Universite Libre de Bruxelles

Institut de Recherches Interdisciplinaires
IRIDIANN ot de Développements en Intelligence Artificielle

Tycho: a robust, ROS-based tracking
system for robot swarms

G. LEGARDA HERRANZ, D. GARZON RAMOS, J.
KUCKLING, M. KEGELEIRS, and M. BIRATTARI /

4 ™
IRIDIA — Technical Report Series

Technical Report No.
TR/IRIDIA /2022-009
September 2022

IRIDIA — Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

UNIVERSITE LIBRE DE BRUXELLES

Av F. D. Roosevelt 50, CP 194/6

1050 Bruxelles, Belgium

Technical report number TR/IRIDIA /2022-009

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA —
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

Tycho: a robust, ROS-based tracking system for robot swarms

Guillermo LEGARDA HERRANZ, David GARZON RAMOS,
Jonas KUCKLING, Miquel KEGELEIRS and Mauro BIRATTARI

IRIDIA, Université libre de Bruxelles, Belgium.

September 2022

1 Introduction

The following document presents Tycho!, the new tracking system designed for swarm robotics experiments
carried out in IRIDIA’s Robotics Arena. Compared to its predecessor [3], Tycho provides two main advantages.
First, it uses an unscented Kalman filter (UKF) to fuse the detection output of an array of cameras with
overlapping fields of view. It is therefore inherently robust to the loss of robots by some of the cameras. Second,
the software is developed using ROS, which promotes transparency and reusability of the code.

2 Quick start

This section outlines the steps that must be followed to configure and run the Tycho software. To keep the
section concise, we assume that the user has already arranged the required hardware infrastructure as described
in Section 3. Thus, the user should have an array of three gigabit ethernet (GigE) cameras connected to
a server through a switch. For our implementation of Tycho and throughout this report, we use Prosilica
GC1600C cameras, which were already used in the original tracking system for IRIDIA’s Robotics Arena [3].
Accordingly, the corresponding Vimba SDK and ROS driver should be installed by following the instructions
in the forked avt_vimba_camera repository.

The quick start involves installation and calibration of the software, calibration of the hardware, basic usage
instructions and visualisation of the output. Further details on all hardware and software components are
provided in Sections 3-5.

2.1 Installation

The software has been developed and tested under Ubuntu Linux using the ROS Noetic distribution. To ensure
that all dependencies are met, we recommend to install the desktop_full ROS metapackage. Additionally,
install the robot_localization package in order to use state estimation through sensor fusion?. To down-
load and build the software, clone the project from GitHub? into you catkin workspace using the --recurse
submodules flag and run

$ catkin_make

2.2 Configuration

Before attempting to run Tycho for the first time, three components must be configured: the cameras, the
transformer node and the cropper node. For more details on the cameras, refer to Section 3. For more details
on the nodes and their functionalities, see Section 4.1.

1The name honours the astronomer Tycho Brahe, whose innovative measuring instruments allowed him to track celestial bodies
with unprecedented accuracy.

2http://wiki.ros.org/robot localization

Shttps://github.com/demiurge-project/demiurge-tycho.git

Cameras

Each of the tycho_launchers/launch/mono_camera <i>.launch files, where <i> = {0,1, 2}, need to be indi-
vidually configured. For each camera, first set the ip and guid parameters to the corresponding values, which
can be found by running Vimba Viewer, included in the Vimba SDK. Then, set each of the following parameters
as instructed:

camera info url The camera info_url parameter points to a YAML file containing all calibration parameters

for camera <i>, which is stored in the tycho_launchers/calibrations directory as camera <i>_calibration.yaml.
To generate each YAML file, we use the camera_calibration package®. This step should only be required the
first time the tracking system is used.

We follow the steps explained in the package documentation for calibration of monocular cameras®. For
completeness of the technical report, we summarise these instructions here, with comments on the aspects to
which one must pay special attention.

First, a calibration board with a checkered pattern is required. As per the instructions, we also use an 8 x 6
checkerboard with 108 mm squares. The board is made of a 3 mm MDF sheet reinforced with pine wood beams
to prevent it from bending while manipulating it.

The calibration node is then run as

$ rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108 image:=/camera_<i>/
image_raw camera:=/camera_<i>

Move the checkerboard around the camera frame until the CALIBRATE button in the calibration window is
highlighted. Press CALIBRATE and wait until the process is finished. Hit SAVE to generate a TAR.GZ file
containing all the images that were used to obtain the calibration parameters, as well as the corresponding
YAML file. Finally, press COMMIT to permanently upload the calibration to the camera. In the YAML file,
set the camera_name parameter to camera _<i>.

exposure The exposure parameter should be adjusted whenever the lighting conditions in the arena change.
To ensure consistent performance of the tracking system, set the ambient light intensity to a fixed value. Using
Vimba Viewer, open the camera feed and navigate to the Brightness tab. Adjust the exposure until the contrast
between black and white is clear and there are no visible reflections; then, set the parameter in the YAML file
to the value obtained. Make sure the gain parameter is set to zero throughout this process.

whitebalance Similarly, the white balance should also be adjusted according to the lighting conditions. Using
Vimba Viewer, navigate to the white balance configuration menu in the Color tab and hit “Once” to obtain an
adequate value.

Transformer node

The transformer node transforms the pose of each robot detected from the camera frame to the arena frame.
For each camera, the required calibration parameters are stored in YAML files in the tycho_transformer/config
directory. To generate the YAML files for each of the three cameras, place the transformer calibration board
(see Section 4.1) in the centre of the arena. Rotate the board until the x and y axes are aligned with those of
the arena and run

$ roslaunch tycho_launchers transformer_calibration

The YAML files will be stored automatically in the tycho_transformer/config directory. This step should be
repeated whenever the position or the orientation of any of the cameras change.

Cropper node

The cropper node allows the user to define a polygonal region of interest within the field of view of each camera,
such that every point outside this region is ignored during tracking. The vertices of the polygons are stored
in YAML files in the tycho_cropper/config directory. This is an optional feature; therefore, this step is not
required if the region of interest is the entire field of the view of the cameras.

To generate the YAML files for each of the three cameras, run

$ roslaunch tycho_launchers cropper_calibration [ratio:=0.8]

4http://wiki.ros.org/camera calibration
5https ://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

@ Time o]
ROSTime: 165201787303 | ROS Elapsed: 99.41 Wall Time: 1652017673.07 | wall Elapsed: 9936 Experimental

Reset 3165

Figure 1: Visualisation of the tracking system with RViz.

Three windows will appear — one for each camera. If the windows appear either too large or too small, use the
ratio parameter to adjust the window size.

On each window, left-click on the vertices of the region of interest in either clockwise or anticlockwise order.
After the last vertex has been defined, right-click to save the YAML file and close the window. Once all three
windows are closed, the calibrator will shut down automatically.

2.3 Basic usage
To launch Tycho, simply run
$ roslaunch tycho_launchers multi_camera.launch [crop:=false]

Setting the crop parameter to true will activate the cropper node.

2.4 Visualisation

The user can visualise the output of Tycho using RViz. Navigate to the tycho_launchers/config directory
and run

$ rosrun rviz rviz -d rviz_cameras.rviz

The three camera feeds and the poses of the robots in the arena will be displayed, as shown in Figure 1.

3 Hardware

Tycho has been designed to be deployed in IRIDIA’s Robotics Arena, yet the system can be replicated and
adapted in other environments. TRIDIA’s Robotics Arena is a rectangular room of 9.9 x 7.5 m. The current
configuration of Tycho includes an arrangement of three cameras that provide input images to the tracking
pipeline. The fields of view of the three cameras overlap and offer an effective tracking area of approximately
3 x 3 m. The cameras feed a video stream to a dedicated desktop computer through an Ethernet connection.
Both the cameras and the dedicated computer are directly connected through a dedicated router. The dedicated
computer runs all software required to track the robots out of the video stream feed by all cameras. This section
summarises the configuration of the experimental arena and Tycho’s hardware specifications.

3.1 Cameras

Tycho is currently deployed with an arrangement of three Prosilica GC1600C cameras, manufactured by Allied
Vision Technologies®. These cameras are a subset of the cameras integrated in IRIDIA’s original Arena Tracking
System [3]. In our implementation of Tycho, we have configured the tracking pipeline to operate with the

Shttps://www.alliedvision.com/en/camera-selector/detail/prosilica-gc/1600/

Specification Description

Interface IEEE 802.3 1000baseT

Resolution 1620 (H) x 1220 (V)

Sensor size Type 1/1.8

Shutter mode Global shutter

Max. frame rate at full resolution 15 fps

Image buffer (RAM) 16 MByte

Bit depth 8/12 Bit

Monochrome pixel formats Mono8, Monol12, Monol2Packed

Raw pixel formats BayerRGS8, BayerRG12, BayerGR12Packed
Power consumption 3.2 Wat 12 VDC

Body dimensions (L x W x Hin mm) 59 x 46 x 33 (including connectors)

Table 1: Relevant specifications of Prosilica GC1600 C cameras.

specification of the Prosilica GC1600C cameras; however, the system is not restricted to this specific camera
hardware. Table 1 lists relevant specifications of the Prosilica GC1600C cameras. More information is available
on the Allied Vision Technologies website®.

3.2 Camera layout

The three Prosilica cameras are arranged as shown in Figure 2. A central camera is kept high enough to capture
the entire arena. This serves two purposes: first, it guarantees that at least one camera will provide tracking
data at any point in the arena; second, it allows the user to record videos of their runs. Two additional cameras
are placed on either side of the central camera. These cameras are lowered with respect to the central camera
in order to provide tracking data of a region of the arena with better resolution. To account for the scaling of
the area captured by the cameras as they are lowered, the side cameras are rotated by 90 degrees with respect
to the central camera, which allows them to fully capture the arena along one of its dimensions. As a result,
this configuration of the Prosilica cameras guarantees that every point in the arena is captured by, at least, two
cameras, thus attaining the desired redundancy for tracking purposes.

3.3 Network configuration and computer host

The cameras stream a video feed to a dedicated desktop computer through a 1 Gbit Ethernet connection.
Communication between cameras and the computer is mediated by a Lynksys 3200 ACM MU-MIMO Gigabit
Wi-Fi Router, which is manufactured by Linksys’. The cameras and the dedicated computer are directly
connected to the router, which has an upstream connection to the internet. We selected the Lynksys 3200 ACM
due to two specific features: (i) it has a highly rated performance and processing power; and (ii) it has specific
features to maintain multi-device Wi-Fi connectivity at the same speed. The second feature is not particularly
relevant for Tycho, but we deemed it relevant to execute experiments with the large number of robots to be
operated in a robot swarm. Alternative implementations of Tycho are possible without the need of a camera
network setup; for example, by using USB Cameras directly connected to the host computer. Table 2 lists
relevant specifications of the Lynksys 3200 ACM router. More information is available on the Linksys website”.

The current implementation of Tycho is hosted in a dedicated desktop computer located in IRIDIA’s Robotics
Arena. The specifications of the computer have been selected to ensure enough computational power to process
the incoming video feed of the cameras and track the position of the robots in the video. The specifications
of the required hardware might vary with respect to the number of cameras connected to Tycho and their
resolution, the number of robots to be tracked, and the frequency with which the information is updated in the
tracking system. Table 3 lists relevant specifications of the dedicated computer currently installed in the Robot
Arena. These specifications have been determined sufficient (tested and validated) to use Tycho alongside three
Prosilica GC1600 C cameras and while tracking 50 tags (see Section 3.4).

"https://www.linksys.com/gb/wireless-routers/wrt-wireless-routers/linksys-wrt3200acm-ac3200-mu-mimo-gigabit-w
ifi-router/p/p-wrt3200acm/

2.4m
2.1m

|| . . 2.5m

2.5m

Figure 2: (top) Front view and (bottom) top view of the camera layout. The central camera covers the entire
2.5 x 2.5 m arena, while the side cameras are lowered and rotated by 90 degrees in order to cover smaller regions
of the arena with better resolution.

Specification Description

Wi-Fi Technology AC3200 MU-MIMO Dual-band Gigabit, 60042600 Mbps

Protocols 802.11a, 802.11g, 802.11n, 802.11ac

Wi-Fi Bands 2.4 and 5 GHz (simultaneous dual-band)

Wi-Fi Range Very Large Household

Number of Ethernet Ports 1x Gigabit WAN port, 4x Gigabit LAN ports

Other Ports 1x USB 3.0 port, 1x Combo eSATA /USB 2.0 port

Processor 1.8 GHz dual-core

Operation Modes Wireless Router, Access Point, Wired Bridge,
Wireless Bridge, Wireless Repeater

Antennas 4x external, dual-band, detachable antennas

Power Supply Input: 100-240V 50-60Hz; Output: 12V, 3.0A

Dimensions (L x W x H in mm) 245.87 x 193.80 x 51.82

Table 2: Relevant specifications of the Lynksys 3200 ACM router.

Specification Description

CPU AMD Ryzen 9 3950x 16-core processor 32 threads
Memory 32 GiB

Graphics card NVIDIA GeForce GTX 1660 SUPER

0S Ubuntu 20.04.4 LTS

ROS Version ~ ROS Noetic (ROS 1)

Table 3: Relevant specifications of the host computer.

3.4 ArUco tags

The tracking system relies on ArUco markers to detect and identify each robot [1]. However, we observe that
not all markers in the same dictionary are detected with the same success rate. It is therefore desirable to
determine which markers in a dictionary are detected more consistently. One can then decide which markers to
use for all experimental runs accordingly.

At IRIDIA, experimental runs often include 20 e-puck robots. Each robot is equipped with a 5 x 5 cm tag
consisting of a 4 x 4 cm ArUco marker and a 0.5 cm-wide white margin. We consider the 4 x 4 bit, 50 marker
predefined dictionary of OpenCV. A 4 x 4 bit dictionary is used to maximise the size of each bit in a marker.
Having defined the number of bits per marker, the 50 marker dictionary is selected to maximise the minimum
Hamming distance between any two markers.

To determine which of the 50 markers are detected more consistently, the tycho_aruco package is provided.
The package consists of a single python script, aruco_analysis.py, and a directory to store ROS bag files. In
aruco_analysis.py, detection rate statistics are computed for every marker in the dictionary from the bag files
available in the rosbags directory. To obtain the bag files, print the entire ArUco dictionary and place it on a
movable surface at expected height of the tags during an experimental run — for e-puck robots equipped with
an omni-vision module, 14 cm. Then, launch the tracking system (see Section 2.3), navigate to the rosbags
directory and run

$ rosbag record --duration=60 -e "/camera_(.*)/tracker/positions_stamped" "/camera_(.*)/epuck_(.*)/
odom"

Immediately start moving the dictionary around the overlapping region of the three cameras for 60 s, trying
to match the maximum velocity of the markers during an experimental run. Repeat this process 10 times to
ensure that the results of the analysis are statistically relevant.

Finally, run

$ rosrun tycho_aruco aruco_analysis.py

This will generate a series of files in the rosbags directory. First, for each bag, the detection rate of each tag
with the three cameras, as well as the its mean detection rate, are shown. An instance of this result is shown in
Figure 3. Second, a file containing two figures with the final results is produced, such as the one shown in Figure
4. Of the two figures, the top one shows notched box plots of the detection rates for each tag. The bottom
figure shows the same box plots, but sorted in order of descending median. Thus, the tags that are detected
more consistently appear on the left-hand-side of the bottom figure, while those that detected less consistently
appear on the right-hand-side.

4 Software

The functionality of the Tycho software relies on four ROS packages: tycho_tracker, tycho_transformer,
tycho_cropper and robot_localization. Additionally, we provide the tycho_recorder package, which allows
users to record their runs. In this section, we go over the implementation of the first three packages as well as
the launch files provided. We also review the integration of the tracking system with ARGoS3.

4.1 ROS pipeline

The ROS information flow diagram is shown in Figure 5. For each Prosilica GC1600C camera, a different
namespace is generated. Each namespace is named camera_<i>, where <i> = {0, 1,2}. Within each namespace,
the tracker node receives the rectified images captured by the camera and calculates the pose of each of the
ArUco tags — if any are visible — in the camera frame. The transformer node then transforms these poses to

10 Unsorted
k3
i 5 ¥ i

206 g % g % g g B g % g 8 g g % g g % g
i :

oo o 1 a4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

E-puck ID
o Sorted by descending median

Detection rate

1.0
¥ -®- Mean
ﬁ\ 5 § f”{ x L x Camera0
X %\ 6(‘?‘ A K \ {i % Camera 1
087 X x | 2N s N % ! [x A x Camera2
I i\ non AT ﬁ . [\ x 1
/ H 1\ x o X | 2 AR 1 vl v ! \
PN W A [] o % x * N ’ LAY H v NN 3
I 1 n \ 1 \
£ 06 b IERVFEAN 5\ o ¥ % X f A H Vi AR %
c T 28 YRRV NE? 3 L4 ! v AR ¥’
s P I ‘ YooK e ' 1 X o Vi uoor o
2 1 x | " 5 QN a4 A I W i k 1
g 1 % XtV vl \ x 1
o | AR x vl ! i v
0.4 1 g v ‘h‘ At
[a} 1 Y] I v (X X
X * u V!] (.
! o Y x A
1 x \
0.2 4 x [
x x
0.0 e e e e e
12345678 9101112131415161718192021 2223242526 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

E-puck ID

Figure 3: ArUco tag detection rates from a single bag file.

°
ES

°
b

MR ST

W%mgamz%
% ?%

20 19 44 46 11 39 14 12 35 28 0

%

a7

0
38 17 37 23 31 40 22 10 45 41 16 3

21 42 49 1 18 32 7 48 29 8 15 2 27 4 34 9 6

30 33 24 36 25 13 43 26 5
E-puck ID

Figure 4: ArUco tag detection rates from 10 bag files.

camera/camera_info camera/image_rect_color tracker/positions_stamped

. ’ N
camera/image_proc \ cropper | @ transformer
- \ .
R
' o

camera/image_raw camera/image_color image_cropped epuck_0/odom

A\ 4

A\ 4

camera_i epuck_49/odom

camera_0/epuck_0/odom N
>
camera 0 ukf_ se >
> odometry/filtered
camera_0/epuck_49/odom
>
d epuck_0
camera_1l/epuck_0/odom
camera_1
camera_1l/epuck_49/odom
>
i >
camera_2/epuck_0/odom ukf_se - >
— — > odometry/filtered
camera_2
> k_49
camera_2/epuck_49/odom epuck_

Figure 5: ROS information flow diagram. Namespaces are shown in rectangles and nodes, in ellipses. Arrows
represent a publish/subscribe relationship, with the name of the topic indicated next to them. Dashed items are
optional and may be activated by means of a parameter. The top diagram shows the content of the namespace
of each camera. The bottom diagram shows how the three camera namespaces interact with the UKF nodes.

the arena frame. If the cropper node is active, it is introduced between the camera and the tracker node.
The goal of the cropper node is to black out the region of the frame that is outside a user-defined region of
interest.

One instance of the ukf _localization node node provided by the robot_localization package is launched
for every ArUco tag with the name ukf_se under the namespace epuck_<j>, where <j> = {0,1,...,49}. Each
node fuses the ArUco tag poses generated by the three instances of the transformer node to produce an
estimate of the position of the tags.

The tycho_tracker package

The tycho_tracker package contains a single source file, tracker node.cpp, which implements the tracker
node. In tracker node.cpp, a Tracker class is defined. When an object of the Tracker class is created, a sub-
scriber to the camera/image _rect_color topic is created if the crop argument is false. Otherwise, the tracker
node subscribes to the image_cropped topic published by the cropper node. The image_transport package
is used to subscribe to images. Additionally, a publisher of a topic of type std msgs::UInt32MultiArray,
tracker/positions_stamped, is created. Both the subscriber and the publisher remain alive until the object
is destroyed. In the class constructor, the ArUco dictionary to be used is also defined. In this case, we choose
the 4 x 4 bit, 50 marker dictionary.

Within the subscriber callback, a ROS image is converted to an OpenCV image by means of the cv_bridge
package. The IDs and the positions of the corners of each of the ArUco markers in the image are extracted
from the OpenCV image using the detectMarkers() function of the OpenCV aruco module®. Then, a message
of type stdmsgs::UInt32MultiArray is constructed as illustrated in Figure 6. The message contains the
timestamp of the image and the IDs and corner positions (in pixels) of all the markers detected. The message
is then published through the tracker/positions_stamped topic.

The tycho_transformer package

The tycho_transformer package contains three source files: transformer_node.cpp implements the transformer
node, while transformer_calibration.cpp and calibration_supervisor.cpp implement the node calibra-
tion procedure.

8https://docs.opencv.org/4.x/d5/dae/tutorial aruco_detection.html

ts tns M() M1 e Mn

0 0 0 0 0 0 0 0 0
ID T Yo Ty Y1 Ty Y T3 Ys

Figure 6: Message published by the tracker node over the tracker/positions_stamped topic. The first two
entries contain the timestamp of the message. The remaining entries contain the ID and the coordinates of the
four corners of n detected markers.

Node Intransformer_node.cpp, a Transformer class is defined. When creating an object of the Transformer
class, a subscriber to the tracker/positions_stamped topic published by the tracker node is also created.
Additionally, 50 publishers — one for each marker in the dictionary — are created to broadcast the topics
epuck_<j>/odom, where <j> = {0,...,49}. Each topic contains messages of type nav_msgs: :0dometry, which
hold pose information about a particular marker.

The subscriber callback iterates over every marker in the message. As shown in Figure 6, each message
contains the ID and the = and y coordinates (in the camera frame) of the four corners of each marker. Thus,
for each marker, each corner coordinate is first transformed to the arena frame. This requires three distinct
operations: rotation, translation and scaling.

Two sequential rotations are applied to obtain the final orientation. First, the point is rotated about the
y-axis by m rad. Then, a rotation about the z-axis by angular_offset returns the orientation of the arena
frame. The point is obtained with respect to the origin of the camera frame through a translation by x_offset
and y_offset. Finally, the point is multiplied by scale_factor to convert it from pixels to meters.

The position of each marker is computed as the centre of its four corners. Its orientation is obtained using
the two-argument arctangent with the two top corners of the marker. The covariance of each measurement
is then set to arbitrary low values in z, y and yaw. In this case, values of 1 x 107% were found to result in
sufficiently accurate estimation of the marker poses through trial and error.

A nav_msgs: :0dometry message is composed with the timestamp, pose and pose covariance of a detected
marker. At the end of the subscriber callback, all 50 messages — including those corresponding to undetected
markers — are published. To prevent the UKF from fusing data from undetected markers, all message timestamps
are set to zero after publication. Since, in order to speed up calculations, the list of messages is not reset after
every callback, undetected markers are published in the next callback with a tiemstamp of zero.

Calibration The transformer _calibration.cpp file implements the calibrator node of the package. The
node produces a YAML file containing the x_offset, y_offset, angular offset and scale_factor parameters
for a given camera. A TransformerCalibration object creates a subscriber to the tracker/positions_stamped
topic published by the tracker node. Moreover, a publisher broadcasts in an alive topic a boolean message
that indicates if the calibration is running (true) or finished (false).

In the subscriber callback, the node expects to detect nine ArUco markers, arranged in an octagonal pattern
with a marker in the centre. The TransformerCalibrator attributes calibration_tags and grid_dim hold
the ID of the nine markers and the separation between the central marker and any of the other eight markers, in
meters. A calibration board like the one shown in Figure 7 provides precisely this arrangement. The platform
sits on a 14 cm-tall column, which is the height of the e-puck robots equipped with an omnidirectional camera.
The column itself rests on a notched board for alignment with lines on the floor (e.g., gaps between tiles). The
nine markers are selected through the procedure described in Section 3.4. The design files of the calibration
board are given in the assets directory.

Since the z-axes of the camera frame and the arena frame point in opposite directions, the z-coordinates of
all the points are first multiplied by —1, which effectively corresponds to a rotation of the arena frame about
its y-axis by m rad. Then, the positions of the markers are calculated as the centre of their four corners. The
values of x_offset and y_offset are simply the position of the central marker. To obtain angular_offset and
scale_factor, imaginary lines are drawn between every pair of diametrically opposite markers. The orientation
of each line is compared with their expected orientation which, given the octagonal arrangement, is nrw/4, where
n ={0,1,2,3}. The value of angular_offset is then obtained as the mean difference in orientation. The value
of scale_factor is computed as the ratio of the diameter of the grid, given as 2 - grid_dim, and the mean
line length in pixels. Figure 8 shows a schematic representation of the quantities involved in the calibration

Figure 7: Calibration board for the transformer node.

Tc x offset

y _offset

grid dim/scale_factor

Figure 8: Quantities involved in the transformer node calibration procedure. The axes {z,,y,} represent the
origin of the arena frame. The axes {z],y.} represent the origin of the camera frame, rotated by 7 rad about
the original y-axis of the camera frame (y.). All lengths are given in pixels.

procedure.

The calibration_supervisor.cpp file implements the supervisor node of the package. An object of the
TransformerSupervisor class creates a subscriber to the alive topic published by the calibrator node,
which regularly checks the status of the calibration procedure. The node then creates three instances of
TransformerSupervisor; one for each camera. When the calibration of all three cameras is complete, the
node shuts down.

The tycho_cropper package

The tycho_cropper package also contains three source files: cropper_node.cpp implements the cropper node,
while cropper_calibration.cpp and calibration_supervisor.cpp implement the node calibration proce-
dure.

Node The cropper node.cpp file implements the Cropper class. An object of the Cropper class subscribes
to the camera/image _rect_color published by a camera, and publishes the image_cropped topic.

Within the subscriber callback, the images received as sensor_msgs: : Image are first converted to OpenCV
objects using the cv_bridge package. During the first call, the dimensions of the image and the vertices of the

10

Figure 9: Effect of the cropper node. A square mask is applied to the camera feed (left) to black out the region
of the frame that is outside the the arena bounds (right).

region of interest defined in an external YAML file are used to define a mask. In all subsequent calls to the
callback, the mask is applied to the OpenCV object to black out all pixels outside the region of interest, as
shown in Figure 9. The object is then converted back to a sensor msgs: :Image object and published.

Calibration The cropper_calibration.cpp file implements the calibrator node of the cropper package.
An object of the CropperCalibrator class will produce a YAML file containing the vertices of the polygon that
defines the region of interest of a given camera. To do so, the object subscribes to the camera/image rect_color
published by a camera. It also publishes and alive topic, where messages containing a boolean entry indicate
if the cropping procedure is ongoing (true) or finished (false).

Within the subscriber callback, a window is created to display the camera feed to the user?. We make use
of OpenCV tools to register left and right mouse clicks from the user, which they use to define the region of
interest. Every left click defines a new point, while a right click closes the polygon and triggers the termination
of the node, provided that a minimum of three points have been defined.

The implementation of the supervisor node in the calibrator_supervisor.cpp file is identical to that
of the supervisor node of the tycho_transformer package. Three objects of the CropperSupervisor class
subscribe to the alive topic published by the calibrator nodes of each of the three cameras. When the
calibration procedure of all three cameras terminates, the node shuts down.

The tycho_recorder package

The tycho_recorder package only contains a single source file: recorder node.py which implements the
recorder node.

Node The recorder_ node.cpp file implements the RosbagRecorder class. An object of the RosbagRecorder
class subscribes to the /argos3/status topic, published by the corresponding ARGoS3 plugin (see Section 5).
When the node receives the status Started, it will start recording two rosbag files labelled

tycho-experiment-YYYYmmdd-HHMMSS-summary.bag and tycho-experiment-YYYYmmdd-HHMMSS-video.bag,
where YYYYmmdd is the current date and HHMMSS is the time of the start of the recording. The summary
rosbag file will contain all published messages of the topics odometry/filtered published by each e-puck,
camera/image_rect_color/compressed and camera/camera/camera_info published by all cameras. The
video rosbag file will contain all published messages of the topic /camera_2/camera/image_rect_color which
corresponds to the full resolution images captured by the central camera. Since the video rosbag file contains
full resolution images, it can be used to generate a video of the experiment or to train and calibrate other
software on real experimental footage. However, the full resolution images require large a mounts of storage
capacity (approximately 6 GB per minute of footage). Therefore, a summary of the data (extracted positions
as well as compressed images of the cameras) is recorded in a separate bag that can be stored and shared more
easily. The summary rosbag file consumes approximately 0.4 GB of storage per minute of footage.

9The implementation is based on an answer to a question posted on Stack Overflow: https://stackoverflow.com/questions/
42190687/opencv-how-can-i-select-a-region-of-image-irregularly-with-mouse-event-c-c

11

4.2 Launch files

All launch files are provided in the launch directory of the tycho_launchers package.

The multi_camera.launch file launches the entire tracking system software (see Section 2.3). All the nodes
required to process the input of each camera are launched within a camera_<i> namespace, where <i> = {0, 1, 2}.
These nodes include, as detailed in Section 4.1, the tracker, the transformer and, optionally, the cropper
nodes. Additionally, all camera parameters are included through the mono_camera <i>.launch file. Each
of these files follows the template provided by the release 1.1.0 of the avt_vimba_camera repository'’. The
modifications required for them to fit within our tracking system framework are detailed in Section 2.2.

The fusion of the three cameras is achieved through the ukf localization node node of the robot_localization
package. A namespace epuck_<j>, where <j> = {0, ..., 49}, is created for each node. The parameters of the node
are given in the ukf_tycho.yaml file in the config directory of the package. In the file, the output frequency of
the filter is set to 30 Hz, which is twice the frame rate of the Prosilica GC1600C cameras. Therefore, the filter
alternates between estimates and pure predictions. Since the e-puck robots can only move on the surface of the
arena, the two_d mode is set to true. The odom differential parameters are set to false for camera 2 (the
central camera) and true for cameras 0 and 1. Thus, we consider the pose estimates from camera 2, which can
see the entire arena within its field of view, and use cameras 0 and 1 for velocity estimation. This prevents the
filter from generating rapid jumps in the pose of the robots.

The cropper_calibration.launch and transformer_calibration.launch files execute the calibration
procedure for the cropper and transformer nodes, respectively. In both files, the corresponding supervisor
node is run as a required node, and the calibrator nodes are run within the individual camera namespaces.
As soon as all calibrator nodes terminate, so does the supervisor. As a consequence, all remaining nodes,
that is, the cameras, will be shut down, and the calibration procedure will be complete.

5 Integration with ARGoS3

The ROS pipeline can be connected to ARGoS [2] through the use of the argos3-tycho plugin ''. argos3-tycho
is a modified version of the ITS (IRIDIA Tracking System) plugin [3]. However, it connects to the ROS pipeline
instead of a server.

5.1 Build process
1. Download the source code from the repository:

$ git clone git@github.com:demiurge-project/argos3-tycho.git

2. Move into the repository:

$ cd argos3-tycho

3. Create a catkin workspace:

$ catkin_make

4. Build and install the tracking sytem:

$ catkin_make -DCMAKE_INSTALL_PREFIX=$ARGOS_INSTALL_PATH/argos3-dist \
-DCMAKE_BUILD_TYPE=Release install

5.2 Using the plugin

In order to receive the positions of the robots in ARGoS, the Tycho physics engine needs to be included in the
.argos files:

<iridia_tracking_system id="its" translate_x="0" translate_y="0" rotate_phi="0O"
topic="odometry/filtered"/>

1Onttps://github.com/astuff/avt_vimba_camera.git
Mhttps://github.com/demiurge-project/argos3-tycho

12

The physics engine offers four parameters to customise. rotate_phi is the angle (in radians) that the arena
should be rotated around the center. translate_x and translate_y are the translations applied to the world
space (after rotation). They are measured in meters. topic is the name of the ROS topic where the position
of the robots will be published. The actual topics subscribed are /epuck<XY>/<topic> where <XY> stands for
the tag of the robot and <topic> is the value supplied to this parameter.

6 Future work

We identify two potential improvements for the current version of Tycho. First, we would like to increase the
number of cameras of the system. This would allow for even lower placement of the off-centre cameras, which
would further increase the resolution of their respective feeds, while also increasing redundancy of the tracking
system. Second, we could further increase the integration of Tycho with ROS by using one of the many ROS
packages for ArUco detection and also by using the t£2 library to keep track of all the transformations computed
by the transformer node.

Acknowledgements

The project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (DEMIURGE Project, grant agreement No 681872) and from
Belgium’s Wallonia-Brussels Federation through the ARC Advanced project GbO-Guaranteed by Optimization.
MB, JK, and MK acknowledge support from the Belgian Fonds de la Recherche Scientifique — FNRS. DGR
acknowledges support from the Colombian Ministry of Science, Technology and Innovation — Minciencias.

References

[1] Sergio Garrido Jurado, Rafael Mufioz Salinas, Francisco José Madrid Cuevas, and Manuel Jests
Marin Jiménez. Automatic generation and detection of highly reliable fiducial markers under occlusion.
Pattern Recognition, 47(6):2280-2292, 2014.

[2] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele Brambilla, Nithin
Mathews, Eliseo Ferrante, Gianni A. Di Caro, Frederick Ducatelle, Mauro Birattari, Luca Maria Gam-
bardella, and Marco Dorigo. ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems.
Swarm Intelligence, 6(4):271-295, 2012.

[3] Alessandro Stranieri, Ali Emre Turgut, Mattia Salvaro, Lorenzo Garattoni, Gianpiero Francesca, Andrea-
giovanni Reina, Marco Dorigo, and Mauro Birattari. IRIDIA’s arena tracking system. Technical Report
TR/IRIDIA /2013-013, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, 2013.

13

