
Search space for AutoMoDe-Chocolate

and AutoMoDe-Maple

J. Kuckling, A. Ligot, D. Bozhinoski, and M.
Birattari

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2018-012

December 2018

IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2018-012

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

Search space for AutoMoDe-Chocolate

and AutoMoDe-Maple

Jonas Kuckling, Antoine Ligot
Darko Bozhinoski, and Mauro Birattari

IRIDIA, CoDE, Université Libre de Bruxelles,
Brussels, Belgium.

December 14, 2018

1 Introduction

AutoMoDe, an abbreviation for automatic modular design, is a class of de-
sign methods that combines predefined modules into control software for robot
swarms (Francesca et al., 2014). In this document, we analyze the size of the
search space of two AutoMoDe instances: Chocolate (Francesca et al., 2015),
and Maple Kuckling et al. (2018). Chocolate generates finite state machines
that comprise up to four states, and up to four outgoing transitions per states.
Maple generates behavior trees. The architecture of the generated behavior
trees is restricted to a fixed top-level sequence* (→∗) node that has up to four
subtrees as children. Each subtree contains a selector (?) node with exactly two
children: one condition node and one action node.

We do not take any symmetry or similarity into account. We will represent
the search space of all possible behaviors and conditions through two sets B and
C. These sets describe all possible combinations of a behavior or condition with
all possible parameters.

2 Finite-state machines

General case

Consider a finite-state machine with up to smax states. Each state has at least
one and at most tmax outgoing transitions that cannot point back into the same
state they origin from. The number of all such finite-state machines (written
|SFSM |) can be described by equation 1:

|SFSM | =
smax∑

s=1

|SFSM (s)|

= |SFSM (1)|+
smax∑

s=2

|SFSM (s)|.
(1)

1

|SFSM (s)| describes the number of possible finite-state machines with exactly s
states. The trivial case of s = 1 needs to be handled separately as a finite-state
machine with exactly one state does not have any transitions. There are ex-
actly |SFSM (1)| = |B| finite-state machines with exactly one state, as only the
behavior for the single state can be chosen. For more than one state s > 1, the
number of possible finite-state machines can be described by the number of s
(independent) choices, one for each state. This can be modeled by choosing s
times independently from the set of all possible states (multiplication princi-
ple). In this model, the state already contains information about all outgoing
transitions (e.g. their number, the target, and the condition).

|SFSM (s)| = |Sstate1
(s)| ∗ |Sstate2

(s)| ∗ ... ∗ |Sstates
(s)| =

s∏

i=1

|Sstate(s)|. (2)

If the number of states in a finite-state machine is fixed to s, then number of
configurations for each state is the same, and can be expressed by |Sstate(s)|.
This is because each state is composed of the behavior (chosen from B) and up
to tmax outgoing transitions to the s− 1 other states.

|Sstate(s)| =
tmax∑

t=1

|B| ∗

t∏

j=1

|Stransition(s)|

. (3)

The number of possible outgoing transition is defined by the (independent)
choice of a condition (from the set C) and the target state. The target state can
be modeled by a mapping from the states unto the set {1, 2, ..., s−1}. Therefore
there are s− 1 possible target states for the transitions.

|Stransition(s)| = |C| ∗ (s− 1). (4)

By substituting the equation for the number of outgoing transitions of a state
(equation 4) into the equation for the number of possible configurations of a
state (equation 3) we obtain:

|Sstate(s)| =
tmax∑

t=1

|B| ∗

t∏

j=1

(|C| ∗ (s− 1))

=

tmax∑

t=1

(
|B| ∗ |C|t ∗ (s− 1)t

)
.

(5)

Substituting the result obtained in equation 5 into equation 2 then leads to:

|SFSM (s)| =
s∏

i=1

tmax∑

t=1

(
|B| ∗ |C|t ∗ (s− 1)t

)

=

(
tmax∑

t=1

(
|B| ∗ |C|t ∗ (s− 1)t

))s

.

(6)

Finally after substituting equation 6 into equation 1, we obtain an equation for
the size of the search space for all finite-state machines with up to smax states
and tmax outgoing transitions per state:

|SFSM | = |B|+
smax∑

s=2

(
tmax∑

t=1

(
|B| ∗ |C|t ∗ (s− 1)t

))s

. (7)

2

Chocolate

In Chocolate the finite-state machines are limited to four states and each state
can only have up to four outgoing transitions. Inserting the values smax = 4
and tmax = 4 into equation 7 leads to the following equation:

#S(FSM) = 43046721 |B|4 |C|16 + 57395628 |B|4 |C|15 + 47829690 |B|4 |C|14

+ 31886460 |B|4 |C|13 + 16474671 |B|4 |C|12 + 7085880 |B|4 |C|11

+ 2598156 |B|4 |C|10 + 787320 |B|4 |C|9 + 203391 |B|4 |C|8

+ 43740 |B|4 |C|7 + 7290 |B|4 |C|6 + 972 |B|4 |C|5 + 81 |B|4 |C|4

+ 4096 |B|3 |C|12 + 6144 |B|3 |C|11 + 6144 |B|3 |C|10 + 5120 |B|3 |C|9

+ 3072 |B|3 |C|8 + 1536 |B|3 |C|7

+ 640 |B|3 |C|6 + 192 |B|3 |C|5 + 48 |B|3 |C|4 + 8 |B|3 |C|3 + |B|2 |C|8

+ 2 |B|2 |C|7 + 3 |B|2 |C|6 + 4 |B|2 |C|5 + 3 |B|2 |C|4 + 2 |B|2 |C|3

+ |B|2 |C|2 + |B|
(8)

In this equation, each summand x |B|b |C|c indicates the number of possible
finite-state machines with b states and a total of c transitions. The term x
denotes the number of possible finite state machines that combine c transitions
and b states with the restriction of at most tmax outgoing transitions per state.

For example 2 |B|2 |C|7 denotes that Chocolate can generate 2 different
topologies of finite-state machines containing 2 states and 7 outgoing transi-
tions. Because of the limit of tmax = 4 outgoing transitions per state, 3 of the 7
outgoing transitions need to be associated to one state, and the 4 remaining
transitions to the other state. However each of the two states can have the four
transitions, leading to two possible distributions.

Summing the coefficients of equation 8 results in a total of 207 387 017 dif-
ferent topologies of finite-state machines.

The defining factor for the size of the search space is however the search
space defined by the modules. Even without taking the parameters into account,
there are 616 = 2 821 109 907 456 possible ways of assigning a condition to each
transition in the case of the maximum number of states and transitions. We
can therefore conclude that the size of the search space for Chocolate is in

O
(
|B|4 |C|16

)
.

3 Behavior tree

General case

Consider a behavior tree with depth d, that is, d + 1 nodes on the longest path
from the (implicitly) defined root node to a leaf node. Additionally, let the
top-level node (only child of the root), be at level 1. All of its children are at
level 2, their children at level 3, and so on. In this case the level of a node is
equivalent to its depth in the tree.

Suppose that we fix a level i. On this level i we can choose either a control-
flow node out of a subset of all possible control-flow nodes Ni ∈ N , or a leaf

3

node (either action or condition node). Additionally, every control-flow node on
level i must have between cmin and cmax children.

Let BT=l be the set of behavior trees with a depth of exactly l. That is the
there are exactly l nodes from the top-level node to the furthest leaf node.

Similarly let BT<l be the set of behavior trees where there exists no path
between the top-level node and any leaf node that has at least l nodes in it. It
should be noted that the following equality holds true:

BT<l =
l−1⋃

i=1

BT=i. (9)

The last important notation is BT≤l, the set of all behavior trees with a depth
of at most l. The following two equalities hold up:

BT≤l = BT<l+1 (10)

BT≤l = BT=l ∪BT<l. (11)

The number of behavior trees with at most l levels can be described by the
following recursive formula:

|BT=1| = |B|+ |C| (12)

|BT≤l+1| = |BT=l+1|+ |BT<l+1|
= |BT=l+1|+ |BT≤l|

=

1∑

i=l+1

|BT=i| .
(13)

It should be noted that this formula covers the recursive anchor for l = 1 (the
leaf nodes). If the restrictions applied to a behavior tree allow it, this recursive
formula can also have a recursive anchor for BT=i, i > 1

For |BT=i| , i > 1 we can show the following:

|BT=i| = |Ni|
cmax∑

c=cmin

(|BT=i−1|+ |BT<i−1|)c − |BT<i−1|c . (14)

That is because no behavior trees with i > 1 levels can be a leaf node. Addi-
tionally they if they have a depth of i, they need to have at least one subtree
under the top-level node with exactly i−1 levels. It is however not necessary to
only have a single subtree with these many levels. Indeed any number of sub-
trees (with at least more than one) are acceptable. By the inclusion-exclusion
principle, we can include all behavior trees as subtrees that have either l− 1 or
less then l − 1 levels ((|BT=i−1|+ |BT<i−1|)c) but we need to include the case
that all subtrees have less then l − 1 levels (|BT<i−1|c). This needs to be done
for all mutually exclusive choices for the number of children and all independent
choices of the control-flow node.

Maple

In Maple we have a restricted version of the behavior trees, that can have ex-
actly three levels. Because of the special restrictions, we can define a recursive

4

anchor for BT=2, describing our selector subtrees. There are |C| ∗ |B| possible
combinations for the selector subtrees, because of the independent choices of
the selector node (no true single choice), condition for the condition node and
behavior for the action node.

|BT=2| = |{?}| ∗ |C| ∗ |B|
= |C| ∗ |B| . (15)

Additionally all other levels (in this case only the top-level) can have between
cmin = 1 and cmax = 4 children. If we use these restrictions in equation 14 it
results in:

|BT=3| = |N3|
cmax∑

c=cmin

(|BT=2|+ |BT<2|)c − |BT<2|c

= |{→∗}|
4∑

c=1

(|BT=2|+ 0)
c − 0c

=
4∑

c=1

(|BT=2|)c

=
4∑

c=1

(|C| ∗ |B|)c

= |C|1 |B|1 + |C|2 |B|2 + |C|3 |B|3 + |C|4 |B|4 .

(16)

Here again the coefficients of x |C|i |B|i describe the number of ways it is possible
to construct a restricted behavior tree with i. However there is just a single way
of combining the subtrees (all under the top-level node).

4 Conclusion

As shown above the size of the search space of the finite state machines is
in O(|B|4 |C|16) while the size of the search space for the behavior trees is in

O(|B|4 |C|4).
The large factors in the calculation for the finite state machines (see equation

8) are also small when compared to the combination of possible modules, because
|C| ≥ 600 (6 conditions with at least one parameter p that can take up to 100

values) and therefore |C|16 ≥ 2.821109907456 × 1044 and even |C|4, one of the
defining factors for the search space of the behavior trees, is already larger than
the constants: |C|4 ≥ 1.296 × 1011. Both of these numbers are considerably
bigger than the factors in the equation 8.

Arguably this comparison is not entirely fair as changes in parameters prob-
ably have smaller effects on the performance than the placement of a single
transition.

Acknowledgements.

The project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme

5

(grant agreement No 681872). Mauro Birattari and Jonas Kuckling acknowledge
support from the Belgian Fonds de la Recherche Scientifique – FNRS.

References

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Pode-
vijn, G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., and Birattari,
M. (2015). AutoMoDe-Chocolate: automatic design of control software for
robot swarms. Swarm Intelligence, 9(2/3):125–152.

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M.
(2014). AutoMoDe: A novel approach to the automatic design of control
software for robot swarms. Swarm Intelligence, 8(2):89–112.

Kuckling, J., Ligot, A., Bozhinoski, D., and Birattari, M. (2018). Behavior trees
as a control architecture in the automatic modular design of robot swarms.
In Dorigo, M. and et al., editors, Swarm Intelligence, ANTS, volume 11172
of LNCS, pages 30–43. Springer, Cham, Switzerland.

6

