
AutoMoDe-IcePop: Automatic Modular Design
of Control Software for Robot Swarms using

Simulated Annealing?

Jonas Kuckling[0000−0003−2391−2275], Keneth Ubeda Arriaza, and Mauro
Birattari[0000−0003−3309−2194]

IRIDIA, Université libre de Bruxelles, Belgium
mbiro@ulb.ac.be

Abstract. Prior research has shown that the optimization algorithm
is an integral part of the automatic modular off-line design of control
software for robot swarms and can have great influence on the quality of
the control software produced. In this paper we investigate, whether a
stochastic local search metaheuristic—simulated annealing—can be used
as the optimization algorithm in the automatic modular design of robot
swarms. The results indicate that simulated annealing is indeed a viable
candidate. Additionally, we investigate the influence of some obvious
variations of simulated annealing on the performance of the automatic
modular design.

Keywords: Swarm Robotics · Automatic Design · Simulated Annealing.

1 Introduction

Designing control software for a robot swarm is a challenging task, as the global
desired behavior usually emerges from the interactions of the robots between each
other and the environment [10, 37]. Manual software design therefore often relies
on trial-and-error [4] and a general methodology for designing control software
for robot swarms is still missing [12].

Automatic design offers a promising alternative, by transforming the design
problem into an optimization problem. Instead of writing control software that
performs a specific mission, a target architecture is optimized with regard to a
mission-dependent objective function. A popular automatic design approach is
neuro-evolutionary swarm robotics which uses evolutionary algorithms to design
artificial neural networks. While this approach has successfully been applied to
many missions [8, 11, 21, 33, 35, 36], multiple challenges remain to be solved [5,
31, 34]. The most important is the weak transferability of the generated control

? JK and KUA contributed equally to this work and should be considered as co-first
authors. The experiments were designed by JK and performed by KUA. The paper
was drafted by JK and edited by MB; all authors read and commented the final
version. The research was directed by MB.

Jonas
The final authenticated version is available at https://doi.org/10.1007/978-3-030-65154-1_1



2 J. Kuckling, K. Ubeda Arriaza and M. Birattari

software, resulting in performance drops when deployed in reality. This drop
in performance is often associated with the reality gap—inherent differences
between the design context of the simulation and the real world.

Francesca et al. [14] see in this phenomenon a resemblance to the problem of
over-fitting in machine learning. Analogous to the bias-variance trade-off [9, 17],
they propose to introduce a bias to the automatic design process. Their proposed
bias is a restriction of possible control software, by defining a control architec-
ture which can be composed through the combination of predefined modules. As
a proof of concept, Francesca et al. implemented AutoMoDe-Vanilla, an auto-
matic modular design approach that generates finite-state machines with up to
four states. Such generated finite-state machines are composed of states, which
will execute an associated behavior as long as they are active, and transitions,
that have an associated probabilistic condition which can trigger the transition
from one state to another. Vanilla uses F-race [2] to combine the finite-state
machines out of a set of predefined modules (behaviors and conditions) and to
fine tune their parameters.

With AutoMoDe-Chocolate [13], Francesca et al. implemented a variant of
Vanilla that differs only in the optimization algorithm employed. Chocolate
uses Iterated F-race [3], instead of F-race. The results of their experiments show
that Chocolate performs significantly better than Vanilla on many missions.
Given that the only difference between the two methods is the optimization
algorithm it seems apparent that the optimization algorithm is an important
part of the automatic modular design approach and can have a great influence on
the performance of generated control software. Following up on this observation,
we create IcePop, another instance of AutoMoDe. It is functionally similar to
Chocolate and Vanilla but it uses simulated annealing as an optimization
algorithm. We choose simulated annealing because it is a well-studied algorithm
[6, 19, 26, 29, 32] that has found many applications (for surveys see for example
[1] and [32]).

Simulated annealing is a metaheuristic inspired by the thermodynamical pro-
cess of annealing [23]. At higher temperatures the particles in a crystal are
more excited and can move more freely than at lower temperatures. Similarly,
the simulated annealing algorithm has a “temperature” parameter. When it is
high, the algorithm has a chance to accept worsening solutions, mimicking the
free movement of the particles. At lower temperatures, the algorithm will select
worsening solutions less likely, thus constraining the movement of the solution
candidate. Simulated annealing has shown properties that are desirable for the
automatic design of control software. It has been shown to effectively traverse
the search space and to converge quickly towards promising solutions [22]. This
allows an efficient use of the allocated budget. Furthermore, simulated anneal-
ing contains mechanisms to escape local optima—e.g., by accepting worsening
moves at higher temperatures. Without any a priori knowledge of the shape of
the search space, this is an important property as it reduces the risk of premature
convergence to suboptimal solutions.



Automatic Modular Design of Control Software using Simulated Annealing 3

The rest of this paper is structured as follows: In Section 2 we present the
experimental setup that we used—the robotic platform, the design methods and
the experimental protocol. In Section 3 we present four experiments and their
results. In Section 4 we summarize our findings and give an outlook to future
work.

2 Experimental Setup

In this section we describe the experimental setup and protocol that was used
to obtain the results described in section 3.

2.1 Robotic platform

IcePop designs control software for a swarm of modified e-puck robots [16, 30].
The e-puck robots are equipped with two wheels, whose velocity can be adjusted
independently, three ground sensors that can perceive the greyscale color value of
the floor, and eight IR transceivers that are spaced equally around the robot, that
can perceive proximity and light values. The robot is also equipped with a range-
and-bearing board [18] that comprises twelve IR emitters and twelve receivers
equally distributed along the perimeter of the board and pointed radially and
outwards, on the horizontal plane. The range-and-bearing board allows the e-
puck to send and receive messages within a range of 0.7 m. In order to abstract
the actual sensor configuration, we use a reference model [20]. Specifically, we use
RM1.1 (see Table 1), the reference model that was used to define the modules
of Chocolate.

In this reference model, each robot has eight light and proximity sensors
returning floating point values between 0 and 1. proxi and lighti define the
proximity and light reading for the ith sensor respectively. Three ground sensors
(groundi) return one of three values, indicating whether the ground underneath
them is black, gray or white. The reference model uses the range-and-bearing
board to count the number of neighbors in communication range (n) and cal-
culates an attraction vector (Vd) towards the center of mass of all perceived
robots. Additionally the robot has two wheels, whose velocity can be adjusted
independently (vl and vr for the velocity of the left wheel and the right wheel
respectively).

2.2 Automatic design methods

We compare two automatic modular design methods: Chocolate and IcePop.
Chocolate [13] generates probabilistic finite-state machines with up to four
states. For that it uses a set of six behaviors and six conditions that are defined
on top of RM1.1 [20]. The six behaviors are: exploration, stop, phototaxis, anti-
phototaxis, attraction and repulsion. The six conditions are: black-floor, gray-
floor, white-floor, neighbor-count, inverted-neighbor-count and fixed-probability.
For a detailed description of the modules, we refer the reader to their original



4 J. Kuckling, K. Ubeda Arriaza and M. Birattari

Table 1. Reference model RM1.1 [20]. Sensors and actuators of the e-puck robot. The
period of the control cycle is 100 ms.

Sensor/Actuator Parameters Values

proximity proxi, with i ∈ {0, . . . , 7} [0, 1]
light lighti, with i ∈ {0, . . . , 7} [0, 1]
ground groundi, with i ∈ {0, . . . , 2} {black, gray, white}
range-and-bearing n {0, . . . , 19}

Vd ([0, 0.7]m, [0, 2π] radian)
wheels vl, vr [−0.12, 0.12] m/s

Algorithm 1 Component-based simulated annealing algorithm

best solution s∗ := incumbent solution ŝ := s0
i := 0
T0 := initialize temperature according to initial temperature
while stopping criterion is not met do

choose a solution si+1 in the neighborhood of ŝ according to exploration criterion
if si+1 meets acceptance criterion then

ŝ := si+1

if ŝ improves over s∗ then
s∗ := ŝ

end if
end if
if temperature length steps since last temperature update then

update temperature according to cooling scheme;
end if
reset temperature according to temperature restart mechanism;
i := i+ 1

end while
return s∗

definition [14]. The optimization algorithm used by Chocolate is Iterated F-race
[27].

In this paper, we propose IcePop. It is based on Chocolate, as it uses the
same modules and target architecture. The difference between the two methods
is that IcePop adopts the component-based simulated annealing algorithm (see
Algorithm 1) as the optimization algorithm. Franzin and Stützle proposed this
component-based algorithm in an effort to unify many variants of the simulated
annealing algorithm [15]. We choose to adopt this algorithm because it provides
the flexibility to easily change components should the need arise.

The component-based simulated annealing algorithm contains placeholders
for commonly used components. In Table 2, we present our choices of compo-
nents that we use in the implementation of the simulated annealing for IcePop.
The initial solution supplied to the algorithm is a minimal valid instance of con-
trol software. In our case this is a finite-state machine with exactly one state
executing the stop behavior. The neighborhood function is implicitly defined
through the application of a random valid perturbation operator. In IcePop, we



Automatic Modular Design of Control Software using Simulated Annealing 5

Table 2. Configuration of the simulated annealing algorithm.

Component Type Parameter

Initial solution Minimal controller Stop behavior
Neighborhood Defined through perturbation operators
Initial temperature Fixed value T0 = 125.0
Stopping criterion Budget of simulations 50 000 simulations
Exploration criterion Random exploration Valid perturbation operators
Acceptance criterion Metropolis condition Mean with 10 samples
Temperature length Fixed value Tlength = 1
Cooling scheme Geometric cooling α = 0.9782
Temperature restart Fixed value Every 5000 simulations

have defined eleven perturbation operators: adding a state, removing a state,
adding a transition, removing a transition, changing the initial state, chang-
ing the starting point of a transition, changing the end point of a transition,
changing the behavior associated with a state, changing the condition associ-
ated with a transition, changing the parameters of a behavior, and changing the
parameters of a condition. The initial temperature is set to 125.0. The stopping
criterion is defined as a maximum budget of simulation runs. That is, after the
allocated budget of simulation runs is exhausted, the algorithm should return
the final instance of control software. The exploration criterion selects a ran-
dom valid perturbation operator and applies it on the incumbent solution. The
acceptance criterion is the Metropolis condition [23, 28] that accepts or rejects
new solutions based on their performance. The Metropolis condition will always
accept an improving solution, and will accept a worsening solution with proba-
bility exp(−(e − e′)/T ) where T is the current temperature, e is quality of the
currently best solution and e′ is the quality of the perturbed solution. Because
the performance of each instance of control software is stochastic, e and e′ will
be computed as the mean of a sample of 10 runs of the respective instance of
control software. The temperature length determines the number of steps before
the temperature cools down again. We set the value to 1, so that the cooling
happens in every step. The cooling scheme that is then applied is the geometric
cooling [23]. In geometric cooling, the updated temperature is computed as T ∗α,
where T is the current temperature and α is the cooling coefficient, which we
set as α = 0.9782. Additionally, the temperature resets to the initial value every
5000 simulations.

The source code of our implementation of IcePop is available at:
https://github.com/keua/design-of-robot-swarms-by-optimization

2.3 Missions

All experiments were conducted with 20 robots on two missions Aggregation
with Ambient Cues (AAC) and Foraging.



6 J. Kuckling, K. Ubeda Arriaza and M. Birattari

Fig. 1. The two missions: AAC (left) and Foraging (right).

AAC. The arena contains two circles, one black, one white. A light source is
placed on the side of the arena that contains the black circle (Figure 1, left).
The robots are tasked to aggregate on the black spot. The objective function
FAAC =

∑T
t=0Nt where Nt is the number of robots on the black circle at time

step Nt.

Foraging. The arena contains two source areas in the form of black circles
and a nest, as a white area. A light source is placed behind the nest to help the
robots to navigate (Figure 1, right). As the robots have no gripping capabilities,
we consider an idealized version of foraging, where a robot is deemed to retrieve
an object when it enters a source and then the nest. The goal of the swarm is to
retrieve as many objects as possible. The objective function is Ff = Ni, where
Ni is the number of retrieved objects.

2.4 Protocol

As each design process is stochastic, we run 20 independent designs for each
design method, resulting in 20 instances of control software. The so obtained
instances are then each assessed 10 times in the design context (what we call
simulation) and another 10 times in a different simulation setting (what we call
pseudo-reality). Pseudo-reality is a concept to evaluate the transferability of
control software [25]. Instead of assessing the performance directly in reality, a
different simulation context is used. Research has shown that control software
that transfers well into reality also transfers well into pseudo-reality, while control
software that transfers badly into reality also transfers badly into pseudo-reality.

The results are presented in notched box-and-whisker boxplots, giving a vi-
sual representation of the samples. In such a notched box-and-whisker boxplot,
the horizontal thick line denotes the median of the sample. The lower and up-
per sides of the box are called upper and lower hinges and represent the 25th
and 75th percentile of the observations, respectively. The upper whisker extends
either up to the largest observation or up to 1.5 times the difference between
upper hinge and median—whichever is smaller. The lower whisker is defined



Automatic Modular Design of Control Software using Simulated Annealing 7

5k 10k 25k 50k 100k
budget

0

5k

10k

15k
sc
o
re

AAC

5k 10k 25k 50k 100k
budget

0

20

40

60

80

sc
o
re

Foraging

simulation pseudo-reality

Fig. 2. Performance of control software created by IcePop for different budgets.

analogously. Small circles represent outliers (if any), that are observations that
fall beyond the whiskers. Notches extend to ±1.58IQR/

√
n, where IQR is the

interquartile range and n = 20 is the number of observations. Notches indicate
the 95% confidence interval on the position of the median. If the notches of two
boxes do not overlap, the observed difference between the respective medians is
significant [7].

3 Results

In this section we describe four experiments we conducted and the results we
obtained. The instances of control software produced, the details of their per-
formances, and videos of their execution on the robots are available as online
supplementary material [24]. We also discuss possible reasons for the results.

3.1 Influence of the budget

We conduct one experiment to investigate the influence of the budget on the
performance of the generated control software. Designs with a smaller budget
need less time to finish but usually produce results that perform less well in
simulation. The higher the time the better usually the performance in simula-
tion, but an overdesigning effect might be observed, where the improvement in
simulation does not carry over to reality. We tested IcePop with five different
budgets (5000, 10 000, 25 000, 50 000 and 100 000 simulations respectively).

The results displayed in Figure 2 show the influence of the budget on the
performance of the control software generated by IcePop. One trend that is ap-
parent from the data, is that, as expected, a larger design budgets leads to control
software that performs better in simulation. However the relative improvement
diminishes and the performance seems to reach a peak around a budget of 50 000
simulations.



8 J. Kuckling, K. Ubeda Arriaza and M. Birattari

Furthermore the performance in pseudo-reality improves initially with an in-
creased budget. Here, however, the performance levels after the budget of 25 000
simulations is reached and does not improve any further. This could be an in-
dicator that the design reached the peak performance that is still transferable.
Further designs might improve the performance in simulation but the transfer-
ability will suffer in return.

3.2 Influence of the sample size

We chose the Metropolis condition as the acceptance criterion in the component-
based simulated annealing for IcePop. In its original definition it was defined to
compare two single performance measures. As the evaluation of the performance
of an instance of control software is stochastic, we sample several simulation
runs. The mean of this sample is then supplied to the Metropolis condition.

In a second experiment, we investigate the influence of the sample size on
the performance of the generated control software. Smaller sample sizes use less
of the budget to evaluate one solution, allowing more solution candidates to be
investigated. On the other hand, outliers will have a greater impact on the mean
of the samples and thus the perceived performance. Larger sample sizes lead
to the inverse effect. Fewer total solution candidates would be investigated but
the performance of each individual solution candidate is more robust to outliers.
We study the influence of the sample size on the performance of the generated
control software by evaluating the performance in simulation and in pseudo-
reality for three sample sizes: 5, 10, and 15. Additionally we test every variant
on the three budgets that showed peak performance in the previous experiment
(25 000, 50 000, and 100 000 simulations).

Figure 3 shows the results for the three different variants of the sample size
over the three investigated budgets. For a budget of 25 000 simulations, all vari-
ants perform similar and no differences can be seen, both in simulation and
pseudo-reality. In the case of a budget of 50 000, the variant with a sample size
of 10 samples performs slightly better than the other two variants, in the mis-
sion Foraging when assessed in simulation. In pseudo-reality, this difference
however is not present anymore. It could therefore very well be that this is sim-
ply a statistical artifact of the stochastic design process. For 100 000 simulation
runs, the three variants achieve a comparable performance again and only minor
differences can be observed. All in all, the three different sample sizes that we
compared show no noticeable differences.

3.3 Influence of the restarting mechanism

We conduct a third experiment, to investigate the influence of the restarting
mechanism. Restarting resets the temperature to a higher value, allowing the
design process to make bigger movements in the search space again. We inves-
tigate four different restarting mechanisms: fixed length (restarts after a fixed
number of simulations, in this case every 5000 simulations), no restart (the tem-
perature cools over the whole design process and is never restarted), reheat (the



Automatic Modular Design of Control Software using Simulated Annealing 9

5 10 15
sample size

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

sc
o
re

AAC - 25k

5 10 15
sample size

0

20

40

60

80

sc
o
re

Foraging - 25k

5 10 15
sample size

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

sc
o
re

AAC - 50k

5 10 15
sample size

0

20

40

60

80
sc

o
re

Foraging - 50k

5 10 15
sample size

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

sc
o
re

AAC - 100k

5 10 15
sample size

0

20

40

60

80

sc
o
re

Foraging - 100k

simulation pseudo-reality

Fig. 3. Influence of the sample size.



10 J. Kuckling, K. Ubeda Arriaza and M. Birattari

temperature is reset every 5000 simulations, the new temperature is set to the
one that generated the biggest improvement so far), restart once (after the half
of the budget is exhausted the temperature resets). We test all restarting mech-
anisms on budgets of 25 000, 50 000 and 10 000 simulations.

Figure 4 shows the results for the different restarting mechanisms. The results
for a budget of 25 000 simulation runs show no difference between the four vari-
ants. In case of a budget of 50 000 simulation runs all variants perform similarly
in the mission AAC. In the mission Foraging, the restarting mechanism that
restarts every 5000 simulation runs performs worse than the other three vari-
ants. For a budget of 100 000 simulation runs, all four variants perform similarly
again. In the mission Foraging, however, the fixed length restarting mechanism
(default) shows a larger distribution than the other three variants.

In conclusion, the four different variants fail to produce noticeable differences
in the performance of the generated control software.

3.4 Comparison with Chocolate

In the last experiment, we compare the performance of IcePop with Chocolate

across three different budgets (25 000, 50 000 and 100 000 simulations).
Figure 5 shows the comparison results of IcePop with Chocolate for budgets

of 25 000, 50 000, and 100 000 simulations respectively. Throughout all three
budgets, it is apparent that IcePop performs better in simulation than Choc-

olate in both missions. In the mission AAC, the difference in performance is
statistically significant.

Unfortunately the drop of performance when assessed in pseudo-reality is
slightly larger for IcePop than for Chocolate. This could indicate that IcePop

might be less transferable to real robots than Chocolate. Despite the larger
performance drop, IcePop still performs better in pseudo-reality, and in AAC
this difference in performance is also statistically significant.

Additionally, we have taken the best performing instance of control software
of IcePop and Chocolate (with a design budget of 100k simulations) for each
mission and directly applied it to a swarm of twenty real e-pucks. Videos of the
performance of the control software on real robots can be found online [24].

4 Conclusions

In this work we have investigated a default configuration for simulated annealing
in the context of automatic modular design. The results indicate that simulated
annealing can be a viable candidate for the automatic modular design of robot
swarms. Additionally, we have investigated the influence of some obvious varia-
tions to the simulated annealing on the performance of the automatic modular
design. The component-based simulated annealing approach allowed us to easily
implement these variants.

Simulated annealing is a well studied optimization algorithm with many pro-
posed extensions, improvements and variants. A next step could be finding a



Automatic Modular Design of Control Software using Simulated Annealing 11

default norestart reheat restartonce
restart mechanism

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

sc
o
re

AAC - 25k

default norestart reheat restartonce
restart mechanism

0

20

40

60

80

sc
o
re

Foraging - 25k

default norestart reheat restartonce
restart mechanism

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

sc
o
re

AAC - 50k

default norestart reheat restartonce
restart mechanism

0

20

40

60

80
sc

o
re

Foraging - 50k

default norestart reheat restartonce
restart mechanism

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

sc
o
re

AAC - 100k

default norestart reheat restartonce
restart mechanism

0

20

40

60

80

sc
o
re

Foraging - 100k

simulation pseudo-reality

Fig. 4. Influence of the restart mechanism.



12 J. Kuckling, K. Ubeda Arriaza and M. Birattari

Chocolate IcePop
method

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

sc
o
re

AAC - 50k

Chocolate IcePop
method

0

20

40

60

80
sc

o
re

Foraging - 50k

Chocolate IcePop
method

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

sc
o
re

AAC - 100k

Chocolate IcePop
method

0

20

40

60

80

sc
o
re

Foraging - 100k

simulation pseudo-reality

Fig. 5. Comparison between Chocolate and IcePop.



Automatic Modular Design of Control Software using Simulated Annealing 13

suitable configuration of components that satisfies best the demands of the au-
tomatic modular design. Also, it would be interesting to apply IcePop to a
broader range of missions.

Acknowledgements. The project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 681872). Jonas Kuckling and
Mauro Birattari acknowledge support from the Belgian Fonds de la Recherche
Scientifique – FNRS.

References

1. Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Burke, E.K., Kendall,
G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and De-
cision Support Techniques, pp. 187–210. Springer, Boston, MA, USA (2005).
https://doi.org/10.1007/0-387-28356-0 7

2. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy,
R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener,
J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E.K., Jonoska, N.
(eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation
Conference. pp. 11–18. Morgan Kaufmann Publishers, San Francisco CA (2002)

3. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: An
overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336.
Springer, Berlin, Germany (2010). https://doi.org/10.1007/978-3-642-02538-9 13

4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013).
https://doi.org/10.1007/s11721-012-0075-2

5. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collec-
tive robotics: a review. Frontiers in Robotics and AI 5, 12 (2018).
https://doi.org/10.3389/frobt.2018.00012

6. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuris-
tic. European Journal of Operational Research 258(1), 70–78 (2017).
https://doi.org/10.1016/j.ejor.2016.07.012

7. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods
For Data Analysis. CRC Press, Belmont, CA (1983)

8. Christensen, A.L., Dorigo, M.: Evolving an integrated phototaxis and hole-
avoidance behavior for a swarm-bot. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A.,
Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Artificial Life – ALIFE. pp.
248–254. MIT Press, Cambridge, MA, USA (2006), a Bradford Book

9. Dietterich, T.G., Kong, E.B.: Machine learning bias, statistical bias, and statistical
variance of decision tree algorithms. Tech. rep., Department of Computer Science,
Oregon State University, Corvallis, OR, USA (1995)

10. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014). https://doi.org/10.4249/scholarpedia.1463



14 J. Kuckling, K. Ubeda Arriaza and M. Birattari

11. Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E.A., Dorigo, M., Wense-
leers, T.: Evolution of self-organized task specialization in robot
swarms. PLOS Computational Biology 11(8), e1004273 (2015).
https://doi.org/10.1371/journal.pcbi.1004273

12. Francesca, G., Birattari, M.: Automatic design of robot swarms: achieve-
ments and challenges. Frontiers in Robotics and AI 3(29), 1–9 (2016).
https://doi.org/10.3389/frobt.2016.00029

13. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Pode-
vijn, G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F.,
Trianni, V., Birattari, M.: AutoMoDe-Chocolate: automatic design of con-
trol software for robot swarms. Swarm Intelligence 9(2–3), 125–152 (2015).
https://doi.org/10.1007/s11721-015-0107-9

14. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intelligence 8(2), 89–112 (2014). https://doi.org/10.1007/s11721-014-0092-
4

15. Franzin, A., Stützle, T.: Revisiting simulated annealing: a component-
based analysis. Computers & Operations Research 104, 191–206 (2019).
https://doi.org/10.1016/j.cor.2018.12.015

16. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software
infrastructure for e-puck (and TAM). Tech. Rep. TR/IRIDIA/2015-004, IRIDIA,
Université libre de Bruxelles, Belgium (2015)

17. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and
the bias/variance dilemma. Neural Computation 4(1), 1–58 (1992).
https://doi.org/10.1162/neco.1992.4.1.1

18. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open e-puck range & bearing miniaturized board for local communi-
cation in swarm robotics. In: Kosuge, K. (ed.) IEEE International Conference on
Robotics and Automation, ICRA. pp. 3111–3116. IEEE, Piscataway, NJ (2009).
https://doi.org/10.1109/ROBOT.2009.5152456

19. Hajek, B.: Cooling schedules for optimal annealing. Mathematics of Operations
Research 13(2), 311–329 (1988). https://doi.org/10.1287/moor.13.2.311

20. Hasselmann, K., Ligot, A., Francesca, G., Birattari, M.: Reference models for Au-
toMoDe. Tech. Rep. TR/IRIDIA/2018-002, IRIDIA, Université libre de Bruxelles,
Belgium (2018)

21. Hauert, S., Zufferey, J.C., Floreano, D.: Evolved swarming without positioning
information: an application in aerial communication relay. Autonomous Robots
26(1), 21–32 (2009). https://doi.org/10.1007/s10514-008-9104-9

22. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applica-
tions. Morgan Kaufmann Publishers, San Francisco, CA, first edn. (2005).
https://doi.org/10.1016/B978-1-55860-872-6.X5016-1

23. Kirkpatrick, S., Gelatt, Jr., C.D., Vecchi, M.P.: Optimiza-
tion by simulated annealing. Science 220(4598), 671–680 (1983).
https://doi.org/10.1126/science.220.4598.671

24. Kuckling, J., Ubeda Arriaza, K., Birattari, M.: Automode-icepop: Automatic mod-
ular design of control software for robot swarms using simulated annealing: Supple-
mentary material. http://iridia.ulb.ac.be/supp/IridiaSupp2020-003/ (2020)

25. Ligot, A., Birattari, M.: Simulation-only experiments to mimic the effects of the
reality gap in the automatic design of robot swarms. Swarm Intelligence pp. 1–24
(2019). https://doi.org/10.1007/s11721-019-00175-w



Automatic Modular Design of Control Software using Simulated Annealing 15

26. Lundy, M., Alistair, M.: Convergence of an annealing algorithm. Mathematical
Programming 34(1), 111–124 (1986). https://doi.org/10.1007/BF01582166

27. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M.,
Stützle, T.: The irace package: Iterated racing for automatic algo-
rithm configuration. Operations Research Perspectives 3, 43–58 (2016).
https://doi.org/10.1016/j.orp.2016.09.002

28. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. The Journal of Chemical
Physics 21(6), 1087–1092 (1953). https://doi.org/10.1063/1.1699114

29. Mitra, D., Romeo, F., Sangiovanni-Vincentelli, A.: Convergence and finite-
time behavior of simulated annealing. In: 1985 24th IEEE Conference on De-
cision and Control. pp. 761–767. IEEE Press, Piscataway, NJ, USA (1985).
https://doi.org/10.1109/CDC.1985.268600

30. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for
education in engineering. In: Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings
of the 9th Conference on Autonomous Robot Systems and Competitions. pp. 59–
65. Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal (2009)

31. Nedjah, N., Silva Junior, L.: Review of methodologies and tasks in swarm
robotics towards standardization. Swarm and Evolutionary Computation 50,
100565 (2019). https://doi.org/10.1016/j.swevo.2019.100565

32. Nikolaev, A.G., Jacobson, S.H.: Simulated annealing. In: Gendreau, M., Potvin,
J.Y. (eds.) Handbook of metaheuristics, International Series in Operations Re-
search & Management Science, vol. 146, pp. 1–39. Springer, Boston, MA, USA
(2010). https://doi.org/10.1007/978-1-4419-1665-5 1

33. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a
homogeneous system of physical robots: structured cooperation with minimal
sensors. Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences 361(1811), 2321–2343 (2003).
https://doi.org/10.1098/rsta.2003.1258

34. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open is-
sues in evolutionary robotics. Evolutionary Computation 24(2), 205–236 (2016).
https://doi.org/10.1162/EVCO a 00172

35. Trianni, V., López-Ibáñez, M.: Advantages of task-specific multi-objective
optimisation in evolutionary robotics. PLOS ONE 10(8), e0136406 (2015).
https://doi.org/10.1371/journal.pone.0136406

36. Trianni, V., Nolfi, S.: Self-organizing sync in a robotic swarm: a dynamical system
view. IEEE Transactions on Evolutionary Computation 13(4), 722–741 (2009).
https://doi.org/10.1109/TEVC.2009.2015577

37. Yang, G.Z., Bellingham, J., Dupont, P.E., Fischer, P., Floridi, L., Full, R.,
Jacobstein, N., Kumar, V., McNutt, M., Merrifield, R., Nelson, B.J., Scas-
sellati, B., Taddeo, M., Taylor, R., Veloso, M., Wang, Z.L., Wood, R.: The
grand challenges of Science Robotics. Science Robotics 3(14), eaar7650 (2018).
https://doi.org/10.1126/scirobotics.aar7650


