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1 Introduction

AutoMoDe is a family of automatic modular design methods [1]. To the meth-
ods of the AutoMoDe family belong AutoMoDe-Vanilla [3], AutoMoDe-Choc-
olate [2], AutoMoDe-Gianduja [5], AutoMoDe-Waffle [11], AutoMoDe-Ma-
ple [9], AutoMoDe-TuttiFrutti [4], AutoMoDe-IcePop [6], AutoMoDe-Co-
conut [12], AutoMoDe-Arlequin [8], AutoMoDe-Cedrata [7] and AutoMoDe-
Phormica [10]. These design methods can design control software for different
software architectures, such as finite-state machines or behavior trees. They
use textual representations of the control software, which are not intuitively
understandable. The AutoMoDe Editor aims to provide a tool that allows easy
visualization and manipulation of finite-state machines and behavior trees for
the design methods in the AutoMoDe family.

2 Installation

This project requires you to have a working installation of AutoMoDe1 and the
node package manager (npm)2, in order to install its other dependencies. To
install the AutoMoDe Editor, follow these steps: Download the project from
GitHub3. Inside of the project repository, run the following command in the
terminal:

$ npm install

This will install all other dependencies and requirements for the project. Inside
of the project repository, also create a file .env. Inside of this file put the
following content:

AUTOMODE_PATH=<path_to_automode_executable>

EXPERIMENT_PATH=<path_to_argos_experiment_file>

1https://github.com/demiurge-project/ARGoS3-AutoMoDe
2https://github.com/npm/cli
3https://github.com/demiurge-project/AutoMoDe-Editor
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Figure 1: A screenshot of the AutoMoDe Editor, opened in Firefox. Points of
interest are highlighted with red circled numbers.

3 Using the editor

In order to start the web editor, run the following command in a terminal inside
of the project directory:

$ npm start

While keeping this terminal open, open http://localhost:8080 in a browser.
This should open a page like the one displayed in Figure 1. Note that Figure 1
shows an advanced state and the initial view will not contain a previous instance
of control software.

3.1 Designing control software

The user can visually design control software in the visual editor (1). The
editor allows to design both finite-state machines and behavior trees. The user
can change the current architecture by selecting the corresponding button in
the top left corner (5). By using the buttons on the left (2), the user can
change the interaction mode within the editor, e.g., he can select ”Select/Drag”
to select and drag nodes in the editor. When an element is selected, detailed
information for this element can be seen in the right panel (3). Here the user can
change information, such as the behavior of a state or its parameters. The same
instance of control software that is shown in the visual editor is also shown as
a textual representation, that is understandable by the AutoMoDe executable
(4). Changes to the visual representation will be immediately reflected in the
textual representation. Changes in the textual representation will be reflected
in the visual representation by pressing the Enter key. By pressing the button
”Exec” (6), the user can execute the designed instance of control software,
using the AutoMoDe executable and experiment file specified in the .env file.
Additionally, the AutoMoDe Editor allows the export of the designed control
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software, either as a SVG vector graphic file or as a Tikz description that can
be embedded in LATEX code (7).

3.2 Extending the editor

The AutoMoDe Editor currently includes the modules of AutoMoDe-Chocolate
[]. In order to include other modules (or change the currently available ones),
the user can edit the files included in the folder config/. These files are JSON
formatted and control the appearance and content of the right sidebar.

For finite-state machines, the config/fsm/nodeCategories.json contains
the definition of the behavioral modules. Here the user can adjust the behaviors
and their parameter spaces. The config/fsm/edgeCategories.json contains
the definition of the condition modules. Here the user can adjust the conditions
and their parameter spaces.

For behavior trees, the file config/btree/nodeTypes.json contains the def-
inition of all node types in the behavior tree. Here the user can adjust the avail-
able control-flow nodes. The file config/btree/nodeCategories.json con-
tains the definition of the modules. Here the user can adjust the available
behaviors and conditions, as well as their parameter spaces.

4 The AutoMoDe Editor in the literature

The AutoMoDe Editor has been used as a tool in other studies. For example,
Kuckling et al. [7] used the AutoMoDe Editor as a tool for human designers, to
design behavior trees within the same restrictions as AutoMoDe-Cedrata.
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