is of 7.4%. As the lines in Figure 6.2b representing

the 95% confidence interval on the mean best do not overlap, the improvement of PMB

and PR1 over PMA
is significant, and PMB

is the most accurate predictor.

6.3 Impact of wrong predictions: the regret

The quantity regret measures the loss incurred due to wrong predictions of the best
performing instance of control software of a given pair {X, Y}. The regret is computed as
the difference between the real performance of the best performing instance of control
software and the real performance of the instance predicted to be the best performing
one. To aggregate the results obtained across different missions, we normalize the
difference with the maximal performance observed in reality. For each possible pair of
instances of control software {X, Y}, we compute the relative regret as

regret =
(
max(θX, θY)− θargmaxX|Y(θ̄X,θ̄Y)

)
/max(θX, θY), (6.3)

where θ{X|Y} is the performance observed in reality, and θ̄{X|Y} is the one estimated by
a predictor. For a given pair of instances of control software, if a predictor correctly
determines which instance yields the best performance in reality, the relative regret is
0. Otherwise, the relative regret takes a value between 0 and 1, and it is an indicator
of the impact of making a mistake in predicting the best performing instance: the
larger the difference of real-world performance of two instances of control software,
the larger the regret, and vice versa. The relative regret is therefore to be minimized.

We report in Figure 6.2c the mean regret of all predictors. Results show that
PMA

obtains the largest regret, with a value of 0.26; PR1 has the second largest one
with a value of 0.24, and PMB

obtains the smallest one with a value of 0.22. The
improvement of PMB

and PR1 over PMA
is significant. It should be noted that this

improvement of the pseudo-reality predictors over PMA
(and the one regarding the best

reported in the previous subsection) is marginal with respect to the improvement we
observed regarding the error (Figure 6.2a). This difference of magnitude throughout
the evaluation criteria shows the importance of analyzing the estimations of relative
performance of pairs of instances of control software together with the accuracy of the
performance estimations of instances individually: a predictor might poorly estimate
performance of two instances, yet it might estimate the relative performance correctly,
leading to the correct prediction of the best performing control software.
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6.4 Analysis based on the origin of the control soft-

ware

Here we divide the data contained in DS 1 with respect to the approach used to gener-
ate the instances of control software. We consider three families: the neuroevolutionary
one regroups instances in the form of neural networks that have been generated by neu-
roevolutionary design methods (Nolfi and Floreano, 2000), the modular one regroups
instances in the form of probabilistic finite-state machines or behavior trees that have
been produced by modular design methods (Francesca and Birattari, 2016; Kuckling
et al., 2018), and the human one regroups instances produced by human designers.
We analyze the accuracy of the predictors within and across these three families.

Of the 1021 instances of control software considered, 49% have been produced by 10
methods belonging to the neuroevolutionary family, and 38% by 6 methods belonging
to the modular family; the remaining instances have been created by human designers
(Fig 6.3a). Throughout the original studies from which we collected these instances
of control software, methods belonging to the neuroevolutionary approach have shown
to suffer a relatively large performance drop: they produced control software that
performed well in simulation (that is, on the design model MA), but poorly in reality.
On the other hand, the modular methods and human designers produced control
software that performed satisfactorily in both simulation and reality. The analysis
of the error yield by the predictors on the three families of methods confirms these
observations (Figure 6.3). In fact, the median error of PMA

is considerably higher for
the control software produced by neuroevolutionary methods (almost 26) with respect
to those produced by the modular methods (0.1) and human designers (0.08). A similar
trend can be observed for pseudo-reality predictors PMB

and PR1 (Figure 6.3b): the
median error is substantially larger for performance predictions of neuroevolutionary
instances (1 and 1.58, respectively) than for the one of modular instances (0.09 and 0.1)
or for the one of the human instances (0.06 and 0.09). The pseudo-reality predictors are
noticeably more accurate at predicting performance of the neuroevolutionary instances
of control software than PMA

, and PMB
is more accurate than PR1 . The improvement of

PMB
over PMA

and PR1 is significant with a confidence level of at least 95%. For what
concerns the control software produced by modular methods and human designers, the
difference in median error between PMA

and the pseudo-reality predictors is negligible.

Among the 43 520 possible comparisons of instances of control software available
in DS 1, 62% are homogeneous comparisons—that is, comparisons of pairs of instances
produced by design methods belonging to the same family—and 48% are heteroge-
neous comparisons—that is, the two instances have been produced by design methods
belonging to different families. Because two instances belonging to the same family dis-
play similar ranges of performance in reality, predicting which of the two will perform
better is difficult. On the other hand, it is less challenging for two instances conceived
by design methods belonging to different families as their real-world performance differ
noticeably. Figure 6.4 reports the best and regret of the predictors for comparisons of
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Source: Ligot A, Birattari M (2022b)

Figure 6.3: Error of the predictors for different families of design methods:
neuroevolutionary methods, modular methods, and human designers. (a) The group
‘neuroevolutionary’ refers to instances of control software produced by neuroevolution-
ary methods, the group ‘modular’ refers to those produced by modular methods, and
the group ‘human’ refers to those produced by human designers. (b) median error.
For each predictor, the orange left-most points represent the median error when con-
sidering control software produced by neuroevolutionary robotics methods; the blue
central points represent the one when considering control software produced by mod-
ular methods; the green right-most points represent the one when considering those
produced by human designers. The vertical segments represent the 95% confidence
interval.

homogeneous and heterogeneous pairs of design methods. Surprisingly, the mean best
of the pseudo-reality predictors PMB

and PR1 is only slightly higher (better) than the
one of PMA

when considering homogeneous comparisons (Figure 6.4b). In fact, PMA

obtains a mean best of 0.451, whereas PMB
and PR1 obtain one of 0.46 and 0.449, re-

spectively. The three predictors thus fail to correctly predict which instance of control
software performs better in reality for more than 50% of the comparisons. Also for
the case of the mean regret, values are extremely close: PMA

obtained a mean regret
of 0.259, whereas PMB

and PR1 both obtained one of 0.253 and 0.256, respectively
(Figure 6.4c).

Although all three predictors have higher mean best for heterogeneous pairs of in-
stances of control software than for homogeneous ones, the difference is minor for what
concerns PMA

in comparison with the ones of PMB
and PR1 (Figure 6.4b). Whereas

these last two predictors are able to correctly predict which instance is the best per-
forming one in respectively 67.3% and 60.4% of the heterogeneous comparisons of DS 1,
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Source: Ligot A, Birattari M (2022b)

Figure 6.4: Best and regret of the predictors for different comparisons of
design methods. (a) The group ‘homogeneous’ refers to comparisons of control soft-
ware generated by design methods belonging to the same family: both methods belong
to either the neuroevolutionary approach, the modular one, or have been designed by a
human. The group ‘heterogeneous’ refers to comparisons of control software generated
by methods of different families. (b) Mean best ; (c) mean regret. In both plots, and
for each predictor, the fuchsia left-most points represent the mean best or mean regret
when considering heterogeneous comparisons; the gray right-most points represent the
ones when considering homogeneous comparisons. The vertical segments represent the
95% confidence interval on the respective metric.

PMA
can only do so for 51%. As a result of the poor accuracy of PMA

in predicting the
best performing instance of control software for heterogeneous pairs, its mean regret
is considerably larger with respect to the one for homogeneous pairs. In fact, PMA

is the only predictor that has a larger mean regret for heterogeneous pairs than for
homogeneous ones: the one of PMB

drops to 0.16, whereas the one of PR1 decreases to
0.21 (Figure 6.4c).

An analysis of the best and regret of the predictor PMA
confirms the assumption

that predicting the best performing instance of control software out of a heterogeneous
pair is more straightforward as the two instances are more likely to display different
ranges of performance in reality. In fact, although the best of PMA

is higher (better)
for heterogeneous comparisons than for homogeneous ones, its mean regret for het-
erogeneous pairs is also larger (worse) than for homogeneous ones. This is explained
by the fact that the difference in real-world performance between instances of control
software for a heterogeneous pair is important, leading to a larger relative regret—
that is, a larger loss—when the wrong instance is predicted to be the best performing
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one in reality. On the contrary, mistakes in detecting the best performing instance in
homogeneous pairs might be more frequent, but they result in a smaller loss as the
performance in reality are more likely to be similar.

6.5 Correlation between predictions and width of

the pseudo-reality gap

The notion of width of a pseudo-reality gap introduced in Chapter 5 refers to a measure
of the difference between the design model in which control software is conceived and
the pseudo-reality model in which it is evaluated. In this section, we evaluate each
instance of control software on 30 models sampled from the range R, and we study
the correlation between the three evaluation criteria and the width of the pseudo-
reality gap these models create with the design model. We compute (a) the ℓ1 norm of
differences between two models and (b) their cosine similarity to quantify the extent
to which the pseudo-reality models sampled from R differ from the design model MA.
These two measures are described in the Section 5.2. With this analysis, our goal is
to learn whether the measures considered provide meaningful information, such as the
possible existence of a subrange of R that leads to more accurate predictions. If it is
the case, we envision that these measures (or similar ones) would be helpful for the
future definition of new, better predictors.

In Figure 6.5, we report the distribution of the widths computed with the two
aforementioned measures. We also discretize the widths and report the error, best, and
regret computed across all the available instances of control software. In particular, we
represent the error with box-and-whiskers boxplots, and plot the mean best and mean
regret together with the associated standard deviations. In Figures 6.6 and 6.7, we
report the correlation between the widths and the error, best, and regret according the
different groups considered in the previous section—that is, we consider the error of
control software produced by neuroevolutionary, modular, and human design methods;
and the best and regret resulting from homogeneous and heterogeneous comparisons
of control software.

When computed as the ℓ1 norms of the differences between the models R1 and MA,
the width ranges from 0 to 5, with the larger the norm, the wider the gap between the
two models (Figure 6.5a–d). The distribution of the widths of the pseudo-reality gap
is symmetric around the mean 2.5 (Figure 6.5a). The error slightly decreases as the
width increases, but increases for widths greater than 4.4 (Figure 6.5b). This suggests
that a larger difference between evaluation and design model yields better accuracy,
but that a too large difference might be counterproductive. In Figure 6.6, it can be
observed that the error for control software produced by neuroevolutionary methods
decreases when width increases, whereas the one for control software produced by
modular methods remain stable. At visual inspection, the error for control software
produced by human designers seems to increase as the width increases, but the Pearson
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Figure 6.5: Width of pseudo-reality gap: error, best, and regret . For each
instance of control software included in DS 1, and any possible pairwise combinations
of these instances, 30 models were randomly sampled from the range R. We computed
the width of the pseudo-reality gap created between the sampled models and the design
model MA using two measures: the ℓ1 norm of differences, and the cosine similarity.
(a) Distribution of the width measured as the ℓ1 norm of the differences between the
R1 models and MA, with mean equal to 2.5. (b), (c), and (d) error, best, and regret
with respect to the ℓ1 of the differences between the sampled models and the design
one. Their Pearson correlation coefficients are equal to -0.01, 0.002, 0.01, respectively.
(e) Distribution of the width computed as the cosine similarity between the R1 models
and MA, with mean equal to 0.77. (f), (g), and (h) error, best, and regret with respect
to the cosine similarity between sampled models and the design one. Their Pearson
correlation coefficients are equal to 0.03, -0.02, 0.02, respectively. It is worth noting
that the ℓ1 norm of differences between MA and MB is equal to 1.59, whereas their
cosine similarity is equal to 0.89.
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Figure 6.6: Width of the pseudo-reality gap: error of control software produced
by neuroevolutionary methods (a, d), modular methods (b, e), and human designers
(c, f). Widths are computed with the ℓ1 norm of differences (a, b, c) and the cosine
similarity (d, e, f). Pearson correlation coefficients are equal to (a) -0.023 (b) -0.006
(c) -0.038 (d) 0.043 (e) 0.002 (f) 0.015.
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Figure 6.7: Width of the pseudo-reality gap: best (a, b, e, f) and regret (c, d, g,
h) when considering heterogeneous (a,c, e, g) and homogeneous (b, f, d, h) pairs of
instances of control software. Widths are computed with the ℓ1 norm of differences (a,
b, c, d) and the cosine similarity (e, f, g, h). Pearson correlation coefficients are equal
to (a) 0.03 (b) -0.007 (c) 0.001 (d) 0.008 (e) -0.054 (f) -0.003 (g) 0.052 (h) -0.004.
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correlation coefficient of -0.04 indicates a negative correlation. When considering all
instances of control software, the best first increases, then quickly plateaus for widths
larger than 1 (Figure 6.5c). The same can be observed when only considering homo-
geneous comparisons of control software, whereas the best tends to keep increasing
until widths larger that 4.4 (Figure 6.7a-b). For what concerns the regret, it remains
relatively stable for all widths.

In a positive space such as the one considered here, the cosine similarity ranges
from 0 to 1, with the lower the value, the wider the gap between the two models
(Figure 6.5e–h). When models from R are sampled uniformly like we did in this
study, the distribution of the width is skewed to the left (Figure 6.5e). Figure 6.5f
shows that the error slightly increases as the design model and the evaluation ones get
closer—in other words, when the gap reduces. Figure 6.5g-f show the best decreasing
and the regret increasing as the gap gets smaller, respectively. Figures 6.6d-f show
that, as design and evaluation models get closer, the error of the instances of control
software produced by neuroevolutionary methods increases more decidedly than the
one of those produced by modular methods or designed by humans. Figures 6.7e-h
show that, for heterogeneous pairs of control software, the best decreases and the
regret increases as the gaps narrow down, whereas it remains relatively constant when
considering homogeneous pairs.

Overall, trends are more visible when one observes the cosine similarity than the ℓ1

norms of the differences. The Pearson correlation coefficients reported in the captions
of Figure 6.5 support this, with values slightly greater when using the cosine similarity,
whereas those reported in Figures 6.6 and 6.7 exacerbate the differences between the
different groups studied.

6.6 Varying the sample size of R

The predictor PRk
consists, for a given instance of control software, in its evaluation

on k models sampled from the range R of models. The resulting prediction of the
performance of the instance is the median of the estimated performance resulting from
the k evaluations. We consider k ∈ {1, 3, 5, 10, 30, 50, 100, 500} to study the effect of
the sample size on the accuracy of the predictor. We apply PRk

on DS 1 30 times for
each k considered, and present the resulting median error, mean best, and mean regret
of the 30 executions in the form of box-and-whiskers plots (Figure 6.8).

In Figure 6.8a, each box represents 30 median error, each resulting from the execu-
tion of a predictor on DS 1. In addition to the decrease of the variance with the increase
of the number of models sampled from R, the results show that the accuracy increases
(i.e., the error decreases). The best score is obtained by PR50 , with a median value of
0.295, which corresponds to an improvement of 28% over PR1 . One can notice a slight
increase of the error as the sample size exceeds 50 models (that is, for predictors PR100

and PR500). In Figure 6.8b, each box represents 30 mean best. The plot shows a clear
improvement of the accuracy until the sample size reaches 30 models, the accuracy
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Source: Ligot A, Birattari M (2022b)

Figure 6.8: Effect of the sampling size on the predictor PRk
. (a) median

error, (b) mean best, and (c) mean regret. The results are presented using notched
box-and-whiskers plots, where the notches represent the 95% confidence interval on the
median. If notches on different boxes do not overlap, the medians of the corresponding
predictors differ significantly with a confidence of at least 95%. Each box represents
the metrics resulting from 30 executions of the predictors. Performance of PMA

(dotted
line) and PMB

(dashed line) are added for comparison.
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then plateaus. Surprisingly, the accuracy is significantly lower when 500 models are
sampled (that is, PR500); the accuracy is then equivalent to estimating performance
with 10 models, yet with lower variance. Both PR30 and PR50 obtain a score of 0.534,
which is an improvement of about 5% with respect to the one of PR1 . Figure 6.8b,
in which each box represents 30 mean regret, shows similar trends, only inverted. In
fact, one can see an improvement of the accuracy (i.e., a decrease of the regret) as the
number of sampled models n increases. The regret is the lowest for PR30 , with a value
of 0.22 which corresponds to an improvement of 8% over PR1 , then increases for larger
sample size. In fact, PR500 is significantly worst than PR10 .

Overall, considering multiple models sampled from R to estimate the performance
of an instance of control software leads to better accuracy. However, our results shows
that there is an optimal value in the number of models, and that larger sample size
does not necessarily means higher accuracy. Yet, even if very large sample sizes are
suboptimal, they are still significantly more accurate than very small ones or than
PMA

.

6.7 Discussion

The results reported in this chapter show that, on DS 1, the pseudo-reality predictors
proposed are significantly more accurate than the design model to estimate the real-
world performance of control software, and to forecast eventual rank inversions between
pairs of instances of control software. The results confirm that the concept of pseudo-
reality can be used as part of a methodology to predict the robustness of control
software and of optimization-based design methods.

To the best of our knowledge, this study is the first that focuses on the problem
of predicting real-world performance of robot control software that is generated off-
line on the basis of simulation. The evaluations of predictors must be conducted on
a substantial amount of instances of control software, ideally created by a variety of
design methods and to address a variety of missions, in order to make meaningful and
serious claims about their accuracy. Such study would therefore require instantiating
a large number of design processes, and evaluating all the instances of control software
produced with real robots, which would be extremely expensive and time consuming.
To avoid this burden, we reused control software and its real-world performance that
we collected from several previously published studies in optimization-based design of
robot swarms—which is, to the best of our knowledge, a first as well.

A possible shortcoming of our study is the fact that the data we reused to evaluate
the predictors were produced entirely by researchers of our laboratory. This because,
unfortunately, due to the aforementioned issues in running real-robot experiments in
swarm robotics, large experimental campaigns are particularly rare: few laboratories
and research groups have the resources to afford them, and many studies still only rely
on the simulation model used during the design to evaluate automatically generated
control software. Moreover, publicly sharing results, control software, and source code
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in a user-friendly and reusable manner is not a common practice in our community.
We hope that our study will influence other researchers to share their results and
convince them that experimental data might have a use that goes beyond the specific
study in which they were produced.



Chapter 7

Conclusion

This thesis contributes to the progress of optimization-based design of robot swarms.
Optimization-based design has the potential to become a general methodology for
the conception of robot swarms as it bypasses the complex endeavor of deriving the
rules that dictate the appropriate robot-robot and robot-environment interactions from
the desired collective behavior (Dorigo et al., 2021). To meet expectations, many
fundamental issues have to be overcome; this thesis addressed a few of them.

The literature on optimization-based design lacks a consistently applied empirical
practice and, as a result, a well-established state of the art (Francesca and Birattari,
2016). Recent discussions have disclosed the fact that two approaches have so far
been entangled in the literature: semi-automatic and fully-automatic design (Birattari
et al., 2019, 2020). In semi-automatic design, a design method is a tool that a human
operator uses to realize the swarm behavior that they have in mind. To produce the
desired behavior—or one that is as close as possible—the operator fine-tunes aspects
of the design process such as the control software architecture, the parameters of the
optimization algorithm, or the performance measure to be optimized. This fine-tuning
is generally a three-step process that is iterated at will: the execution of the design
method, the evaluation (possibly on physical robots) of control software produced, and
the modification of some elements of the design process. The semi-automatic approach
is labor intensive, and it is thus best suited for complex, one-of-a-kind missions for
which it is reasonable to expect that sufficient time and resources are available to
properly calibrate the design method. In fully-automatic design, the design method
cannot undergo any per-mission manual adaptation. It is thus best suited for solving
missions consecutively sampled from a given stream or class of missions, in such a way
that it would be unfeasible for a human to supervise and modify the design processes
associated to each mission.

The classification between semi-automatic and fully-automatic design, alongside
the traditional one that distinguishes between on-line and off-line design, is a first step
towards establishing a clear state of the art. In fact, it contributes to highlighting the
research questions relevant to each approach, to setting appropriate expectations on
what each should achieve, and to defining the challenges to be faced by each of them.

89
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Research questions, expectations, and challenges that are specific to semi-automatic
design revolve around the nature and complexity of the mission to be solved, the level
of expertise required by the human operator, and the amount of time needed to be
devoted by the human operator or the number of iterations of the design process ought
to be executed. Research questions, expectations, and challenges that are specific
to fully-automatic design revolve around the nature and complexity of the class of
missions to be addressed, the robustness of the solution produced to the differences
between design and deployment conditions, and the computational time needed to
solve each mission of the class considered. The fundamental differences between the
two approaches naturally imply the necessity to adopt different experimental protocols
for empirical studies in each domain. Our analysis of the literature showed a disparity
in the assessment of design methods within the two approaches. More importantly, it
revealed shortcomings.

Experimental protocols employed in semi-automatic studies typically consider one
mission, instantiate multiple design processes for that mission, select a subset of the in-
stances of control software produced by the design processes, and execute the instances
they selected on physical robots for further evaluation and assessment. Often, the sub-
set of control software produced that is then ported to physical robots is composed of
only one instance: the one that performs best in simulation. Although discrepancies
can be found within the experimental protocols employed in semi-automatic design (in
terms of number of design processes executed, number of instances of control software
ported on physical robots for evaluation, or number of evaluations of each of these
instances), they generally reflect the tenets of semi-automatic design: they are not
intended to estimate the expected performance of a design method for a given mis-
sion, but rather to demonstrate that the method can be used as an adjustable tool to
produce the collective behavior needed to solve the mission at hand.

Experimental protocols employed in fully-automatic studies typically consider sev-
eral missions of different types (that is, that are characterized by different performance
measures), instantiate multiple design processes for each missions, and execute all the
generated instances of control software once on physical robots. It has been shown
that these experimental protocols are to be adopted when one wants to estimate the
performance of a design method on a given mission (Birattari, 2020). However, these
experimental protocols fail to encompass one of the cornerstone of fully-automatic de-
sign: the notion of class of missions. A class of missions is a set composed of missions
of different types and of missions of the same type but that differ from one another
by manor variations (two missions of the same type might be configured differently if,
for example, the number and/or positions of obstacles and/or points of interest within
these missions vary), together with a probability measure that determines the relative
frequency of appearance of each of them. By evaluating and comparing the perfor-
mance of design methods on a specific configuration of a mission rather than on a
whole class like it is currently done in the literature, one might (unwillingly) introduce
bias towards one of the methods due to specificities of the configuration chosen.
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The first main contribution of this thesis is the definition of an experimental pro-
tocol that aims at evaluating the performance of design methods over a whole class
of missions, and that is therefore to be adopted when one evaluates design methods
in the fully-automatic context. This protocol is characterized by two complementary
elements: the notion of mission generator to define benchmarks for the evaluation of
design methods, and a sampling strategy that minimizes the variance when estimat-
ing their expected performance. A mission generator is a tool that samples missions
belonging to a given class of mission—that is, a tool that selects missions of the
class according to the associated probability measure, and independently of the design
method to which it applies. The sampling strategy recommends to assess the expected
performance of a design method on the maximal number of missions possible, to run
one design process per mission, and to execute the resulting instance of control soft-
ware once on the physical robots. We provided an intuitive explanation and a formal
proof that this sampling strategy, under the assumption that a limited number of
executions of control software on physical robots can be performed, is the one that
ought to be adopted to minimize the variance of the expected performance of a design
method. The assumption on the maximal number of executions of control software on
the physical robots is realistic because robot experiments are expensive and time con-
suming, and as such represent the real bottleneck of the research in optimization-based
design. The notion of mission generator and the sampling strategy are fundamentally
complementary as the sampling strategy recommends to evaluate a design method on
the maximal number of missions possible, and the notion of mission generator allows
one to sample as many missions as desired.

To illustrate the experimental protocol, we presented an experiment in which we
evaluated and compared the performance of two previously proposed design methods.
For this purpose, we created the first generator of missions for swarm robotics: MG1.
We created MG1 as an open-source library for the ARGoS3 simulator (Pinciroli et al.,
2012). Although MG1 is relatively limited in the sense that it can only generate mis-
sions of three different types to be solved by robots with specific capabilities, MG1 can
easily be extended and generalized as it defines missions in terms of environmental fea-
tures and relationships between these features. In addition, the library we created does
not only implement MG1, but a whole class of generators. In fact, the modification of
parameters of MG1, such as the frequency of appearance of environmental features,
entails the creation of a different mission generator that would sample a different class
of missions.

MG1 considers the number of robots in the swarm as a parameter of the mission
itself. Rather than imposing the size of the swarm, we expect future generators to de-
fine missions that impose a constraint on the maximal/minimal number of robots and
to allow the design process to determine the most appropriate number of robots. More
generally, one could conceive generators whose purpose is to evaluate the performance
of concurrent design methods—that is, methods that select and configure the sensors
and actuators of the individual robots in addition to designing their control software.
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This could be done by specifying a set of possible hardware modules that the design
process must select and combine to conceive the robots of the swarm. We also expect
such generators, in prospective practical applications of fully-automatic design, to in-
tegrate elements of real-world design problems such as economic constraints for more
realistic evaluations of performance of design methods. Taking inspiration from the
work of Salman et al. (2019), this could be done by specifying a cost to each hardware
module available, and to include constraints on the total monetary budget available
with each mission of the class.

The main difficulty when estimating the performance of a design method on differ-
ent missions is that the range of performance might vary greatly across the missions
at hand. Normalization prior to the aggregation of the performance is needed. In
our illustrative experiment, we aggregated the performance observed by reporting the
expected rank, which is an implicit form of normalization. However, using ranks does
not provide an estimation of the overall performance of each of the design methods
under analysis. We also normalized the performance obtained by the generated control
software with the one of a baseline behavior: random walk. Although promising, this
normalization comports drawbacks in the form of potential divisions by zero if the per-
formance of the baseline behavior is null, and the necessity of executing the baseline
behavior on physical robots. As an alternative, one could normalize the performance
on each mission based on the knowledge of the theoretical maximal and minimal perfor-
mance, or based on a reasonable estimate of them, including, for example, the best and
worse performance observed empirically (Hasselmann et al., 2021). However, in our
illustrative experiment, these alternatives were not appropriate as no prior knowledge
was available and only two methods were involved in the study, providing therefore too
little data to perform a meaningful normalization. The aggregation of performance
thus remains an open issue.

The second main contribution of this thesis consists in shedding further light on one
of the most important problem to be faced in off-line optimization-based design: the
reality gap. It is commonly believed that effects of the reality gap (that is, performance
drop and rank inversion) are due to the fact that reality is more complex than the
simulations on the basis of which control software is designed—or equivalently, that
simulations are too simplistic. We brought empirical evidence that following this
complexity assumption leads to a contradiction. In fact, we showed that effects of
the reality gap can occur even if we can exclude that the simulation model under
which control software is designed is a simplistic version of the context under which
the control software is assessed. Rather, we showed that the effects of the reality gap
should be ascribed to a sort of overfitting of the conditions experienced in the design
phase, regardless of the fact that these conditions are more or less complex than those
faced in the evaluation phase.

The third main contribution of the thesis is the definition and empirical assessment
of predictors of real-world performance. The predictors we considered are based on the
concept of pseudo-reality: a simulation model, different from the one used during the
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design, that is used for the evaluation of control software and therefore plays the role
of reality. In particular, we considered the predictor PMB

that consists in the execution
of control software on the pseudo-reality model MB used to disprove the aforemen-
tioned complexity assumption; the predictor PR1 that consists in the execution of an
instance of control software on a single pseudo-reality model sampled from a range R
of possible models; and its generalized version PRk

that consists in the execution of an
instance of control software on k models sampled from R. We investigated the ability
of these predictors to forecast real-world performance of automatically generated con-
trol software, and compared it to the classical approach adopted in the literature to
estimate real-world performance, which relies on the evaluation of control software on
the simulation model used in the design process.

To make meaningful and serious claims about the accuracy of predictors, their
assessments need to be performed on a large amount of control software, ideally con-
ceived by various design methods and to tackle various missions. This would require
running an extremely large amount of experiments with real robots, which would be
expensive and time consuming. We avoided the burden of running this large amount
of experiments by reusing control software (and its real-world performance) that we
collected from seven previously published studies in swarm robotics—which is, to the
best of our knowledge, a first in swarm robotics. We compared the predicted perfor-
mance with the one observed on the physical robots, and we assessed the accuracy
of the different predictors with three evaluation criteria: one related to the accuracy
of the predictions of the expected real-world performance, the other two related to
the occurrence of rank inversions between pairs of instances of control software. The
results we obtained are promising: they show that a more accurate alternative to the
widely adopted practice for predicting real-world performance exists.

Future work

A number of issues remain to be addressed. Firstly, the experimental protocol we
proposed does not apply to semi-automatic design even though the lack of empirical
practice is arguably more severe than for the fully-automatic approach: almost no
comparisons of design methods are performed. Secondly, the thesis does not provide
solutions to the reality-gap problem.

Elaborating adequate protocols for the assessment and comparison of multiple
semi-automatic methods is particularly challenging due to the role played by the hu-
man expert during the design process as well as the specific nature of the missions
to be accomplished. We foresee that an adequate protocol could be inspired by the
one used by Francesca et al. (2015) to compare optimization-based and manual design
methods. In that study, five experts were each asked to i) define a mission and ii) solve
two missions created by their peers using manual methods. Rather than conceiving
the control software with manual methods, one could ask participants to manipulate
design methods so as to produce solutions that they deem appropriate. One could,
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for example, limit the amount of time given to the experimenters or the maximal
amount of visual evaluations of the produced control software to assess the ease of use
of the design methods considered. Involving several humans in the definition of the
benchmark and in the steering of design processes seems to be necessary to avoid bias
in the estimation of the expected performance of design methods used in the semi-
automatic context, but we leave this for future work. Nonetheless, as semi-automatic
and fully-automatic design are closely tied to one another, we foresee that progress
in fully-automatic design will somehow contribute to the progress of semi-automatic
design, and that the protocol we proposed will therefore also positively impact off-line
and on-line semi-automatic design, even if indirectly.

The pseudo-reality predictors we proposed did not yield perfect estimations of real-
world performance, and there is therefore room for improvement. In this thesis, we
considered pseudo-reality models that differ from the design model by the amount of
noise applied to the sensors and actuators of the robots. We foresee that one could de-
fine predictors with higher accuracy by following parallel avenues. One might consider
a wider range of possible pseudo-realities by including offsets to the noise applied to
the sensors and actuators, and multiple distributions. One might also go beyond noise
and consider different parameters, or consider different structures of the simulation
model. Our study on the correlation between accuracy and differences between the
design model and the sampled ones suggests that an optimal subrange of models (or
a single model) that leads to higher performance exists. Rather than searching for an
optimal subrange or a unique model by hand, one could define an automatic procedure
instead. We foresee such a procedure to use an optimization algorithm, one or sev-
eral evaluation criteria to guide the search, and to be based on the decomposition of
the available control software and corresponding real-world performance into training
and evaluation sets as it is typically done in machine learning (Hastie et al., 2009;
Goodfellow et al., 2016). In this work, we used the same pseudo-reality model for all
the robots. One might consider an heterogeneous approach and simulate each robot
with a distinct model. Finally, one might consider different physics engines, or even
different simulators.

It is reasonable to assume that simulation predictors, however accurate they might
become, will never replace experiments with physical robots. Yet, we foresee that they
could considerably reduce the amount of tests with physical robots, and would there-
fore facilitate the research in off-line design of robot swarms. In particular, in the case
of fully-automatic design, reliable predictors could contribute to handle the so-called
overdesign: it has been shown that, past an optimal number of steps of the design
process, the performance observed in reality diverges from the one in simulation (Bi-
rattari et al., 2016). As a consequence, protracting a design process indefinitely could
be counterproductive. A reliable simulation-only predictor of real-world performance
could be used to implement an early stopping mechanism that halts the design process
when overdesign has occurred (Morgan and Bourlard, 1990; Caruana et al., 2001).

In addition, we foresee that the concept of pseudo-reality could be leveraged to
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produce control software that is more robust to the reality gap—a problem that tends
to be overlooked by our community (Hasselmann et al., 2021). The results of this
thesis substantiate the contention that the problem of the reality gap is reminiscent
of the generalization problem faced in machine learning; we hence believe that the
literature of that domain, and in particular the techniques employed to enhance the
generalization capabilities of machine learning models, should be a source of inspiration
to optimization-based design of robot swarms. It is well known that the field of machine
learning, and especially deep learning (Zhu et al., 2016), requires a lot of data to obtain
satisfactory results (Goodfellow et al., 2016). A wide variety of data is indeed needed
during the training to enable machine learning models to later generalize to unseen
data. In this regard, the practice in optimization-based design of robot swarms is quite
different. In fact, the candidate instances of control software are typically evaluated in
a single context of execution during the design—that is, the simulation model—before
being ported on the physical robots.

The most promising solution to mitigate effects of the reality gap is the transferabil-
ity approach proposed by Koos et al. (2013). This approach uses periodic evaluations
of instances of control software on physical robots to constrain the design process to
consider only those that do not overfit simulation, and therefore to discard those that
are not robust. In other words, similarly to what is done in machine learning, the
transferability approach relies on the estimation of the robustness of control software
on several execution contexts—two to be precise. Relying on robot experiments is time
consuming and expensive, and more importantly, limits the adoption of this approach
to the semi-automatic design of robot swarms. In machine learning, researchers often
use data augmentation to counter the high cost related to the collection and the label-
ing of sufficient data, a technique that consists in adding synthetic data to the training
set (see Mumuni and Mumuni (2022) for a recent review of the recent data augmen-
tation techniques). In their paper, Koos et al. (2013) compared their transferability
approach to a technique that is similar to data augmentation as it consists in applying
random variation in the simulation—a technique sometimes called domain randomiza-
tion (Peng et al., 2018; Andrychowicz et al., 2020). This technique, in the experiment
conducted by Koos et al. (2013), did not yield satisfactory results. Yet, we believe that
this approach deserves more attention. The authors only considered random variations
related to the simulation environment—what we call arena in this thesis—not to the
simulation models. We foresee that evaluating candidate instances of control software
on multiple simulation models (i.e., multiple pseudo-realities) rather than on a single
one could be beneficial as it would give a better estimation of their intrinsic robustness.
Using task-agnostic predictors of real-world performance like the pseudo-reality ones
we proposed instead of the robot experiments employed in the transferability approach
would be particularly valuable as it would completely automatize the design process,
and substantially reduce its cost and length. We would recommend this avenue of
research to be explored in a systematic and incremental way: we expect that under-
standing which elements of simulations (and which combinations of these elements)
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will be crucial to the design of instances of control software that are robust to the
reality gap.



Appendix A

Minimizing variance: a
mathematical proof

This appendix provides a complete proof of the theorem presented in Chapter 3.

A sampling strategy for estimating the expected performance of a design method on
a class of missions, given that a maximum number N of executions can be performed,
can be formally described by a triple ⟨nm, nd, nx⟩, with Ñ := nm · nd · nx ≤ N . The
expected performance is estimated on the basis of nm missions, nd design processes per
mission (to generate nd instances of control software per mission), and nx executions
of each of them. We can assume that: (1) nm missions mi (with i = 1 . . . nm) can
be sampled independently from a same (fixed) distribution PM(·), where PM(m) is
the probability of having to solve mission m; (2) given a mission mi′ , nd instances
of control software di′j (with j = 1 . . . nd) can be generated for that mission, which
can be formally described as sampling independently nd instances of control software
from a same (fixed) condition distribution PD(·|mi′), where PD(d|m) is the conditional
probability of producing design d, having to solve mission m; (3) given mission mi′

and design di′j′ , nx execution can be performed of design di′j′ on mission mi′ so as to
observe nx scores si′j′k (with k = 1 . . . nx), which can be formally described as being
sampled independently from a same (fixed) conditional distribution PS(·|di′j′ ,mi′),
where PS(s|d,m) is the conditional probability of observing score s when running
design d on mission m. Further, we can assume that the cost (in abstract terms:
time and resources) of running a design process is negligible compared to the one of
running robot experiments. We can also assume that sampling a mission from a class
of instances is inexpensive and that a sample of arbitrary size can be obtained. We
also assume that, before running a design process on a given mission, we do not have
any prior information on how well the control software we can generate automatically
will perform and on what will be the variance of the performance. It has to be noticed
that any triple ⟨nm, nd, nx⟩ yields an unbiased estimate of the expected performance.
Yet, different triples might differ for what concerns the variance of the estimate they
yield.
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Theorem 2. Under the assumptions made above, given that a maximum number N
of executions can be performed, the sampling strategy described by the triple E =
⟨nm, nd, nx⟩, with nm = N , nd = 1, and nx = 1, is the one that minimizes the
variance of the estimate.

The variance of the estimator µ̂ associated with the sampling strategy E is

E
[
(µ̂E − µ)2

]
=

σ2
AM

nm

+
σ̄2
AD

nm nd

+
σ̄2
WM

nm nd nx

, (A.1)

where σ2
AM is the across-mission variance and indicates how missions differ from one

another, σ̄2
AD is the expected across-design variance and indicates how designs differ

from one another within a same mission (averaged across all possible missions), and
σ̄2
WM is the expected within-mission variance and indicates how scores differ from one

another within a same mission (averaged across all possible missions). Formal def-
initions of these three variances are given in Section A.1. Clearly, to minimize the
variance of the estimator the denominators need to be chosen so as to be as large
as possible. It is straightforward to conclude that this will happen when nm = N ,
nd = nx = 1, as nm · nd · nx ≤ N , which also implies that nm · nd ≤ N .

The remainder of this appendix is dedicated to deriving Equation A.1.

A.1 Definitions

A sampling strategy E = ⟨nm, nd, nx⟩ is a triplet of integers where nm denotes the
number of missions, nd the number of designs per mission (resulting in nd instances
of control software), and nx the number of executions on the robots of each instance
of control software. The total number of executions on the robots is denoted by
N = nm · nd · nx.

The joint probability of having to solve mission m, producing the design d, and
eventually observing the score s is:

P (s, d,m) = PS(s|d,m)PD(d|m)PM(m), (A.2)

where PM(m) is the probability of having to solve mission m; PD(d|m) is the condi-
tional probability of producing design d, having to solve mission m; and PS(s|d,m) is
the conditional probability of observing score s, while performing design d on mission
m. The expected value of s with respect to this joint probability is:

µ :=

∫
s dPM(m) dPD(d|m) dPS(s|d,m). (A.3)

The expected value of the score within mission m and within design d for mission m
are respectively:

µm :=

∫
s dPD(d|m) dPS(s|d,m) and µmd :=

∫
s dPS(s|d,m). (A.4)
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The variance within mission m is:

σ2
m :=

∫
(s− µm)

2 dPD(d|m) dPS(s|d,m). (A.5)

The expected within-mission variance provides information on how scores differ
one from the other within a same mission (averaged across all possible missions); it is
defined as:

σ̄2
WM :=

∫
σ2
m dPM(m) =

∫
(s− µm)

2 dPM(m) dPD(d|m) dPS(s|d,m). (A.6)

The across-design variance within mission m is :

σ̄2
AD,m :=

∫
(µmd − µm)

2 dPD(d|m). (A.7)

The expected across-design variance provides information on how designs differ
one from the other within a same mission (averaged across all possible missions); it is
defined as:

σ̄2
AD :=

∫
σ̄2
AD,m dPM(m) =

∫
(µm,d − µm)

2 dPM(m) dPD(d|m). (A.8)

The across-mission variance provides information on how missions differ one from
the other; it is defined as:

σ2
AM :=

∫
(µm − µ)2 dPM(m). (A.9)

In the following, with the notation:
∫
f(v1, v2, . . . , vL)

⊙L
l=1dP (vl), we denote the

sequence of nested integrals
∫∫

· · ·
∫
f(v1, v2, . . . , vL) dP (v1) dP (v2) . . . dP (vL).

A.2 Proof

The goal of this proof is to show that given the following estimator

µ̂E =
1

Ñ

nm∑
i=1

nd∑
j=1

nx∑
k=1

sijk,

where sijk is the score (or performance) observed in the execution xijk of the instance
of control software issued from the design dij on the mission mi, the variance of µ̂E is:

E
[
(µ̂E − µ)2

]
=

σ2
AM

nm

+
σ̄2
AD

nm nd

+
σ̄2
WM

nm nd nx

.
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E[(µ̂E − µ)2] =

∫
(µ̂E − µ)2 dP (µ̂E) =∫  1

Ñ

nm∑
i=1

nd∑
j=1

nx∑
k=1

sijk − µ

2
nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi) =∫  1

Ñ

nm∑
i=1

nd∑
j=1

nx∑
k=1

(sijk − µ)

2
nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi) =

1

Ñ2

∫ nm∑
i=1

nd∑
j=1

nx∑
k=1

(
sijk − µmi︸ ︷︷ ︸

a

+µmi
− µ︸ ︷︷ ︸
b

)2
nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi) =

1

Ñ2

∫
nm∑
i=1

nd∑
j=1

nx∑
k=1

nm∑
i′=1

nd∑
j′=1

nx∑
k′=1

(sijk − µmi + µmi − µ)
(
si′j′k′ − µmi′ + µmi′ − µ

) nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

nm⊙
i′=1

dPM (mi′)

nd⊙
j′=1

dPD(di′j′ |mi′)

nx⊙
k′=1

dPS(si′j′k′ |di′j′ ,mi′) =

1

Ñ2

nm∑
i=1

nd∑
j=1

nx∑
k=1

nm∑
i′=1

nd∑
j′=1

nx∑
k′=1

∫
(sijk − µmi + µmi − µ)

(
si′j′k′ − µmi′ + µmi′ − µ

) nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

nm⊙
i′=1

dPM (mi′)

nd⊙
j′=1

dPD(di′j′ |mi′)

nx⊙
k′=1

dPS(si′j′k′ |di′j′ ,mi′)
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Using (a + b)2 = a2 + b2 + 2ab and the linearity of the integral we can break the last
integral into three terms which will be analyzed separately:

1

Ñ2

nm∑
i=1

nd∑
j=1

nx∑
k=1

nm∑
i′=1

nd∑
j′=1

nx∑
k′=1

∫ (
(sijk − µmi

)(si′j′k′ − µmi′ )︸ ︷︷ ︸
a2

+(µmi
− µ)(µmi′ − µ)︸ ︷︷ ︸

b2

+

+ (sijk − µmi)(µmi′ − µ) + (si′j′k′ − µmi′ )(µmi − µ)︸ ︷︷ ︸
ab+ab

)
nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

nm⊙
i′=1

dPM (mi′)

nd⊙
j′=1

dPD(di′j′ |mi′)

nx⊙
k′=1

dPS(si′j′k′ |di′j′ ,mi′) =

1

Ñ2

nm∑
i=1

nd∑
j=1

nx∑
k=1

nm∑
i′=1

nd∑
j′=1

nx∑
k′=1

∫ (
(sijk − µmi)(si′j′k′ − µmi′ )︸ ︷︷ ︸

a2

+(µmi − µ)(µmi′ − µ)︸ ︷︷ ︸
b2

+

+ 2(sijk − µmi
)(µmi′ − µ)︸ ︷︷ ︸

2ab

)
nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

nm⊙
i′=1

dPM (mi′)

nd⊙
j′=1

dPD(di′j′ |mi′)

nx⊙
k′=1

dPS(si′j′k′ |di′j′ ,mi′)

Summand I: a2

1

Ñ2

nm∑
i=1

nd∑
j=1

nx∑
k=1

nm∑
i′=1

nd∑
j′=1

nx∑
k′=1

∫
(sijk − µmi

)(si′j′k′ − µmi′ )

nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

nm⊙
i′=1

dPM (mi′)

nd⊙
j′=1

dPD(di′j′ |mi′)

nx⊙
k′=1

dPS(si′j′k′ |di′j′ ,mi′).

At this point we will analyze Summand I for different indices.
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i ̸= i′

Since (sijk − µmi
) and (si′j′k′ − µmi′

) depend on different variables, any addend of
Summand I with i ̸= i′ can be rewritten as

1

Ñ2

∫
(sijk − µmi

)(si′j′k′ − µmi′ )

nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

nm⊙
i′=1

dPM (mi′)

nd⊙
j′=1

dPD(dij′ |mi)

nx⊙
k′=1

dPS(sijk′ |dij ,mi) =

1

Ñ2

∫
(sijk − µmi

)

nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

·

∫
(si′j′k′ − µmi′ )

nm⊙
i′=1

dPM (mi′)

nd⊙
j′=1

dPD(di′j′ |mi′)

nx⊙
k′=1

dPS(si′j′k′ |di′j′ ,mi′) = 0 (by definition)

i = i′, j ̸= j′

1

Ñ2

∫
(sijk − µmi

)(sij′k′ − µmi′ )

nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

nm⊙
i′=1

dPM (mi′)

nd⊙
j′=1

dPD(dij′ |mi)

nx⊙
k′=1

dPS(sijk′ |dij ,mi) =

=
1

Ñ2

∫ ∫ (sijk − µmi
)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)·∫
(sij′k′ − µmi′ )

nd⊙
j′=1

dPD(dij′ |mi)

nx⊙
k′=1

dPS(sij′k′ |dij′ ,mi)

 nm⊙
i=1

dPM (mi) = 0 (by definition)
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i = i′, j = j′, k ̸= k′

1

Ñ2

∫
(sijk − µmi

)(sijk′ − µmi′ )

nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

nm⊙
i′=1

dPM (mi′)

nd⊙
j′=1

dPD(dij′ |mi)

nx⊙
k′=1

dPS(sijk′ |dij ,mi) =

=
1

Ñ2

∫ ∫ (sijk − µmi
)

nx⊙
k=1

dPS(sijk|dij ,mi) ·

∫
(sijk′ − µmi

)

nx⊙
k′=1

dPS(sijk′ |dij ,mi)


nd⊙
j=1

dPD(dij |mi)

nm⊙
i=1

dPM (mi) =
1

Ñ2

∫
(µmi,dj

− µmi
)2

nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi) =
σ̄2
AD

Ñ2
,

and therefore
nm∑
i=1

nd∑
j=1

nx∑
k=1

nx∑
k′=1

σ̄2
AD

Ñ2
=

nm nd n
2
x

Ñ2
σ̄2
AD =

σ̄2
AD

nm nd
.

i = i′, j = j′, k = k′

1

Ñ2

∫
(sijk − µmi

)(sijk − µmi
)

nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi) =

=
1

Ñ2

∫
(sijk − µmi)

2
nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi) =
σ̄2
WM

Ñ2
,

and thus
nm∑
i=1

nd∑
j=1

nx∑
k=1

σ̄2
WM

Ñ2
=

nm nd nx

Ñ2
σ̄2
WM =

σ̄2
WM

nm nd nx
.

Gathering everything, Summand I amounts to

a2 =
σ̄2
AD

nm nd

+
σ̄2
WM

nm nd nx

.

Summand II: b2

1

Ñ2

nm∑
i=1

nd∑
j=1

nx∑
k=1

nm∑
i′=1

nd∑
j′=1

nx∑
k′=1

∫
(µmi−µ)(µmi′−µ)

nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

nm⊙
i′=1

dPM (mi′)

nd⊙
j′=1

dPD(di′j′ |mi′)

nx⊙
k′=1

dPS(si′j′k′ |di′j′ ,mi′) =

n2
d n

2
x

Ñ2

nm∑
i=1

nm∑
i′=1

∫
(µmi

− µ)(µmi′ − µ)

nm⊙
i=1

dPM (mi)

nm⊙
i′=1

dPM (mi′)
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i ̸= i′ ∫
(µmi

− µ)

nm⊙
i=1

dPM (mi) ·

∫
(µmi′ − µ)

nm⊙
i′=1

dPM (mi′) = 0 (by definition)

i = i′ ∫
(µmi

− µ)2
nm⊙
i=1

dPM (mi) = σ2
AM ,

and therefore
n2
d n

2
x

Ñ2

nm∑
i=1

σ2
AM =

σ2
AM

nm

Gathering everything Summand II adds to

b2 =
σ2
AM

nm

.

Summand III: 2ab

2

Ñ2

nm∑
i=1

nd∑
j=1

nx∑
k=1

nm∑
i′=1

nd∑
j′=1

nx∑
k′=1

∫
(sijk−µmi)(µmi′−µ)

nm⊙
i=1

dPM (mi)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

nm⊙
i′=1

dPM (mi′) =

=

∫ (µmi′ − µ)

∫
(sijk − µmi

)

nd⊙
j=1

dPD(dij |mi)

nx⊙
k=1

dPS(sijk|dij ,mi)

 nm⊙
i=1

dPM (mi)

nm⊙
i′=1

dPM (mi′) = 0

(by definition the inmost integral is null)

Gathering all the nonzero terms yields:

E
[
(µ̂E − µ)2

]
=

σ2
AM

nm

+
σ̄2
AD

nm nd

+
σ̄2
WM

nm nd nx

.



Appendix B

Dataset DS 1

This appendix provides a description of the content of the dataset DS 1 presented in
Chapter 6.

DS 1 contains the real-world performance of 1021 instances of control software
generated by 18 different off-line design methods for 45 missions. The majority of
these instances have been evaluated once on physical robots, and a few have been
evaluated multiple times under different initial configurations of the swarm—that is,
positions and orientations of the robots. In total, DS 1 contains 1385 observations
of real-world performance. For each real-world evaluation, DS 1 also contains the
predictions yield by PMA

, PMB
, and of 1380 models uniformly sampled from the range

R of possible pseudo-reality models—see subsection Predictors for more details. The
predictions were obtained by executing the 1021 available instances of control software
on the different simulation models and with the same initial configurations of the
swarm that were used during the evaluations on the physical robots. In the ARGoS3
simulator (Pinciroli et al., 2012), an initial configuration is configured via a seed fed to
the random number generator—the seeds used in the executions of the control software
are also part of DS 1.

B.1 Robotic platform

The e-puck is a small two wheeled robot commonly used in swarm robotics (Mon-
dada et al., 2009). All the control software collected in this study has been generated
to be executed on the same version of the e-puck enhanced with additional hard-
ware (Garattoni et al., 2015): the Overo Gumstix, the ground sensor module, and the
range-and-bearing module (Gutiérrez et al., 2009). This version can detect obstacles
and measure the ambient light, perceive the gray-level color of the floor situated under
its body, and detect the number of neighboring peers situated in an approximate range
of 0.70 m as well as estimate their relative position.

The capabilities of the robot are formally described in a reference model which
serves as an interface for the control software: it describes what variables associated to

105
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Figure B.1: Picture of two e-puck robots in the configuration used in the experiments
presented in this thesis. The e-puck robot is cylindrical in shape, with a height of
about 50mm and a diameter of about 70mm.

the capabilities of the robots are accessible to the control software. The vast majorities
of the design methods used to generate the control software collected have access to
the reference model RM1.1. Two design methods, namely Gianduja and EvoCom, have
access to reference model RM2, which enables the robots to send and react to a one
bit message broadcasted via the range-and-bearing module. The two reference models
are depicted in Table B.1.

B.2 Design methods

We briefly describe the main characteristics of the design methods that produced the
control software whose real-performance and estimated ones compose DS 1. We divide
these methods according to three families of approaches: the neuroevolutionary one,
the modular one, and the human one. A summary is given in Table B.2. We refer the
reader to the original papers for further details on these design methods.

B.2.1 Neuroevolutionary methods

Neuroevolutionary robotics is the most popular optimization-based approach for de-
signing control software for robot swarms. In this approach, a neural network controls
the individual robots: sensor readings are fed to the neural network as inputs, and the
network’s output dictates the robot actuator values. The configuration of the neural
network is optimized by an evolutionary algorithm.

With the exception of EvoCom, all implementations of the neuroevolutionary ap-
proach described here generate neural networks defined on the basis of reference model
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Table B.1: Reference model RM1.1 and RM2. Rows in gray are specific to RM2. The
range-and-bearing vector V =

∑n
m=1(

1
1+rm

,∠bm), where rm and ∠bm are range and
bearing of neighborm, respectively, points to the aggregate position of the neighboring
peers. If n = 0, then V = (1,∠0). The vector Vb is computed as V by restricting to
the b broadcasting neighboring robots. The variables are updated every 100ms.

sensor variables

proximity prox i ∈ [0, 1], with i ∈ {0, 1, ..., 7}
light lighti ∈ [0, 1], with i ∈ {0, 1, ..., 7}
ground ground i ∈ {white, gray , black}, with i ∈ {0, 1, 2}
range-and-bearing n ∈ {0, 1, ..., 19}

V ∈ ([0.5, 20] , [0, 2π] rad)

b ∈ {0, 1, ..., 19}
Vb ∈ ([0.5, 20] , [0, 2π] rad)

actuator variables

wheels vl, vr ∈ [−0.12, 0.12]ms−1

broadcast s ∈ {on, off }

RM1.1. The neural networks produced have 25 input nodes, 2 output nodes, and the
synaptic weights range in [−5, 5]. The 25 input nodes are organized as follows: 8 are
dedicated to the readings of the proximity sensors, 8 to those of the light sensors, 3
to those of the ground sensors, 4 to the projections of the range-and-bearing vector V
on four unit vectors that point to 45°, 135°, 225°, and 315°, 1 to the number of peers
perceived, and 1 is a bias. The 2 output nodes define the velocity of the wheels.

The instances of control software considered in the dataset DS 1 have been gener-
ated by the following neuroevolutionary methods: EvoStick is a simple implemen-
tation of the neuroevolutionary robotics approached introduced by Francesca et al.
(2012). It generates fully-connected, feed-forward neural networks that do not com-
prise hidden layers. EvoStick uses an evolutionary algorithm that has a population
size of 100 individuals, evaluates each individual 10 times per generation, and pro-
duces novel populations based on elitism and mutation: the 20 best individuals are
passed unchanged to the following generation, and the remaining 80 individuals are
obtained via mutations applied to the same 20 best individuals. CMA-ES-slp is based
on the evolutionary algorithm CMA-ES (Hansen and Ostermeier, 2001). In CMA-ES,
the population is described in statistical terms via the covariance matrix of its distri-
bution. CMA-ES-slp adopts the same network topology as EvoStick. CMA-ES-mlp

differs from CMA-ES-slp in the topology of the neural networks produced: the ones
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of CMA-ES-mlp contain one hidden layer composed of 14 nodes, including 1 bias node.
xNES-slp is based on the evolutionary algorithm xNES (Glasmachers et al., 2010).
xNES is identical to CMA-ES with the exception that its update rule is defined in a
principled way. xNES-slp adopts the same network topology as EvoStick. xNES-
-mlp differs from xNES-slp only in the network topology adopted: it generates neural
networks that contain a hidden layer of 14 nodes. NEAT-A-slp is based on the evo-
lutionary algorithm NEAT (Stanley and Miikkulainen, 2002). With NEAT, both the
synaptic weights and the topology of the neural networks are optimized. The initial
population is composed of fully-connected, feed-forward neural networks that do not
comport hidden layers. NEAT-A-nl differs from NEAT-A-slp only in the topology of
the neural networks that compose the initial population. Here, the input nodes are ini-
tially not connected to the output nodes. NEAT-B-slp differs from NEAT-A-slp only
in the value of some hyper-parameters of NEAT. Here, NEAT is configured so that it has
a higher compatibility coefficient, does not penalize old species, and can generate re-
current neural networks. NEAT-B-nl differs from NEAT-B-slp only in the topology of
the neural networks that compose the initial population: the input nodes are initially
disconnected from the output nodes. EvoCom is derived from EvoStick and differs
from all the previous methods in the input and output nodes that comport the neu-
ral networks it produces. Indeed, EvoCom is defined on the basis of RM2 which adds
communication capabilities with respect to RM1.1. EvoCom generates neural networks
that have 5 additional input nodes and 1 additional output node with respect to those
of EvoStick. The 5 additional input nodes are dedicated to the detection of peers
that are broadcasting a message: 1 is dedicated to the number of broadcasting peers
perceived, and 4 to the projections of the range-and-bearing vector Vb on four unit
vectors that point to 45°, 135°, 225°, and 315°.

B.2.2 Modular methods

The modular methods that produced control software belonging to the dataset DS 1 all
belong to the AutoMoDe approach (Francesca et al., 2014b). All these design methods
generate control software by selecting and combining pre-defined modules: low-level
behaviors that are executed by the robots, and conditions that are used to transition
from one low-level behavior to another. With the exception of those of Gianduja,
these modules are defined on the basis of reference model RM1.1.

The instances of control software considered in the dataset DS 1 have been gen-
erated by the following AutoMoDe methods: Vanilla is the first implementation of
AutoMoDe (Francesca et al., 2014b). Vanilla generates control software in the form
of probabilistic finite-state machines that can comprise up to four states and up to
four outgoing edges per state. Vanilla has its disposal a set of 12 software modules to
conceive the probabilistic finite-state machines: 6 are low-level behaviors that are used
as states, and 6 are conditions that are used as edges to transition from one behavior
to another. All these software modules have been conceived by hand once-and-for-all
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in a mission-agnostic way by a human designer; some of them have parameters that
are tuned during the design by the optimization algorithm to adjust their function-
ing. Vanilla uses the F-race optimization algorithm to select, tune, and combine
the modules (Birattari, 2009; Birattari et al., 2002). Chocolate is the second imple-
mentation of AutoMoDe, and only differs from Vanilla in the optimization algorithm
adopted: Chocolate uses Iterated F-race (Iterated F-race) (Balaprakash et al., 2007;
Birattari et al., 2010; López-Ibáñez et al., 2016), an improved version of the F-race
algorithm adopted by Vanilla. Chocolate has been introduced in Francesca et al.
(2015) and later used many studies (Ligot et al., 2020b; Hasselmann and Birattari,
2020; Ligot et al., 2020a; Spaey et al., 2020; Hasselmann et al., 2021; Ligot et al.,
2022). Maple differs from Chocolate in the architecture of the control software pro-
duced: Maple selects, tunes, and combines the modules into behaviors trees (Kuckling
et al., 2018; Champandard, 2007; Champandard et al., 2010). Arlequin differs from
Chocolate in the nature of the 6 pre-defined low-level behaviors that are at its dis-
posal for conceiving control software: rather than combining manufactured behaviors,
Arlequin combines behaviors that are automatically generated via the neuroevolu-
tionary method EvoStick (Ligot et al., 2020a). Coconut differs from Chocolate only
in the number of pre-defined low-level behaviors that it can select, tune, and combine:
Coconut embeds 2 additional exploration schemes within its modules (Spaey et al.,
2020). Gianduja is derived from Chocolate differs from all the previous methods
in the robot capabilities it exploits: Gianduja’s modules are defined on the basis of
reference model RM2, which extends RM1.1 with communication capabilities (Hassel-
mann et al., 2018b; Hasselmann and Birattari, 2020). Gianduja operates on 8 low-level
behaviors: 6 are the same as Chocolate extended with a binary parameter deciding
whether a one bit message is broadcast while the behavior is performed, the 2 others
make the robot go towards broadcasting peers, or in the opposite direction. Gianduja
also operates on 8 conditions: 6 are the same as Chocolate, the 2 others are related
to the number of broadcasting peers perceived.

B.2.3 Manual methods

In Francesca et al. (2015), the authors compared the performance of the control soft-
ware generated by Vanilla, EvoStick, and Chocolate with the one conceived by 5
human experts in swarm robotics. Each expert had to solve two different missions, once
following two different guidelines (that is, using two different manual design method).
In both cases, the experts had to conceive control software on the basis of RM1.1.
The two manual methods that have produced instances of control software present
in the DS 1 are the following: U-Human, short for unconstrained-human, consists in
letting the human designer implement the control software in the way they deem most
appropriate, without any kind of restriction. C-Human short for constrained-human,
consists in constraining the human designer to use the same software modules used
by Vanilla and Chocolate. They are indeed constrained to combine the software
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modules into probabilistic finite-states machines that comport the same restrictions as
those produced by those methods: up to four states with up to four outgoing edges.

In Hasselmann et al. (2021), the authors compared the performance of control
software generated by 9 neuroevolutionary methods to the performance of a simple
strategy consisting in the robots randomly roaming in the environment. This strategy
was called RandomWalk in their paper, and we consider it as an instance of control
software produced by manual method.

B.3 Missions

We briefly describe here the missions to be solved by the control software collected.
Some missions have been used in multiple studies, and might differ slightly in some
aspects. We refer the reader to the original papers for further information. Some
missions have been studied with different types of objective functions which can be
classified as endtime, if the performance is computed once at the very end of the
experiment, and as anytime, if the performance is computed continuously throughout
the experiment. Fig. B.2 illustrates some of the arenas corresponding to the missions
described bellow.

In AggregationXOR, the swarm must select one of the two black areas and
aggregate there (Fig. B.2a). The endtime objective function, to be maximized, is
Exor = max(Nl, Nr)/N , where Nl and Nr are the number of robots located on the
left and right area, respectively; and N is the total number of robots. The objective
function is maximized when all robots are either on the left or the right area. The
anytime objective function to be maximized is Axor =

∑T
t=1max(Nl(t), Nr(t))/N ,

where T is the duration of the mission. AggregationXOR has been studied in 3
of the works from which we collected data (Ligot et al., 2020b; Hasselmann et al.,
2021; Ligot et al., 2022). In Foraging, the swarm must retrieve virtual items from
food sources and bring them the nest. The food sources are represented by small
black disks, the nest is represented by a white area. A robot is deemed to pick up
an item when it enters a food source, and drop the item as soon as it then enters the
nest (Fig. B.2b). A light source is placed behind the nest and can by used by the
robots to orient themselves in the arena. The objective function to be maximized is
Ff = I, where I is the number of items retrieved. Foraging has been studied in
4 of the works from which we collected data (Ligot et al., 2020b; Spaey et al., 2020;
Hasselmann et al., 2021; Ligot et al., 2022). In one of these works (Spaey et al., 2020), a
variant of the mission has been studied, which is characterized by an unbounded arena
(Fig. B.2g). In Homing, the swarm must aggregate on an area designated as their
home. The endtime objective function to be maximized is Fh = Nhome, where Nhome is
the number of robots located on the aggregation area. The anytime objective function
to be maximized is Fh =

∑T
t=1 Nhome(t), where T is the duration of the mission.

This mission has been studied in different forms across the studies considered. In one
of them (Francesca et al., 2015), the mission is called AAC—short for aggregation



B.3. MISSIONS 111

Source: Ligot A, Birattari M (2022b)

Figure B.2: Illustrations of the arenas of some of the missions considered. (A) Ag-
gregationXOR. (B) Foraging. (C) Homing as studied by Francesca et al. (2015)
under the name AAC. (D) DirectionalGate. (E) Decision. The circular area
in the middle of the arena is either completely white or completely black. (F) Stop.
(G) Unbounded arena. (H) Shelter. (I) SPC. The red glow in (B), (C), (D), (E),
and (H) indicate the presence of a light source placed outside the south side of the
arena that can be used by the robots to orient themselves.
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with ambient cues—and is characterized by the presence of two aggregation areas
of different colors and a source of light indicating to the robots on which area to
aggregate (Fig. B.2c). In a second one (Hasselmann et al., 2018b), the mission is
called Aggregation: also in this case, the arena contains two aggregation areas of
different colors, but not light source. In a third one (Hasselmann et al., 2021), the
mission is called Homing: in this case, the arena contains only one aggregation area.
In a fourth one (Spaey et al., 2020), the mission is called Aggregation: the arena
contains only one aggregation area. The mission is studied twice: once in a closed
arena and once with in an unbounded one (see Fig. B.2g). In DirectionalGate,
the swarm must traverse a gate from North to South (Hasselmann et al., 2021) (see
Fig. B.2d). The gate is positioned in the center of the arena and is identified by white
floor. A light source is placed outside of the arena and in the axis of the gate to
help the robots orientate themselves. A black corridor leads to the North entrance of
the gate. The objective function to be maximized is FDG = K − K̄, where K is the
number of times the robots traversed the gate in the right direction (North to South),
and K̄ the number of times they traversed it in the wrong direction (South to North).
In Decision, the swarm must aggregate on the right-hand side or the left-hand side
of the arena depending on the color of a circular area positioned in the middle of the
arena (Hasselmann and Birattari, 2020) (Fig. B.2e). In each experimental run, the
circular area can be either black or white, with equal probability. A light source is
placed outside the arena, at its right. The objective function, to be maximized, is
Fd = 24000 −

∑T
t=1

∑N
i=1 Ii(t), where T is the duration of the experiment, N is the

number of robots, and Ii(t) = 0 if robot i is in the correct half of the arena and
Ii(t) = 1 otherwise. In Stop, the swarm must find a small circular white spot as soon
as possible, and stop right after (Fig. B.2f). The objective function, to be maximized,

is Fs = 48000 −
(
t̄N +

∑t̄
t=1

∑N
i=1 Īi(t) +

∑T
t=t̄+1

∑N
i=1 Ii(t)

)
, where t̄ is the time at

which the first robot finds the white spot, T is the duration of the experiment, N
is the number of robots, Ii(t) = 1 if robot i is moving and Ii(t) = 0 otherwise, and
Īi(t) = 1−Ii(t). In GridExploration, the swarm must explore the arena and cover
as much space as possible (Spaey et al., 2020). To measure the performance of the
swarm, the arena is divided in a grid of 10 tiles by 10 tiles. For each tile, a counter
c retains the time t elapsed since the last time the tile was visited by a robot. The
counter is reset to 0 when a robot visits a tile. The objective function to be maximized

is Fge =
∑T

t=1

(
1

Ntiles

∑Ntiles

j=1 −cj(t)
)
, where T is the duration of the experiment, Ntiles

is the number of tiles in the arena, and cj(t) is the value of the counter associated to
tile j. The mission is studied twice (Spaey et al., 2020): once in a bounded arena, once
in an unbounded one (Fig. B.2g). In CFA—short for coverage with forbidden areas—
the swarm must cover the arena, avoiding the forbidden areas denoted by the three
circular black areas (Francesca et al., 2015). The objective function to be minimized
is FCFA = E [d(T )], where E [d(T )] is the expected distance, at the end T of the
experiment, between a generic point of the arena and the closest robot that is not in the
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forbidden areas. In LCN—short for largest covering network—the swarm must create
a connected network that covers the largest area possible in an empty arena (Francesca
et al., 2015). Each robot covers a circular area of 0.35m radius. Two robots are
considered to be connected if they are separated by less than 0.35m. The objective
function to be maximized is FLCN = AC , where C is the largest network of connected
robots, and AC is the area covered by C. In Shelter, the swarm must aggregate in
a rectangular white area surrounded by three walls and positioned in the center of the
arena (Fig. B.2h). A light source is positioned outside the arena, in front of the open
side of the shelter. The arena also features two black circular areas that do not have
any predefined purpose/role in the definition of the mission: they are noise-features
of the environment. The objective function to be maximized is Fs

∑T
t=1 N(t), where

T is the duration of the experiment and N(t) is the number of robots in the shelter
at time t. This mission has been studied in two of the works considered (Francesca
et al., 2015; Hasselmann et al., 2021); in one of them (Francesca et al., 2015) it is
studied under the name SCA—short for shelter with constrained access. In SPC—
short for surface and perimeter coverage—the arena contains a square white area and a
circular black area (Fig. B.2i). The swarm must cover the area of the white square and
aggregate on the perimeter of the black circle (Francesca et al., 2015). The objective
function to be minimized is Fspc = E [da(T )] /ca + E [dp(T )] /cp, where E [da(T )] is
the expected distance, at the end T of experiment, between a generic point in the
square area and the closest robot in the square, and E [dp(T )] is the expected distance
between a generic point on the circumference of the circular area and the closest robot
that intersects the circumference. ca and cp are scaling factors fixed to 0.08 and 0.06,
respectively. If no robot is on the surface of the square area and/or on the perimeter
of the circular area, E [da(T )] and/or E [dp(T )] are undefined and we thus assign an
arbitrarily large value to Fspc.

B.4 Data availability

All 1385 observations of real-world performance and predictions yield by PMA
, PMB

,
and by the 1380 models uniformly sampled from the range R of pseudo-reality models
are available in the DS 1 repository: https://doi.org/10.5281/zenodo.6501500.

The instances of control software that produced DS 1, as well as the source code
necessary to execute them—that is, the design methods, the simulator and the depen-
dencies, the configuration files of the missions, together with scripts to compile the
sources, generate necessary files, and execute the instances of control software—are
available in the following repository: https://doi.org/10.5281/zenodo.6501616.

https://doi.org/10.5281/zenodo.6501500
https://doi.org/10.5281/zenodo.6501616
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Table B.2: Summary of the design methods. PFSM stands for probabilistic finite
state machines, BT for behavior trees, MLP for multi layer perceptron, SLP for single
layer perceptron, EA for evolutionary algorithm. NN stands for neural network for
which the topology is evolved and thus varies for each design.

Method Family
Control software

architecture

Optimization

algorithm

Reference

model

Arlequin Modular PFSM

Iterated F-race
Balaprakash et al. (2007)

Birattari et al. (2010)

López-Ibáñez et al. (2016)

RM1.1

Chocolate Modular PFSM Iterated F-race RM1.1

CMA-ES-mlp Evolutionary MLP
CMA-ES

Hansen and Ostermeier (2001) RM1.1

CMA-ES-slp Evolutionary SLP CMA-ES RM1.1

Coconut Modular PFSM Iterated F-race RM1.1

C-Human Human PFSM ∅ RM1.1

EvoCom Evolutionary SLP EA RM2

EvoStick Evolutionary SLP EA RM1.1

Gianduja Modular PFSM Iterated F-race RM2

Maple Modular BT Iterated F-race RM1.1

NEAT-A-nl Evolutionary NN
NEAT

Stanley and Miikkulainen (2002) RM1.1

NEAT-A-slp Evolutionary NN NEAT RM1.1

NEAT-B-nl Evolutionary NN NEAT RM1.1

NEAT-B-slp Evolutionary NN NEAT RM1.1

RandomWalk Human ∅ ∅ RM1.1

U-Human Human unconstrained ∅ RM1.1

Vanilla Modular PFSM
F-race

Birattari (2009)

Birattari et al. (2002)
RM1.1

xNES-mlp Evolutionary MLP
xNES

Glasmachers et al. (2010) RM1.1

xNES-slp Evolutionary MLP xNES RM1.1
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Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-Race and Iterated F-Race:
an overview. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Ex-
perimental Methods for the Analysis of Optimization Algorithms, Springer, Berlin,
Germany, pp 311–336, DOI 10.1007/978-3-642-02538-9 13

Birattari M, Delhaisse B, Francesca G, Kerdoncuff Y (2016) Observing the effects
of overdesign in the automatic design of control software for robot swarms. In:
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Stützle T, Trianni V, Tuci E, Turgut AE, Vaussard F (2013) Swarmanoid: a novel
concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automa-
tion Magazine 20(4):60–71, DOI 10.1109/MRA.2013.2252996

Dorigo M, Birattari M, Brambilla M (2014) Swarm robotics. Scholarpedia 9(1):1463,
DOI 10.4249/scholarpedia.1463

Dorigo M, Theraulaz G, Trianni V (2020) Reflections on the future of swarm robotics.
Science Robotics 5:eabe4385, DOI 10.1126/scirobotics.abe4385

Dorigo M, Theraulaz G, Trianni V (2021) Swarm robotics: past, present, and fu-
ture [point of view]. Proceedings of the IEEE 109(7):1152–1165, DOI 10.1109/
JPROC.2021.3072740

Duarte M, Oliveira SM, Christensen AL (2014) Evolution of hierarchical controllers
for multirobot systems. In: Sayama H, Rieffel J, Risi S, Doursat R, Lipson H (eds)



120 BIBLIOGRAPHY

Artificial Life 14. Proceedings of the Fourteenth International Conference on the
Synthesis and Simulation of Living Systems, MIT Press, Cambridge, MA, USA, pp
657–664, DOI 10.7551/978-0-262-32621-6-ch105

Duarte M, Oliveira SM, Christensen AL (2015) Evolution of hybrid robotic controllers
for complex tasks. Journal of Intelligent & Robotic Systems 78(3):463–484

Duarte M, Costa V, Gomes J, Rodrigues T, Silva F, Oliveira SM, Christensen AL
(2016) Evolution of collective behaviors for a real swarm of aquatic surface robots.
PLOS ONE 11(3):e0151834, DOI 10.1371/journal.pone.0151834

Fay III RE, Herriot RA (1979) Estimates of income for small places: an application
of james-stein procedures to census data. Journal of the American Statistical Asso-
ciation 74(366a):269–277

Floreano D, Mondada F (1996) Evolution of plastic neurocontrollers for situated
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for Random Models, vol 2, Birkhäuser, Boston, MA, USA, pp 287–328

Hasselmann K, Birattari M (2020) Modular automatic design of collective behaviors
for robots endowed with local communication capabilities. PeerJ Computer Science
6:e291, DOI 10.7717/peerj-cs.291

Hasselmann K, Ligot A, Francesca G, Garzón Ramos D, Salman M, Kuckling J,
Mendiburu FJ, Birattari M (2018a) Reference models for AutoMoDe. Tech. Rep.
TR/IRIDIA/2018-002, IRIDIA, Université libre de Bruxelles, Belgium
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In: Dorigo M, Stützle T, Blesa MJ, Blum C, Hamann H, Heinrich MK, Strobel V
(eds) Swarm Intelligence – ANTS, Springer, Cham, Switzerland, LNCS, vol 12421,
pp 271–281, DOI 10.1007/978-3-030-60376-2 21

Ligot A, Kuckling J, Bozhinoski D, Birattari M (2020b) Automatic modular design of
robot swarms using behavior trees as a control architecture. PeerJ Computer Science
6:e314, DOI 10.7717/peerj-cs.314

Ligot A, Cotorruelo A, Garone E, Birattari M (2022) Towards an empirical practice in
off-line fully-automatic design of robot swarms. IEEE Transactions on Evolutionary
Computation 26(6):1236–1245, DOI 10.1109/TEVC.2022.3144848

Lipson H (2005) Evolutionary robotics and open-ended design automation. In:
Biomimetics: Biologically Inspired Technologies, vol 17, CRC Press, Boca Raton,
FL, pp 129–155
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