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Abstract. In this work, we develop a set of behavioral and conditional
modules for the use with behavior trees. We present AutoMoDe-Cedrata,
an automatic modular design method that automatically assembles and
fine-tunes these modules into behavior trees that control robot swarms.
We test Cedrata on three missions and, to gain further insights on its
effectiveness, we design control software for the same missions using
AutoMoDe-Maple, another automatic design method, and by a group
of human designers. Results show that the proposed modules allow for
well-performing behavior trees. Yet, Cedrata had difficulties automati-
cally generating control software that performs similarly well as the one
generated by human designers, especially when involving communication.
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1 Introduction

Swarm robotics is the combination of robotics and swarm intelligence, a field
inspired by social insects such as bees or ants [3]. In swarm robotics, a set of
relatively simple robotic agents are designed to solve collectively a task without
any central control [4]. One difficulty of designing control software in such a
setting is predicting the collective behavior emerging from the local interactions.
Multiple approaches to the design of robot swarms have been studied and can be
classified in two categories: manual and automatic design. In this work, we are
interested in fully automatic off-line design [1, 2]. In automatic off-line design,
the problem of designing control software for a robot swarm is transformed
into an optimization problem. The optimization problem is then solved without
any human intervention. The software, generated by the optimization process in
simulation, is then uploaded to the robots that operate in the real world.

Francesca et al. [6] proposed AutoMoDe (automatic modular design), a promis-
ing automatic off-line design approach, that assembles and fine-tunes pre-defined
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modules into control software. Different versions of AutoMoDe have been pro-
posed, that investigate different aspects of the design process, such as new mod-
ules based on communication [8] or colors [7], different optimization algorithms,
such as Iterated F-race [5], iterated improvement [17], or simulated annealing
[18], or different control architectures, such as behavior trees [21].

AutoMoDe flavors traditionally assemble their pre-defined modules into prob-
abilistic finite-state machines. AutoMoDe-Maple [15, 21] introduced behavior
trees [23] as a control software structure. Behavior trees have been originally
developed for video games [11] but recently found application in other fields of
research, such as swarm robotics [12, 24, 13]. A behavior tree is a tree structure
that contains multiple types of nodes. The root node generates a tick with a
fixed frequency. This tick is propagated through the tree. A node that receives
the tick activates, and either distributes the tick to one or multiple of its chil-
dren, or it can return the tick to its parent, along with a return value out of
success, failure, or running . The inner nodes of the tree are called control-flow
nodes. These nodes determine how the tick is propagated through the tree. Leaf
nodes are either condition nodes or actions nodes, that respectively test sensor
input or execute a unitary task. For a formal definition of the node types, see
Marzinotto et al. [23]. Behavior trees offer several advantages over finite-state
machines, such as modularity, two-way control transfers and improved human
understandability. In one-way control transfer systems control can only be trans-
ferred in one direction, making it akin to the “goto” statement in programming
[26]. In two-way control transfer systems, control can be transferred in both di-
rections, that is the receiver can return the control to its predecessor along with
information about the execution, similar to functions and their return values.
Maple makes use of modules that have been originally designed for finite-state
machines and that therefore do not allow the use of return values. As a result,
the behavior trees created by Maple could not use the two-way control transfers.

Here, we propose a new set of modules that explicitly provide these return
values and therefore enable two-way control transfers. We present AutoMoDe-
Cedrata, an automatic modular design method that assembles these modules
into behavior trees. We test Cedrata on three missions. To better appraise the
effectiveness of Cedrata, we asked human designers in swarm robotics to per-
form manual designs within the constraints of Cedrata. No automatic design
method exists for designing behavior trees for robot swarms that is based on
the same reference model of Cedrata. The closest alternative, in terms of refer-
ence model, is AutoMoDe-Maple [21]. We therefore include Maple in our study.
However, as Maple and Cedrata do not share the same reference model, any di-
rect comparison of performance is meaningless. Instead, we will use the behavior
trees generated by Maple to understand better the quality of those of Cedrata.

2 Related Work

Behavior trees have received little attention in swarm robotics so far. Jones et al.
[12] used genetic programming to evolve behavior trees in a foraging mission for
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a swarm of kilobots. The authors were able to generate control software that per-
formed satisfactorily in the mission. They could show that the generated control
software was easily human readable. In another work, Jones et al. evolved be-
havior trees onboard a swarm of Xpucks in a cooperative transportation mission
[13]. The authors showed that the generated control software performs satis-
factorily, and that even though the evolved behavior trees may contain many
modules, they can easily be reduced into a concise representation.

Ligot et al. have investigated the use of behavior trees in automatic modular
design [21]. They proposed AutoMoDe-Maple, which assembles modules into a
restricted behavior tree architecture. However, the modules for Maple were orig-
inally conceived to be used in finite-state machines. These behavioral modules
could not provide any return values, instead they were conceived to run indefi-
nitely. The authors restricted the allowed behavior tree structures to make use
of these modules. The results of their experiments show, that for smaller design
budgets, the restricted behavior trees perform similar as finite-state machines.
For higher budgets, the restricted behavior tree architecture proved to be too
limiting, and finite-state machines could generate control software that could
not be represented within the restricted behavior tree architecture.

Hasselmann and Birattari proposed AutoMoDe-Gianduja, an automatic mod-
ular design method able to design control software for a swarm of e-puck robots
that have local communication abilities [10, 8]. The modules of Gianduja could
send and receive different messages that had no prior assigned semantic. The
authors showed that the design process could generate control software that
meaningfully used the communication capabilities of the modules.

3 AutoMoDe-Cedrata

3.1 Behavior tree structure

In Cedrata, the optimization process can create a tree that has a maximum of
three levels and a maximum of three children per node. The top-level node needs
to be a control-flow node. Nodes of the second level can be either control-flow
nodes, action nodes or condition nodes. If it is an action node or a condition
node, then it can have no children itself. Not all branches are forced to have
the same depth: the top-level node could have some children that are control-
flow nodes and some that are action or condition nodes. Nodes on the third
level can only be action nodes or condition nodes. The structure of such trees
is depicted in Figure 1a. The optimization process can choose any control-flow
node type to be either a sequence, sequence*, selector or selector* node. For a
formal definition of these nodes, see Marzinotto et al. [23]. The tree is allowed
to have at most four action nodes and four condition nodes. The constraints on
the depth and on the number of children implicitly impose that the tree contains
no more than four control nodes. These constraints have been chosen to allow
similar numbers of action and condition nodes as in Maple.
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(a) Behavior tree structure for Cedrata.
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(b) Behavior tree structure for Maple.

Fig. 1. The possible behavior tree structures for Cedrata and Maple. In Cedrata, the
top-level node can be any control-flow node. Underneath it the tree can have between
one and three nodes, chosen among control-flow nodes, action nodes and condition
nodes. If a control-flow node is chosen, then it can have between one and three children,
which are either action nodes or condition nodes. In Maple, the top-level node is fixed to
sequence* node. Underneath it the tree can have between one and four selector subtrees
(highlighted by the dotted border). Each selector subtree consists of one selector node
with exactly two children, a condition node (with associated condition Ci) and an
action node (with associated behavior Ai).

Table 1. The E-puck reference model RM2.2 used by Cedrata [9].

Sensors Variables

Proximity proxi ∈ [0, 1], ∠qi, with i ∈ {1, 2, ..., 8}
Ground gndi ∈ {0, 0.5, 1}, with i ∈ {1, 2, 3}
Range-and-bearing n ∈ N

(rm, ∠bm, sm ∈ {0, 1, ..., 6}), for m ∈ {1, 2, ..., n}

Actuators Variables

Signal broadcast s ∈ {0, 1, ..., 6}
Wheels vl, vr ∈ [−v, v], with v = 0.16 m/s

Control cycle period: 100 ms

3.2 Reference model RM2.2

The reference model RM2.2 is shown in Table 1 [9]. The robot has access to
eight proximity sensors, three ground sensors and one range-and-bearing board
for sensing. It has access to two sets of actuators: the range-and-bearing board
to send messages and two wheels with differential drive. A robot always sends
a signal value s, that can be equal to 0, which is a special value that means no
signal and that is sent by default, or an integer in {1, ..., 6}. Signal values do
not have a particular semantic, instead it is the role of the design process to
assign semantics to the signals. The reference model also provides access to the
number of neighboring robots n and for each neighboring robot m, it provides a
three-tuple of the estimated distance rm, the angle ∠m and the received signal
sm. The control cycle period is 100 ms, that is, every 100 ms the sensors and the
control software are updated.
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3.3 Modules

In the following descriptions of the signal-based conditions and behaviors, the
set of signals {1, ..., 6} will be denoted S. Some modules can use a special value
any that is activated if any of the signals in S is received. The set S∗ = S∪{any}
will denote the sets used by these modules.

Conditions The set of conditions is shown below. Conditions are associated to
condition nodes and check an aspect of the environment. The condition nodes
return success, when their condition is met, or failure, otherwise.

Black Floor When all grounds sensors detect a black floor, the condition re-
turns success with probability β, where β is a tunable parameter.

Grey Floor When all grounds sensors detect a grey floor, the condition re-
turns success with probability β, where β is a tunable parameter.

White Floor When all grounds sensors detect a white floor, the transition is
enabled with probability β, where β is a tunable parameter.

Neighborhood Count Returns success with probability z(n) = 1
1+eη(ξ−n)

where n is the number of robots in the neighborhood, η ∈ [0, 20] and
ξ ∈ {0, 1, ..., 10} are tunable parameters.

Inverted Neighborhood Count Same as Neighborhood Count but with prob-
ability 1− z(n).

Fixed Probability Returns success with probability β, where β is a tunable
parameter.

Receiving Signal Returns success if the robot has perceived a neighbor send-
ing s ∈ S∗ in the last 10 ticks, where s is a tunable parameter.

Behaviors The new set of behaviors is shown below. Behaviors are associated
to action nodes and allow the robot to interact with the environment. The ac-
tion nodes can return success or failure, if the behavior ends in a state that it
considers to be a success or a failure. Otherwise, they return running .

Exploration The robot performs a random walk strategy. It moves straight
until it perceives an obstacle in front of itself. Then the robot turns on the
spot for a random number of ticks in {0, ..., τ}, where τ ∈ {1, ..., 100} is a
tunable parameter. This behavior always return running .

Stop The robot stays still. This behavior always return running .
Grouping The robot tries to get closer to its neighbors by moving in the

direction of the geometric center of its neighbors. If the number of neighbors
becomes greater than Nmax, the behavior returns success, where Nmax is a
tunable parameter. If the number of neighbors becomes smaller than Nmin,
the behavior returns failure, where Nmin is a tunable parameter. Otherwise,
it returns running . The speed of convergence is controlled by the tunable
parameter α ∈ [1, 5]. The robot moves in the direction w = w′ − kw0, where
w′ is the target component and kw0 is the obstacle avoidance component.
If robots are perceived, then w′ = wr&b =

∑n
m=1( α

rm
,∠bm), otherwise w′ =
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(1,∠0). kw0 is the obstacle avoidance component, with k being a constant

fixed to 5 and w0 defined as w0 =
∑8
i=1(proxi,∠qi).

Isolation The robot tries to move away from its neighbors by moving in the
opposite direction of the geometric center of its neighbors. If the number of
neighbors becomes smaller than Nmin, the behavior returns success, where
Nmin is a tunable parameter. If the number of neighbors becomes greater
than Nmax, the behavior returns failure, where Nmax is a tunable parameter.
Otherwise, it returns running . The speed of divergence is controlled by the
tunable parameter α ∈ [1, 5]. The Isolation behavior use the same embedded
collision avoidance than in Grouping, but with w′ defined as: w′ = −wr&b
if robots are perceived, where wr&b is defined as in the Grouping behavior.
Otherwise w′ = (1,∠0).

Meeting The robot listens for a signal s ∈ S∗ emitted by other robots and
moves towards the geometrical centre of the emitters. The behavior returns
success if the distance between the robot and the geometrical centre is
smaller than a distance dmin, where dmin is a tunable parameter. The be-
haviors returns failure if the robot does not perceive any robot sending the
expected signal. Otherwise, the behavior returns running . The Meeting be-
havior uses the same embedded collision avoidance as in Grouping, but with
w′ defined as: w′ = wr&b =

∑
m∈S∗

r
( α
rm
,∠bm) if robots are perceived, where

S∗r is the set of robots that emit the signal s. Otherwise w′ = (1,∠0).
Acknowledgement The robot sends a signal s ∈ S and waits for an answer

in the form of the same signal, where s is a tunable parameter. The behavior
returns success if the signal is received or running if not. After tmax ticks,
the behavior returns failure if the signal is still not received, where tmax is
a tunable parameter. This behavior also sets the velocity of both wheels to
zero.

Emit Signal The robot sets its emitted signal to s ∈ S ∪ {0} for the current
tick, where s is a tunable parameter. This behavior always returns success.
This behavior also sets the wheel velocity to zero.

3.4 Optimization algorithm

Cedrata uses Iterated F-race [22] as the optimization algorithm. Iterated F-
race works over multiple iterations, each of them reminiscent of a race. In each
iteration, a set of candidate solutions is sampled. The candidate solutions are
compared over an increasing number of instances. Once a candidate solution
performs significantly worse than another, it is eliminated from the race, freeing
up the budget for evaluations of more promising candidates. If only one candidate
remains, or the budget for this iteration has been exhausted, new candidate
solutions will be generated by sampling around the surviving candidates. These
new candidates form the set of candidate solutions for the next iteration of
the algorithm. For Cedrata, a candidate solution is a behavior tree, with the
structure and modules as defined above. The optimization algorithm is free to
choose any combinations of nodes, modules, and tunable parameters within these
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(a) Foraging (b) Marker Aggregation (c) Stop

Fig. 2. Layouts of the arena for the missions considered.

constraints. These behavior trees will be evaluated on the same mission, but with
different initial starting positions and headings.

4 Experimental Setup

4.1 Missions

We consider three missions: Foraging, Marker Aggregation and Stop. All
missions take place in a dodecagonal arena (see Figure 2) and last 250 s.

In Foraging (see Figure 2a), the robots are tasked to perform an abstracted
foraging task. That is, the the robots must bring as many items from the black
sources inside the white nest. As the e-puck robot does not have gripping capa-
bilities, we assume it picks up an item when it enters a black area and that it
deposits a carried item when it enters the white area. The objective function for
this mission is the number of recovered items: FFor = #items.

In Marker Aggregation (see Figure 2b), the robots must aggregate within
the dotted area. The area itself is not perceivable to the robots. Instead, a black
spot is placed in the middle of the aggregation area that can serve as a marker.
The objective function for this mission is the cumulative time that the robots
spend within the aggregation area: FMA =

∑2500
i=0 N i

A, where N i
A is the number

of robots in the aggregation area at time step i.
In Stop (see Figure 2c), the robots must find a white spot and then stop as

quickly as possible. A robot is considered moving, if it has travelled more than
5 mm in the last time step. The objective function for this mission is reduced
for each robot that is not moving at any given time step before the white spot
has been found and for each robot that is moving after the white spot has been
found and additionally for the time that the swarm needed to discover the white

spot: FStop = 100000 −
(
t̄N +

∑t̄
t=1

∑N
i=1 Īi(t) +

∑2500
t̄

∑N
i=1 Ii(t)

)
, where t̄ is

the time step during which the white spot was discovered, Ii(t) is an indicator
that a robot i has moved in time step t and Īi(t) is an indicator that a robot i
has not moved in time step t.
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4.2 Design methods

In this work, we study the effectiveness of Cedrata. To gain further insights
on the quality of the generated control software, we also design control software
using Maple. Additionally, we asked a set of human designers to manually design
control software using the set of modules and the tree structure of Cedrata.

For a definition of Cedrata see Section 3. Maple [21] is another automatic
modular design method that assembles the modules into behavior trees. It has
access to six conditions (Black Floor, Grey Floor, White Floor, Neighborhood
Count, Inverted Neighborhood Count, and Fixed Probability) and six behaviors
(Exploration, Stop, Phototaxis, Anti-Phototaxis, Attraction, and Repulsion).
As the behaviors have been originally defined for finite-state machines, they can
only return running . To allow the use of these behaviors in behavior trees, Maple
restricts the structure of the generated trees and can only generate trees in the
shape shown in Figure 1b. Underneath a top-level sequence* node are between
one and four selector sub-trees. The first selector sub-tree in the example is
highlighted using a dotted box. Each selector sub-tree consists of one selector
node with a condition node as its first child and an action node as its second
child. Maple uses Iterated F-race [22] as its optimization algorithm.

For the manual designs, a human designer builds the control software of
the robot using the same constraints (modules and behavior tree structure) as
Cedrata. For the design process, the designers have access to a visual interface
that allows them to visualize and manipulate the trees and to directly launch
simulations of the control software. They have access to the value of the objective
function as automatic methods and to a visual representation of the arena and
the behavior of the swarm for inspection. The human designers chosen have
expertise in swarm robotics, but do not have prior knowledge of behavior trees
or the specific module set of Cedrata.

4.3 Protocol

The automatic designs are conducted according to the following protocol. For
each mission, Cedrata is executed with different budgets: 20 000, 50 000, 100 000
and 200 000 simulation runs. After this number of simulations, the automatic
design process is halted and it returns the best control software produced. For
each budget, 10 runs of the methods are run, leading to 10 instances of control
software. Additionally, 10 runs of Maple with a budget of 200 000 simulation runs
will be performed. The manual design will be done by four human designers per
mission, with a maximum design duration of 4 hours.

Simulations are performed in the ARGoS simulator [25], a realistic and
physics-based simulator. In accordance with the consensus in the literature, a
realistic noise model is applied to the simulation (see Table 2). The generated
instances of control software of all designs methods are assessed in pseudo-reality
to investigate the impact of the reality gap. Ligot and Birattari [20] showed that
the effect of the reality gap can be mimicked in simulation-only environments,
by testing the control software with a different noise model than it was originally
designed for.
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Table 2. Design and pseudo-reality noise models

Sensor/actuator design model pseudo-reality model

Proximity 0.05 0.05
Light 0.05 0.90
Ground 0.05 0.05
Range-and-bearing 0.85 0.90
Wheels 0.05 0.15

4.4 Reference Designs

Besides the behavior trees created by the manual designs method, we will define
a reference tree for each mission. These reference designs are not part of the
experimental protocol and are designed by people with knowledge of the study.
They are built using the same constraints on the tree structure as the manual
designs, but without time constraints. These designs serve to highlight particular
strategies that we expected to be discovered in each mission. They were not
known to the human designers prior to their manual designs. By comparing the
results of Cedrata to the reference designs and the manual designs of the human
designers, we can gain insights on the effectiveness of Cedrata. Furthermore, by
comparing the results of the human designers to the reference design, we can
make statements about the general usability of behavior trees, as no human
designer had prior experience with behavior trees.

Foraging This mission was initially conceived for a reference model, which
had access to the light sensor. As such, a light was placed behind the nest
area to guide robots in their search. However, Cedrata does not have any light
detection capabilities, therefore preventing use of this information not only for
the automatic design but also for a human designer. The reference design for this
mission is available in the supplementary material [16]. In this design, robots
make use of the signal framework to send indications about the location of the
food sources to their neighbors. When a robot finds a food source, it emits a
signal. Robots that are in search of a food source can then receive the signal to
attract them to it.

Marker Aggregation This mission was designed to encourage the design pro-
cess to make use of the signal framework. The reference design for this mission
is available in the supplementary material [16]. In this design, robots explore the
arena until they find the marker. Then, using the signal framework, they will
attract their neighbors to the aggregation area.

Stop The reference design for this mission is available in the supplementary
material [16]. In this design, robots will send and forward signals to their neigh-
bors to transmit the information that the white spot has been discovered. If a
robot received a signal, it stops; if it does not receive any signal, it explores the
arena to find the white spot.
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Fig. 3. Results for all conducted experiments. Each row contains all experiments for a
particular mission. The first column shows the development of Cedrata with increasing
budgets. The second column contains a comparison between Cedrata, Maple (both for
a budget of 200k), the manual, and the reference designs. Results are shown both in
the design context (thin boxes) and pseudo-reality context (thick boxes).

5 Results

In the following sections, methods are often claimed to “perform significantly
better” or “outperform” another method. It implies that a Wilcoxon rank sum
test has been performed with a confidence of 95%.

Foraging The performance of the design methods on the Foraging mission is
shown in Figure 3. All plots include the results in both design and pseudo-reality
environments. The plots show, that for Cedrata despite increasing budgets the
performance remains similar. A detailed inspection of the created behavior trees
shows that the adopted strategies of Cedrata are the same regardless of the
budget. For Cedrata, all the generated behavior trees contain an Exploration
behavior which make the robot explore until the end of the mission. Eventually,
the robot will pass over a food source and then over the nest. The fact that these
strategies do not evolve with the budget size implies that finding them is not a
difficult task for the optimization process, as it does so even with low budgets.
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A typical example behavior tree is available in the supplementary material [16].
In this example, we can see an Exploration behavior but also two conditions
that could have been removed: the Fixed Probability condition does not trigger
a particular action, and the Neighborhood Count condition is, in this case, too
high to ever return success. As for the shown tree, a lot of generated instances
of control software contain what we can call superfluous modules, i.e., modules
that do not play a part in the strategy. We can also observe these superfluous
modules in the control software generated with Maple, but in a more limited
way. This could be explained by the constraints on the tree structure: Maple im-
poses sub-trees that have exactly one condition and one action node, leaving few
possibilities to add extraneous nodes. On the other hand, a superfluous module
can easily be added in Cedrata and, as it will not influence the performance of
the swarm, be kept throughout the optimization process.

The human designers used the same strategy as Cedrata, which is based on
the Exploration behavior, achieving similar performance as Cedrata. Although
the strategies from Cedrata and the manual designs are similar, the performance
of the control software generated by the human designers shows a wider variance.
This is mainly caused by one human designer, whose control software does not
seem as fine-tuned as the one by the other designers. This shows one of the
major drawbacks of manual design, the dependance on the specific abilities of the
human designer. Contrary to our hypothesis, the communication-based reference
design does not outperform the exploration-based strategies found by either
Cedrata or the human designers. Maple, due to its different reference model, can
make use of the light source to forage more efficiently than the other designs.
When assessed in pseudo-reality, Cedrata, the manual designs, and the reference
design only suffer from small drops of the performance. This is indication that
Cedrata could also demonstrate to be resistant against the reality gap.

Marker Aggregation The performance of the design methods on Marker
Aggregation is shown in Figure 3. All plots include the results in both design
and pseudo-reality environments. The performance of Cedrata clear improve-
ments with the size of the budget. Cedrata develops two primary strategies: one
that uses communication to indicate the position of the black spot, similar to the
reference design, and one that only explores until the black spot is found, without
explicitly communicating its position. The total performance of the automatic
design is influenced by how many strategies of each kind are generated. In this
experiment, the designs generated with the lower budget sizes 20 000 and 50 000
contain only behavior trees using the second strategy. The experiment with a
budget of 100 000 simulations produced one behavior tree using a reference-like
strategy. When the budget increases to 200 000 simulations, this amount increase
to four designs finding that strategy. This increasing proportion of reference-like
strategies seems to be linked to the budget size. As communication-based strate-
gies usually require two matching modules sending the same signal, this could
be an indication that the generation of communication-based strategies benefits
from a more thorough exploration of the search space, as opposed to simple
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exploitation of previously found solutions. The generated behavior trees also
contain superfluous modules, as already seen in Foraging. An example of a
behavior tree using the pure exploration strategy is available in the supplemen-
tary material [16]. This behavior tree contains some modules that are not useful:
the two Emit Signal behaviors send signals that will never be perceived, as no
other signal-based modules are present; and the sequence* sub-tree will always
only execute its first child because the Stop behavior will always return running .
This can be explained using the same reasoning that we have proposed for the
Foraging mission, which is that Cedrata is flexible regarding the tree structure
and therefore allows more choices for placing superfluous modules.

The manual designs use a strategy similar to the one used in the reference
design. Yet the human designers where able to find better fine-tuned instances of
control software than the reference design. When compared to Cedrata, the de-
signs generated by the human designers seem to outperform Cedrata. If the com-
parison is however restricted to the four reference-like designs that Cedrata pro-
duced for a budget of 200 000 simulation runs, then both design methods perform
similarly. With no access to communication through its reference model, Maple
only generates behavior trees similar to the behavior trees of the communication-
less strategy found by Cedrata. When comparing the generated behavior trees,
Cedrata also leads to more variety in the trees than Maple: for the same strategy,
trees with different topologies can be created. Also in this mission, Cedrata, the
manual designs, and the reference design successfully manage to mitigate the
effects of the pseudo-reality gap.

Stop The performance of the design methods on the Stop mission is shown
in Figure 3. All plots include the results in both design and pseudo-reality en-
vironments. As in Foraging, Cedrata shows similar performance and uses the
same strategy for all budget sizes, meaning that the strategy is easily discovered
by the optimization process. Cedrata uses the following strategy: robots isolate
from each other. The swarm expands and covers all the arena, giving a high
probability for a single robot to move over the white spot in the process. As a
robot that moves slower than 5mm per second is considered to be not moving by
the objective function, and robots in the Isolation behavior often pass under this
threshold when they are far away from other robots, the resulting performance
is relatively good. Some trees have an Exploration behavior for when robots do
not detect neighbors, one such example is available in the supplementary ma-
terial [16]. This tree contains again some superfluous modules, especially the
three Receiving Signal conditions for signals that can’t be sent, which is very
common for control software generated with Cedrata. In this mission, Cedrata
does not exploit the communication abilities of the modules. Following the dis-
cussion of the mission Marker Aggregation, this could be attributed to a
lack of exploration of the search space. The simplicity of the isolation strategy
might lead to the optimization process prematurely converging around these so-
lutions. The human designers used strategies that are similar to the one used
in the reference design. As we hypothesized, the correct use of communication
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leads to behavior trees that outperform those that do not use communication
(in this case the ones generated by Cedrata and Maple). Maple finds a strategy
where the robots randomly explores the arena until it finds a sufficient number of
neighbors to stop. This strategy could have also been discovered by Cedrata, as
it only makes use of the modules Exploration, Neighborhood Count, and Stop,
which are available to both design methods. This could be another indication
that the optimization process of Cedrata converged prematurely towards a too
simplistic solution, which was not available for Maple. For all methods, some
simulation runs, either in the design or in the pseudo-reality environment, show
very low results (almost equal to zero) compared to the other simulation runs.
These results correspond to some experiments where no robot finds the white
spot or the spot is found within the last seconds of the experiment. As in the
previous two missions, Cedrata, the manual designs, and the reference design
showed to be resistant against the pseudo-reality gap.

6 Conclusion

In this work, a new flavour of AutoMoDe called Cedrata has been introduced to
pursue the work started with a previous one called Maple, which introduced be-
havior trees. Maple uses modules from earlier flavours, which have been designed
for finite state machines. This forces the behavior tree to adopt a particular struc-
ture. Cedrata introduces a new set of modules that are specifically designed for
behavior trees and allow the tree to have a more flexible structure. We tested
Cedrata on three different missions. For each mission we included designs by
Maple, manual designs, done by human designers, and reference designs, created
with the objective of serving as examples. Multiple observations can be extracted
from the results. The modules and behavior tree structure for Cedrata allow for
well-performing instances of control software. Indeed, in two of the three consid-
ered missions, designs following on Cedrata constraints are able to outperform
Maple, which had no access to communication capabilities. In the third mis-
sion, Maple outperforms all design methods operating within the constraints of
Cedrata. This is because Maple has access to an ambient clue (the light) that was
not available for Cedrata. We hypothesized that communication-based strategies
might offset this disadvantaged, but our results showed that there was no gain
in performance for this particular mission. The manual designs performed, in
average, as well as the reference ones. This indicates that, under the experimen-
tal conditions, designers with no prior knowledge of behavior trees are able to
understand and use them to solve missions efficiently. This highlights the human
understandability, one of the often claimed advantages of behavior trees.

While behavior trees are convenient to design for human designers, it seems
to be more difficult for automatic design processes. In this work, Cedrata was
unable to reach as good performances as the manual or reference designs on
some missions. Based on the Marker Aggregation mission results, we could
presume that it is only a matter of budget, and that Cedrata should provide
better results as soon as we allocate enough budget. However, the results in the
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other two missions do not support this hypothesis, since we cannot observe any
significant improvement of performance over the budget. An important reason,
why higher budgets still may lead to improved control software is the size of the
search space, which is larger in Cedrata than it is for example in Maple. Further-
more, due to the flexible structure of the trees, the search space contains a lot of
control software with superfluous modules. As the optimization algorithm can-
not distinguish between necessary and superfluous modules, parts of the budget
will be spent on trying to tune these superfluous modules, even though they have
no influence on the performance. Additionally, communication-based strategies
seem to be difficult to automatically design. This could be explained by the fact,
that most communication-based strategies require at least two modules that are
tuned to the same signal value. If Iterated F-race does not randomly sample a
solution that already is tuned to the correct signals, the signal-based modules
are without worth for the performance, and the design process might converge
on solutions that do not make use of communication. In order to counteract this
convergence, the optimization algorithm might need to allow for more explo-
ration.

Cedrata introduces both a new set of modules and a new tree structure and
the results provided make it impossible to attribute specific observations to one
of the changes. For example, in the Stop mission, Cedrata had the possibility to
outperform Maple, as evidenced by the manual and reference designs; however
Cedrata led to lower performing results than Maple. The problem may reside
in the set of modules, the flexibility of the tree structure, or both of them.
Without further experiments, it is difficult to attribute the results to one of the
proposed causes. Another observation drawn from the results is that Cedrata

includes more superfluous modules in its architecture than Maple. This leads to
the hypothesis that the number of such modules is related to the freedom given
on the control structure. Further experiments could try to verify this hypothesis,
by either investigating architectures of different freedom or by actively pruning
unused modules during the design process. More generally, Iterated F-Race, the
optimization algorithm used by Cedrata, seems to be unable to efficiently explore
the control software space. There are different parameters, such as the budget
or the number of iterations, that could influence the strategies discovered by the
design process. Further experiments into these parameters and their influence
might provide better insights on how control software in the form of behavior
trees can effectively be designed. Another idea would be to assess the use of other
optimization algorithms, like or simulated annealing [14] or novelty search [19]
that is a divergent algorithm that promotes exploration.
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10. Hasselmann, K., Robert, F., Birattari, M.: Automatic design of communication-
based behaviors for robot swarms. In: Dorigo, M., Birattari, M., Garnier, S.,
Hamann, H., Montes de Oca, M., Solnon, C., Stützle, T. (eds.) Swarm Intelli-
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