
Optimization in the automatic modular design of

control software for robot swarms

Thesis presented by Jonas KUCKLING

in fulfilment of the requirements of the PhD Degree in Engineering and

Technology (”Docteur en Sciences de l’Ingénieur et Technologie”)

Année académique 2022-2023

Supervisor: Professor Mauro BIRATTARI

Co-supervisor: Professor Thomas STÜTZLE

IRIDIA—Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Articifielle

Thesis jury :

Marco DORIGO (Université libre de Bruxelles, Chair)

Heiko HAMANN (Universität Konstanz)

Leslie PÉREZ CÁCERES (Pontificia Universidad Católica de Valparaı́so)

The thesis

Exploring alternative optimization algorithms allows us to understand the influence

they have on the automatic modular design of control software for robot swarms.

i

Summary

The aim of this dissertation is to investigate the role of optimization in the automatic

modular design of control software for robot swarms. One of the main challenges

in swarm robotics is to design the behavior of the individual robots so that a desired

collective mission can be performed. Optimization-based design methods utilize an

optimization algorithm to search for well-performing instances of control software.

In optimization-based design, past research has mainly focused on proving the

feasibility of optimization-based design methods for given missions. With this

approach, researchers could tackle a wide range of missions. However, only a few

works compare the role of the components of any chosen optimization-based design

method. In particular, very little attention has been devoted to the optimization

algorithm, arguably the central element in optimization-based design. In the context

of my research, I focused on automatic modular design, an optimization-based

design approach that combines modules into higher-level control architectures.

Automatic modular design has shown to produce control software that not only

performs well in simulation but that also transfers well into reality.

In this dissertation, I present a study of different types of optimization algo-

rithms: local-search, model-free racing, and model-based. I defined three automatic

modular design methods and compared them against state-of-the-art methods from

the literature. I assessed and compared these design methods in experiments for

several missions, both in simulation and on real robots. In particular, I showed that,

while the choice of the optimization algorithm has an impact on the performance

of the generated control software, it appears to not compromise the ability to cross

the reality gap satisfactorily.

The work presented in this dissertation represents a first step towards systemat-

ically investigating the role of optimization in optimization-based design. More

work is still needed to further our understanding of it.

ii

Author’s declaration

This dissertation presents an original work that has never been submitted to Uni-

versité libre de Bruxelles or any other institution for the award of a doctoral degree.

Some parts of this dissertation are based on a number of peer-reviewed publica-

tions that I, together with my respective co-authors, have published in the scientific

literature.

iii

Acknowledgments

I acknowledge support from the following organizations and projects: from the

European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (DEMIURGE Project, grant agreement No

681872); from Belgium’s Wallonia-Brussels Federation through the ARC Ad-

vanced Project GbO-Guaranteed by Optimization; and from the Belgian Fonds de

la Recherche Scientifique–FNRS via the crédit d’équippement SwarmSim. I also

acknowledge personal support from the Belgian Fonds de la Recherche Scienti-

fique–FNRS through an ASP fellowship and from Wallonie-Bruxelles International

through a WBI.World fellowship.

I would like to thank my two supervisors: Prof. Mauro Birattari and Prof.

Thomas Stützle. They have taught me how to become the researcher that I am

today. This work would not have been possible without them. Mauro, you have

taught me to express my thoughts clearly and the value a single word can hold.

Thomas, I admire your patience and kindness. I would also like to acknowledge

the support and kind welcoming of Prof. Holger Hoos, with whom I have worked

on the research that forms a part of this dissertation.

My thanks also go the all the IRIDIAns. The accumulation of knowledge,

different points of views and life experiences was truly enriching. In particular, I

would like to thank the DEMIURGE team: Dr. Darko Bozhinoski, Dr. Federico

Pagnozzi, Dr. Ken Hasselmann, Dr. Antoine Ligot, Dr. Fernando Mendiburu,

Muhammad Salman, David Garzón Ramos, Miquel Kegeleirs, Guillermo Legarda

Herranz, and Ilyes Gharbi. It has been my great pleasure to work together with all

of you. You have shown me that the whole is greater than the sum of its parts.

I would like to extend my thanks also to those who have accompanied me on

this journey outside of work: The always cheerful Christian Camacho Villalón,

Guillaume Levasseur, the master of cheese, Peter Kraus, who seems to know and

own every board game in existence, and Weixu “Harry” Zhu, the nicest Slytherin

I have ever met. Thank you also to Sara and Salman, who have been truly great

friends. It was a pleasure that all of you were part on my journey in this stage of

life. Last but not least, David Garzón Ramos. David, you have not only been a

colleague and flatmate but also a great friend. And even though our discussion

iv

always tended to gravitate towards robotics, they have been invaluable to me. I

also thank everyone not explicitly mentioned here, who contributed to the success

of this work from near or far.

Finally, I wish to thank my family. Their support on every level has been

amazing and without it I would not be here today. Mami, Papi, Hannah, Linus,

thank you for everything!

My last thanks go to my dearest Imène. I cannot express enough my gratitude

for your support, understanding, and love. I am glad to have had you by my side

during all this time and I cannot wait to share with you what will come next.

Jonas

v

Contents

Summary ii

Acknowledgments iv

1 Introduction 1

1.1 Original contributions . 8

1.2 Further contributions . 10

1.3 Outline . 11

2 State of the art 12

2.1 Swarm behaviors . 14

2.1.1 Aggregation . 14

2.1.2 Dispersion . 15

2.1.3 Foraging . 16

2.1.4 Collective decision making 17

2.2 Robotic platforms . 18

2.2.1 Ground-based mobile robots 18

2.2.2 Aerial drones . 21

2.2.3 Aquatic robots . 22

2.3 Microscopic and macroscopic models 22

2.4 Design methods . 25

2.4.1 Formal design . 25

2.4.2 Manual design . 26

2.4.3 Optimization-based design 27

2.5 Online optimization-based design 28

2.6 Offline optimization-based design 30

2.6.1 Neuro-evolution . 31

2.6.2 Automatic modular design 33

2.6.3 Multi-agent reinforcement learning 35

2.6.4 Imitation Learning . 36

2.6.5 Other approaches . 37

vi

2.7 Reality gap . 37

2.8 AutoMoDe . 39

2.9 Optimization . 41

2.9.1 Optimization problems 42

2.9.2 Optimization algorithms 43

2.9.3 Metaheuristics . 44

2.10 Automatic algorithm configuration 45

3 Methods 47

3.1 Iterated F-race . 47

3.2 The e-puck robot . 48

3.3 Reference model RM1.1 . 49

3.4 Chocolate . 50

3.4.1 Modules . 50

3.4.2 Control architecture . 51

3.5 EvoStick . 52

3.6 Experimental environment . 52

3.7 Statistical analysis . 53

4 Local-search based optimization algorithms 55

4.1 Local search algorithms . 55

4.1.1 Iterative improvement 56

4.1.2 Simulated annealing . 57

4.2 Neighborhood structure . 58

4.3 AutoMoDe-Cherry . 61

4.3.1 Experiments . 63

4.3.2 Results . 66

4.3.3 Discussion . 72

4.4 AutoMoDe-IcePop . 73

4.4.1 Experiments . 75

4.4.2 Results . 77

4.4.3 Discussion . 82

4.5 Limitations and possible improvements 82

5 Model-based optimization algorithms 84

5.1 SMAC . 84

5.2 Design methods . 85

5.3 Experiments . 85

5.3.1 Missions . 85

5.3.2 Protocol . 86

5.4 Results . 87

vii

5.5 Runtime analysis . 94

5.6 Discussion . 96

5.7 Limitations and possible improvements 98

6 Perspective on optimization-based design 100

6.1 Level 1 - Tuning . 101

6.2 Level 2 - Assembling . 102

6.3 Level 3 - Shaping . 103

6.4 Outlook . 104

7 Conclusions & Future work 106

7.1 Research contributions in detail 107

7.2 Future work . 108

A Behavior trees as an alternative control architecture 109

A.1 Behavior trees . 109

A.2 AutoMoDe-Maple . 111

A.2.1 Experiments . 113

A.2.2 Results . 116

A.2.3 Discussion . 124

A.3 AutoMoDe-Cherry-BT . 128

A.3.1 Neighborhood structure 128

A.3.2 Experiments . 129

A.3.3 Results . 130

A.3.4 Discussion . 132

A.4 AutoMoDe-Cedrata . 132

A.4.1 Reference model . 136

A.4.2 Modules . 137

A.4.3 Control architecture . 139

A.4.4 Cedrata-GP and Cedrata-GE 140

A.4.5 Experiments . 141

A.4.6 Results . 145

A.4.7 Discussion . 147

B Search space considerations 151

B.1 Search space size for AutoMoDe-Chocolate and AutoMoDe-

Maple . 151

B.1.1 Search space for finite-state machines 151

B.1.2 Search space for behavior trees 154

B.2 Proofs of completeness for perturbation operators 156

viii

Bibliography 161

ix

Chapter 1

Introduction

Mechanical apparatuses and artificial creatures that can act apparently autonomous-

ly have fascinated humanity for a long time. For example, Aristotle wrote about

“tool[s that] could perform [their] own work when ordered, or by seeing what to do

in advance” (Aristotle, 1967) as a means of replacing slavery. Several Jewish myths

tell of the golem: an artificial creature, created to perform the will of its creators.

Rossum’s Universal Robots is a 1920 play centered on a factory creating artificial

humans. It was the first work to introduce the term “robot”. In modern media,

robots have become ubiquitous, e.g., the droids from Star Wars, the Terminator, or

Wall-E.

Outside of the media, through the ages, many mechanical constructs have

been built that try to emulate intelligent behaviors. Maybe the most well-known

automaton pretending to be intelligent is the Mechanical Turk. Built in 1770, it

was a machine that seemingly could play chess and even challenged Napoleon I

of France and Benjamin Franklin. However, these early automatons were not

autonomous. Either they could only perform a pre-designed action and could

not act independently based on their perception of the environment, or they were

controlled by another entity. In fact, the Mechanical Turk was secretly operated by

a chess grandmaster hidden inside.

The first autonomous robots were the “tortoises” of Walter (Walter, 1950). They

could perceive light conditions in the environment and use these to control their

motion. Since then, robots have found applications in various areas (for example,

see Figure 1.1). Robotic manipulators play a vital role in assembly lines in the

industry (KUKA Group, 2021), consumer robots like robotic vacuum cleaners have

entered households (Pierce, 2018), and drones are being used for photography (The

Creative Cloud Team (Adobe), 2017), cinematography (wallonia.be, 2014) and to

orchestrate light shows (Cheung, 2017).

To this date, much of the work has been dedicated to the autonomy of single

robot systems. Indeed, single robots can perform quite complex feats, such as

1

Image credit: Intel Corporation. Image credit: KUKA Roboter GmbH.

Figure 1.1: Two examples of real-world applications of robots. Left: A group of

Intel Shooting Star drones performing at the 2018 Olympic Games in PyeongChang.

Right: An industrial manipulator handling pallets of bread at a bakery.

performing surgery (Hannaford et al., 2013), performing backflips (Boston Dynam-

ics, 2017; Chignoli et al., 2021), or exploring mars (Witze, 2022). However, the

coordination of large robot groups often suffers from the same lack of autonomy

as early automatons. For example, in the opening show of the 2020 Olympic

Games, Intel used a group of 1824 drones to perform a light show. However,

the flight paths of the drones were pre-computed and controlled by an external

control station (Cheung, 2017). This is reminiscent of the Mechanical Turk. For

the audience, a seemingly autonomous system is displayed, but behind the scenes,

it is controlled by another entity.

I believe that in the future, robots will need to interact in large groups and in

unknown, unstructured and dynamic environments. Consider the fictitious example

of Maximo, an entrepreneur that owns his own robotic moving company. To speed

up the moving process and handle heavy or unwieldy items, Maximo brings not

only a single robot, but a group of robots. However, the number of robots required

for each move is variable and depends among other things on the number of items

to move. As the move happens in the apartments and offices of his clients, he

cannot rely on external infrastructure. Furthermore, the clients might provide

him with a blueprint of the property and estimates of the location of items, but

Maximo does not know the exact number and locations of items before he arrives.

Additionally, while Maximo takes good care of his robots, it can always happen

that a robot ceases to function. Fixing the robot will take some time, but Maximo

still wants to finish his contract with the remaining robots. Last, Maximo wants to

service as many clients as possible and will distribute his robots between locations.

When one location is finished, he will move his robots to the next location, possibly

joining other robots that already operate at that location.

Swarm robotics is an approach to control large numbers of robots in an au-

tonomous and decentralized fashion (Şahin, 2005; Beni, 2005; Brambilla et al.,

2

Image credit: Marco Dorigo et al. Image credit: Michael Rubenstein.

Image credit: Radhika Nagpal. Image credit: Bristol Robotics Lab.

Figure 1.2: Four examples of famous robot swarms. Top-left: The Swar-

manoid (Dorigo et al., 2013) is a heterogeneous swarm of robots, capable of

collaborating to transport items. Top-right: Kilobots (Rubenstein et al., 2014) are a

low-cost robotic platform and have been used in swarms up to 1024 robots. Bottom-

left: The TERMES robots (Werfel et al., 2014) are termite inspired and have been

used to form a swarm capable of constructing complex structures. Bottom-right:

The two terraflop swarm (Jones et al., 2018a) is composed by Xpuck robots and

provides a large amount of computational power for distributed computational

tasks.

2013; Dorigo et al., 2014; Hamann, 2018). A robot swarm is a highly redundant,

decentralized and autonomous system composed of relatively simple robots with

local sensing and communication capabilities. Due to decentralization, the swarm

must be self-organized, that is, the collective behavior cannot be programmed

directly, but emerges from the interactions of the individuals in the swarm. For

examples of well-known robot swarms, see Figure 1.2.

The principles of swarm robotics lend themselves to the conception and im-

plementation of robotic systems that exhibit several desirable properties (Şahin,

2005; Dorigo et al., 2014; Hamann, 2018). The self-organized nature of robot

swarms promotes the design of flexible systems: the swarm can adapt to different

and potentially changing environments. Additionally, the redundancy of the swarm

3

facilitates the creation of systems that are fault tolerant. The failure of any indi-

vidual robot (or sometimes significant portions of the swarm) will not prevent the

swarm from achieving its task. Lastly, as robots only interact with their immediate

neighborhood, swarms are often scalable. That is, the addition or removal of robots

from the swarm does not significantly affect the performance of the swarm. For a

summary of the history, achievements and challenges of the field, see Chapter 2.

Robot swarms offer several advantages, but their decentralized and self-orga-

nized nature makes them challenging to design. The requirements for the desired

behavior of the swarm are usually expressed at the collective level, yet it is not

possible to program the swarm directly. Instead, software needs to be generated

for the individual robots. Swarm engineering is the discipline that addresses the

design of control software for a swarm of robots (Brambilla et al., 2013). In swarm

engineering, the design problem can be phrased as follows: Given a mission-

specification—robotic platform, environment and desired collective behavior—

create control software, so that the robots perform the desired collective behavior

in the environment. Due to the decentralized nature of robot swarms and the lack of

global information available to the individual robots, each robot can only act based

on the local information that it can perceive. As a result, the designer needs to

predict how the local behaviors and local interactions contribute to the emergence

of the desired collective behavior. This connection between the local behavior

(microscopic level or micro-level) and the collective behavior (macroscopic level or

macro-level) is usually non-trivial. Several works are addressing this issue, trying

to find a link between the micro-level and the macro-level (see Chapter 2.3 for an

overview and discussion of recent approaches). To this date, no general micro-

macro link exists, and proposed links are often restricted to specific missions or

even specific individual behaviors (Brambilla et al., 2013; Francesca and Birattari,

2016; Schranz et al., 2021).

Based on these theoretical findings, several design formal methods have been

proposed (Hamann, 2018; Elamvazhuthi and Berman, 2019). Based on the de-

veloped micro-macro links, they allow to derive control software based on the

dynamics of the global swarm behavior. Formal methods allow to derive optimal

control software for the given mission. However, formal methods require a theoret-

ical understanding of the collective behavior and its dynamics. Developing such a

theoretical model is challenging and the success of doing so depends on the skill

of the designer. As a result, formal methods exist only for a few missions.

Barring a formal understanding of the swarm dynamics, the most common

approach to the design challenge is manual design: a human designer implements

the control software for the robot. The designer can refine the control software

through a trial-and-error process until they find the result satisfactory. While this

design process often yields reasonable results (Francesca and Birattari, 2016), it

can be error-prone, costly, time-consuming and the quality of the control software

4

strongly depends on the expertise of the human designer. Furthermore, there is no

guarantee that the performance will reach a satisfactory level within any reasonably

available time budget. Recently, several software-engineering techniques and

patterns have been proposed, yet they operate usually only in specific missions and

restrictive assumptions (Francesca and Birattari, 2016; Bozhinoski and Birattari,

2018; Birattari et al., 2019).

Another alternative design approach is optimization-based design. In optimiza-

tion-based design, the design problem is transformed into an optimization problem.

The optimization problem can be stated as follows: Given a mission specification—

robotic platform, mission environment and mission-specific performance measure

(objective function)—find an instance of control software that maximizes the

objective function. To that end, an optimization algorithm searches the space of all

possible instances of control software to find an optimal one.

Optimization-based design can be further classified according to several criteria

(see Figure 1.3) (Birattari et al., 2020). One major distinction in optimization-based

design is between semi-automatic and fully automatic design. In semi-automatic

design, a human designer remains in the loop. That is, the human designer can

observe and intervene in the design process, if necessary. For example, the human

designer could observe the result found by the optimization algorithm, change

some parameters used in the optimization process and restart it with the new

parameters. The semi-automatic design terminates when the human designer is

satisfied with the generated control software. Semi-automatic design exhibits

similar drawbacks as manual design, namely that the quality of the generated

control software depends on the human designer and their ability to steer the design

process. In fully automatic design, contrarily, the human designer cannot intervene

in the design process beyond the mission specification. Therefore, the design

process can be considered being one-shot.

Another major distinction is between online and offline design. In online

design, the design process creates the control software while the swarm performs

the mission. This approach has several drawbacks. First, the design process

requires access to the robotic hardware and the mission environment. Second,

if no prior safety measures have been implemented, the design process might

damage the robots when performing dangerous maneuvers. Third, the swarm

might not be capable of assessing the performance of its own behavior and might

require an external infrastructure that cannot be provided in all circumstances. In

offline design, the design process is run in a facsimile of the mission environment.

This could be, for example, a mock-up environment, mimicking the mission

environment or, more commonly, a simulation of the mission environment. By

running the design in a controlled environment instead of the mission environment,

the designers can introduce infrastructure to supervise the operation of the swarm

during the design process, e.g., a tracking system that tracks the position of the

5

Optimisation

in target environment
Specifications

Mission to

accomplish
Sampling

Class of

missions

On-line automatic design
d

Deployment
Optimisation

in simulation
Specifications

Mission to

accomplish
Sampling

Class of

missions

Off-line automatic design
c

Specifications
Optimisation (one or more steps)

in target environment
Assessment

Modification of the

optimisation process

Mission to

accomplish
Satisfactory?

Yes

No

On-line semi-automatic design
b

Specifications
Optimisation

in simulation
Assessment

Modification of the

optimisation process

Deployment
Mission to

accomplish
Satisfactory?

Yes

No

Off-line semi-automatic design
a

Image originally published by Birattari et al. (2020).

Figure 1.3: Four classes of optimization-based design. In semi-automatic design, a

human designer remains in the loop during the design process. In fully automatic

design, no human intervention is possible during the design process. Offline design

is performed in a stand-in for the target environment, usually a simulation. Online

design is performed directly in the target environment.

6

robots to compute the objective function. Further, by using simulations, the

remaining drawbacks of online design can be addressed, as simulations can be run

without access to the robotic hardware. Furthermore, simulations can be executed

faster than real-time, and they can be parallelized, potentially decreasing the time

needed for the design process. However, the use of simulations entails one major

drawback: the reality gap.

The reality gap are the inescapable differences between the simulation and

reality. It manifests often as a drop in performance when porting software designed

in simulation to real robots. It has often been postulated that the reality gap is

because of simulations being a too simplistic model of reality. As such, much

effort has been devoted to creating more realistic simulators. Recent research,

however, suggests that this is not the case and that the effects of the reality gap can

be reproduced between two sets of simulators of similar complexities (Ligot and

Birattari, 2020, 2022).

As the reality gap does not affect all design methods equally, Francesca et al.

(2014) postulated that the reality gap can be seen akin to overfitting in machine

learning. The reality gap manifests not because of the simplicity of the simulator,

but because of the design process inescapably overfits certain idiosyncrasies of the

simulator. They argue that robustness to the reality gap can be seen as similar to

the bias-variance trade-off in machine learning. Design methods that can generate

control software for potentially every input-output mapping tend to exploit the

idiosyncrasies of the simulator to achieve the high specialization. The authors

argue that reducing the space of possible input-output mappings should increase the

robustness to the reality gap. This can be achieved by restricting the design process

to only produce control software that can be obtained by assembling predefined

modules.

An automatic modular design method is then composed of several parts: the

reference model, the modules, the target architecture and the optimization algo-

rithm. The reference model provides a formalization of the sensors and actuators of

the robotic platform. Based on the reference model, the behavioral and conditional

modules are defined. The target architecture forms an abstract representation of

the possible instances of control software. Through the selection and assembly

of modules into the target architecture, it is instantiated to a particular instance

of control software. This instantiation will be performed automatically by an

optimization algorithm searching for an optimal instance of control software.

Coming back to the previous example of Maximo. He decided to organize

his robots into a robot swarm as the properties of robot swarms will benefit his

use case. As the robots operate in a location owned by the client, Maximo cannot

rely on any infrastructure to control the robots himself. Instead, the robots will

need to act autonomously. The self-organization and flexibility of the swarm

allows it to adapt to different environments, even if the location is not identical

7

to how the client described it. The fault tolerance of the system ensures that even

if some of Maximo’s robots fail, he can still fulfill his contract. The scalability

will benefit Maximo’s swarm when he adds robots that previously worked on a

different location.

As Maximo’s clients book his services with little time in advance, Maximo

requires a design method that can reliably produce results in a short time. Further-

more, Maximo’s clients expect his robots to immediately start performing well,

therefore Maximo needs to design the software before deploying his swarm at the

location. Consequently, Maximo cannot rely on manual design or online design

and would need to use offline design. As it would be not feasible for him to build

facsimiles of his clients’ locations, Maximo relies on simulations to design the

control software for his swarm. However, the reality gap remains a major issue and

can cause Maximo’s robots to fail the contract. Maximo therefore decided to use

an automatic modular design method.

Automatic modular design is a good approach for Maximo for several reasons.

First, it is an offline design method that promises to be robust to the reality gap,

which is in line with Maximo’s needs. Second, as his robots will need to perform

similar actions for all clients, Maximo can easily program the modules of the robots.

He can test that the modules are robust to the reality gap in small experiments—for

example, for example in a small and abstract facsimile environment.

Of the four elements of the design method, the reference model and modules

are dictated by the choice of robots and the needs of the clients. Maximo can

freely choose the target architecture, for example finite-state machines (for some

discussions about alternative target architectures, see Appendix A). In this disserta-

tion, I present my work on the role of the optimization algorithm in the context of

automatic modular design.

1.1 Original contributions

This dissertation contains a number of original research contributions. In this

section, I summarize each of the research contributions in the order in which

they appear in this dissertation. For each contribution, I refer the reader to the

chapter where the contribution is discussed and potentially the related scientific

publications.

The main idea: I argue that offline optimization-based design has shown promis-

ing results in many missions but that the research composing the state of the art

lacks a focus on what is arguably the central element of optimization-based design:

the optimization algorithm. Based on this observation, I wished to explicitly study

the role of optimization in the automatic offline design of control software for robot

8

swarms. Starting from Chocolate, an automatic modular design method that

uses Iterated F-race, a model-free racing algorithm, as its optimization algorithm, I

identified two additional classes of optimization algorithms that were of interest:

local search algorithms and model-based optimization algorithms. I have tested

and validated all proposed design methods, comparing them against other state-

of-the-art automatic design methods. In total, I have performed over 3700 designs

for 37 missions. Across all designs, I have used over 160million simulation runs

to design control software and I have performed over 37 000 experiments in sim-

ulation and over 180 experiments on real robots to validate the performance of

the generated control software. In particular, my work can be categorized into the

following four contributions.

Review of the state of the art in swarm robotics: In Chapter 2, I provide an

overview of the state of the art in optimization-based design of control software

for swarm robotics. In particular, I focus on offline optimization-based design,

including neuro-evolutionary design methods, automatic modular design methods,

and imitation learning methods. The review of the literature is partially based on:

• J. Kuckling (2023). Recent trends in robot learning and evolution for swarm

robotics. Frontiers in Robotics and AI. To appear.

A study of local search algorithms: I have developed design methods based

on two local-search algorithms: iterative improvement and simulated annealing.

The research studies presented in Chapter 4 led to new insights on the shape of

the search space and thus the feasibility of employing local search algorithms in

the automatic modular design of control software for robot swarms. The work on

local-search based optimization algorithms is based on:

• J. Kuckling, T. Stützle, and M. Birattari (2020). Iterative improvement in

the automatic modular design of robot swarms. PeerJ Computer Science,

6:e322.

• J. Kuckling†, K. Ubeda Arriaza†, and M. Birattari, (2020). AutoMoDe-

IcePop: automatic modular design of control software for robot swarms

using simulated annealing. In B. Bogaerts, et al. (Eds.), Artificial Intelligence

and Machine Learning: BNAIC 2019, BENELEARN 2019, Communications

in Computer and Information Science, vol. 1196, 3–17.

†The authors contributed equally to this work and should be considered co-first authors.

9

A study of model-based optimization algorithms: Furthermore, I developed

two design methods based on SMAC2 and SMAC3, two model-based design

algorithms. The research study presented in Chapter 5 led to new insights on how

surrogate models can improve the quality of the fine-tuning of parameters. The

work on model-based optimization algorithms is based on:

• J. Kuckling, H. H. Hoos, T. Stützle, and M. Birattari, (2023). Comparison of

different optimization algorithms in the automatic modular design of control

software for robot swarms. To be submitted for journal publication.

The vision: Lastly, I have proposed my perspective on optimization-based design

of control software for robot swarms—see Chapter 6. I have identified three

levels, defined by their conceptual approach to optimization. Furthermore, I have

discussed the differences and similarities between optimization-based design of

control software for robot swarms and related domains. This work is based on:

• J. Kuckling, H. H. Hoos, T. Stützle, and M. Birattari, (2023). Design of

collective behaviors for robot swarms: A perspective on the optimization-

based design of robot swarms. To be submitted for journal publication.

1.2 Further contributions

Additionally to the main contributions of this dissertation, I have also contributed

to other research studies.

Behavior trees as an alternative control architecture: In Appendix A, I present

several research studies that employ behavior trees instead of finite-state machines

as the control architecture into which the modules are assembled. The results

obtained from these studies provide insights on the feasibility of using behavior

trees as a control architecture and the challenges of defining modules to be used

with behavior trees. The work on behavior trees is based on:

• J. Kuckling†, A. Ligot†, D. Bozhinoski, and M. Birattari (2018). Behavior

trees as a control architecture in the automatic modular design of robot

swarms. In M. Dorigo, et al. (Eds.), Swarm Intelligence: 11th International

Conference, ANTS 2018, Lecture Notes in Computer Science, vol. 11172,

30–43.

• A. Ligot†, J. Kuckling†, D. Bozhinoski, and M. Birattari (2020). Automatic

modular design of robot swarms using behavior trees as a control architecture.

PeerJ Computer Science, 6:e314.

10

• J. Kuckling, V. van Pelt, and M. Birattari (2022). AutoMoDe-Cedrata:

automatic design of behavior trees for controlling a swarm of robots with

communication capabilities. SN Computer Science, 3:136.

Search space considerations: Lastly, I performed several theoretical studies

of the search space. In particular, I have studied the size of the search space

for AutoMoDe-Chocolate and AutoMoDe-Maple, as well as proven that the

neighborhood function defined for AutoMoDe-Cherry and AutoMoDe-IcePop

is complete. The considerations of the search space are based on:

• J. Kuckling, A. Ligot, D. Bozhinoski, and M. Birattari (2018). Search

space for AutoMoDe-Chocolate and AutoMoDe-Maple. Technical Report

TR/IRIDIA/2018-012, IRIDIA, Université Libre de Bruxelles, Brussels, Bel-

gium.

• J. Kuckling, T. Stützle, and M. Birattari (2020). Iterative improvement in

the automatic modular design of robot swarms. PeerJ Computer Science,

6:e322.

1.3 Outline

The rest of this dissertation is structured as follows. In Chapter 2, I provide

an overview of the state of the art in swarm robotics, with a focus on offline

optimization-based design. In Chapter 3, I describe some general methodology that

will be used throughout this dissertation. In Chapter 4, I present the design methods

and research studies based on local search algorithms. Similarly, in Chapter 5, I

describe my work on using model-based optimization algorithms. In Chapter 6,

I describe my vision on optimization-based offline design and similarities and

differences to related domains. Lastly, in Chapter 7, I conclude the work presented

in this dissertation and provide an outlook on future work.

In Appendix A, I present my research on using behavior trees as an alternative

control architecture in the automatic modular design of control software for robot

swarms. In Appendix B, I present a theoretical consideration about the size of the

search space and a theoretical proof of the completeness of the neighborhood used

in Chapter 4.

11

Chapter 2

State of the art

A robot swarm is thought to be an autonomous, decentralized, self-organized, and

highly redundant system (Şahin, 2005; Brambilla et al., 2013; Dorigo et al., 2014).

It does not rely on any external infrastructure, nor on any other centralized entity,

such as a single leader robot. The collective behavior of the swarm arises from the

interactions of the robots among each other and the environment. For any role in

the swarm, such as a specific specialization, multiple robots in the swarm possess

the ability to perform the necessary actions for that role. As a result, the desired

collective behavior does not depend on any single robot.

The individual robots are simple in terms of hardware and software, when

compared to the collective behavior that should be achieved by the swarm. Indeed,

the desired collective behavior is commonly a behavior that no single robot of the

swarm could achieve on its own. Furthermore, the sensing and communication

capabilities of each robot are local, and the robots do not have access to global

information.

These characteristics of a robot swarm are deemed beneficial for the realization

of systems that exhibit desirable properties, such as flexibility, scalability and fault

tolerance (Beni, 2005). Flexibility is the ability of a system to react and adapt to

different environments. Since robot swarms are autonomous and self-organized,

they can adapt to different environments. Fault tolerance is the ability of a system

to continue to function, even if parts of it fail. A fault tolerant system should

be able to handle partial failures (such as sensor malfunctions on a robot) and

complete failures (a robot ceasing all functioning). Obviously, each failure will

lead to a degradation of performance, but in a system that is not fault tolerant, a

failure might hinder the continued operation completely. Robot swarms promise

fault tolerance due to two properties. As they are decentralized, there exists no

single point of failure. Furthermore, the swarm is highly redundant, with each

role in the swarm having multiple robots that could perform it. Thus, the failure

of any individual robot will not prohibit the continued operation of the whole

12

swarm. Scalability means that the exhibited behavior is independent of the size

of the system. Scalable systems can operate in principle in a similar fashion on

tens, hundreds, or thousands of robots. In a swarm, the robots can only perceive

and interact with their immediate neighborhood. Assuming that the swarm density

remains approximately constant, the robots are not aware of the actual size of the

swarm. Thus, more robots outside of the perception radius of any robot will not

affect the behavior of this robot.

Swarm robotics differs from classical single- or multi-robot systems. In sin-

gle-robot systems, the challenge usually lies in programming the robot so that it

performs a complex behavior. For example, a robotic manipulator might need to

solve kinematics to move efficiently, a drone might need to use computer vision

to detect obstacles, or a legged robot might need to move through uneven terrain.

Conversely, in swarm robotics, it is assumed that the individual robot is easy

to program. The challenge lies in programming the robots in such a way that

the resulting interactions give emergence to a desired collective behavior. Robot

swarms can be seen as a subclass of multi-robot systems. Classical multi-robot

systems, however, often allow the robots to access global information, for example,

through global communication or a centralized control entity, or are not highly

redundant, for example, with only a single robot being able to perform certain

roles.

Historically, the field of swarm robotics took inspiration from swarms in nature

and early works in swarm robotics have often focused on recreating natural behav-

iors with robots or on integrating robots into groups of animals (Garnier et al., 2005;

Schmickl and Hamann, 2011; Campo et al., 2011). However, the field of swarm

robotics expanded beyond its source of inspiration and has matured into a more

general discipline. The discipline of swarm engineering focuses on the engineering

of arbitrary collective behavior (Winfield et al., 2005a; Brambilla et al., 2013). In

swarm engineering, the design problem is: given a mission specification—robotic

platform, environment, desired collective behavior—create control software such

that the robots perform the desired collective behavior in the target environment.

Thanks to the desirable properties, swarm robotics is considered a prominent

approach to control large groups of autonomous robots (Rubenstein et al., 2014;

Werfel et al., 2014; Mathews et al., 2017; Garattoni and Birattari, 2018; Slavkov et

al., 2018; Yu et al., 2018; Li et al., 2019; Xie et al., 2019) and has been identified as

one of the grand challenges of robotics (Yang et al., 2018). Furthermore, industrial

and public applications of swarm robotics are expected to emerge within the next

10-15 years (Dorigo et al., 2020, 2021).

The remainder of this chapter provides an overview of the key areas of interest

in swarm robotics. I do not aim to provide comprehensive surveys of the topics

covered, rather I focus on those relevant to this dissertation. At the appropriate

places, I refer the reader to more comprehensive surveys. In Section 2.1, I highlight

13

some relevant swarm behaviors. In Section 2.2, I present several noteworthy robotic

platforms. In Section 2.3 and Section 2.4, I discuss the challenges in designing

control software for robot swarms. In Section 2.5 and Section 2.6, I provide a more

in-depth review of different classes of automatic design methods. In Section 2.7,

I discuss the open issue of the reality gap and current approaches to address it.

In Section 2.8, I present the literature on the design method of the AutoMoDe

family. In Section 2.9, I give an introduction to optimization theory with a focus

on automatic algorithm configuration.

2.1 Swarm behaviors

The behavior exhibited by the whole swarm is called collective behavior. Although

these collective behaviors can be arbitrarily complex, they are often composed of

more basic behavior blocks. In this section, I present a selection of the fundamental

swarm behaviors that have been studied in the literature. For more detailed reviews

of collective behaviors, see the works of Brambilla et al. (2013), Hamann (2018),

and Schranz et al. (2020).

2.1.1 Aggregation

Aggregation (or clustering) can be considered one of the most fundamental swarm

behaviors (Hamann, 2018). In aggregation, the task for the robots is to position

themselves in the environment, in such a way that they are close to the other robots

in the swarm. It can serve as a building block in more complex behaviors, as it

allows the robots to gather and interact with each other. For example, aggregation

is usually a precursor to collective motion. The task might be further constrained

by defining an appropriate aggregation site, which the swarm needs to find. Fur-

thermore, there might exist multiple aggregation sites and the swarm needs to

aggregate on the one with the highest quality.

Aggregation behaviors can also be found in many animal swarms in nature,

such as honeybees or cockroaches. As a result, several works study aggregation

algorithms that are inspired by animal behaviors. Garnier et al. (2005) developed a

collective aggregation behavior that was inspired by the behavior of cockroaches.

They first studied and modeled the behavior of individual cockroaches, which they

implemented in the individual behaviors for a swarm of robots. The robots per-

formed correlated random walks and wall-following behaviors in the environment.

They stopped randomly, with the probability depending on the number of already

stopped neighbors. The results showed that the emergent collective behavior of the

robots was similar to the behavior observed in cockroaches. Halloy et al. (2007)

integrated a group of robots into a swarm of cockroaches. The hybrid swarm was

14

placed in an arena with two potential shelters. From prior experience, it was known

that the cockroaches would prefer to aggregate under the darker shelter. In the

first experiment, the robots behaved similarly to cockroaches and aggregated under

the darker shelter. In a follow-up experiment, the authors changed the behavior of

the robots to steer the swarm to aggregate under the lighter shelter. Schmickl and

Hamann (2011) developed an aggregation algorithm based on the aggregation be-

havior observed in honeybees. Robots explored the environment at random. When

encountering another robot, they stopped for a time proportional to the quality of

their current location. The algorithm allowed a swarm of robots to aggregate at the

global maximum of a gradient. Notably, the robots had no memory and could not

discern the global optimum from local optima. Arvin et al. (2014) later extended

the algorithm with a fuzzy-based approach.

Outside of bio-inspiration, aggregation behaviors have also been studied from

an engineering perspective. Soysal and Şahin (2005) studied the process of a

static aggregation behavior. They developed a finite-state machine that had robots

exploring the environment. When the robots encountered another robot, they would

stop moving. At every further time step, every robot would randomly decide to

stay stopped or resume wandering, according to a fixed probability parameter. Gazi

(2005) used control theory and potential fields to derive a control policy for a

swarm. The robots were controlled by an artificial potential field defining attractive

and repulsive forces among them. Trianni et al. (2003) engineered an aggregation

behavior through the use of evolutionary swarm robotics (see Section 2.6.1) where

the robots were controlled by an artificial neural network. With this approach, they

could generate both static and dynamic aggregation behaviors. Gauci et al. (2014c)

studied aggregation with minimal robots. The robots are memory-less and have a

single binary sensor. During the design process, a mapping of the two input states

to outputs for the wheels is learned. Despite the simplicity of robot and control

software, the swarm was able to aggregate.

2.1.2 Dispersion

Dispersion can be seen as the dual problem of aggregation. Instead of having the

swarm position the robots close to each other, in dispersion they need to spread

out while remaining in contact. Often, dispersion is related to coverage, in which

robots need to cover a maximum amount of space.

A main challenge in dispersion is to perceive the presence, direction and dis-

tance of other robots. Several authors, therefore, investigated the use of different

technologies. Payton et al. (2001) used the signal strength of infrared commu-

nication to estimate the distance between robots. They developed a dispersion

algorithm that was inspired by the principles of gas expansion and tested the algo-

rithm on a swarm of 20 robots. Ludwig and Gini (2006) developed an approach that

15

uses wireless signal strength to estimate distances. Unlike infrared communication,

wireless signal did not provide the direction of neighboring robots. Still, the swarm

could disperse in the environment. Building on the work of Ludwig and Gini, Ugur

et al. (2007) used the strength of wireless signals to coordinate the dispersion in a

swarm of 25 robots. The authors optimize the threshold parameter of their control

software to achieve maximum coverage of the mission environment.

Other authors focused on the engineering of dispersion behaviors. Duarte et al.

(2016) evolved a dispersion behavior for a group of aquatic robots. Robots could

compute their relative positions to each other using GPS. The authors used NEAT

to evolve the neural networks controlling the robots. Özdemir et al. (2019) studied

the emergence of dispersion and coverage in a swarm of minimal robots. The

robots are memory-less and only have a binary line-of-sight sensor. The authors

used an evolutionary algorithm to find the appropriate wheel velocities for each of

the two possible sensor states.

2.1.3 Foraging

Foraging is another behavior that can be found in animals. In swarm robotics,

foraging can be characterized as a search and retrieval task. The robots need to

find and transport items from sources to sinks that often are also called nests.

Several authors investigated foraging with a focus on developing efficient

search strategies. For example, Sugawara and Sano (1997) investigated a foraging

scenario with 5 robots. They programmed the robots with two behaviors: searching

and homing. Their results showed that the collaboration encoded in the searching

behavior was beneficial to the performance of the swarm. Nouyan et al. (2009)

developed a chain-based foraging algorithm. The robots formed a chain between the

source and the nest. Using a color code, the robots indicate the direction of the chain.

Other robots could then follow the chain to retrieve the items. Hoff et al. (2010)

proposed two algorithms for foraging, one relying on virtual pheromones and

another relying on communication networks. In the pheromone-based algorithm,

robots deposit two kinds of pheromone. One that leads towards the sources and

one that leads towards the nest. During the execution, some robots stopped their

search and communicated the local value of pheromone to other robots. In the

cardinality-based algorithm, robots can also either forage or be beacons. Instead

of communicating pheromone values, the beacons transmitted their distance to

the nest. The distance was expressed by the number of communication jumps

between the beacon and the nest. Campo et al. (2010) developed an algorithm for

path selection in foraging problems. The algorithm could discriminate sources

according to path lengths and profitability. This allowed the swarm to forage from

the highest quality source and let the swarm decide on the shortest path to reach

sources of equal quality. A complex foraging task was tackled in the Swarmanoid

16

project (Dorigo et al., 2013). Three different groups of robots needed to cooperate

to retrieve a book from a shelf. Notably, no group of robots possessed the ability to

retrieve the book with the others.

Other authors have studied foraging as an application to task-allocation. The

robots in the swarm could take on different roles and the swarm needed to find an

appropriate equilibrium. Liu and Winfield (2010) manually designed a probabilistic

finite-state machine for the foraging task. The robots were alternating between

searching for food, depositing food, and resting in the home area. Castelló Ferrer

et al. (2016) extended the approach and proposed an adaptive threshold algorithm.

The adaptive threshold approach allowed the swarm to update the transition rates

during the experiment. Pini et al. (2011) used a task partitioning approach to

foraging. Instead of transporting the items all the way to the nest, robots had the

choice of dropping items into a cache area. Other robots could collect the items

from the cache area and transport them to the nest. The swarm then needed to

dynamically allocate the tasks to avoid interference and maximize the number of

retrieved items.

2.1.4 Collective decision making

Another essential swarm behavior is collective decision making. In collective

decision making, the swarm must select one option out of multiple possible. The

challenge lies in the fact that robots do not have access to global information. As

a result, robots need to explore the environment and synchronize their beliefs.

Collective decision making usually requires the swarm to reach a decision based

on options of differing quality (where the objective is to decide on the option with

the highest quality) or on options with the same quality (where the objective is to

break the symmetry and converge on a single option).

Collective decision making often overlaps with other swarm behaviors, such

as aggregation or foraging, where the swarm might need to reach a consensus on

which option is most suitable for aggregation or foraging. Therefore, some works

on aggregation and foraging could also be classified as collective decision making.

Notably are the works of Halloy et al. (2007) and Pini et al. (2011). Halloy et al.

steered the decision making process of cockroaches and made them aggregate

in the shelter that was of relatively lower quality. In the case of Pini et al., the

swarm had to reach a consensus on whether using an intermediate storage was

more efficient than doing direct transport.

Campo et al. (2011) proposed a decision making algorithm inspired by the

collective decision making observed in cockroaches and ants. Robots were leaving

a resource, with a random probability depending on the density with which they

were occupied. Their swarm could decide on the smallest resource that was

still sufficiently large to accommodate the whole swarm. Hamann et al. (2012)

17

investigated the symmetry breaking effects that occur when a swarm of robots need

to decide between two options of the same quality. Robots were controlled by the

BEECLUST algorithm (Hamann et al., 2012) and had to aggregate on one of the

two spots of equal quality.

Several researchers also investigated decision making as a process without a

direct application in mind. Valentini et al. (2014) studied a simple decision making

algorithm, in which robots either survey one of the two options or disseminate

their opinion. The dissemination duration was proportional to the quality that

the robots associated with their chosen option. The authors showed that, with

increasing swarm size, this algorithm increased decision accuracy. In a follow-up

work, Valentini et al. (2016) studied the trade-offs between accuracy and speed in

reaching a consensus in a binary decision problem. They tested their algorithm on

a swarm of 100 Kilobot robots. Ebert et al. (2017) studied a collective decision

making scenario in which the swarm needed to reach consensus across multiple

independent features. They combined single-feature decision making with a task

allocation strategy that was determining which feature a particular robot was

currently deciding about.

2.2 Robotic platforms

Swarm robotics research has been conducted on various robotics platforms (for

example, see Figure 2.1). In the following, I present a few examples that have

either found widespread application or have been used in notable experiments. In

principle, robotic platforms used in swarm robotics can be categorized into three

categories: ground-based mobile robots, aerial drones, and aquatic robots.

2.2.1 Ground-based mobile robots

Ground-based mobile robots are the most used class of robots in swarm robotics.

They are characterized by the fact that they operate on the ground and can move of

their own accord. Typically, they contain at least proximity sensors, accelerometers,

gyroscopes and LEDs. Often, they also contain ground sensors, light sensors,

microphones, and a camera which can be omnidirectional or directional. If not

further specified, it is assumed that all robots have these sensors. Further sensors

and actuators can be included according to the use cases foreseen for the robot.

However, most robotic platforms allow to add external modules to customize

the robots. Communication between robots is often implemented using either

visual communication (e.g., LEDs), point-to-point communication (e.g., range-and-

bearing), or radio communication (e.g., Wi-Fi, Bluetooth).

18

(a) e-puck (Mondada et al., 2009). (b) foot-bot robots (Dorigo et al., 2013).

(c) Kilobot (Rubenstein et al., 2014). (d) Thymio (Vitanza et al., 2019).

(e) Aquatic surface robot (Duarte et al.,

2016).

(f) Blueswarm (Berlinger et al., 2021).

Figure 2.1: Examples of robot platforms used in the literature.

19

The Khepera robot was developed in 1992 (Mondada et al., 1997). It is a

cylindrical robot with 5.5 cm in diameter that can move with a differential drive

system. The base of the robot can be extended with application-specific turrets.

Krieger et al. (2000) studied scalability and flexibility for a foraging swarm of

up to 12 Khepera robots. The robots were extended with a turret that allowed

them to grip and transport items and a radio communication module. Ijspeert et al.

(2001) deployed a swarm of up to 6 Khepera robots in a collaborative stick-pulling

experiment. The robots were outfitted with a gripper that allowed them to lift a

stick, but it could only be fully pulled out its hole if two robots cooperated in the

pulling process. Several iterations of the Khepera robot have been proposed, the

latest being the Khepera IV (Soares et al., 2015). It is a cylindrical robot with

0.14m of diameter, differential drive, and a Wi-Fi module for communication.

The s-bot (Mondada et al., 2003) is a cylindrical robot with a diameter of

0.12m that uses a differential drive system based on a combination of tracks and

wheels for locomotion. It can communicate with its peers using sound and colors,

and to assemble into larger structures by connecting to other robots with a gripper.

The s-bot has been used in various missions. For example, Trianni et al. (2003)

evolved aggregation behaviors for a swarm of up to 20 s-bot robots. Christensen

and Dorigo (2006) evolved a combined phototaxis and hole-avoidance behavior

for a swarm of up to 16 physically connected s-bot robots. Nouyan et al. (2009)

programmed a swarm of up to 10 s-bot robots to perform chain formation for an

item retrieval task.

The e-puck is a robot designed for educational and research purposes (Mondada

et al., 2009). It is a cylindrical robot with a diameter of 0.14m that moves through

a differential drive system and can communicate with its peers through its LEDs.

It can be extended through several modules (Gutiérrez et al., 2009; École polytech-

nique fédérale de Lausanne, 2010; Jones et al., 2018a; Allen et al., 2020). The

e-puck2 is an evolution of the e-puck with the same capabilities but a modernized

set of sensors and a newly added Wi-Fi module. Similar to other robotic platforms,

the e-puck has been used in various missions. For example, Silva et al. (2015)

developed an online distributed version of NEAT (Stanley and Miikkulainen, 2002)

that designed control software in an aggregation mission for swarms of up to 30

e-puck-like robots. Francesca et al. (2014) developed AutoMoDe-Vanilla, an

automatic modular design method that designed control software for a swarm of

20 e-puck robots in missions, such as foraging or aggregation. The robots were

augmented with a range-and-bearing board, allowing communication among them.

Jones et al. (2019) used a swarm of 9 e-puck robots extended with a GPU-based

computation module to run an online evolutionary algorithm to solve a collective

transport task. Hasselmann et al. (2021) compared the performance and reality gap

of nine neuro-evolutionary design methods for a swarm of 20 e-puck robots. They

considered five missions, namely aggregation, homing, foraging, gate passing, and

20

shelter.

The Swarmanoid (Dorigo et al., 2013) is a heterogeneous swarm composed of

three different types of robots: foot-bots, hand-bots and eye-bots. The foot-bots

are cylindrical robots with 0.17m in diameter. They can move using a differential

drive system, communicate using a range-and-bearing board and can use their

gripper to attach to other foot-bots or hand-bots. The hand-bots can climb vertical

structures and grip items. They cannot move horizontally out of their own accord,

but the foot-bots can attach to a hand-bot and carry it. The eye-bots are aerial

drones that can fly and observe the environment from above. The Swarmanoid has

been employed to retrieve a book from a shelf in an unknown environment (Dorigo

et al., 2013).

The Kilobot is a minimalistic robot platform (Rubenstein et al., 2014). It

is a three-legged cylindrical robot with a diameter of 0.033m. It contains one

ambient light sensor and one infrared transmitter and receiver for communication.

Unlike other platforms, it does not have proximity sensor, accelerometers or other

sensors. Still, it is possible to address various missions even with this simple

robotic platform. Rubenstein et al. (2014) designed a swarm of up to 1024 Kilobot

robots that could successfully self-assemble into various shapes. Talamali et al.

(2021) studied the decision making with constraint communication in a swarm of

50 Kilobot robots.

The Thymio is another educational platform. It is approximately square, with

a rounded front, and a side length of approximately 0.11m (Vitanza et al., 2019).

The robot is equipped with a differential drive system for movement and provides

communication capabilities through its Wi-Fi module. It also includes a USB port

through which it can be extended. Kaiser and Hamann (2022) designed control

software for a swarm of four Thymio robots in an object removal mission.

DOTS is a test bed for industrial swarm applications (Jones et al., 2022).

The DOTS robots are cylindrical with a diameter of 0.25m and can move with

holonomic drive. Additionally, they have a lifting platform on top that can be used

to transport items.

2.2.2 Aerial drones

Research on swarms of aerial drones usually does not assume a specific robotic

platform. Instead, they often target commercially available off-the-shelf solutions.

However, a few notable platforms have been developed outside of the commercial

sector.

The Distributed Flight Array is a multi-rotor vehicle that is composed of

several individual modules (Oung and D’Andrea, 2011). Each individual module

can autonomously lift itself in the air, but only in combination with other modules

can it achieve stable flight. The eye-bots have been developed as part of the

21

Swarmanoid project (Dorigo et al., 2013). Together with the foot-bots and hand-

bots, they formed a heterogeneous swarm. Their role in the swarm was to fly above

the other robots and observe the environment from there. The S-drone is a robotic

platform specifically designed for the use in robot swarms (Oğuz et al., 2022). It

has several sensors, such as four cameras, optical flow sensors, a Lidar, and several

time-of-flight sensors for obstacle avoidance.

A minimalistic alternative to regular aerial drones are micro air vehicles. These

small drones offer only a limited selection of sensors but usually are less costly than

a regular drone. The Crazyflie (Giernacki et al., 2017), for example, is a low-cost

micro air vehicle designed for education and research. The Crazyswarm (Preiss

et al., 2017) consists of 49 Crazyflie drones that perform coordinated formation

flight. As the drones do not support complex onboard operations, online path

planning was performed by a centralized control station outside of the swarm.

2.2.3 Aquatic robots

Aquatic robots in swarms often take one of three forms: Surface robots (often

as mono-hull boats), propellor-driven underwater robots, or bio-inspired robots.

Schmickl et al. (2011) developed CoCoRo, a heterogeneous swarm of underwater

robots. The swarm consists of autonomous underwater vehicles searching the

seabed for targets and base stations that act as chargers and virtual fences for the

autonomous underwater vehicles. The base station floats on the surface and the

underwater vehicles can move through the use of propellors. Both types of robots

contain a variety of sensors to monitor the state of the swarm and the environment.

Duarte et al. (2016) developed a swarm of 10 autonomous aquatic surface robots.

The robots can move autonomously across the water surface and communicate via

a Wi-Fi ad hoc network. They only contain a minimal set of sensors, namely GPS

and a compass. Berlinger et al. (2021) developed Blueswarm, a swarm of seven

fish-like robots. The robots move through the use of fins and can communicate

through LEDs located on their bodies.

2.3 Microscopic and macroscopic models

In swarm robotics, the main challenge is predicting the global emergent behavior

from the behavior of the individual robots, and vice versa. Martinoli et al. (1999)

first studied the relation between the microscopic and the macroscopic level in

the cooperative stick-pulling experiment. The microscopic level is concerned

with the local behavior of the individual robots, whereas the macroscopic level

describes the global behavior of the swarm as a complete system. Each level can be

modeled independently, resulting in microscopic models describing the dynamics

22

encountered by the individual robots (but often unaware of the global state of the

swarm) and macroscopic models describing the global properties of the swarm

(but often abstracting away local properties such as position or internal states of

the individual robots).

In a preliminary work, Martinoli et al. (1999) developed a probabilistic mi-

croscopic model for an item retrieval and clustering task. The authors define the

probabilities for different events that the robot can encounter and use the proba-

bilistic model to create a probabilistic simulation and compare their results with

physics-based simulations and real robot experiments. Similarly, Ijspeert et al.

(2001) developed a probabilistic microscopic model for a collaborative stick-pulling

experiment. They compared the probabilistic simulations generated by their model

with physics-based simulations and real robot experiments to study the effects

of different parameters on the efficiency of collaboration. Lerman et al. (2001)

used rate equations to create a macroscopic model for the same stick-pulling task.

The authors developed a macroscopic analytical model that allowed to study the

long-term time independent behavior of the swarm. Notably, the time complexity

of solving the analytical model does not depend on the number of robots in the

swarm, unlike for physics-based or probabilistic simulations. Martinoli et al. (2004)

formalized the insights gained from the stick pulling experiments and proposed a

methodology for modeling robot swarms in missions non-spatial metrics.

Another well-studied mission is aggregation. Winfield et al. (2005b) used linear

temporal logic to create a microscopic model of the aggregation behavior of the

swarm. The authors suggested that in the future logic and theorem proving might

be techniques that could be used to prove the existence of global properties of the

swarm. Soysal and Şahin (2007) developed a macroscopic model describing the

size of the largest cluster in an aggregation task. They modeled the aggregation as a

Markov chain and derived the steady state behavior of the system. The predictions

of the macroscopic model were verified against physics-based simulations. Halloy

et al. (2007) investigated the aggregation behavior of cockroaches in the presence of

robots. It was previously observed that cockroaches aggregate in groups under dark

shelters. The authors then introduced robots to steer the aggregation behavior of

cockroaches. They developed a macroscopic model that described the distribution

of cockroaches and robots among the shelters. Hamann et al. (2008) created two

macroscopic models based on ODEs and PDEs respectively for a spatially explicit

aggregation behavior. They validated the two models using experiments with real

robots.

More recently, much work has been devoted to understanding and modeling

the dynamics of collective decision making in swarm robotics. For example,

Massink et al. (2013) used Bio-PEPA, a process algebra language, to model a

collective decision-making behavior. Based on the Bio-PEPA model, the author

performed various analyses, such as a stochastic Gillespie simulation, Monte-Carlo

23

simulations, and fluid flow analysis. Hamann et al. (2014) modeled a collective

decision making process using chemical reaction networks. Based on rules for

local interactions (modeled as chemical reactions), they derive a set of equations

predicting the proportion of robots in each state. They validate their models with

stochastic and physics-based simulations. Based on the results of Hamann et al.,

Vigelius et al. (2014) further studied the dynamics in collective decision making.

They derived a macroscopic model using chemical reaction networks. Valentini et

al. (2016) investigated the influence of the neighborhood size on collective decision

making. The authors created a macroscopic model of the system using ordinary

differential equations. The model was validated against real robot experiments.

Reina et al. (2018) considered spatiality in collective decision making. The authors

developed a macroscopic model in the form of stochastic differential equations

from which they derived an appropriate parametrization of the corresponding

microscopic model. The model was validated using both physics-based simulations

and real robot experiments. De Masi et al. (2021) investigated how the distribution

of different roles influences the outcomes of a collective decision making scenario.

They proposed a macroscopic model based on ordinary differential equations to

describe the state of the swarm. The model is validated against experiments done

in simulation and with real robots.

Several other missions have been studied as well. For example, Lerman and

Galstyan (2002) developed a macroscopic model for a foraging swarm. Using rate

equations, the authors studied the effects of interference with increasing swarm

sizes in a bounded arena. Lerman et al. (2006) derived a macroscopic model

of task allocation from a microscopic model. They first modeled the dynamics

of task allocation in a single robot as a stochastic equation. From this equation,

they derive an equation that describes the distribution of opinions in the swarm.

They tested the macroscopic model against physics-based simulations. Correll and

Martinoli (2007) formalized a microscopic model for distributed graph coverage.

They investigated the degree of deviation between the prediction of a perfect

model and a noisy simulation. Based on these results, they estimated the value

of an additional parameter in the model that tries to encapsulate the effects of

imperfect localization. Hamann and Wörn (2008) developed spatial models for

tasks related to robot motion. They used the Langevin equation and the Fokker-

Planck equation to derive a macroscopic model for a collective motion task and a

collective perception task. Matthey et al. (2009) used chemical reaction networks

and ODEs to create macroscopic models with various levels of abstractions for the

behavior of a swarm in a puzzle assembly task. They use the models to predict

optimal values for a selected parameter and validated the models and parameter

choice in a physics-based simulation. Prorok et al. (2011) developed several

microscopic and macroscopic models for describing the random walk behavior of

a group of robots. The models are built around various techniques, such as Markov

24

chains, diffusion models, and difference equations.

2.4 Design methods

As shown in the previous section, it is difficult to match the dynamics of the

collective behavior and the dynamics of the individual behaviors in a swarm.

This poses a challenge for designing control software for robot swarms, as the

desired collective behavior is usually expressed at the collective level, but the

software needs to be generated at the individual level. However, there exist several

techniques to design control software. Formal design (see Section 2.4.1) makes

use of known micro-macro links. When the desired collective behavior is specified,

it can be translated into control software for the individual robots. In manual

design (see Section 2.4.2), a human designer creates the control software for the

individual robots. This is often done through a trial-and-error process, but several

software engineering techniques and patterns have been proposed to help the human

designer. In optimization-based design (see Section 2.4.3), the design problem is

cast as an optimization problem. Instead of designing control software that results

in a desired collective behavior, an optimization algorithm searches the space of

possible instances of control software for one that maximizes a given objective

function.

2.4.1 Formal design

In missions where a formal micro-macro link exists, it can be used to automat-

ically derive the control software for the individual robots. When deriving the

macroscopic model, it is often assumed that the behavior of the robots on the

individual level is fixed (except for some free parameters). As a result, formal

design exploiting micro-macro links is only capable of designing control software

for tasks that already are understood on the individual level. Yet, formal design

allows to analyze and find optimal sets of the free parameters.

For example, Liu and Winfield (2010) modeled the dynamics of a foraging

behavior using rate equations. They used a genetic algorithm to tune the parameters

of their adaptation algorithm and used their macroscopic model to quickly evaluate

sets of parameters. Berman et al. (2009) designed an optimal transition matrix

for a task allocation problem. The robots were running a control software that

allowed them to switch between different tasks with variable probabilities. The

authors used Metropolis optimization (Landau and Binder, 2014) to compute the

optimal transition probabilities for a given initial distribution of the swarm. Prorok

et al. (2017) extended this approach to task allocation with robot specializations.

They first developed the macroscopic model and then used gradient descent-based

25

optimization to compute an optimal transition matrix. In another work, Berman

et al. (2011) developed a macroscopic model for a pollination task. They used

Monte Carlo simulations to find the optimal value for a parameter of the individual

control software.

An alternative approach to formal design is automatic rule synthesis. Rather

than just finding optimal values for free parameters, automatic rule synthesis

decomposes the desired collective behavior into rules that the individual robots

must follow. Often, these rules are not directly turned into control software but

embedded within a more complex instance of control software that interprets the

rules and handles the actuation of the robot. For example, Yamins and Nagpal

(2008) developed a global-to-local compiler for a pattern generation task. Based

on the description of a desired final pattern, a rule set was automatically generated

that allowed a swarm of randomly initialized robots to converge into the desired

pattern. Werfel et al. (2014) followed a similar approach for a three-dimensional

construction task. The desired shape of construction was used to automatically

synthesize local construction rules that the robots could follow. Lopes et al. (2016)

developed a design method based on supervisory control theory to control swarms

with up to 600 robots. Their approach synthesizes control software derived from a

formal language representation of the task and the capabilities of the robots.

2.4.2 Manual design

Manual design often follows a trial-and-error strategy (Francesca and Birattari,

2016). The human designer conceives an instance of control software and evaluates

it. Depending on the observations made, the designer redesigns the control software

and evaluates it again. The process terminates when the human designer is satisfied

with the performance of its control software. While this approach has resulted in

the creation of many, often complex, swarm behaviors (Brambilla et al., 2013), it

is usually time-consuming and strongly depends on the expertise of the designer.

Consequently, trial-and-error design cannot provide guarantees on the performance

and is usually not reproducible.

Therefore, several authors proposed strategies for a more structured approach

to manually designing control software for robot swarms. Kazadi (2009) developed

physicomimetic (Spears and Spears, 2012) control software for a flocking task

from model-independent requirements. In a first step, he described the behavior in

a model-independent way. Then he applied different physicomimetic models in an

attempt to find a model that fulfilled the established requirements. Brambilla et al.

(2014) proposed property-driven design, a top-down design approach for swarm

robotics based on model-checking. Their approach consists of four steps: first, the

requirements are formally specified; second, macroscopic model derived from the

requirements; third, this model is used to guide the implementation of the control

26

software in simulation; and finally, the control software is implemented on real

robots. Like test-driven design, their approach iterates between implementing parts

of the design and verifying them against prior established requirements. Reina

et al. (2015) propose design patterns for the design of collective decision tasks.

The design patterns allowed to design control software for a variety of decision

making scenarios. Pinciroli and Beltrame (2016) developed Buzz, a programming

language that allows to program swarms directly. It provides a library of several

swarm-level action primitives that the user can use to program the swarm. The

swarm-level program is then compiled into control software that will be executed

by each robot locally. Marshall et al. (2019) developed an interactive modeling tool

that allows users to create and analyze macroscopic models of their swarm behavior.

To that end, users can specify a set of local interaction rules that are interpreted as

chemical reaction networks. The tool then provides different analyses, for example,

a bifurcation analysis of the corresponding global models.

2.4.3 Optimization-based design

An alternative to the manual design of control software is optimization-based design

(Birattari et al., 2020). In optimization-based design, the design problem is refor-

mulated as an optimization problem: given a mission specification—environment,

robotic platform, and mission-specific performance measure, called the objective

function—an optimization algorithm searches the space of possible instances of

control software for the one that optimizes the objective function. The objective

function, as part of the mission specification, is the mathematical description of the

desired collective behavior. However, it can happen that the objective function is

not well suited for the optimization process. In these cases, domain knowledge can

be introduced to steer the design process. In the domain of neuro-evolution, these

types of functions are called fitness functions.

Design methods in optimization-based design of control software for robot

swarms can be further classified according to several criteria (Francesca and

Birattari, 2016; Bredeche et al., 2018; Birattari et al., 2020). In semi-automatic

design, a human designer remains in the loop during the design process. The

designer monitors the design process and can intervene if the resulting instance of

control software is not deemed satisfactory. For example, the designer might adjust

the parameters of the optimization process and restart it after assessing the returned

instance of control software. In a research setting, semi-automatic design allows

to assess the feasibility of design methods. However, in practice, semi-automatic

design exhibits similar drawbacks as manual design, especially the inability to

reproduce experiments and the dependency on the skill of the designer. Conversely,

fully automatic design of control software does not allow for human intervention

beyond specifying the mission. Once the mission has been specified, the design

27

process runs without any further human intervention until it returns a final instance

of control software. Fully automatic design can be considered a one-shot design

process, whereas semi-automatic design might allow iterations.

Another major distinction is between online and offline design methods (Fran-

cesca and Birattari, 2016; Bredeche et al., 2018). Online methods design the

control software while the swarm performs the assigned mission. However, the

robots can only evaluate the quality of control software from the local information

available to them. This restricts the class of missions that can be addressed by using

online design. Offline methods run the design process in an environment other

than the mission environment—e.g., in simulation or in a mock-up environment.

Simulations offer several benefits over assessing the performance on real robots:

(i) they allow for faster-than-real-time execution of experiments, (ii) they do not

require access to robotic hardware, and (iii) they allow access to information, that

would not be available without external infrastructure. However, the drawback is

that the design process risks over-fitting certain idiosyncrasies of the simulation

context—these inescapable differences between simulation and reality are called

the reality gap (Brooks, 1992; Jakobi et al., 1995).

The following sections provide overviews over recent advances in optimization-

based design. In Section 2.5, I provide an overview of online optimization-based

design methods. In Section 2.6, I survey recent offline optimization/based design

methods. In Section 2.7, I discuss recent advances to tackle the challenge of the

reality gap.

2.5 Online optimization-based design

In online optimization-based design, the control software is generated while the

robots are deployed in the target environment. Typically, each robot in the swarm

executes part of a distributed evolutionary algorithm. These design approaches are

called embodied evolution. In principle, other approaches, such as reinforcement

learning, could also be used to design online learning methods. Yet, they have not

seen application in the online optimization-based design of control software for

swarm robotics.

Nevertheless, recent work (Heinerman et al., 2015; Silva et al., 2017; Bredeche

and Fontbonne, 2021) has framed the concepts behind embodied evolution as a

form of learning, sometimes calling it social learning. The authors argue that

embodied evolution is conceptually closer to learning (see Section 2.6.3), as the

robots update their control software while performing the mission. Yet, the most

common technique to implement embodied evolution remains the application of

evolutionary algorithms.

In embodied evolution, in general, every robot in the swarm is initialized with

28

and maintains its own set of genomes. From this genome set, each robot selects one

genome and executes the control software encoded in it. Periodically, all robots

exchange genomes among each other (which may be subjected to mutation or

crossover operations) and they select a new genome to execute. Embodied evolution

provides important advantages with respect to offline approaches (Watson et al.,

2002). As evolution takes place directly in the mission environment, transferability

is no concern. Besides, the distributed nature of the design process allows exploring

different solutions in parallel. The parallelization of the design process allows to

speed up the production of control software if compared with centralized online

evolutionary methods.

Only a few studies have been conducted using embodied evolution in swarm

robotics. For example, Bianco and Nolfi (2004) investigated an embodied evolu-

tionary approach in which robots share their genomes when physically connecting

to other robots. Prieto et al. (2010) used embodied evolution to program a swarm

of e-puck robots in a cleaning task. Bredeche et al. (2012) investigated the adap-

tivity of open-ended evolution to changes in the environment. Silva et al. (2015)

developed an online, distributed version of NEAT (Stanley and Miikkulainen,

2002) and used it to evolve control software in three missions. Jones et al. (2019)

evolved behavior trees for a collective pushing task. Cambier et al. (2021) used an

evolutionary language model to tune the parameters of a probabilistic aggregation

controller. For more detailed surveys, including online evolution for single and

multi-robot systems, see, for example, the works of Bredeche et al. (2018) and

Francesca and Birattari (2016).

Embodied evolution still faces several challenges in the context of the design

of control software for robot swarms. For example, robots need to execute not

only their own control software but also the design process. This may not be

feasible for robots with limited computational hardware. Furthermore, to conduct

the evolutionary process, the swarm must operate for a relatively long time (as

compared to the normal mission duration), posing more demand on batteries and

increasing the likelihood of sensor or actuator failures. More importantly, the

evolutionary process can only be achieved if the individuals of the swarm can

assess the performance of their chosen genome—ideally this should be computed

for the whole swarm, however, without further infrastructure this information is

not directly available to the robots as they rely only on local perception.

Three main solutions have been proposed to address the aforementioned is-

sue: open-ended evolution, decomposition and simulation-based assessment. In

open-ended evolution, the design process is not driven by an explicit objective

function. Instead, open-ended evolution ties the survival of an instance of control

software to its ability to “reproduce”. Over time, instances of control software

that successfully reproduce will replace instances of control software that cannot.

Implicit selection pressure can be exerted by tying the chance to reproduce to

29

certain desired actions or outcomes (Bianco and Nolfi, 2004; Prieto et al., 2010;

Bredeche et al., 2012). Bianco and Nolfi consider encounters between robots as

opportunity for reproduction. As the task is self-assembly, this implicitly rewards

instances of control software that manage to encounter and assemble with other

robots. Another typical choice is to model the performance of the individual robots

by energy levels: taking an action depletes the energy, but certain outcomes of the

actions replenish it. While the robot is active (with available energy), its control

software is periodically exchanged with neighboring robots. Once the energy

is fully depleted, the instance of control software that was active in the robot is

replaced by another one. Over time, instances of control software that are more

successful at managing their energy level (by achieving the desired outcomes) will

have more opportunities to spread to other robots, thus prevailing in the swarm

and displacing less successful instances of control software. Like novelty search,

open-ended evolution does not necessarily aim to generate a particular behavior,

but rather for the spontaneous emergence of complex behaviors. As an alternative,

a designer could manually decompose the objective function for the desired collec-

tive behavior into rewards for the actions (or their outcomes) of individual robots

(Silva et al., 2015). Although viable, this decomposition is especially difficult in

tasks that strictly require cooperation or only provide delayed rewards—e.g., taking

an action does not immediately increase the fitness of the swarm, as it requires

an appropriate second subsequent action to effectively increase the fitness. This

decomposition is similar to the credit assignment problem encountered in robot

learning. Recently, Jones et al. proposed an online evolutionary method in which

robots performed simulations to evaluate the quality of genomes (Jones et al.,

2019). This method allows the robots to estimate the performance of a genome

as if it was deployed to the whole swarm—without the need for decomposing

the objective function. However, assessing the performance in simulation might

overestimate the degree of cooperation and coordination of the robots, as other

members of the swarm might execute different instances of control software and

not cooperate as expected.

2.6 Offline optimization-based design

In offline optimization-based design, the control software is generated before the

robots are deployed in the target environment. Typically, the design process is

performed in a centralized manner and evaluates the quality of instances of control

software in simulation. In the context of swarm robotics, evolutionary swarm

robotics (Trianni, 2008; Nolfi, 2021) is the most studied optimization-based design

approach. Evolutionary swarm robotics has been used to create control software

for robot swarms in a wide variety of mission such as foraging, collective transport,

30

or pattern formation (see also Section 2.1) (Brambilla et al., 2013; Schranz et al.,

2020). Traditionally, evolutionary swarm robotics has relied on neuro-evolution—

the control software in the form of an artificial neural network is optimized using a

centralized evolutionary algorithm (see Section 2.6.1).

Other typical design approaches include automatic modular design (see Sec-

tion 2.6.2) and multi-agent reinforcement learning (see Section 2.6.3). In automatic

modular design, the control software is composed of modules that are assembled

into more complex control architectures, such as finite-state machines or behavior

trees. In multi-agent reinforcement learning, reinforcement learning techniques are

used to design the instances of control software. While offline optimization-based

design methods have demonstrated promising results in the past, they still face

some important challenges that remain unsolved: notably, the generation of control

software that is robust to the reality gap and the specification objective functions

that can produce a desired collective behavior.

Several works have addressed possible solutions to these challenges of of-

fline optimization-based design methods. Concerning the reality gap, various

approaches, such as transferability approaches or the concept of pseudo-reality,

have been proposed (see Section 2.7). The formal definition of an objective function

requires the attention of an expert, knowledgeable in the mathematical represen-

tation of collective behaviors. A few researchers have therefore investigated the

use of mission specifications different from an objective function. For example,

Bozhinoski and Birattari (2022) used a domain specific language to translate nat-

ural language descriptions of swarm missions into formal specifications. Other

researchers have investigated the use of imitation learning (see Section 2.6.4)

or novelty search (see Section 2.6.5) to design collective behaviors without an

explicitly defined objective function. Yet, these approaches still rely on an objec-

tive function during the design process. The designer is only relieved during the

mission specification, by using these techniques as an “interface” through which

they can provide the specification in an implicit form, which is then automatically

transformed into the objective function used during the design.

Trianni et al. (2014) and Francesca and Birattari (2016) provide overviews of

offline optimization-based design in the context of swarm robotics.

2.6.1 Neuro-evolution

The application of evolutionary robotics principles (Nolfi and Floreano, 2000) to

swarm robotics is called evolutionary swarm robotics (Trianni, 2008; Nolfi, 2021).

In evolutionary swarm robotics, the control software of the robots is generated

through an artificial evolutionary process. Unless otherwise specified, the same

generated control software is uploaded to each robot to be executed individually.

The objective function is used to assess the quality of instances of control software,

31

and in a way, provides selection pressure to direct the optimization process. Poorly

performing instances are discarded and the well-performing ones are selected to

generate new instances through recombination and mutation.

Neuro-evolution is one of the earliest optimization-based design methods in

swarm robotics (Quinn et al., 2003; Trianni et al., 2003; Dorigo et al., 2003). In

neuro-evolutionary methods, an evolutionary algorithm designs control software in

the form of neural networks. In this approach, neural networks are used as black-

box controllers, and the search performed by the evolutionary algorithm does not

require domain-specific heuristic information. For this reason, neuro-evolutionary

design methods are expected to allow the design of control software with no

domain knowledge. For a review of early neuro-evolutionary design methods,

see Brambilla et al. (2013).

More recently, several authors have focused on systematically using neuro-

evolution to design control software for various robotic platforms—mainly target-

ing those that could be possibly used in real-world deployments. For example,

Trianni and Nolfi (2011) evolved a perceptron network to synchronize the move-

ment of a swarm of s-bot robots. Duarte et al. (2016) used NEAT (Stanley and

Miikkulainen, 2002) to design control software a swarm of aquatic robots perform-

ing tasks such as homing or dispersion. Gomes et al. (2019) generated control

software for robot teams composed of aerial and ground robots in a foraging task.

Hasselmann et al. (2021) compared NEAT (Stanley and Miikkulainen, 2002),

xNES (Glasmachers et al., 2010) and CMA-ES (Hansen and Ostermeier, 2001)

to generate control software for a swarm of e-puck robots (Mondada et al., 2009)

in five different missions such as aggregation, homing, shelter, foraging, and gate

passing. In a different research direction, researchers have investigated the minimal

requirements to evolve specific collective behaviors. For example, Gauci et al.

(2014a) evolved a recurrent neural network to perform aggregation. In their study,

the authors tested their control software on robots with minimal capabilities: each

robot had a single binary sensor that controlled the speed of its two wheels. Gauci

et al. (2014b) used a similar approach to study the emergence of collective behav-

iors for robots with minimal capabilities. In their study, the robots only had a single

line-of-sight sensor and could set their velocity based on the discrete readings of

this sensor. The authors used CMA-ES (Hansen and Ostermeier, 2001) to optimize

the mappings of the sensor to velocities in missions such as clustering (Gauci

et al., 2014b), shepherding (Özdemir et al., 2017; Dosieah et al., 2022), decision

making (Özdemir et al., 2018), and coverage (Özdemir et al., 2019). Ramos et al.

(2019) evolved a flocking behavior for robots that only had one alignment sensor

and four proximity sensors. Diggelen et al. (2022) evolved a gradient following

behavior. Notably, the robots could perceive only the local value of the gradient,

not its direction, and they could not communicate with other robots.

Neuro-evolutionary approaches have shown many promising results. Yet, two

32

main challenges remain in the field: fitness engineering and the reality gap. The

first challenge is fitness engineering. It is well understood that some objective

functions pose two challenges to the evolutionary process: bootstrapping and

deception (Silva et al., 2016). The issue of bootstrapping arises when the objective

function fails to apply meaningful selection pressure in low-performance regions

of the search space. As a result, the design process explores the low-performance

regions in an undirected manner and is unable to converge towards higher perfor-

mance regions of the search space. The issue of deception describes the case in

which the objective function contains easily reachable local optima. In this case,

the design process can easily converge towards the local optima and will result in

the generation of a suboptimal collective behavior. These two issues can usually be

overcome by using a different function (fitness function) than the objective function

during the design process. The fitness function can then be engineered to avoid

the issues of deception and bootstrapping by introducing a priori knowledge into

it (fitness engineering) (Trianni and Nolfi, 2011; Divband Soorati and Hamann,

2015; Silva et al., 2016). However, the necessity of a priori knowledge conditions

the effectiveness of a neuro-evolutionary design method; as it will largely depend

on the expertise of the designer of the objective function. The second challenge

of neuro-evolution is the reality gap. The reality gap are the inescapable differ-

ences between the design and deployment environment, and often manifests in a

performance drop when designing control software in simulation and assessing

it on real robots. Yet, not all design methods are affected similarly by the reality

gap, and it is therefore imperative to assess all offline optimization-based design

methods not only in simulation but on real robots (Birattari et al., 2019). In the

context of neuro-evolution, Hasselmann et al. (2021) investigated the effects of

the reality gap on different neuro-evolutionary design methods. They showed that,

without further mitigation strategies or mission-specific adaptations, sophisticated

neuro-evolutionary design methods perform similarly poor in reality as a simple

perceptron network.

2.6.2 Automatic modular design

Neuro-evolution enables, in practice, the design of control software without prior

domain knowledge. Yet, in cases that domain knowledge is available, it might be

incorporated into the design method to achieve better results. Instead of relying on

artificial neural networks, automatic modular design methods generate control soft-

ware that is composed of software modules that are assembled into a more complex

control architecture—e.g., finite-state machines or behavior trees (Colledanchise

and Ögren, 2018). Through the choice and implementation of these modules,

domain knowledge can be incorporated into the design process.

Duarte et al. (2014) manually decomposed a complex object removal task into

33

simpler subtasks. They evolved continuous-time recurrent neural networks that

were then assembled, in a modular way, into a hierarchical controller (according to

the manual decomposition). Ferrante et al. (2015) used grammatical evolution to

design control software for a foraging scenario with task allocation. They designed

behavioral rules from basic behavioral and conditional modules. Hecker et al.

(2012) used a genetic algorithm to optimize a finite-state machine that controls the

behavior of robots in a foraging swarm. The authors pre-programmed an initial

finite-state machine, which was inspired by the foraging behavior observed in

ants. They used the genetic algorithm to optimize parameters of the finite-state

machine that were not chosen at design time. Francesca et al. (2014) proposed

AutoMoDe-Vanilla, an automatic modular design method that assembles finite-

state machines out of a set of twelve handcrafted modules (see Section 2.8 for

a more detailed description of Vanilla and other design methods of the Auto-

MoDe family). Besides finite-state machines, behavior trees have recently gained

attention in the literature of automatic modular design. They offer several ad-

vantages over finite-state machines, like enhanced modularity and better human

readability (Colledanchise and Ögren, 2018). Jones et al. (2018b) evolved behavior

trees for a foraging swarm of Kilobot robots (Rubenstein et al., 2014). Neupane

and Goodrich (2019) used grammatical evolution to design software for a swarm

of 100 robots performing a foraging task.

Automatic modular design methods are an emerging field of research with

promising prospects. Preliminary results indicate that they are a viable alternative

to neuro-evolutionary design methods, with comparable performance and better

transferability between simulation and real robots. However, this advantage comes

at the cost of devoting effort to specify the modules. An artificial neural network

can map all possible sensory inputs to all possible actuator outputs. As a result,

neuro-evolutionary design methods can be used to design control software to

perform any mission that is within the capabilities of the robots. In the case

of automatic modular design, a human designer must manually implement the

modules. The choice of modules implicitly restricts the space of possible missions

that can be addressed by an automatic modular design method (Garzón Ramos and

Birattari, 2020). If the set of modules is too limited, the design method would only

produce satisfactory results for the mission it was conceived for, and the design

space might not contain well-performing instances of control software for other

missions. In other words, the design method will underperform in most cases.

In this situation, the underperforming method can be accepted as it is or it will

become necessary to develop a new design method—which ultimately turns into a

manual design method rather than an automatic one. An important question to be

addressed is, therefore, how to develop general automatic modular design methods

that still remain robust to the reality gap?

34

2.6.3 Multi-agent reinforcement learning

Reinforcement learning is a method for producing control software in which

an agent attempts to learn a policy that encodes the set of optimal actions in a

dynamic environment (Kaelbling et al., 1996). Classically, reinforcement learning

only considers a single agent interacting with the environment. In this case, the

system is then often modelled as a Markov decision process. As robot swarms

are composed of several individuals, they are usually modelled as multi-agent

reinforcement learning problems. In multi-agent reinforcement learning methods,

all members of the swarm typically act independently. For reviews of reinforcement

learning in the single and multi-robot domain, see the work of Kober et al. (2013)

and Zhao et al. (2020).

Although multi-agent reinforcement learning has been largely studied in the

literature, it has seen little application in swarm robotics so far. The first application

of reinforcement learning in a swarm robotics scenario is possibly the one of

Matarić. Matarić (1997) studied reinforcement learning with a swarm of 4 robots

that perform a foraging mission. In a follow-up work, Matarić (1997) introduced

robot communication in the swarm to synchronize rewards between the robots.

More recently, Hüttenrauch et al. (2019) used deep reinforcement learning to

generate control software for a swarm of virtual agents. Bloom et al. (2022)

investigated the use of four deep reinforcement learning techniques in a collective

transport experiment.

The application of multi-agent reinforcement learning poses several challenges

that still hinder its application to swarm robotics. A first challenge arises from

the fact that, in swarm robotics, the desired behavior is usually expressed at the

collective level, whereas the learning must happen at the individual level. Thus,

when designing control software using reinforcement learning, the mission designer

needs to decompose the reward function of the whole swarm into rewards that can

be assigned for individual contributions. This problem is also known as spatial

credit assignment. To this date, no generally applicable methodology exists to

address this problem and most works use manual credit assignment (Matarić, 1998;

Hüttenrauch et al., 2019; Bloom et al., 2022).

Another important issue is the representation of the state and action spaces in

the learning process. Typically, a multi-agent reinforcement learning uses joint

action and state spaces, which are concatenated over the individual action and state

spaces of each individual agent. These joint spaces, however, suffer heavily from

the curse of dimensionality, as they scale poorly both in the size of the individual

spaces and in the number of agents. Consequently, addressing large swarm sizes

is infeasible in practice. Furthermore, the joint space is not observable by any

individual agent, due to the locality of information in a robot swarm. In this sense,

the problem of multi-agent reinforcement learning for swarms is more correctly

35

modelled by a partially observable Markov decision process (Kaelbling et al.,

1996). In the literature, two techniques have been mostly used to overcome the

partial observability: reducing the joint action and state space to those that are

pertinent to a single robot (Hüttenrauch et al., 2019; Bloom et al., 2022); or sharing

information to synchronize the state beliefs of all members of the swarm (Matarić,

1998). However, the policy is executed decentralized on each individual robot.

2.6.4 Imitation Learning

A research field in reinforcement learning that has become of interest for swarm

robotics researchers is imitation learning (Osa et al., 2018). In imitation learning,

the reward function is assumed to be unknown. Instead, the learning process has

access to demonstrations of the desired behavior. The agents attempt to learn

a policy that results in a behavior that is similar to the behavior that has been

provided in a demonstration.

Within the research on imitation learning and swarm robotics, Li et al. (2016)

proposed Turing learning for swarm systems. Inspired by the Turing test, the

system learns two programs. A first program controls the robots in the swarm,

whereas the second program attempts to distinguish between trajectories from the

originally demonstrated behavior and trajectories from the behaviors that are being

generated through learning. Šošić et al. (2017) used inverse reinforcement learning

to learn the behavior of two predefined particle models. Using SwarmMDP (a

variant of decentralized, partially observable Markov decision processes), they

reduced the multi-agent reinforcement learning problem to a single-agent problem.

Alharthi et al. (2022) used video recordings of simulated robots to learn a behavior

tree corresponding to the demonstrated collective behavior. Gharbi et al. (2023)

used apprenticeship learning (Abbeel and Ng, 2004) to learn collective behaviors

from demonstrations of desired spatial organizations for a swarm.

Design methods based on imitation learning that are being currently developed

face two challenges. The first challenge is that existing methods typically require

detailed demonstrations to produce their corresponding control software. The

more detailed the demonstrations, the easier it is to imitate them. Most work on

imitation learning in swarm robotics uses an already available behavior to generate

trajectories that must be learned again by the swarm (Li et al., 2016; Šošić et al.,

2017; Alharthi et al., 2022). The obvious drawback of this approach is that it is only

suitable for cases in which an implementation of the desired collective behavior

already exists. Alternatively, other approaches have focused on only demonstrating

a few key elements of the collective behavior, instead of a full trajectory (Gharbi

et al., 2023). The second challenge is that there is no well-established method to

measure the similarity between a demonstrated behavior and a generated one.

36

2.6.5 Other approaches

As discussed previously, a major issue in evolutionary swarm robotics is the

formal definition of the objective function. Some recent studies focus on the

application of novelty search in swarm robotics. Instead of optimizing a mission-

specific performance measure, novelty search generates a set of behaviorally diverse

instances of control software (Lehman and Stanley, 2011). Gomes et al. (2013)

used novelty search to generate aggregation and resource sharing behaviors in a

swarm. Additionally, the authors combined the novelty metric with a performance

metric to overcome limitations where novelty search could not escape large, low-

performance regions of the search space. In a follow-up work, Gomes et al. (2017)

applied novelty search to co-evolutionary problems. Gomes and Christensen

(2018) also investigated how to generate task-agnostic behavior repertoires using

novelty search. Hasselmann et al. (2023) proposed AutoMoDe-Nata, an automatic

modular design method that uses novelty search to create basic behavioral modules,

which then are combined into probabilistic finite-state machines. See Hasselmann

(2023) for an overview of novelty search-based design methods in swarm robotics.

Outside of novelty search, Trianni and López-Ibáñez (2015) investigated the use

of an evolutionary multi-objective optimization algorithm in a strictly collaborative

mission. Next to the (singular) objective of the mission, the authors specified a

secondary auxiliary objective to overcome the convergence to certain sub-optimal

behaviors—although the auxiliary conflicted with the main objective. They showed

that multi-objective optimization indeed avoided premature convergence, and that

properly chosen auxiliary objectives have the potential to overcome the bootstrap

problem.

Kaiser and Hamann (2019) investigated an approach named “minimizing sur-

prise”. Inspired by the free energy principle (Friston, 2010), Hamann (2014) used

offline evolution to generate control software in the form of two neural networks, a

prediction network and an action network. The action network controlled the robot,

whereas the prediction network predicted the next sensor state. The design process

aimed to minimize the prediction error. Results showed that, despite not selecting

for swarm behaviors, basic self-organizing collective behaviors emerged during

the design process. Kaiser and Hamann (2019) extended their work and proposed

a system to systematically engineer self-organizing assembly behaviors using the

“minimizing surprise” approach.

2.7 Reality gap

One of the biggest remaining challenges in optimization-based design remains

the reality gap, also called the sim-to-real problem (Francesca and Birattari, 2016;

37

Ligot and Birattari, 2020). Traditionally, the reality gap is understood to occur when

the simulation environment is too simplistic. Recent research, however, challenges

this “complexity understanding” (Ligot and Birattari, 2020, 2022). For example,

Ligot and Birattari (2020) reproduced the effects of the reality gap in simulation-

only experiments. They developed two simulation models and designed control

software in one model (taking on the role of the design context) and assessed it in

the other (taking on the role of a pseudo-reality context). The effects of the reality

gap became apparent regardless of the choice of design and pseudo-reality model.

Their results showed that the “complexity understanding” does not sufficiently

explain the occurrence of the reality gap. In a follow-up work, Ligot and Birattari

(2022) systematically studied the prediction error of different evaluation strategies,

such as evaluation in the design context, evaluation in one pseudo-reality context,

and evaluation in many pseudo-reality contexts.

Francesca et al. (2014) argued that the reality gap did not occur due to too

simplistic simulations, but because of inherent differences in the simulation context

that are not present in reality—see also Francesca (2017). A sufficiently expressive

design method will then invariably exploit these idiosyncrasies of the design context.

When assessed in reality, these idiosyncrasies are no longer present, and the control

software suffers from the reality gap. They argued the tendency to exploit the

idiosyncrasies of the design context can be seen as akin to the problem of overfitting

in supervised machine learning (Geman et al., 1992). Overfitting happens when the

learning process models relationships between inputs and outputs that exist in the

training set, but not in the underlying distribution from which the training set was

sampled. When evaluating the learned model on a new dataset (such as the test or

validation set), the model will fail to correctly model the relationship between input

and output. It is said that the learning process modeled the noise in the training

data and failed to generalize. The generalization error is typically understood

to be composed of two elements: the variance error and the bias error (Geman

et al., 1992). The variance error is caused by a hypersensitivity to the training

data and any noise contained therein (overfitting). The bias error stems from the

inability to capture the relations present in the training data (underfitting). It has

been shown that, for artificial neural networks, their low bias (as universal function

approximators) entails a high variance. Typically, it is therefore necessary to find

a trade-off between bias and variance. See Section 2.8 for an in-depth discussion

of the proof-of-concept design method proposed by Francesca et al. (2014) to

introduce bias and other design methods of the AutoMoDe family that are built

around it.

Several other approaches have been proposed to reduce the effects of the

reality gap. For example, system identification can be used to develop more

realistic simulators that intend to minimize the differences between simulation

and reality (Bongard and Lipson, 2004; Zhao et al., 2020). Koos et al. (2013)

38

proposed the transferability approach, in which the transferability of generated

control software is periodically assessed during the design process. The design

method will therefore solve a multi-objective optimization problem, in which

both the performance in simulation and in reality are considered. For an in-depth

overview of approaches to the tackle the reality gap in swarm robotics, see Ligot

(2023).

2.8 AutoMoDe

Francesca et al. (2014) postulated that the reality gap can be seen akin to the

bias-variance trade-off in machine learning. Design methods with low bias can

generate control software that represents any relationship between sensor input

and actuator output. This allows these design methods to generate control software

that (in principle) has the potential to act (near) optimally in all circumstances.

However, they also show high variance and tend to overfit the idiosyncrasies of

the design context instead of realizing the desired relationships. Francesca et al.

proposed to reduce the variance of the design method by allowing for bias. By

restricting the possible relationships between sensor readings and actuator outputs

that the design method can produce, control software can be generated that does

not overfit the idiosyncrasies of the design context and therefore transfers well to

reality.

To validate their hypothesis, they developed AutoMoDe-Vanilla, an auto-

matic modular design method (Francesca et al., 2014). Automatic modular design

methods are composed of several elements. First, they design control software

for a given robotic platform. In order to allow comparison on equal footing with

other design methods (e.g., neuro-evolutionary design methods), the actual robotic

platform is abstracted through a reference model, which provides a formalization

of the available sensors and actuators. Based on the reference model, a set of

behavioral and conditional modules is defined. These modules form the most

important way to restrict the variance, as they define and restrict how the robot

can react to its sensor readings. During the design process, the modules will be

assembled and combined into more advanced structures, called the target architec-

ture. By defining additional constraints on the target architecture, the variance can

be further restricted. The last element of an automatic modular design method is

the optimization algorithm. This algorithm combines the modules into the target

architecture and fine tunes any parameters that the modules might have. Fran-

cesca et al. compared the performance of Vanilla with EvoStick, a yardstick

implementation of neuro-evolutionary swarm robotics. As expected, EvoStick

outperformed Vanilla in simulation, testament to its small bias. However, when

assessed in reality, EvoStick was outperformed by Vanilla. This indicates

39

that the reduced variance of Vanilla indeed was beneficial to the transferability

of the generated control software. Yet, human designers designing control soft-

ware with the same constraints as Vanilla were able to outperform the automatic

design (Francesca et al., 2015).

In a follow-up work, Francesca et al. (2015) developed AutoMoDe-Choco-

late (for a detailed description of the design method, see Section 3.4). Choco-

late is identical to Vanilla in all regards, except for the optimization algorithm,

where Chocolate employs Iterated F-race instead of F-race. That is, Choco-

late also assembles finite-state machines (under the same constraints) from the

same set of behavioral and conditional modules. Francesca et al. compared the

performance of control software generated by Chocolate with that generated

by Vanilla, EvoStick and control software generated by human designers.

The results obtained in five missions showed that Chocolate outperformed both

Vanilla and the human designers, while remaining robust to the reality gap.

Hasselmann et al. (2021) showed that rank inversion is not only an artifact of

EvoStick. The authors compared several design methods based on state-of-the-

art neuro-evolutionary methods, such as NEAT (Stanley and Miikkulainen, 2002),

xNES (Glasmachers et al., 2010) or CMA-ES (Hansen and Ostermeier, 2001).

All neuro-evolutionary methods considered suffered similarly from the reality

gap and exhibited rank inversions when compared to Chocolate. Furthermore,

the design methods based on more advanced algorithms did not offer practical

advantages over simpler implementations, such as EvoStick.

Based on Chocolate, several variants (also called AutoMoDe flavors) were

developed to investigate different elements of the design process, such as different

sets of manually or automatically crafted modules (Hasselmann and Birattari, 2020;

Garzón Ramos and Birattari, 2020; Mendiburu et al., 2022; Spaey et al., 2020;

Ligot et al., 2020a), and hardware-software co-design (Salman et al., 2019). How-

ever, these design methods all take the optimization algorithm for granted. Only

two other works have addressed the choice of the optimization algorithm. When

Francesca et al. (2015) proposed Chocolate, they changed the optimization

algorithm from F-race to Iterated F-race. Cambier and Ferrante (2022) proposed

AutoMoDe-Pomodoro, a class of automatic modular design methods that use

evolutionary algorithms as optimization algorithm. The authors proposed three

design methods that use different encodings of the finite-state machines and differ-

ent evolutionary algorithms. Their results show that the design methods based on

evolutionary algorithms achieve similar results to those achieved by Chocolate

in simulation.

Notably, neither work aims to address questions on the role of optimization.

The introduction of Chocolate aimed at outperforming manual design by using

a more sophisticated optimization algorithm. Pomodoro aimed to investigate

different encodings of finite-state machines. Neither work addresses questions

40

Design
Specifications

Initial

Design

Evaluate

Performance

Change

Design

Good?
Final
Design

no

yes

Image originally published by Kochenderfer and Wheeler (2019).

Figure 2.2: An overview of a general optimization process. The blue part denotes

the role that an optimization algorithm plays in the process.

like what causes the observed differences in performance between two different

optimization algorithms.

2.9 Optimization

A typical optimization process tries to find a candidate solution that is optimal with

respect to some measure of quality. It can be seen as a repetition of two steps, as

seen in Figure 2.2 (Kochenderfer and Wheeler, 2019). Before the optimization pro-

cess enters its loop, the optimization problem needs to be formally specified. This

step is often done manually by a human expert. The problem specification typically

describes two elements: the representation of candidate solutions and a formal

specification of the quality measure. The quality measure is often a mathematical

function f mapping candidate solutions to numerical values. Depending on if it

should be minimized or maximized, it is sometimes called a cost or utility function,

respectively. More generally, the term objective function is used, encompassing

both cost and utility functions. The representation of a candidate solution usually

consists of a set of variables, which the optimization process can manipulate, and a

set of constraints that describe conditions for a candidate solution to be valid. A

candidate solution fulfilling all constraints is called feasible. The set of all feasible

candidate solutions is denoted as C. The feasible candidate solution that optimizes

the objective function is called the optimal solution to the optimization problem.

In the next step of the optimization process, one or multiple initial candidate

solutions are generated from the problem specification. These candidate solutions

are then evaluated on the quality measure. If the quality of one of the candidate

solutions was sufficiently good (either optimal or close to an optimal solution), the

optimization process terminates, and the candidate solution is returned. If not, then

one or multiple new candidate solutions are generated and evaluated again until

41

one of them reaches a sufficiently good quality. An optimization algorithm is then

an algorithm that systematically generates and evaluates candidate solutions.

2.9.1 Optimization problems

In optimization, it is necessary to distinguish between optimization problems and

problem instances (Korte and Vygen, 2018). A problem instance describes one

particular problem for which an optimal solution needs to be found. In contrast,

an optimization problem is a more abstract description of a class of problem

instances with similar characteristics. For example, the traveling salesman problem

(TSP) is an optimization problem, concerned with finding the shortest routes on

a weighted graph (Lin and Kernighan, 1973). A problem instance I is then an

instantiation of the optimization problem. In the example of the TSP, a problem

instance corresponds to the choice of one particular graph.

Optimization problems can be categorized according to different criteria (Korte

and Vygen, 2018). For example, if the objective function and all constraints are

linear, the optimization problem is a linear programming problem. In the context of

this dissertation, however, it is more important to classify the optimization problems

according to the domains of their variables (Korte and Vygen, 2018). If all variables

are continuous, then the optimization problem is called a continuous problem.

Similarly, if all variables can take only discrete values, then the optimization

problem is called a discrete problem. Hybrid problems exist in which part of the

variables are discrete and another part is continuous. These problems are called

mixed-variable problems. It is to note that optimization problems can sometimes

be transformed from one model into another. Therefore, some discrete problems

can be modeled as continuous problems and continuous problems can be modeled

as discrete ones.

Several problems are commonly modeled as continuous optimization prob-

lems. The maximum flow problem is an example of a continuous optimization

problem (Edmonds and Karp, 1972). In the maximum flow problem, a directed

graph is given. One node is the source, and another node is the sink. All other

nodes are intermediate nodes. The edges of the nodes describe the capacities that

can flow from one node to the other. The optimization problem is now to assign

(real-valued) flows to each edge such that the sink receives the maximum amount

of flow, with no node receiving more input than it outputs or outputting more than

it receives.

Similarly, many problems can be modeled as discrete optimization problems.

They can be further classified into combinatorial problems (in which a candidate

solution is represented as a combination of elements, e.g., a permutation of a set)

and integer programming problems (in which candidate solutions are represented

as vectors of integers). Often, these two classes are related, and a combinatorial

42

representation can be turned into an integer programming one and vice versa (Korte

and Vygen, 2018). Two well-known problems of discrete optimization are the

traveling salesperson problem (TSP) and the knapsack problem (Mathews, 1897).

In the traveling salesperson problem, an undirected weighted graph is given. The

goal of the optimization process is to find the shortest tour that visits all nodes in

the graph, given a specific starting node. In the knapsack problem, the goal is to

find an optimal combination of items that maximizes their total value while not

exceeding the capacity of the sack.

Sometimes optimization problems can be modeled as either continuous or

combinatorial problems. Additionally, many real-world applications combine

elements from both continuous and discrete optimization. Furthermore, evaluation

of candidate solutions might not be deterministic. That is, when evaluating a

candidate solution, one cannot assess the actual performance. Rather, one can

only observe samples of the random process that defines the quality of a candidate

solution. In these cases, the optimization problem is called a stochastic optimization

problem.

2.9.2 Optimization algorithms

Various algorithms have been developed to optimize classes of optimization prob-

lems. These optimization algorithms can be categorized into exact algorithms,

heuristic algorithms and metaheuristic algorithms.

Exact methods provably find the optimal solution to an optimization problem,

if it exists (Boyd and Vandenberghe, 2004). For example, the simplex algorithm

can be used to find optimal solutions to linear programming problems (Dantzig,

1990) and the branch-and-bound algorithm can be used to find optimal solutions in

the traveling salesman problem (Padberg and Rinaldi, 1991).

While exact methods are guaranteed to find the optimal solution, there is one

major challenge: the computational complexity (Korte and Vygen, 2018). The

computation complexity describes in a formal way the (worst-case) run time of an

algorithm with respect to the size of the input (i.e., the size of the problem instance).

Computational complexity is usually expressed using asymptotic notation. An

algorithm has a computational complexity O(f(n)) if its run time grows asymptot-

ically within a constant factor of f(n). In optimization, there are two classes of

computational complexity that are of special interest. The complexity P contains

all optimization problems for which there exists an algorithm that finds an optimal

solution in polynomial time. The complexity class NP contains all optimization

problems in which a solution c given for an instance I can be verified in polynomial

time. It should be clear that NP ⊆ P , as the construction of a solution in P could

serve as a witness for the verification. However, unless NP = P , this means that

there are algorithms in NP where a solution cannot be found in polynomial time.

43

As a result, these problems often cannot be solved exactly in a reasonable time for

large problem instances.

Instead of searching for exact solutions that are guaranteed to be optimal, it is

often sufficient to find solutions that are close to the optimal one. In these cases,

one can rely on the use of heuristic optimization algorithms. Heuristic optimiza-

tion algorithms do not necessarily find an optimal solution in finite time. Instead,

they iteratively generate and evaluate candidate solutions. The generation of new

candidate solutions is then guided by heuristic information about the optimization

problem. Heuristic algorithms have shown to provide near-optimal solutions often

significantly quicker than exact algorithms (Glover and Kochenberger, 2003). A

special kind of heuristics are metaheuristic algorithms. They are algorithms that

find approximate solutions to optimization problems without explicitly relying on

domain knowledge about the optimization problem. Often, an actual implementa-

tion of a metaheuristic might rely on heuristic information to improve performance

on a specific optimization problem, but metaheuristics are principally applicable to

larger classes of optimization problems.

2.9.3 Metaheuristics

Metaheuristic algorithms are general optimization algorithms that are applicable to

various classes of optimization problems (Glover and Kochenberger, 2003). That

is, the general search strategy is independent of the optimization problem. Never-

theless, some operators might need to be specified specifically for the optimization

problem at hand and the performance of the optimization algorithm might depend

in parts on the choice of these problem-specific components.

Local search algorithms search the neighborhood of candidates for promising

new candidate solutions. The simplest local search algorithm is iterative improve-

ment, sometimes also called hill climbing. Iterative improvement maintains an

incumbent candidate solution that is the best encountered candidate solution so

far. The algorithm systematically explores the neighborhood around the incumbent

candidate solution. If it finds a challenger that is strictly better than the incumbent,

it accepts the challenger, and the challenger becomes the new incumbent. When

there is no further improvement possible in the neighborhood of the incumbent,

iterative improvement terminates and returns the incumbent. It is trivial to see

that iterative improvement converges to a local optimum. However, it is not guar-

anteed that the local optimum corresponds to a global one or the quality of the

local optimum is close to that of the global one. Several other local-search-based

metaheuristics have been developed to avoid convergence to local optima.

In general, it is necessary to find a trade-off between exploration and exploita-

tion. Exploitation is the use of knowledge about high-quality regions of the search

space, whereas exploration describes a behavior that operates independently of

44

any knowledge about the search space. Iterative improvement is an algorithm that

solely relies on exploitation and features no exploration. As a result, it has no

means of escaping a local optimum. On the other hand, an algorithm that would

solely focus on exploration would be equal to a random search. Most optimization

algorithms therefore contain components that try to exploit the knowledge about

higher quality regions of the search space while maintaining an element of explo-

ration to escape local optima. Several local-search based metaheuristics have been

developed, such as tabu search (Glover, 1989), simulated annealing (Kirkpatrick

et al., 1983), iterated local search (Lourenço et al., 2003), greedy randomized

adaptive search procedure (Feo and Resende, 1989), and variable neighborhood

search (Mladenović and Hansen, 1997).

Besides local searches, metaheuristic optimization algorithms also encompass

population-based optimization algorithms. Population-based algorithms address

the issue of convergence towards local optima by maintaining a set (or population)

of candidate solutions in possible different regions of the search space. When

one individual candidate solution gets stuck in a local optimum, other candidate

solutions can still explore the search space. In order to search more efficiently, the

individuals in the population share information between each other in order to bias

other individuals towards higher performing regions of the search space. Evolution-

ary algorithms are a commonly used class of population-based algorithms (Bäck

et al., 1997). Inspired by the natural process of evolution, evolutionary algorithms

guide the search through means of selection, recombination, mutation, and replace-

ment. Selection and replacement are mechanisms that manipulate the population

and aim to bias the search towards higher quality regions of the search space by

deciding which candidate solutions are selected for reproduction (selection) or

which ones are selected for the next generation (replacement). Reproduction (or

crossover) and mutation describe operators that generate new candidate solutions.

Reproduction combines the information of two or more parents to generate a new

offspring (exploitation), whereas mutation randomly changes one candidate solu-

tion (exploration). Other population-based metaheuristics include particle swarm

optimization (Eberhart and Kennedy, 1995), ant colony optimization (Dorigo et al.,

1996; Dorigo and Stützle, 2014), and memetic algorithms (Moscato and Cotta,

2010).

2.10 Automatic algorithm configuration

A recent application of metaheuristics is automatic algorithm configuration (Birat-

tari et al., 2002; Birattari, 2004; Pérez Cáceres, 2017). It is necessitated by the fact

that many instances of algorithms have parameters that influence its performance

in specific circumstances. Manually finding the optimal set of parameters has

45

proven infeasible. In automatic algorithm configuration, the problem of finding the

optimal set of parameters is solved automatically by using an optimization algo-

rithm. Automatic algorithm configuration is a more general case of the problem

in machine learning that is often known as hyperparameter optimization (Feurer

and Hutter, 2019). Automatic algorithm configuration problems often have both

discrete and continuous domains. Furthermore, it is often the case that the evalua-

tion is stochastic, that is, the quality depends on other (possibly random) factors

outside of the parameters.

In the literature, several optimization algorithms have been successfully applied

to automatically tune these algorithms for improved performance. For example,

Pérez Cáceres et al. (2018) used Iterated F-race (López-Ibáñez et al., 2016) to tune

the parameters of the compiler GCC, resulting in compiled machine code whose

run time was improved by up to 40% when compared to code compiled with the

-O2 and -O3 flags. Other optimization algorithms used in automatic algorithm

configuration include F-race (Birattari et al., 2002), ParamILS (Hutter et al., 2009),

GGA (Ansótegui et al., 2009), and SMAC (Hutter et al., 2011; Lindauer et al.,

2022). Hutter et al. (2009) used ParamILS to tune the parameters of CPLEX,

resulting in improved run time on several benchmarks. And KhudaBukhsh et al.

(2016) tuned the parameters of SAT solvers from components. Similarly, Ansótegui

et al. (2009) used ParamILS and GGA to tune several SAT solvers. Thornton et al.

(2013) developed Auto-WEKA, an automatic algorithm configuration framework

for the WEKA library based on SMAC. For a recent survey of automatic algorithm

configurators, see, for example, the work of Schede et al. (2022).

46

Chapter 3

Methods

In this chapter, I present common elements of the methodology that I applied

throughout the experiments presented in this dissertation. The chapter is structured

as follows. In Section 3.1, I present the optimization algorithm Iterated F-race. In

Section 3.2, I present the version of the e-puck robot I used in my experiments,

and in Section 3.3, the reference model that formalizes access to the sensors

and actuators. In Section 3.4, I present AutoMoDe-Chocolate, an automatic

modular design method that forms the basis for the design methods I developed. In

Section 3.5, I present EvoStick, a yardstick implementation of neuro-evolution.

In Section 3.6, I present the experimental environments used in my experiments.

In Section 3.7, I describe the statistical analysis performed on the results.

3.1 Iterated F-race

Iterated F-race (Balaprakash et al., 2007; López-Ibáñez et al., 2016) is an optimiza-

tion algorithm that searches the space of all possible candidate solutions for the

best one according to a mission-specific measure of performance. The algorithm

executes several iterations, each iteration reminiscent of a race (Maron and Moore,

1997).

In the first race, a uniformly distributed set of candidate solutions is sampled.

These candidates are initially evaluated on a set of instances. Typically, an instance

describes the configuration of the arena at the beginning of an experiment (that is,

positions and orientations of the robots, positions of eventual obstacles or objects

of interest, and color of the floor).

After the evaluation is performed, a Friedman test (Friedman, 1937, 1939;

Conover, 1999) is performed on the performance obtained by the candidate so-

lutions. The candidate solutions that performed significantly worse than at least

another one are discarded. The algorithm keeps evaluating the remaining candidate

47

Image credit: David Garzón Ramos.

Figure 3.1: The e-puck robot used in my experiments. It is augmented with a

range-and-bearing board and a Linux extension board.

solutions on new instances and discards those that are statistically dominated.

The race terminates when only one surviving candidate solution remains, or

when the maximal number of evaluation defined for the race is reached. In the

following races, the new set of candidate solutions is sampled with a distribution

that gives higher priority to solutions that are similar to the surviving solutions of

the previous one.

An implementation of Iterated F-race is provided by the irace package1

(López-Ibáñez et al., 2016), written in R (R Development Core Team, 2008).

3.2 The e-puck robot

All experiments were performed on an extended version of the e-puck robot (see

Figure 3.1), a cylindrical, two wheeled robot with a diameter of approximately

0.14m (Mondada et al., 2009; Garattoni et al., 2015). The robot is extended with a

Linux extension board2 and a range-and-bearing board (Gutiérrez et al., 2009).

The e-puck has access to a few sensors and actuators. Namely, the base

version of the e-puck has eight infra-red transceivers located around the body of

the e-puck. They can be used to detect the proximity of other objects as well as

perceive ambient light. Other sensors of the e-puck are a microphone, a 3-axis

accelorometer, and a front-facing camera. Furthermore, the e-puck was augmented

with three ground sensors that can detect the grey-scale color of the floor and a

range-and-bearing board (Gutiérrez et al., 2009). The range-and-bearing board

uses infrared transmitters and receivers located around the perimeter of the robot

1https://mlopez-ibanez.github.io/irace/
2https://www.gctronic.com/doc/index.php/Overo_Extension

48

https://mlopez-ibanez.github.io/irace/
https://www.gctronic.com/doc/index.php/Overo_Extension

Table 3.1: Reference model RM1.1 (Hasselmann et al., 2018), which formalizes

the sensors and actuators of the e-puck robot. The period of the control cycle is

100 ms.

Sensor/Actuator Parameters Values

proximity prox i, with i ∈ {0, . . . , 7} [0, 1]
light light i, with i ∈ {0, . . . , 7} [0, 1]
ground groundi , with i ∈ {0, . . . , 2} {black , gray ,white}
range-and-bearing n {0, . . . , 19}

Vd ([0, 0.5] m, [0, 2π] radian)

wheels vl, vr [−0.12, 0.12] m/s

to transmit and receive messages between the robots. Additionally, it provides

localization information, such as distance and orientation, of received messages.

As for actuators, the e-puck has two wheels, the speeds of which can be set

independently of each other. It also has a ring of eight red LEDs distributed around

the body of the robot.

The e-puck could be further augmented, for example with an omnidirectional

vision turret (École polytechnique fédérale de Lausanne, 2010). In the context of

this work, I only used the proximity sensors (for light and proximity readings), the

ground sensors, the range-and-bearing board and the wheels. I used the firmware

and ARGoS3 plug-in developed at IRIDIA (Garattoni et al., 2015; Ligot et al.,

2017).

3.3 Reference model RM1.1

Access to the sensors and actuators of the e-puck was formalized through a refer-

ence model, namely RM1.1 (see Table 3.1). Reference models allow programming

several design methods against the same interface, providing a unified interface

to sensors and actuators. In RM1.1, the robot has access to 8 proximity sensors

(prox i) that can perceive obstacles and other robots up to a distance of 0.1m, 8

light sensors (light i) that can perceive ambient and directional light, 3 ground

sensors (ground i) that can detect if the floor is white, black or gray, and a range-

and-bearing board that allows the robot to perceive its neighbors up to a range of

0.5m, in the form of the number of neighbors (n) and a vector towards their col-

lective center of mass (Vd). The reference model also allows setting the velocities

of the two wheels independently of each other (vl, vr).

49

3.4 Chocolate

Chocolate is a design method that designs control software for the e-puck

robot (see Section 3.2) (Francesca et al., 2015). The capabilities of the robot

are abstracted into a reference model (see Section 3.3). Based on the reference

model, a set of behavioral and conditional modules is defined (see Section 3.4.1).

Chocolate then uses Iterated F-race (see Section 3.1) to automatically assemble

these modules into finite-state machines (see Section 3.4.2).

3.4.1 Modules

Chocolate has at its disposal a set of six behavioral modules and six conditional

modules (Francesca et al., 2015). A behavioral module performs a low-level

behavior in which the robot operates its actuators in response to the readings of

its sensors. A conditional module performs a check on the context that the robot

perceives via its sensors. Conditions contribute to determine which behavior is

executed at any moment in time. If a module has parameters, they are fine-tuned

by the optimization algorithm.

In the following, I briefly describe the low-level behaviors and conditions. For

the details, I refer the reader to their original description given by Francesca et al.

(2014).

Behavioral modules

Exploration: if the front of the robot is clear of obstacles, the robot goes straight.

When an obstacle is perceived via the front proximity sensors, the robot turns

in-place for a random number of control cycles drawn in {0, ..., τ}. τ is an

integer parameter ∈ {0, ..., 100}.

Stop: the robot does not move.

Phototaxis: the robot goes towards the light source. If no light source is perceived,

the robot goes straight while avoiding obstacles.

Anti-Phototaxis: the robot goes away from the light source. If no light source is

perceived, the robot goes straight while avoiding obstacles.

Attraction: the robot goes towards its neighboring peers, following αVd, where

α ∈ [1, 5] controls the speed of convergence towards them. If no peer is

perceived, the robot goes straight while avoiding obstacles.

50

Image originally published by Francesca et al. (2014).

Figure 3.2: An example of a finite-state machine that Chocolate can generate.

Circles represent states of the finite-state machine and arrows represent transitions.

The diamonds represent the conditions associated with the transitions.

Repulsion: the robot goes away from its neighboring peers, following −αVd,

where α ∈ [1, 5] controls the speed of divergence. If no peer is perceived,

the robot goes straight while avoiding obstacles.

Conditional modules

Black Floor: true with probability β, if the ground situated below the robot is

perceived as black.

Grey Floor: true with probability β, if the ground situated below the robot is

perceived as gray.

White Floor: true with probability β, if the ground situated below the robot is

perceived as white.

Neighborhood Count: true with probability z (n) =
(

1 + eη(ξ−n)
)−1

, where n is

number of detected peers. The parameters η ∈ [0, 20] and ξ ∈ {0, ..., 10}
control the steepness and the inflection point of the function, respectively.

Inverted Neighborhood Count: true with probability 1− z (n).

Fixed Probability: true with probability β.

3.4.2 Control architecture

In the context of this work, I will refer to instances of control software as finite-state

machines, if they can be formally expressed as probabilistic finite-state machines.

Probabilistic finite-state machines are composed of states and transitions. Each

51

Table 3.2: Noise models for the design and pseudo-reality context.

Sensor/Actuator Design model Pseudo-reality model

proximity 0.05 0.05

light 0.05 0.90

ground 0.05 0.05

range-and-bearing 0.85 0.90

wheels 0.05 0.15

state has an associated behavior that is executed as long as the state is active.

Transitions connect two states and have an associated condition, which can trigger

probabilistically. If the transition triggers, then the current state will become

inactive and the state at the other end of the transition will become active and

will start to execute its associated behavior. Chocolate assembles finite-state

machines with up to four states, wherein each state can have up to four outgoing

transitions. An example of such a finite-state machine is shown in Figure 3.2. The

displayed finite-state machine has two states and a total of three conditions. The

associated behavior of the initial state is the Attraction module. Its parameter α is

set to 5. The initial state has exactly one outgoing transition, with the Black Floor

conditional module, leading to the second state with the Stop module. The second

state has two outgoing transitions pointing back to the initial state, one with the

Grey Floor condition and the other with the Fixed Probability probability.

3.5 EvoStick

EvoStick is a yardstick implementation of evolutionary swarm robotics (Fran-

cesca et al., 2012, 2014, 2015). The robots are controlled by an artificial neural

network with a fixed topology. The artificial neural network contains 24 input and

2 output nodes that are mapped to the possible inputs and outputs as defined by the

reference model RM1.1. It is fully connected, feed-forward, and does not contain

hidden layers. EvoStick uses an evolutionary algorithm to optimize the weights

of this artificial neural network.

3.6 Experimental environment

Simulations were performed with ARGoS3, version beta 48 (Pinciroli et al., 2012;

Garattoni et al., 2015). ARGoS3 is a light-weight, physics-based simulator for

swarm robotics. Following best practices, I used realistic noise settings for the

sensors and actuators (see Table 3.2). The noise settings were used in several

52

prior studies (Francesca et al., 2014, 2015; Hasselmann and Birattari, 2020; Spaey

et al., 2020). The noise on the range-and-bearing board was implemented as a

probability that a message is not received by a robot. The noise on the other sensors

was implemented as an additive noise, sampled from a Gaussian distribution with

mean 0 and variance according to the noise setting.

Pseudo-reality is a concept to evaluate the transferability of control software

(Ligot and Birattari, 2020, 2022). Instead of assessing the performance directly

in reality, a different simulation context is used. Research has shown that control

software that transfers well into reality also transfers well into pseudo-reality, while

control software that transfers badly into reality also transfers badly into pseudo-

reality. The pseudo-reality used in my experiments is an ARGoS3 simulation with

the noise values shown in Table 3.2.

Experiments with the real robots were conducted in the ground robot experi-

mental arena at IRIDIA. The ground robot experimental arena is a 70m2 space,

dedicated to testing and running experiments with ground robots. The arena also

contains an overhead tracking system that was used to track the positions of the

robots during the experiments (Stranieri et al., 2013; Legarda Herranz et al., 2022).

The missions do not take place inside the whole arena. Instead, a bounded envi-

ronment is placed inside the ground robot experimental arena and the inside of the

bounded environment constitutes the arena for each mission.

3.7 Statistical analysis

The results of this dissertation are presented in two forms, giving a visual represen-

tation of the samples: notched box-and-whisker boxplots and Friedman plots. In

a notched box-and-whisker boxplot, a horizontal line denotes the median of the

sample. The lower and upper sides of the box are called upper and lower hinges

and represent the first and third quartiles of the observations, respectively. The

upper whisker extends either up to the largest observation or up to 1.5 times the

difference between upper hinge and median—whichever is smaller. The lower

whisker is defined analogously. Small circles represent outliers (if any), that are

observations that fall beyond the whiskers. Notches extend to ±1.58IQR/
√
n,

where IQR is the interquartile range and n is the number of observations. Notches

indicate the 95% confidence interval on the position of the median. If the notches of

two boxes do not overlap, the observed difference between the respective medians

is significant (Chambers et al., 1983).

Friedman plots show the estimated median rank for each design method, as

determined by a Friedman test. Ranks are computed on a per-mission basis.

This allows comparing the performance of the design methods across missions,

irrespective of the different scale of the results. The Friedman plots show the mean

53

rank as a point, and the 95% confidence interval as whiskers. If the whiskers of

two methods do not overlap, than the difference between their median ranks is

statistically significant.

Statements such as “method A outperforms method B” or “method A performs

significantly better than method B” are based on a paired two-sided Wilcoxon

signed-rank tests with a confidence level of 95%.

54

Chapter 4

Local-search based optimization

algorithms

Despite their simplicity, local search algorithms have shown promising results in

many optimization problems. For this reason, I developed two automatic modular

design methods, AutoMoDe-Cherry (see Section 4.3) and AutoMoDe-IcePop

(see Section 4.4), based on local search algorithms. Both design methods are based

on Chocolate and only differ in the optimization algorithm employed. Cher-

ry uses iterative improvement (see Section 4.1.1) and IcePop uses simulated

annealing (see Section 4.1.2). As both design methods are based on local search

algorithms, they require a formal definition of the neighborhood (see Section 4.2).

4.1 Local search algorithms

Local search algorithms are a class of optimization algorithms that operate on the

following principles (Glover and Kochenberger, 2003). Let P be the optimization

problem. P defines a set of solutions, which can take different forms such as

variable assignments, ordering of elements, or graph cuts. Often P also defines a

set of constraints that restrict the set of solutions. A candidate solution is a solution

that satisfies all constraints. Let C denote the set of all candidate solutions. The

objective function fP : C → R of P assigns a quality measure to each candidate

solution.

The goal is to find a solution c ∈ C that is optimal with respect to fP . This

is either a global minimum (fP (c) ≤ fP (c
′), ∀c′ ∈ C) or a global maximum

(fP (c) ≥ fP (c
′), ∀c′ ∈ C), depending on the definition of fP . However, any

maximization problem can be transformed into a minimization problem (and vice

versa) as argmax(fP) = argmin(f ′
P) for f ′

P (x) = −fP (x). In the following, I

will assume that the objective function is to be maximized.

55

Algorithm 4.1: Iterative Improvement.

input :c0 - initial candidate solution

output :cbest - best encountered candidate solution

cbest ← c0
while not TerminationCriterion do

cperturbed ← Exploration(Neighborhood(cbest))
if Acceptance(cbest , cperturbed) then

cbest ← sperturbed
end

end

return cbest

For every candidate solution c, a neighborhood N(c) is defined. N(c) contains

all candidate solutions that can be reached from c through one step of the local

search algorithm. Starting from an initial candidate solution, the local search algo-

rithm tries to move from the incumbent candidate solution c to a candidate solution

c′ ∈ N(c). The selected candidate solution c′ is called the perturbed candidate

solution when the neighborhood N(c) is described through the application of per-

turbation operators. The perturbed candidate solution is accepted—and becomes

the new incumbent candidate solution—according to an acceptance criterion. Once

a termination criterion is met, the current incumbent candidate solution is returned.

The returned solution often is not necessary the global optimum, but only a local

optimum (fP (c) ≥ fP (c
′), ∀c′ ∈ N(c)), that is there is no better candidate solution

in the neighborhood of c, but it could be that a candidate solution outside of the

neighborhood of c has a better solution quality.

In my work, I considered two local search algorithms, iterative improvement

(see Section 4.1.1) and simulated annealing (see Section 4.1.2).

4.1.1 Iterative improvement

Iterative improvement is a simple local search technique that accepts a perturbed

candidate solution if and only if it is better than the current one (see Algorithm 4.1).

There still remains some freedom in implementing this template, like the function

Exploration which defines how the neighborhood is explored. For example,

the neighborhood can be explored randomly, exhaustively, or according to some

heuristic. The acceptance criterion Acceptance defines under which circum-

stances the perturbed solution is selected as the new best solution. In problems

with deterministic performance measures, this might be as simple as comparing

the performances of the two solutions. If the performance measure is stochastic,

56

Algorithm 4.2: Component-based simulated annealing algorithm

input :c0 - initial candidate solution

output :cbest - best encountered candidate solution

T0 ← InitialTemperature

ĉ← c0
while not TerminationCriterion do

ci ← Exploration(Neighborhood(ĉ))
if Acceptance(ĉ, ci, Ti) then

ĉ← ci
if ci improves over cbest then

cbest ← ci
end

end

if TemperatureLengthReached then

Ti+1 ← Cooling(Ti)

end

if TemperatureRestartReached then

Ti+1 ← TemperatureRestart(Ti)

end

end

return cbest

the acceptance criterion could require comparing the mean or median of a sample

of performances, or selecting randomly, instead of deterministically, with regard

to the observed performance. The function TerminationCriterion remains

another choice. It is used to define an end for the potentially time-consuming

search for improvements. Depending on the problem context, this could, for ex-

ample, be a known optimum value, a criterion that models the passage of time

(e.g., runtime of the algorithm, budget of perturbations), or a criterion that detects

stagnation (e.g., indicating that a local optimum has been reached). Furthermore,

the iterative improvement algorithm features two problem-specific elements: c0,
the initial candidate solution, and the function Neighborhood that computes the

neighborhood for any given candidate solution.

4.1.2 Simulated annealing

Simulated annealing (Kirkpatrick et al., 1983) is a well-studied algorithm (Burke

and Bykov, 2017; Hajek, 1988; Lundy and Alistair, 1986; Mitra et al., 1985;

Nikolaev and Jacobson, 2010) that has found many applications (Aarts et al., 2005;

57

Nikolaev and Jacobson, 2010). It is a metaheuristic inspired by the thermodynam-

ical process of annealing. At higher temperatures the particles in a crystal are

more excited and can move more freely than at lower temperatures. Similarly, the

simulated annealing algorithm has a temperature parameter. When the temperature

is high, the algorithm has a chance to accept worsening solutions, mimicking the

free movement of the particles. At lower temperatures, the algorithm will select

worsening solutions less likely, thus constraining the movement of the solution

candidate. Simulated annealing has shown properties that are desirable for the

automatic design of control software. It has been shown to effectively traverse

the search space and to converge quickly towards promising solutions (Hoos and

Stützle, 2005). This allows an efficient use of the allocated budget. Furthermore,

simulated annealing contains mechanisms to escape local optima—e.g., by accept-

ing worsening moves at higher temperatures. This is an important property as it

reduces the risk of premature convergence to suboptimal solutions.

Algorithm 4.2 shows the component-based simulated annealing algorithm,

first proposed by Franzin and Stützle (2019) to unify several variants of the simu-

lated annealing algorithm. The component-based simulated annealing algorithm

contains placeholders for problem-specific definitions and commonly used com-

ponents. Similarly to iterative improvement, an initial candidate solution and a

Neighborhood function must be specified. Like iterative improvement, simu-

lated annealing also requires the definition of a termination criterion (Termina-

tionCriterion), an exploration scheme (Exploration), and an acceptance

criterion (Acceptance). The termination criterion and exploration scheme are

defined exactly as for iterative improvement. The acceptance criterion, however,

does not only depend on the incumbent and the perturbed candidate solution but

also on the current temperature. In order to control the behavior of the temperature,

simulated annealing introduces some additional components that must be chosen.

The initial temperarature (InitialTemperature) defines the initital value

that will be assigned to the temperature parameter. Periodically, the temperature

will be updated, according to the cooling scheme (Cooling). The temperature

length (TemperatureLengthReached) then describes the frequency with

which the temperature will be updated. Similarly, the temperatue can be restarted

(TemperatureRestart) periodically, increasing it again.

4.2 Neighborhood structure

Local search algorithms search through the neighborhood of a candidate solution

for a better one. I defined the neighborhood implicitly through a set of perturbation

operators. For a given candidate solution (that is, an instance of control software),

the neighborhood function can be derived through a systematic and exhaustive

58

application of the perturbation operators.

The operators are presented in a deterministic fashion and with fixed parame-

ters. Wherever there is a choice, it will either be presented as a fixed parameter or

ignored, if not directly relevant to the description of the operator. In any implemen-

tation, a choice mechanism must be decided upon. In this work, the choices will

be made through random and independent sampling from a uniform distribution

over all eligible values.

The perturbation operators follow a hierarchy (structural > modular > para-

metric) where no lower level should change any properties of a higher one. On

the lowest level are parametric perturbations. These perturbations change only the

parametric values of the modules (within the limits defined by the design method),

that are associated with the nodes of the instance of control software. They are

not allowed to change the choice of modules themselves or alter the structure of

the control software. The middle level contains modular perturbations. These

perturbations change the modules that are associated with the nodes, but without

changing the transitions graph between the modules. They can, however, influence

the parametric values of the modules—e.g., when replacing one behavior with

another, as not all behaviors have the same parameter space. The highest level

are structural perturbations that change the graph representation of the control

software (either the state transition graph defined by the finite-state machine or the

tree representation of the behavior trees). These perturbations necessarily influence

also both the modular and parametric levels of the control software.

Validity

In the context of this work, a finite-state machine is considered a valid instance of

control software if it fulfills the following criteria:

V1) Correct number of states

a) Minimum number of states: The finite-state machine has at least 1 state.

b) Maximum number of states: The finite-state machine has at most 4
states.

c) Initial state: Exactly one state of the finite-state machine is designated

as the initial state.

V2) Correct configuration of states

a) Unique behavior: Each state has exactly one associated behavior from

the set of modules.

b) Correct parameters: The parameters of the associated behavior of each

state are within the bounds defined for that behavior.

V3) Correct number of transitions

a) Minimum number of outgoing transitions:

59

1) If there are at least two states in the finite-state machine, then there is

no state that has no outgoing transition.

2) If there is exactly one state in the finite-state machine, then this state

has no outgoing transition.

b) Maximum number of outgoing transitions: Each state has at most 4
outgoing transitions.

c) Total number of transitions: There is no limit on the total number of

transitions in the graph, other than the implicitly defined 4×#states.

V4) Correct configuration of the transitions

a) Unique condition: Each transition has exactly one associated condition

from the set of modules.

b) Correct parameters: The parameters of the associated condition of each

transition are within the bounds defined for that condition.

c) Unique starting point: Each transition has exactly one starting point.

d) Unique endpoint: Each transition has exactly one endpoint.

e) Not self-referencing: For each transition the starting and endpoint are

different.

Perturbation operators

P1) Add a new transition to the finite-state machine: Let s be a state, with

less than the maximum outgoing transitions and s′ be a different state.

Add a transition from s to s.

P2) Remove a transition from the finite-state machine: Let t be a transition

from s to s′, such that t is neither the only outgoing transition from s nor the

only incoming transition into s′.
Remove the transition t.

P3) Add a new state to the finite-state machine: If the finite-state machine has

less than the maximum number of states, let s′ and s′′ be states, where s′ has

less than the maximum number of outgoing transitions, and s′′ might be the

same state as s′.
Add a new state s and add transitions from s′ to s and from s to s′′.

P4) Remove a state from the finite-state machine: Let s be a state that is not

the initial state and not an articulation vertex 1 of the state transition graph.

Remove the state s and any incoming and outgoing transitions of s.

P5) Move the start point of a transition: Let t be a transition starting in a state

s, such that s has at least one other transition t′ also starting from it. Let s′ be

a different state than s that has less than the maximum number of outgoing

1In this setting, an articulation vertex is any vertex of the undirected state transition graph, that,

if removed, would increase the number of connected components.

60

transitions.

Change the start point of the transition t from s to s′.
P6) Move the endpoint of a transition: Let t be a transition ending in a state s,

such that s has at least one other incoming transition t′. Let s′ be a different

state than s.

Change the endpoint of the transition t from s to s′.
P7) Change the initial state: Let s be the initial state and s′ be a different state.

Change the current initial state from s to s′.
P8) Change condition of a transition: Let t be a transition.

Change the associated condition of t to a different one from the set of

modules.

P9) Change behavior of a state: Let s be a state.

Change the associated behavior of s to a different one from the set of modules.

P10) Change parameter of a condition: Let t be a transition and p a parameter

of the associated condition of t.
Set a new value for p within the bounds defined for the condition.

P11) Change parameter of a behavior: Let s be a state and p a parameter of the

associated behavior of s.

Set a new value for p within the bounds defined for the behavior.

The perturbation operators P1 - P7 are structural perturbations, as they change

the state transition graph, defined by the finite-state machine. The perturbation

operators P8 and P9 are modular perturbations as they change the behaviors or

conditions associated with the states and transitions of the finite-state machine.

The perturbation operators P10 and P11 are parametric perturbations as they only

affect the parameters of a single module in the finite-state machine.

4.3 AutoMoDe-Cherry

I defined Cherry2, an automatic modular design method that is based on Choc-

olate (Francesca et al., 2015). It designs control software for the e-puck robot,

formalized through reference model RM1.1 (see Section 3.3). As Cherry is based

on Chocolate, it has access to the same set of six modules and six conditions

available (see Section 3.4). The six behavioral modules are Stop, Exploration,

Phototaxis, Anti-Phototaxis, Attraction, Repulsion. The six conditional modules

are Fixed Probability, Neighborhood Count, Inverted Neighborhood Count, Grey

Floor, Black Floor, White Floor. These modules are assembled into probabilistic

2In the original publication (Kuckling et al., 2020a), no name was chosen to refer to this design

method. Here, I retroactively introduce the name Cherry to refer to this design methods and its

variants.

61

finite-state machines with up to four states and up to four outgoing transitions per

state.

Cherry uses the iterative improvement algorithm (see Section 4.1.1) as opti-

mization algorithm. In the context of Cherry, candidate solutions are instances of

control software. For the initial candidate solution, I chose a “minimal” behavior.

The minimal behavior comprises a finite-state machine with a single state which

executes the Stop module. The Exploration function that returns the next

perturbed candidate solution is defined to apply a random perturbation operator

to the incumbent candidate solution. The Acceptance function evaluates the

incumbent and perturbed candidate solutions ten times on different instances of

the mission (initial positions and headings of the robots, defined through a random

seed) and accepts the challenger if the mean performance improved. To avoid

overfitting to these exact ten seeds, every time a perturbed controller was evaluated,

the oldest two seeds were discarded and replaced by two new ones. The perturbed

controller is then evaluated on all ten seeds, while the current best controller is

evaluated only on the two new seeds, as it has been already evaluated on the old

seeds. The perturbed candidate solution then becomes the new incumbent can-

didate solution and thus the base for the next perturbation. Otherwise, the result

of the perturbation is discarded and a new random perturbation is applied to the

candidate solution. This process is repeated until a termination criterion is met. For

the function TerminationCriterion. I chose a computational budget in the

form of a maximum number of simulations as termination criterion. That is, the

optimization algorithm will terminate when the allocated budget of simulations is

exhausted or does not contain enough simulations to perform another comparison.

These choices lead to a stochastic hill-climbing search iteratively approaching the

first optimum it can find, though not necessarily a global one.

It is possible that the choice of the initial candidate solution can have a signifi-

cant impact on the performance of iterative improvement. If there exists a local

optimum close to the initial candidate solution, it is possible that the optimiza-

tion algorithm quickly converges towards the local optimum and cannot escape

it anymore. Thus, I developed two variants of Cherry, Cherry-Random and

Cherry-Hybrid, that differ in their choice of the initial candidate solution. In or-

der to avoid confusion, Cherrywill also be clarified as Cherry-Minimal in the

following. Cherry-Random uses a randomly generated valid instance of control

software as the initial solution. Cherry-Hybrid is a hybridization of Choco-

late and the local search approach already defined for Cherry-Minimal and

Cherry-Random. It operates in two stages, each stage running for one half of the

allocated total budget. In the first stage, the hybrid algorithm creates a candidate

solution following the protocol described for Chocolate—see Section 3.4. The

resulting instance of control software is then supplied to the iterative improvement

algorithm under the same setup as for Cherry-Minimal or Cherry-Random

62

and is then improved for the remaining budget.

Implementations of all design methods are available for download from the

supplementary materials page (Kuckling, 2023).

4.3.1 Experiments

I validated the proposed design methods on four missions: AGGREGATION WITH

AMBIENT CUES (AAC), SHELTER WITH CONSTRAINT ACCESS (SCA), FOR-

AGING, and GUIDED SHELTER. In order to better appraise the performance

of Cherry-Minimal, Cherry-Random, and Cherry-Hybrid, I also used

Chocolate (see Section 3.4) and EvoStick (see Section 3.5) to design control

software for the same four missions. All missions were conducted in a dodecagonal

arena with walls of 0.66m length, enclosing an area of 4.91m2. At the beginning

of each experimental run, the robots were distributed randomly in this arena and

the duration of each experimental run was 120 s.

AAC

In AGGREGATION WITH AMBIENT CUES (AAC), the robots had to aggregate on

a black spot. They had two other ambient cues available to help them find the black

spot: a light source next to the black spot and a white spot (see Figure 4.1).

The black target region was a circular area with a radius of 0.3m. It was located

in the front half of the arena, 0.6m away from the center of the arena. A light

source was placed in front of the black spot (outside of the arena). The arena also

contained a white circular area with a radius of 0.3m. It was located in the back

half of the arena, 0.6m away from the center of the arena.

The objective function was defined as:

FAAC =
T
∑

t=0

Nt, (4.1)

where Nt was the number of robots on the black circle at time step t. It computes

the cumulative time that robots spend on the black spot. In order to maximize the

objective function, the robots had to aggregate as quickly as possible on the black

spot.

SCA

In SHELTER WITH CONSTRAINT ACCESS (SCA) the robots had to aggregate

inside a shelter. The arena contained the shelter, a light source, and two black spots

(see Figure 4.1).

63

Image originally published in Kuckling et al. (2020a).

Figure 4.1: Arena layouts for the four missions. The images show ARGoS3

simulations with 20 e-puck robots inside a dodecagonal arena with different floor

colors. A light source is located at the lower end of each image.

64

The shelter was a white rectangular area, of 0.15m × 0.6m, bordered by walls

on three sides, and only open on one side. The shelter was positioned in the middle

of the arena and was open towards the front of the arena. In the front, outside of

the arena, was a light source. Two black circular areas with a radius of 0.3m were

located to the left and right side of the shelter, 0.35m away from the edge of the

shelter.

The objective function was defined as:

FSCA =
T
∑

t=0

Nt. (4.2)

where Nt was the number of robots in the shelter at time step t. It computes the

cumulative time that robots spend in the shelter. In order to maximize the objective

function, the robots, therefore, had to move into the shelter as quickly as possible.

FORAGING

FORAGING represents an abstracted foraging task. In this task, the robots had to

transport items from two food sources to the nest (see Figure 4.1). Since an e-puck

does not have the capabilities to physically pick up or deposit items, these actions

were abstracted to happen when a robot passes over the corresponding area.

A white region in the front side of the arena represented the nest. It covered the

whole width of the arena and has a depth of 0.63m. A light source was located in

front of the white region (outside of the arena). Two black circles, with a radius of

0.15m, represented the food sources. They were positioned 0.45m away from the

nest area and with a distance of 1.2m between them.

The objective function was defined as:

FFor = N, (4.3)

where N is the number of retrieved items. It computes the number of items

retrieved by the swarm. In order to maximize the objective function, the robots

had to move back and forth between the nest and a food source as many times as

possible.

GUIDED SHELTER

In GUIDED SHELTER, the robots had to move into a shelter. They had two ambient

cues to guide them towards the shelter: a light source and a conic region providing

a path to the shelter (see Figure 4.1).

The shelter was a black rectangular area of size 0.4m× 0.6m. The shelter was

located in the front part of the arena 0.3m away from the front wall of the arena. It

65

was enclosed with walls on three sides and only open towards the far end of the

arena. In front of the shelter (and outside of the arena) was a light source. Behind

the shelter was a white conic area, that was defined in such a way that the edges of

the conic area go through the front corners of the shelter and meet in the center of

the light source.

The objective function was defined as:

FGS =
T
∑

t=0

Nt, (4.4)

where Nt was the number of robots in the shelter at time step t. It computes the

cumulative time that robots spend within the shelter. In order to maximize the

objective function, the robots had to move into the shelter as quickly as possible.

Protocol

All design methods were used to automatically produce control software for a

swarm of 20 e-puck robots. As the design process is stochastic, I repeated it 10

times for every design method, leading to 10 instances of control software per

design method. Each of these 10 instances of control software was then assessed

10 times in the design context and 10 times in a pseudo-reality context to obtain the

performance results. Simulations were performed using the simulatior and noise

settings described in Section 3.6.

All design methods were tested with design budgets of 12 500 (12.5k), 25 000
(25k), and 50 000 (50k) simulation runs. That is, after exhausting the allocated

simulations the design method must have returned their final instance of control

software. All results will be represented by notched boxplots (see Section 3.7).

The source code for the experiments, the generated instances of control soft-

ware, and the details of the performance, such as raw values and statistical tests,

are available online as supplementary material (Kuckling, 2023).

4.3.2 Results

Results 12.5k

Figure 4.2 shows the performance of all design methods when they were allocated

a budget of 12 500 (12.5k) simulation runs.

The performance I observed for Chocolate, Cherry-Minimal, Cherry-

Random, and Cherry-Hybrid was similar, with few exceptions. In the mission

AAC, Cherry-Hybrid outperformed Chocolate and Cherry-Minimal.

In the missions FORAGING and SCA, Chocolate is outperformed by Cherry-

Minimal and Cherry-Random.

66

simulation pseudo-reality

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid
0

5000

10000

15000

20000

sc
or

e

AAC

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid
0

2000

4000

6000
SCA

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid

method

0

10

20

30

40

sc
or

e

Foraging

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid

method

0

250

500

750

1000

Guided Shelter

Figure adapted from Kuckling et al. (2020a).

Figure 4.2: Results of all design methods for a budget of 12.5k. The dark grey

boxes represent performance obtained in the design context, light grey boxes

represent performance obtained in the pseudo-reality context.

67

Some of these differences in performance can be explained when looking at the

generated control software. For example, in the mission GUIDED SHELTER, where

Chocolate was outperformed by Cherry-Minimal and Cherry-Random.

Both Cherry-Minimal and Cherry-Random generated finite-state machines

that operated on the following principle: A combination of Exploration and Anti-

Phototaxis steered the robots onto the white area. Once the robot was on the white

area, it would use Phototaxis to move towards the shelter. If the robot left the

white area and entered the grey area again, it would fall back to the combination of

Exploration and Anti-Phototaxis. The details of this strategy varied from instance

to instance, for example, the best instance of control software generated by Cher-

ry-Minimal—see the supplementary material (Kuckling, 2023)—started with

the Phototaxis behavior. For Chocolate, on the other hand, the instances of

control software only made use of either Anti-Phototaxis or Exploration but never

both. Visual inspection of the resulting behavior showed that while instances of

control software generated by Chocolate still solved the task sufficiently well,

the robots joined the white area on average further away from the shelter than

instances of control software that made use of a combination of Anti-Phototaxis

and Exploration. Thus the robots took longer to join the nest and therefore achieved

lower scores on the objective function.

In all four missions, EvoStick exhibited a large drop in performance when

assessed in pseudo-reality. The other design methods did not exhibit such a large

drop, except in the mission SCA, where every design method suffered from a large

performance drop when assessed in pseudo-reality. This is an indicator that the

modular design methods have a good transferability, allowing them to cross the

reality gap satisfactorily.

Results 25k

Figure 4.3 shows the results of all design runs with a budget of 25 000 (25k)

simulations.

In missions AAC, FORAGING, and GUIDED SHELTER, the design methods

Cherry-Minimal and Cherry-Hybrid outperformed Chocolate. Addi-

tionally, Cherry-Random outperformed Chocolate in the missions FORAG-

ING and GUIDED SHELTER. EvoStick was able to generate sufficiently good

control software in the design context, and outperformed several other methods.

Comparison of the generated finite-state machines shows that Chocolate

failed to make use of many strategies discovered by the iterative improvement

based design methods. In the mission FORAGING, Cherry-Minimal, Cher-

ry-Random, and Cherry-Hybrid made use of Anti-Phototaxis to navigate

out of the nest, after dropping off an item. This strategy provided a two-fold

benefit. First, it allowed the robots to escape the nest area in less time than if only

68

simulation pseudo-reality

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid
0

5000

10000

15000

20000

sc
or

e

AAC

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid
0

2000

4000

6000
SCA

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid

method

0

10

20

30

40

sc
or

e

Foraging

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid

method

0

250

500

750

1000

Guided Shelter

Figure adapted from Kuckling et al. (2020a).

Figure 4.3: Results of all design methods for a budget of 25k. The dark grey boxes

represent performance obtained in the design context, light grey boxes represent

performance obtained in the pseudo-reality context.

69

Exploration was used. In the latter case, the robots would need to encounter first

and obstacle (either the wall of the arena or another robot), before they could turn

and face towards the rest of the arena again. Secondly, as the robots had been

using Phototaxis to navigate from the sources to the nest, Anti-Phototaxis turned

the robots in such a way that they are facing towards the source again. While the

embedded obstacle avoidance and interference from other robots would reduce

the chance of directly going back to the source, this exploitation of the direction

seemed to provide a benefit to the performance. Similarly, Chocolate also

failed to discover the aforementioned Anti-Phototaxis/Exploration strategy in the

mission GUIDED SHELTER. In the mission AAC, Chocolate employed the

same strategies as the other design methods, although it seemed to fail at selecting

the appropriate parameters.

When assessed in a pseudo-reality context, however, EvoStick was the

worst performing design method, being outperformed by all other methods in the

three missions AAC, FORAGING, and GUIDED SHELTER. In SCA, EvoStick

performed best in the design context and although it suffers from a significant drop

of performance when assessed in pseudo-reality, it still ranked as one of the best

performing design methods in pseudo-reality.

In the mission SCA, the designed finite-state machines suffered from a larger

performance drop when assessed in pseudo-reality. This could be an indicator that

these instances of control software are overdesigned for the specific design context

and would not transfer well into reality.

Results 50k

Figure 4.4 shows the results of all design methods for a budget of 50 000 (50k)

simulations. All three local search-based design methods, Cherry-Minimal,

Cherry-Random, and Cherry-Hybrid, performed similarly through all four

missions. Finite-state machines designed by the design methods based on iterative

improvement outperformed the finite-state machines that were designed by Choc-

olate, in the missions AAC, FORAGING, and GUIDED SHELTER.

As for the design budget of 25 000 simulation runs, Chocolate failed to

discover some of the strategies employed by the other design methods. Most

notably, Chocolate neither exploited the Anti-Phototaxis module in FORAGING

nor was able to discover the Anti-Phototaxis/Exploration strategy to discover the

white area in GUIDED SHELTER more quickly.

Throughout all four missions, EvoStick suffered from the largest pseudo-

reality gap. The finite-state machines designed by Chocolate also experienced

small drops of performance, while the finite-state machines generated by iterative

improvement showed larger drops of performance when assessed in pseudo-reality.

This could be an indicator of potential overdesign for these design methods, how-

70

simulation pseudo-reality

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid
0

5000

10000

15000

20000

sc
or

e

AAC

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid
0

2000

4000

6000
SCA

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid

method

0

10

20

30

40

sc
or

e

Foraging

EvoStick
Chocol

ate

Che-M
inimal

Che-Random

Che-Hybrid

method

0

250

500

750

1000

Guided Shelter

Figure adapted from Kuckling et al. (2020a).

Figure 4.4: Results of all design methods for a budget of 50k. The dark grey boxes

represent performance obtained in the design context, light grey boxes represent

performance obtained in the pseudo-reality context.

71

ever, the effect was not as large as for EvoStick.

4.3.3 Discussion

I did not conduct a landscape analysis but the results found by iterative improve-

ment are close to methods known to avoid local optima. This corroborates my

hypothesis, that the search space is regular and well-behaved, as I could not find

any evidence that iterative improvement remains trapped in local optima, that

perform significantly worse than the best know solutions.

However, I did not analyze how thorough the design methods explore this

search space. This is mainly due to several limitations that prevent a straight-

forward analysis. Firstly, it is difficult to quantify how well the search space is

explored. For finite-state machines, it is possible that a finite-state machine can be

represented through multiple orderings of the states. As no considered optimization

algorithm accounts for this kind of equivalency, this leads to the argument that

each of these equal representations would need to be counted independently. Yet,

discovering one of these representations yields exactly the same performance as

discovering any other or even all of the equal representations. This leads to the

argument that equivalent representations should only account for a single unit of

the search space. Secondly, measuring the similarity between two instances of

control software could influence the exploration metric of the search space. Two

instances of control software that differ only minimally in exactly one parameter

of a condition will most likely show very similar performance, although they are

different instances of control software. Again, deciding whether or not these kinds

of similarities should be accounted for when determining how well the search

space is explored, is a non-trivial decision. Lastly, even if I decided on a method

for accounting for similar and equivalent instances of control software in the search

space, a simple analysis of the exploration of the search space is meaningless

without an analysis of the density and location of sufficiently good solutions in

the search space. In fact, many regions of the search space perform poorly with

respect to any individual mission. Indeed, even the well-performing instances of

control software of one mission are expected to perform poorly when applied to

another mission. Therefore, a method exploring 10% of the search space, albeit in

the low performing regions, will be less desirable than a method exploring only 1%

of the search space, but in the regions that contain the well-performing instances

of control software.

For the design methods operating on finite-state machines, Chocolate was

outperformed by the design methods based on iterative improvement for AAC,

FORAGING, and GUIDED SHELTER for budgets of 25k and 50k. A reason for this

difference in performance may be that the missions create a search space for the

iterative improvement that was easily exploitable by the algorithm. That is, there

72

seems to be only one way to successfully perform in the missions and the objective

function does not contain local optima. This can be seen in the comparison of the

two shelter mission SCA and GUIDED SHELTER. In SCA, the robots can only

make use of a few indirect cues to determine the position of the shelter. Namely,

two spots at the side of the shelter and a light in front of it. The main idea behind

these cues is to allow the robots to determine the area in front of and behind the

shelter. Yet, a successful shelter finding cannot solely rely on the ambient cues, as

it is possible to miss the shelter when doing anti-phototaxis or to miss the black

spots when passing from the back of the arena to the front (or starting in the front

from the beginning). The mission GUIDED SHELTER, on the other hand, provides

a more reliable way to reach the shelter. The white corridor leading to the shelter

can be followed more or less exactly using the Anti-Phototaxis behavior and even

more so as the robot can detect if it leaves the corridor via the transition to grey

floor, allowing the design process to create a contingency behavior for this case.

This difference in the difficulty of the task shows also in the performance of the

design methods using iterative improvement. In the mission GUIDED SHELTER,

the design methods were able to generate well-performing solutions for a budget

of only 12 500 simulations and higher budgets did not lead to any noticeable

improvement. In the mission SCA, on the other hand, all design methods (except

EvoStick) showed no improvement with higher budgets either. Visual inspection

of the generated behaviors showed, however, that the designed control software

failed to generated appropriate swarm level behaviors. While some robots ended

up in the shelter, the majority of them were distributed throughout the arena. This

might have been caused by the reduced amount of cues and additionally by the fact

that the shelter could only house a fraction of the swarm.

Across all missions, all design methods based on iterative improvement per-

formed similarly. Differences that were observed for a given mission or a given

budget did not generalize to all observed results. This indicates that, for the consid-

ered budgets and missions, the starting solution did not seem to play an important

role in the solution quality.

4.4 AutoMoDe-IcePop

Together with my co-authors (Kuckling et al., 2020b), I developed AutoMoDe-

IcePop, an automatic modular design method based on Chocolate that uses

simulated annealing as optimization algorithm. IcePop designs control software

for the same robotic platform, uses the same set of modules, and assembles them

into probabilistic finite-state machines with the same constraints. The difference

between the two methods is that IcePop adopts the component-based simulated

annealing algorithm (see Section 4.1.2) as the optimization algorithm.

73

Table 4.1: Configuration of the simulated annealing algorithm.

Component Type Parameter

Initial solution Minimal controller Stop behavior

Neighborhood Defined through perturbation operators

Initial temperature Fixed value T0 = 125.0
Stopping criterion Budget of simulations 50 000 simulations

Exploration criterion Random exploration Valid perturbation operators

Acceptance criterion Metropolis condition Mean with 10 samples

Temperature length Fixed value Tlength = 1
Cooling scheme Geometric cooling α = 0.9782
Temperature restart Fixed value Every 5000 simulations

Table 4.1 summarizes the choices of components that were used in the imple-

mentation of the simulated annealing for IcePop. The initial solution supplied to

the algorithm was a “minimal” instance of control software. The minimal instance

of control software was a finite-state machine with exactly one state executing

the Stop behavior. The neighborhood function was implicitly defined through the

application of valid perturbation operators (see Section 4.2). The initial temperature

was set to 125.0. The stopping criterion was defined as a maximum budget of sim-

ulation runs. That is, after the allocated budget of simulation runs was exhausted,

the algorithm must return the final instance of control software. The exploration

criterion selected a random valid perturbation operator and applied it on the incum-

bent solution. The acceptance criterion was the Metropolis condition (Kirkpatrick

et al., 1983; Metropolis et al., 1953) that accepted or rejected new solutions based

on their performance. The Metropolis condition would always accept an improving

solution, and would accept a worsening solution with probability exp(−(e−e′)/T),
where T is the current temperature, e is quality of the currently best solution and e′

is the quality of the perturbed solution. Because the performance of each instance

of control software is stochastic, e and e′ were computed as the mean of a sample

of 10 runs of the respective instance of control software. The temperature length

determined the number of steps before the temperature cools down again. The

value was set to 1, so that the cooling happened in every step. The cooling scheme,

that was then applied, was the geometric cooling (Kirkpatrick et al., 1983). In

geometric cooling, the updated temperature is computed as T ∗ α, where T is the

current temperature and α is the cooling coefficient, which was set as α = 0.9782.

Additionally, the temperature reset to the initial value every 5000 simulations.

The source code of the implementation of IcePop is available as supplemen-

tary material (Kuckling, 2023).

74

Figure 4.5: The two missions: AAC (left) and FORAGING (right).

4.4.1 Experiments

IcePop and Chocolatewere used to produce control software for two missions:

AGGREGATION WITH AMBIENT CUES (AAC) and FORAGING. All missions were

conducted in a dodecagonal arena with walls of 0.66m length, enclosing an area

of 4.91m2. At the beginning of each experimental run, the 20 e-puck robots were

distributed randomly in this arena and the duration of each experimental run was

250 s.

AAC

The arena contained two circles, one black, one white. A light source was placed

on the side of the arena that contains the black circle (Figure 4.5, left). The robots

were tasked to aggregate on the black spot. The objective function was defined as

FAAC =
T
∑

t=0

Nt, (4.5)

where Nt was the number of robots on the black circle at time step t.

FORAGING

The arena contained two source areas in the form of black circles and a nest, as a

white area. A light source was placed behind the nest to help the robots to navigate

(Figure 4.5, right). As the robots have no gripping capabilities, I considered an

idealized version of foraging, where a robot was deemed to retrieve an object when

75

it enters a source and then the nest. The goal of the swarm was to retrieve as many

objects as possible. The objective function was defined as:

FFor = N, (4.6)

where N is the number of retrieved items.

Protocol

Four studies were performed, to assess the performance of IcePop. The first

three studies were designed to analyze the influence of different parameters on the

performance of IcePop. The fourth study aimed to compare the performance of

IcePop to Chocolate.

In the first study, the influence of the budget on the performance of the generated

control software was investigated. Designs with a smaller budget usually need

less time to finish but often produce results that perform less well in simulation.

The higher the time the better usually the performance in simulation, but an

overdesigning effect might be observed, where the improvement in simulation does

not carry over to reality. Therefore, IcePop was tasked to design control software

with five different budgets (5000, 10 000, 25 000, 50 000 and 100 000 simulations

respectively).

In a second experiment, the influence of the sample size on the performance

of the generated control software was investigated. Smaller sample sizes use less

of the budget to evaluate one solution, allowing more solution candidates to be

investigated. On the other hand, outliers will have a greater impact on the mean

of the samples and thus the perceived performance. Larger sample sizes lead

to the inverse effect. Fewer total solution candidates would be investigated but

the performance of each individual solution candidate is more robust to outliers.

The influence of the sample size on the performance of the generated control

software was investigated by running designs for three sample sizes: 5, 10, and 15.

Additionally all three variants were run for three budgets, namely 25 000, 50 000,

and 100 000 simulations.

In a third experiment, the influence of the restarting mechanism was investi-

gated. Restarting resets the temperature to a higher value, allowing the design

process to make larger movements in the search space again. Four different restart-

ing mechanisms were considered: fixed length (restarts after a fixed number of

simulations, in this case every 5000 simulations), no restart (the temperature cools

over the whole design process and is never restarted), reheat (the temperature is

reset every 5000 simulations, the new temperature is set to the one that generated

the biggest improvement so far), restart once (after the half of the budget is ex-

hausted the temperature resets). All restarting mechanisms were tested for budgets

of 25 000, 50 000, and 10 000 simulations.

76

simulation pseudo-reality

5k 10k 25k 50k 100k
budget

0

10000

20000

sc
or
e

AAC

5k 10k 25k 50k 100k
budget

0

25

50

75

Foraging

Figure adapted from Kuckling et al. (2020b).

Figure 4.6: Performance of control software created by IcePop for different

budgets. The dark grey boxes represent performance obtained in the design context,

light grey boxes represent performance obtained in the pseudo-reality context.

In the last experiment, the performance of IcePop was compared with the

one of Chocolate across three different budgets (25 000, 50 000 and 100 000
simulations).

As each design process is stochastic, 20 independent designs for each design

method were performed, resulting in 20 instances of control software. The obtained

instances were then each assessed 10 times in the design context (simulation) and

another 10 times in a pseudo-reality setting (see Section 3.6).

The instances of control software produced, the details of their performances,

and videos of their execution on the robots are available as online supplementary

material (Kuckling, 2023).

4.4.2 Results

Influence of the budget

The results displayed in Figure 4.6 show the influence of the budget on the perfor-

mance of the control software generated by IcePop. One trend that is apparent

from the data, is that, as expected, a larger design budget led to control software

that performed better in simulation. However the relative improvement diminished

and the performance seemed to reach a peak around a budget of 50 000 simulations.

Furthermore, the performance in pseudo-reality improved initially with an

increased budget. Here, however, the performance leveled after the budget of

25 000 simulations was reached and did not improve any further. This could be

an indicator that at that moment the design process reached the peak performance

77

that would still transferable to real robots. Further designs might improve the

performance in simulation but the transferability will suffer in return.

Influence of the sample size

Figure 4.7 shows the results of the three different variants of the sample size over

the three investigated budgets. For a budget of 25 000 simulations, all variants

performed similar and no differences can be seen, both in simulation and pseudo-

reality. In the case of a budget of 50 000, the variant with a sample size of 10

samples performed slightly better than the other two variants, in the mission

FORAGING when assessed in simulation. In pseudo-reality, this difference however

was not present anymore. It could therefore very well be that this was simply a

statistical artifact of the stochastic design process. For 100 000 simulation runs, the

three variants achieved a comparable performance again and only minor differences

could be observed. All in all, the three different sample sizes that we compared

showed no noticeable differences.

Influence of the restarting mechanism

Figure 4.8 shows the results of the different restarting mechanisms. The results for

a budget of 25 000 simulation runs showed no difference between the four variants.

In case of a budget of 50 000 simulation runs, all variants performed similarly in the

mission AAC. In the mission FORAGING, the restarting mechanism that restarts

every 5000 simulation runs performed worse than the other three variants. For a

budget of 100 000 simulation runs, all four variants performed similarly again. In

the mission FORAGING, however, the fixed length restarting mechanism (default)

showed a larger variance than the other three variants.

In conclusion, the four different variants failed to produce noticeable differences

in the performance of the generated control software.

Comparison with Chocolate

Figure 4.9 shows the comparison results of IcePopwith Chocolate for budgets

of 25 000, 50 000, and 100 000 simulations, respectively. Throughout all three

budgets, it is apparent that IcePop performed better in simulation than Choc-

olate in both missions. In the mission AAC, the difference in performance is

statistically significant.

Unfortunately the drop of performance when assessed in pseudo-reality was

slightly larger for IcePop than for Chocolate. This could indicate that Ice-

Pop might be less transferable to real robots than Chocolate. Despite the larger

78

simulation pseudo-reality

5 10 15
0

5000

10000

15000

20000

sc
or

e

AAC - 25k

5 10 15
0

20

40

60

80

Foraging - 25k

5 10 15
0

5000

10000

15000

20000

sc
or

e

AAC - 50k

5 10 15
0

20

40

60

80

Foraging - 50k

5 10 15
sample size

0

5000

10000

15000

20000

sc
or

e

AAC - 100k

5 10 15
sample size

0

20

40

60

80

Foraging - 100k

Figure adapted from Kuckling et al. (2020b).

Figure 4.7: Influence of the sample size on the performance of IcePop. The dark

grey boxes represent performance obtained in the design context, light grey boxes

represent performance obtained in the pseudo-reality context.

79

simulation pseudo-reality

defau
lt

nores
tart reheat

resta
rton

ce
0

5000

10000

15000

20000

sc
or

e

AAC - 25k

defau
lt

nores
tart reheat

resta
rton

ce
0

20

40

60

80

Foraging - 25k

defau
lt

nores
tart reheat

resta
rton

ce
0

5000

10000

15000

20000

sc
or

e

AAC - 50k

defau
lt

nores
tart reheat

resta
rton

ce
0

20

40

60

80

Foraging - 50k

defau
lt

nores
tart reheat

resta
rton

ce

restart mechanism

0

5000

10000

15000

20000

sc
or

e

AAC - 100k

defau
lt

nores
tart reheat

resta
rton

ce

restart mechanism

0

20

40

60

80

Foraging - 100k

Figure adapted from Kuckling et al. (2020b).

Figure 4.8: Influence of the restart mechanism on the performance of IcePop.

The dark grey boxes represent performance obtained in the design context, light

grey boxes represent performance obtained in the pseudo-reality context.

80

simulation pseudo-reality

25k 50k 100k

AAC - IcePop

25k 50k 100k
0

5000

10000

15000

20000

sc
or

e

AAC - Chocolate

25k 50k 100k
budget

Foraging - IcePop

25k 50k 100k
budget

0

20

40

60

80

sc
or

e

Foraging - Chocolate

Figure adapted from Kuckling et al. (2020b).

Figure 4.9: Comparison between Chocolate and IcePop. The dark grey boxes

represent performance obtained in the design context, light grey boxes represent

performance obtained in the pseudo-reality context.

81

performance drop, IcePop still performed better in pseudo-reality, and in AAC

this difference in performance was also statistically significant.

Additionally, we have taken the best performing instance of control software of

IcePop and Chocolate (with a design budget of 100k simulations) for each

mission and directly applied it to a swarm of twenty real e-pucks. We did not

collect statistical data about the performance, but visual inspection showed that

IcePop transferred similarly well into reality as Chocolate. Videos of the

performance of the control software on real robots can be found online (Kuckling,

2023).

4.4.3 Discussion

The results indicate that simulated annealing can be a viable candidate for the

automatic modular design of robot swarms. Additionally, I have investigated the

influence of some obvious variations to the simulated annealing on the performance

of the automatic modular design. Neither variation provided a consistent advantage

over the chosen defaults. However, the component-based simulated annealing

approach allowed to easily implement these variants.

4.5 Limitations and possible improvements

The work presented in this chapter has shown that local search algorithms are viable

candidates as optimization algorithms in the automatic modular design of control

software. Neither Cherry nor IcePop performed worse than Chocolate, and

even outperformed it for some combinations of mission and budget. However, a

few areas of possible improvement remain:

The search space is not well understood. The control software generated by

Cherry and IcePop performed no worse than the one generated by Choc-

olate, which is a design method known to avoid local optima. Therefore, it

seems appropriate to conclude that the search space of the considered missions

allowed the local search-based design methods to converge towards either the

global optimum or at least towards local optima that were not significantly less

successful than the global one. It is, however, unclear if this was only the case

because I considered relatively simple missions, or if the search space of swarm

robotics missions is well-behaved in general. Further research on the analysis of

search spaces is therefore necessary.

The definition of the neighborhood can impact the performance of the local

search. Another confounding factor is the definition of the neighborhood. Lo-

82

cal search algorithms require the definition of a neighborhood function, which

describes the way in which they traverse the search space. A poorly defined neigh-

borhood might create several local optima from which escape is impossible. The

neighborhood that I defined in this work was conceived arbitrarily, based on my

intuitions and without prior evidence of its suitability. In order to port the design

methods to other control architectures, such as behavior trees, a new neighborhood

function must be defined. Further research would therefore be necessary to better

understand how neighborhoods can be properly defined. At the moment, this limits

the general applicability of local search algorithms to the automatic modular design

of control software for robot swarms.

Application of other algorithms and automatic algorithm design. Lastly, this

work has focused on two relatively simple local search algorithms. However, sev-

eral other local search algorithms have been proposed in the literature. Choosing

the correct optimization algorithm might alleviate the previously mentioned limita-

tions, should they arise. Furthermore, following the component-based approach of

Franzin and Stützle (2019), it might be possible to perform automatic algorithm de-

sign to select the most appropriate algorithm and its components for the automatic

modular design of control software for robot swarms.

83

Chapter 5

Model-based optimization

algorithms

To the best of my knowledge, all optimization algorithms studied in the automatic

design of control software for robot swarms are model-free. That is, the algorithms

have no model of the search space and can only estimate the quality of a candidate

solution by performing an evaluation. Model-based optimization algorithms, con-

trarily, maintain a model of the search space. With this model they can estimate

the quality of a candidate solution but evaluations remain necessary to validate the

estimation and to possibly update the model. Model-based optimization algorithms

therefore promise to make better use of the limited number of evaluations available

to them. I developed Schwarzwälder2 and Schwarzwälder3, two auto-

matic modular design methods that are based on two implementations of SMAC, a

model-based optimization algorithm.

5.1 SMAC

SMAC (Hutter et al., 2011; Lindauer et al., 2022) (sequential model-based algo-

rithm configuration) is a model-based metaheuristic optimization algorithm that has

been successfully applied to configure several algorithms (Kerschke et al., 2019). It

combines an aggressive racing scheme with a surrogate model for generating new

instances of control software. In the aggressive racing scheme, SMAC maintains

an incumbent candidate solution and compares it against a challenger candidate

solution. Inferior challengers are often discarded after a single evaluation and more

evaluations are only performed when the challenger could replace the incumbent.

The surrogate model is a random forest of regression trees and is built from all

previous evaluations. New challengers are sampled using the random forest model.

SMAC2 is an implementation of the original SMAC algorithm in Java (Hutter

84

et al., 2011). SMAC3 is a reimplementation of the SMAC algorithm in Python

with slightly different default settings (Lindauer et al., 2022).

5.2 Design methods

I developed two variants of Chocolate—AutoMoDe-Schwarzwälder2 and

AutoMoDe-Schwarzwälder3—that are based on SMAC2 and SMAC3, respec-

tively.1 These variants differ only in the choice of the optimization algorithm,

namely SMAC2 and SMAC3. All other elements of the design methods are equal.

That is, Schwarzwälder2 and Schwarzwälder3 generate control software

for the e-puck robot, as defined by RM1.1. The control software is assembled into

finite-state machines with up to four states and up to four outgoing transitions per

state. The modules available to Schwarzwälder2 and Schwarzwälder3 are

the modules used in Chocolate. The optimization algorithm is free to choose

the number of states and transitions within the constraints, the modules to associate

with the states and transitions, and the value of the parameters of chosen modules,

where applicable.

Unlike Iterated F-race, which samples an initial population randomly, SMAC2

and SMAC3 require to specify the initial incumbent. In this work, I chose the

parameters of the initial incumbent to be the lower bound of all allowed intervals.

Categorical parameters were mapped to integer values and the lowest integer value

was chosen as the value for the initial incumbent. The such defined incumbent

encoded a finite-state machine that is composed of one state that executes the

exploration behavior.

5.3 Experiments

I validated Schwarzwälder2 and Schwarzwälder3 by performing experi-

ments on thirty randomly generated missions. The generated control software was

evaluated both in simulation and on real robots.

5.3.1 Missions

I randomly generated thirty missions, using the mission generator MG1 proposed

by Ligot et al. (2022). Ten missions had the objective of HOMING, ten the one of

1All flavors of AutoMoDe have names related to food items. In that tradition, the names of the

methods presented here are chosen in reminiscence of the Schwarzwälder Kirschtorte (black forest

cake). It has been chosen to highlight that the optimization algorithms for these design methods are

based on random forests.

85

Figure originally published by Ligot et al. (2022).

Figure 5.1: Possible arena layouts that the mission generator MG1 can generate.

The mission generator was allowed to choose the arena shape and, depending on

the shape, it could place obstacles or floor patches in the arena. Red, blue, and

green circles show possible locations for circular floor patches. White rectangles

indicate the possible locations for the obstacles. The yellow line denotes the light

axis used to place specific patches in the missions of type FORAGING.

AGGREGATION and ten the one of FORAGING. In HOMING, the swarm was tasked

to aggregate on a specific area indicated by either white or black floor (chosen by

the mission generator). Areas of different color might serve as a distraction or a

cue to the swarm. In AGGREGATION, the swarm was tasked with selecting and

aggregating on a single area out of multiple available candidates. Areas of different

color might serve as a distraction or a cue to the swarm. In FORAGING, the swarm

was tasked with an abstracted foraging task in which the robots must transport

items from food sources to the nest area. When moving over a food source, the

robot automatically collected a virtual food item and, when moving over the nest

area, the virtual food item was automatically deposited in the nest.

Each type of mission took place in a randomly generated arena (see Figure 5.1

for potential layouts of the arena). For each mission, the swarm size was randomly

chosen to be either 15 or 20 robots. Similarly, the experiment duration of each

mission was randomly chosen as either 60 s, 120 s, or 180 s.

5.3.2 Protocol

I compared the original version of Chocolate (Francesca et al., 2015) with

Schwarzwälder2 and Schwarzwälder3. For reference, I also included in

the experiments EvoStick (Francesca et al., 2014), a yardstick implementation

of neuro-evolutionary swarm robotics (see Section 3.5).

86

I ran each design method on each mission with five different design budgets:

5000, 10 000, 20 000, 50 000, and 100 000 simulation runs. Simulations were

performed using the ARGoS3 simulator (Pinciroli et al., 2012) with a realistic

noise setting (see Section 3.6). For each combination of design method, mission,

and budget, I ran a single design. I ran each optimization algorithm with the

default values of their implementation. I collected the generated instances of

control software and assessed them once in simulation. Additionally, I assessed the

performance of all instances of control software that were generated for a budget

of 100 000 simulation runs on the real robots.

Because the resulting scores span different orders of magnitudes (10−1 to 105)

depending on the choice of mission and objective function, I present the results

after normalization. The normalized score s′i,j for design method j in mission i was

computed as s′i,j = (si,j −min i)/max i, where si,j was the actual score obtained

and max i and min i were the maximum and minimum scores obtained in reality

for mission i. Thus, all scores in reality were scaled in the interval [0, 1], while

scores in simulation might be higher. This normalization procedure was previously

adopted by Hasselmann et al. (2021, 2023).

I present the results in the form of notched boxplots and Friedman plots (see

Section 3.7).

5.4 Results

Figure 5.2 shows the development of the performance in simulation, for all design

methods and budgets under consideration. For Chocolate and Schwarzwäl-

der2, the quality of the solutions generated improved with increasing budgets,

but seemed to reach a plateau with a design budget of 50 000 simulation runs, with

no clear improvement for a budget of 100 000 simulation runs. For Schwarz-

wälder3 and EvoStick, the quality of the solutions generated improved with

increasing budgets without reaching a plateau.

Figure 5.3 shows the performance in simulation and reality for a budget of

100 000 simulation runs. When comparing the normalized scores achieved by

the design methods per budget, all four methods appear to have achieved similar

performance in simulation. Concerning the performance in reality, EvoStick

suffered most strongly from the reality gap. The three modular design methods

appeared to have been less affected by the reality gap.

Figure 5.4 shows Friedman plots of the results obtained in simulation and

in reality by all design methods for a budget of 100 000 simulation runs. In

simulation, Schwarzwälder3 and EvoStick outperformed Chocolate and

Schwarzwälder2. When assessed in reality, EvoStick was outperformed

by all other design methods. This rank inversion has been often observed when

87

simulation

Chocolate Schwarzwälder2 Schwarzwälder3 EvoStick

5k 20
k
50
k
10
0k 5k 20

k
50
k
10
0k 5k 20

k
50
k
10
0k 5k 20

k
50
k
10
0k

method

0

5

10

15

20

25

sc
or
e

Figure adapted from Kuckling et al. (2023).

Figure 5.2: Boxplots of normalized performance of all considered design methods

for all considered budgets. All results were obtained in simulation and normalized

according to the experimental protocol.

88

simulation reality

Chocolate Schwarzwälder2 Schwarzwälder3 EvoStick
method

0

5

10

15

20

25

sc
or
e

Figure adapted from Kuckling et al. (2023).

Figure 5.3: Boxplots of normalized performance of all considered design methods

with a budget of 100 000 simulation runs. Results were obtained in simulation and

in reality and normalized according to the experimental protocol. The dark grey

boxes represent performance obtained in the design context, white boxes represent

performance obtained in reality.

89

Chocolate

Schwarzwälder2

Schwarzwälder3

EvoStick

2.0 2.5 3.0

Ranks in simulation

D
e
s
ig
n

M
e
th

o
d

Chocolate

Schwarzwälder2

Schwarzwälder3

EvoStick

2 3 4

Ranks in reality

D
e
s
ig
n

M
e
th

o
d

Figure originally published in Kuckling et al. (2023).

Figure 5.4: Friedman plots of average ranks of all considered design methods for a

design budget of 100 000 simulation runs. Ranks are shown for simulation (top)

and reality (bottom).

Table 5.1: Average solution quality of all design methods. All scores were obtained

in reality and normalized according to the experimental protocol.

mean 95% conf. int. std. dev.

Schwarzwälder3 0.75 [0.65, 0.85] 0.27

Chocolate 0.62 [0.54, 0.71] 0.23

EvoStick 0.06 [-0.02, 0.14] 0.22

neuro-evolutionary design methods were compared with modular design ones.

Here, it is worth noticing that the three modular methods maintained their relative

ranking when tested on the robots. This is an indicator that, while the optimization

algorithm might have an impact on the performance of automatic modular design

methods, it does not appear to significantly affect their ability to cross the reality

gap.

To further study the quantitative differences between the design methods,

I investigated the average performances of Chocolate, Schwarzwälder3

and EvoStick. Table 5.1 reports relevant statistics of the distribution of the

normalized scores obtained on all the missions. Based on the mean performance,

Schwarzwälder3 offered a relatively small improvement over Chocolate:

90

Table 5.2: Differences in solution quality between pairs of design methods. All

scores were obtained in reality and normalized according to the experimental

protocol.

mean 95% conf. int. std. dev.

Schwarzwälder3 - Chocolate 0.12 [-0.02, 0.26] 0.37

Schwarzwälder3 - EvoStick 0.69 [0.55, 0.82] 0.36

Chocolate - EvoStick 0.57 [0.43, 0.70] 0.36

both Schwarzwälder3 and Chocolate provided a much larger improvement

over EvoStick. Table 5.2 reports statistics on the differences of the scores

obtained by Schwarzwälder3, Chocolate, and EvoStick. Indeed, the

mean difference between Schwarzwälder3 and Chocolate was relatively

small when compared to the one between Chocolate and EvoStick, which

was about five times larger than the former.

The results indicated that Schwarzwälder3 was the best performing design

method. When assessed in reality, it improved over Chocolate and outper-

formed EvoStick. In order to better understand the nature of the differences

in performance, I compared the scores obtained in simulation by Chocolate,

Schwarzwälder3 and EvoStick on a per mission basis. By studying the

performance in simulation, I could investigate the designed behaviors in their

original context, regardless of the effects of the reality gap on the actual behav-

ior. Figure 5.5 shows the performance in simulation of the three selected design

methods for all thirty missions. Chocolate and Schwarzwälder3 showed

similar performance on most missions. Overall, Schwarzwälder3 outranked

Chocolate in twenty four of the thirty missions, yet the difference in perfor-

mance remained relatively small, except for a few missions such as mission 8

and 30. Schwarzwälder3 outranked EvoStick in eighteen of the thirty mis-

sions, whereas EvoStick outranked Schwarzwälder3 in the other missions.

Yet, the difference in performance was larger than between Chocolate and

Schwarzwälder3.

To quantify the extent to which the performance of two design methods differs,

I considered the absolute percentage deviation given by
|x−y|

min(x,y)
· 100%. This

measure does not consider which design method performed better, but describes

the magnitude of the differences observed. The mean absolute percentage devia-

tion between the performance of Chocolate and Schwarzwälder3 was 37%.

When comparing Schwarzwälder3 and EvoStick, contrarily, the difference

in the observed performance was relatively large—the mean absolute percentage

deviation was 131%. However, this deviation was caused mainly by one out-

lier in mission 24, where EvoStick obtained a score twenty times higher than

91

0

1

10

100

1000

10000

0 1 10 100 1000 10000

Chocolate

S
c
h

w
a

rz
w

ä
ld

e
r3

0

1

10

100

1000

10000

0 1 10 100 1000 10000

EvoStick

S
c
h

w
a

rz
w

ä
ld

e
r3

Mission ID
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Figure originally published in Kuckling et al. (2023).

Figure 5.5: Scatterplots showing performance in simulation for a design budget

of 100 000 simulation runs. Left: Chocolate and Schwarzwälder3, right:

Schwarzwälder3 and EvoStick. Scores are plotted on a logarithmic scale.

Schwarzwälder3. Ignoring the outlier, the mean absolute percentage deviation

was 69%.

In conclusion, Schwarzwälder3 outranked Chocolate more often than

it outranked EvoStick, yet the mean absolute percentage deviation between

Schwarzwälder3 and EvoStick was larger than between Schwarzwäl-

der3 and Chocolate. I hypothesized that this might be explained by the fact

that Chocolate and Schwarzwälder3 designed finite-state machines from

the same set of modules, whereas EvoStick designed artificial neural networks.

Chocolate and Schwarzwälder3 found therefore similar behaviors, but in

general Schwarzwälder3 optimized these behaviors better than Chocolate

did. Conversely, EvoStick produced control software in the form of a different

architecture and therefore generated behaviors that are considerably (and struc-

turally) different from those produced by Schwarzwälder3. As a result, a good

behavior found by EvoStick might have clearly outperformed the one found by

Schwarzwälder3, and vice versa.

To further support this hypothesis, I investigated the choice of modules by the

92

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

C
ho

co
la
te

Sch
w
ar

zw
äl
de

r2

Sch
w
ar

zw
äl
de

r3

C
ho

co
la
te

Sch
w
ar

zw
äl
de

r2

Sch
w
ar

zw
äl
de

r3

C
ho

co
la
te

Sch
w
ar

zw
äl
de

r2

Sch
w
ar

zw
äl
de

r3

C
ho

co
la
te

Sch
w
ar

zw
äl
de

r2

Sch
w
ar

zw
äl
de

r3

C
ho

co
la
te

Sch
w
ar

zw
äl
de

r2

Sch
w
ar

zw
äl
de

r3

C
ho

co
la
te

Sch
w
ar

zw
äl
de

r2

Sch
w
ar

zw
äl
de

r3

C
ho

co
la
te

Sch
w
ar

zw
äl
de

r2

Sch
w
ar

zw
äl
de

r3

C
ho

co
la
te

Sch
w
ar

zw
äl
de

r2

Sch
w
ar

zw
äl
de

r3

C
ho

co
la
te

Sch
w
ar

zw
äl
de

r2

Sch
w
ar

zw
äl
de

r3

C
ho

co
la
te

Sch
w
ar

zw
äl
de

r2

Sch
w
ar

zw
äl
de

r3

0

10000

20000

30000

0

10000

20000

30000

0

10000

20000

30000

Design method

T
im

e
 s

te
p

s

Behavioral module Exploration Stop Phototaxis Anti.Phototaxis Attraction Repulsion

Figure originally published in Kuckling et al. (2023).

Figure 5.6: Plots of time spent executing each module per mission for the instances

of control software designed for a budget of 100 000 simulation runs.

modular design methods. Interestingly, Schwarzwälder2 and Schwarzwäl-

der3 generated instances of control software that used more states and transitions

than Chocolate. More important than the selection was the use of the selected

modules—e.g., a selected module might never be invoked. Figure 5.6 shows the

time spent in each behavioral module during the execution of the evaluation in

simulation. For most missions, all modular design methods appeared to have relied

on similar behaviors, resulting in a similar amount of time spent per module. Only

in a few missions, the modular design methods appeared to have generated different

behaviors. These missions with different behaviors also seemed to coincide with

those that showed large differences in the performance between Chocolate and

Schwarzwälder3. Per the experimental protocol, I only ran a single design per

mission. Therefore, this experimental protocol is not suited to answer to what extent

these cases of differing behaviors are an indicator of the ability or inability of Choc-

olate and Schwarzwälder3 to reliably generate these differing behaviors for

a given mission. However, the experimental protocol did allow to conclude that

Schwarzwälder3 was more likely than Chocolate to generate them. The

93

0.6

1.0

3.0

10.0

Schwarzwälder3
 (1 core)

Chocolate
 (1 core)

Chocolate
 (20 cores)

Design method

E
ff
ic

ie
n
c
y

Figure originally published in Kuckling et al. (2023).

Figure 5.7: Run time efficiency of Chocolate and Schwarzwälder3, com-

puted as the ratio of time spent running only the simulations (CPU time) with

respect to total run time (wall time). All experiments were performed on a high-

performance computing cluster equipped with Epyc7452 CPUs.

fact that most missions used the same set of modules further supported my claim

that the differences between Chocolate and Schwarzwälder3 are due to a

better tuning of the control software rather than different strategies employed. One

reason could be that SMAC is a model-based optimization algorithm, as opposed to

Iterated F-race. This could allow Schwarzwälder3 to sample better challengers

from the learned model.

5.5 Runtime analysis

It is widely understood that the performance of a design method is a function of

the resources available. Any comparison between design methods, to be fair and

meaningful, must be done by putting the methods under analysis on the same foot

for what concerns the resources made available to them. Imposing a design budget,

to cap the available resources, is a common approach in automatic design of control

software for robot swarms, although sometimes it is done indirectly through the

94

limitation of the number of generations or epochs—e.g., see Trianni (2008). As

part of the experimental protocol, I followed this convention and defined a budget

of simulations that should not be exceeded by the design process.

Studying the run time of the design methods under analysis was not one of

my original concerns and, therefore, the experimental protocol I defined and

adopted did not provide for gathering data that allowed addressing this issue. Yet,

I performed some further experiments by running Chocolate and Schwarz-

wälder3 on a high-performance computing cluster, equipped with Epyc7452

CPUs,2 with a design budget of 100 000 simulation runs. In the original designs,

Chocolate was parallelized using 20 computational cores. However, our chosen

implementation of SMAC3 does not provide the ability to parallelize the design

process across multiple cores3. Therefore, I executed Schwarzwälder3 on a

single computational core. I wished to compare Chocolate and Schwarzwäl-

der3 under similar setups to investigate whether the difference was just because

of the parallelization. Therefore, I also measured the run time of Chocolate

when only one core was allocated.

For Schwarzwälder3, the mean time to complete one design was 50 hours

and 33 minutes. Conversely, for Chocolate, executed on a single core, the mean

time to complete one design was 26 hours and 18 minutes. It is noteworthy that

Chocolate, running on a single core, finishes its designs in about half the time

needed by Schwarzwälder3. To further illustrate this discrepancy, I compared

the computational overhead of the design methods, that is, the time that a design

method spends outside of performing simulations. It is to note that a rigorous

analysis of the run times was beyond the scope of the work presented in this

dissertation. I simply provide some first insight on the run time, as I observed it

by following the experimental protocols adopted in this work. Figure 5.7 reports

the run time efficiency of Schwarzwälder3 and Chocolate. I computed the

run time efficiency as ttotal/tsimulation , where ttotal was the total wallclock time

that a design process needed to finish and tsimulation was the total CPU time spent

executing simulations. In the case of a design run on a single core, the efficiency

therefore described the proportion of time spent performing simulations. When

executed on a single core, Chocolate had a mean efficiency of 0.94, that is, on

average, the whole design process spent 94% of the time performing simulations.

Schwarzwälder3, contrarily, had a mean efficiency of 0.59, meaning that it

only spent 59% of the time performing simulations. This is because SMAC3 is

a model-based optimization algorithm, whereas Iterated F-race is not. Therefore,

SMAC3 needed to maintain the model built from the previously evaluated instances

2https://www.amd.com/en/products/cpu/amd-epyc-7452
3However, alternative protocols parallelizing the design process by running independent partial

designs are in principle possible.

95

https://www.amd.com/en/products/cpu/amd-epyc-7452

of control software and their performance. With an increasing number of previous

instances of control software, the complexity of the model increased and it required

a non-trivial amount of time to update the model. Iterated F-race, conversely,

required very little time outside of simulations. Yet, the model appeared to have

allowed Schwarzwälder3 to find better fine-tuned control software than Choc-

olate could produce.

5.6 Discussion

I tested the four design methods considered on thirty automatically generated

missions. When assessed in simulation, EvoStick and Schwarzwälder3

outperformed Chocolate and Schwarzwälder2. When assessed in reality, I

observed a rank inversion between EvoStick and the modular design methods.

Results showed, however, that all modular design methods maintained their relative

ranks when assessed in reality. This indicated that the considered modular design

methods are inherently robust to the reality gap and that the robustness does not

seem to be affected by the optimization algorithm.

In an attempt to explain the performance difference between Schwarzwäl-

der3 and Chocolate, I investigated the generated behaviors. All modular

design methods generated instances of control software that produced similar

strategies, Therefore, I attributed the difference in performance to the quality of

the tuning of the parameters, rather than behavioral differences.

The observations made about the run time raise some concerns about the

limitations of the employed experimental protocol. In a simplified manner, an

automatic design method can be described as the repetition of two steps: generating

new instances of control software and evaluating them. The computational effort

of an automatic design method can then be seen as the sum of the computational

efforts for each step. Prior to our experiments, most automatic design methods

were structurally similar due to the fact that the computational effort required for

evaluations strongly dominated the computational effort required for generating

new instances of control software. As a result, the standard experimental protocol

in swarm robotics is built on the unspoken assumption that the computational effort

of generating instances of control software can be neglected. Consequently, the

standard experimental protocol ensures that design methods are compared with

similar computational resources by imposing a limit on the amount of available

evaluations. Schwarzwälder3 spent a significant amount of computational

effort to maintain its model to generate new instances of control software from it,

thus violating the assumption underlying the standard experimental protocol.

In order to develop a new experimental protocol that takes computational ef-

fort for generation and evaluations into account, it is necessary to find answers

96

to two important questions: How can we quantify the computational efforts ex-

pended for each part? And, how can we ensure that different implementations and

experimental setups remain comparable with each other?

How can we quantify the computational efforts expended? Computational

effort is commonly quantified related to the expenditure of time. While this could

be a direct measurement of the time (as often done in optimization research), it

could also be an abstract quantity representing a unit of expended time (for example,

the number of operations, as underlying the computational complexity classes).

The naive way to quantify expended time would be to measure the time between

the beginning and the end of the design process (wall time). The wall time is easy

to measure and often corresponds to real-world constraints. However, it does not

accurately reflect the amount of parallel resources spent and might be impacted if

the design process is interrupted or suspended by other processes running on the

same machine. An alternative is CPU time, which measures the total time spent

across all CPU cores.

Commonly, also an abstract representation of time is used, for example, the

number of operations. The abstract units of time are usually chosen in such a way

that they represent an overwhelming majority of the computational effort. In the

case of swarm robotics, a simulation was usually chosen as the tracked operation.

With a negligible amount of computational effort to generate new instances of

control software, one could express the total used computational resources as

the number of allocated simulations. For measuring the computational effort of

generating new control software in an abstract way, one would need to find a

unit of quantity, similar to “one simulation”. However, this unit would need to

correspond to an arbitrary but fixed amount of computational effort, which might

not be possible as often the computational effort of an operation on a surrogate

model is not constant but varies in the size of the model.

Another quantity that could be measured is memory, representing the size of

the model (if any) used to generate new instances of control software. Similarly to

time, memory can either be measured directly or in abstract quantities. Maintaining

a large model would then equate to a large expenditure of computational resources,

whereas small or no models expend less computational resources. However, mem-

ory is often not a limiting factor in the automatic design of control software for

robot swarms.

Another element of computational effort can be the amount of allocated hard-

ware, such as CPUs or GPUs. Again, a naive approach could be to measure the

allocation, but this might overlook cases in which more hardware is allocated

than can be efficiently used by the automatic design method. It would therefore

be necessary to find a more complex quantification that correctly accounts for

97

allocation and use of different computational hardware.

How can we ensure that different implementations and experimental setups

remain comparable with each other? Regardless of which quantity is used to

measure the computational effort, it is necessary to define the computational effort

in such a way that experimental setups remain comparable. A measurement of the

computational effort should at the very least make different runs of the same design

method and under the same protocol comparable to each other. This means that the

measurement should either be defined to be hardware-independent or account for

the choice of computational hardware. For example, if the computational effort

is naively measured as wall time, the computational effort depends on the chosen

computational hardware. A design method run on older hardware would be able

to perform less computations in the same wall time as the same design method

run on newer hardware. Consequently, this would hinder the reproducibility of

experiments from the literature, as each experiment needs to be run on the exact

same hardware it was originally conceived for.

Another major challenge is the comparison across different design methods.

In this case, it is possible that not only the chosen computational hardware but

also the efficiency of the implementation impacts the measurement of expended

computational effort. This holds especially in a research setting, in which it is

common that the developers of the implementation rarely spent the time to optimize

it. Thus, it would become impossible to compare a prototyped and poorly optimized

implementation of a design method with an established and well-optimized one.

5.7 Limitations and possible improvements

The work presented in this chapter has shown that model-based optimization

algorithms are another viable candidate as optimization algorithm in the automatic

modular design of control software for robot swarms. Furthermore, all modular

design methods generated instances of control software that produced control

software that crossed the reality gap satisfactorily. However, I also observed that

the quality of the tuning of model-based optimization algorithms came at the

expense of the run time of the design process. Moreover, a few areas of possible

improvement remain:

Choice of incumbent: Unlike Iterated F-race, SMAC requires the definition of

an initial incumbent candidate solution. In Schwarzwälder2 and Schwarz-

wälder3, I have selected the incumbent arbitrarily through the lowest possible

value of the representation of all parameters. I did not study the effect that this

choice had on the performance of Schwarzwälder2 and Schwarzwälder3.

98

From my results obtained with Cherry, it appears that the initial incumbent

candidate solution did not have a strong effect on the performance of the design

method but I believe that further research is required. Possibly, this could lead to a

hybridization of Iterated F-race and SMAC. Iterated F-race has shown to produce

viable instances even at low design budgets, albeit they perform worse than control

software generated with higher design budgets. Therefore, a small fraction of the

design budget might be used to generate such an instance of control software with

Iterated F-race and use it as the initial incumbent in SMAC to design the final

instance of control software.

Automatic algorithm configuration: SMAC, just like Iterated F-race, provides

many parameters that influence its performance. While the default values of both

algorithms have shown to produce promising results, it is not clear if this was the

best possible performance for either algorithm. As manual algorithm tuning is

infeasible due to the size of the search space, it could be interesting to perform an

automatic configuration of the parameters of either optimization algorithm.

Improved experimental protocol: The results of this work indicated the need

to refine the experimental protocol for the automatic design of control software for

robot swarms. The standard experimental protocol defined the stopping criterion

of the design process by specifying a design budget. I observed that the model

maintained by SMAC3 improved the performance of generated control software at

the expense of increased run time. A new stopping criterion should therefore not

only consider the number of simulations, but also the overall computational effort

of the design process, in order to allow a comparison on equal grounds. However,

defining a way to measure the run time is not straightforward (see Section 5.6).

Furthermore, the question of parallelism poses another challenge. Some design

methods, like Chocolate can easily be highly parallelized. Other design meth-

ods, like Schwarzwälder3, cannot be parallelized out-of-the-box. However,

it is an open question if the allocation of the whole budget to a single run of the

optimization algorithm is optimal. Instead, it could be possible to allocate only a

fraction of the design budget to a number of independent runs of the optimization

algorithm. The final instance of control software is then the best performing in-

stance out of the returned set. Following this protocol, it would be possible to also

parallelize sequential optimization algorithms, by parallelizing the independent

runs.

99

Chapter 6

Perspective on optimization-based

design

As discussed in Section 2.4.3, optimization-based design can be classified according

to several criteria. Due to the limitations outlined in Section 2.5, online design is not

yet a viable design paradigm in the optimization-based design of control software

for robot swarms. Conversely, offline design methods have shown to generate well-

performing instances of control software in many settings (see Section 2.6). Despite

the many differences, several similarities remain among optimization-based offline

design methods.

In this chapter, I present my perspective on optimization-based offline design.

In particular, I argue that optimization-based offline design might be conceived

at three different levels (see Figure 6.1). Each level encompasses several classes

of design methods that share the same conceptual approach to optimization. The

three levels are: Tuning, Assembling, and Shaping.

Level 3: Shaping

Level 2: Assembling

Level 1: Tuning

Figure 6.1: The three levels of optimization-based design of control software for

robot swarms. Each higher level encompasses all underlying ones.

100

6.1 Level 1 - Tuning

At this first level, optimization-based offline design is concerned with optimizing

the free parameters of a partially defined instance of control software. Typically, a

design method on this level might start from a manually designed baseline instance

of control software and then automatically tunes its free parameters. For example,

Ijspeert et al. (2001) studied a cooperative stick-pulling experiment. They designed

a finite-state machine that controlled the robots and systematically investigated

the influence of different parameters on the performance. Hecker et al. (2012)

designed a finite-state machine from the observation of the foraging behavior of

ants. Using a genetic algorithm, they optimized several parameters of the behaviors.

Ligot et al. (2020b) created control software in the form of finite-state machines

by manually defining a simple solution and tuning its parameters using Iterated

F-race. These finite-state machines were used as baselines to compare against

more complex automatic modular design methods. However, the partial instance

of control software does not necessarily need to be a finite-state machine. Another

typical design pattern is physicomimetics (Spears et al., 2005; Spears and Spears,

2012), a pattern to design physics-inspired control software for robot swarms. For

example, Dimidov et al. (2016) exhaustively searched the parameter space of Lévy

walks and correlated random walks to find optimal parameter configuration in

a search mission for bounded and unbounded environments. Engebråten et al.

(2020) created a behavioral repertoire using MAP-elites to find optimal parameter

combinations of an artificial potential field. Design methods that start from a

human-defined instance of control software are semi-automatic design methods, as

they rely on the contribution of a human during the design process. Furthermore,

they can only create control software for a single mission, as different missions

would require different instances of control software as starting points.

Alternatively, one might specify a partial instance of control software that can

be fine-tuned to address several missions. For example, this can be done by using

neuro-evolutionary swarm robotics. In neuro-evolutionary swarm robotics (Trianni,

2008; Nolfi, 2021), the topology of an artificial neural network is defined. The

design process than optimizes the weights of the neural network through the use

of an evolutionary algorithm. Early works on evolutionary swarm robotics, such

as the one of Trianni et al. (2003) and Dorigo et al. (2003), used feed-forward

single-layer perceptron networks and optimized the weights of the connections.

Similar approaches have been used in several works in the literature. For example,

Gauci et al. (2014a) fixed the topology of a fully connected recurrent network and

optimized the weights of the connections. Hasselmann et al. (2021) systematically

investigated the design of single- and multi-layer perceptrons. In another research

line, Gauci et al. studied the emergence of collective behaviors for robots with

minimal capabilities. In their study, the robots only had a single line-of-sight sensor

101

and could set their velocity based on the discrete readings of this sensor. The

authors used CMA-ES (Hansen and Ostermeier, 2001) to optimize the mappings

of the sensor to velocities in missions such as clustering (Gauci et al., 2014b),

shepherding (Özdemir et al., 2017; Dosieah et al., 2022), decision making (Özdemir

et al., 2018), and coverage (Özdemir et al., 2019). Neuro-evolutionary design

methods can be either automatic or semi-automatic, depending on whether a

human designer remains active during the design process. However, as neuro-

evolutionary design methods usually map all available sensors to all available

actuators, the same fixed topology can be applied, in principle, to design control

software for all missions of the class of all possible missions that is implicitly

defined by the robotic platform.

6.2 Level 2 - Assembling

In the next higher level of our proposed hierarchy, design methods not only tune

the free parameters of a partial instance of control software, but rather assemble

the instance of control software from smaller, pre-defined elements—henceforth

called modules. The modules are assembled into a higher-level structure, called

the architecture. Common architectures include behavior trees and finite-state

machines. However, is is usually the case that the modules have free parameters

themselves. This allows to tune the modules to better interact with the rest of the as-

sembled instance of control software. Therefore, Level 2 design also encompasses

the concepts behind Level 1 design.

Several works in swarm robotics can be classified as Level 2 optimization-based

design. For example, in GESwarm, Ferrante et al. (2013) used a set of manually

pre-defined behaviors and conditions. The authors then used grammatical evolution

to assemble these behaviors into a rule set controlling the robots in a foraging

mission. The design methods of the AutoMoDe family follow a similar approach.

Pre-defined modules—either manually (Francesca et al., 2014, 2015; Hasselmann

and Birattari, 2020; Garzón Ramos and Birattari, 2020) or automatically (Ligot et

al., 2020a; Hasselmann et al., 2023) crafted before design time—are assembled into

higher-level control architectures, such as finite-state machines (Francesca et al.,

2014, 2015; Cambier and Ferrante, 2022) or behavior trees (Kuckling et al., 2018b;

Ligot et al., 2020b; Kuckling et al., 2021b). Duarte et al. (2015) preprogrammed

several behavior primitives that were then combined into hierarchical control

structures. If the modules are crafted specifically for the mission at hand (e.g.,

GESwarm), then the design process can only design control software for the

considered mission. Furthermore, it should be classified as semi-automatic design,

as the definition of the modules depends on the mission and thus becomes part of

the design process. Conversely, if the modules are crafted in a mission-agnostic

102

way (e.g., AutoMoDe) then the design process can address a class of missions,

implicitly defined by the set of modules. Furthermore, these design methods can

be classified as either automatic or semi-automatic design, depending on whether

further human intervention takes place.

Other approaches outside of swarm robotics could also fall into this level.

In neural architecture search, an optimization algorithm searches for optimal

topologies of deep neural networks (Elsken et al., 2019). These deep neural

networks are composed of different layers, which can be combined and trained by

the optimization algorithm.

6.3 Level 3 - Shaping

At Level 3, the design process can further shape its own architecture. This means,

that almost all decisions are delayed and kept deliberately open for the design

process. Notably, this includes not only the choice of modules and their parameters

but also the architecture of the control software. Therefore, the optimization

algorithm can choose between different architecture, such as neural networks or

finite-state machines. Having chosen the architecture, the design process than

chooses modules to assemble in the architecture. It is even possible that the design

process can create its own modules and that these might be of different architectures

as the whole instance of control software (for example, the design process might

nest a neural network inside a finite-state machine).

The technique of shaping the architecture has been commonly employed in

neuro-evolutionary swarm robotics. For example, Quinn et al. (2003) used an

evolutionary algorithm to design control software in the form of artificial neural

networks in a collective motion task. Each genome was an encoding of a randomly

generated topology of an artificial neural network and the weights of its connections.

During the design process, mutations could modify either the weights or the

topology by adding or removing nodes from the network. Several other neuro-

evolutionary design methods (Duarte et al., 2016; Hasselmann et al., 2021) used

NEAT (Stanley and Miikkulainen, 2002) to design the weights and the topology of

the neural networks and can therefore be classified as Level 3 optimization-based

design methods. Unlike in neural architecture search, however, NEAT does not rely

on pre-defined layers but has complete freedom in designing the topology of the

artificial neural network. Similar to Level 1 neuro-evolutionary design methods,

Level 3 neuro-evolutionary design methods usually address classes of missions

rather than just a single one. Furthermore, they can be either semi-automatic or

automatic, depending on the role of the human designer during the design process.

In the context of modular design, Hasan (2022) developed swarmDesign,

an integrated framework that could design control software in the form of both

103

finite-state machines and behavior trees. The framework built on top of level 2

automatic design methods, such as AutoMoDe-Chocolate, AutoMoDe-Maple,

and AutoMoDe-TuttiFrutti.

6.4 Outlook

The main challenge of optimization-based offline designs remains the reality gap. It

is the main difference between the design challenge in swarm robotics and similar

problems in related domains, such as supervised machine learning or reinforcement

learning.

In the case of optimization-based offline design for swarm robotics, the solution

to be found is an instance of control software. The instance of control software

should result in an optimal behavior, given an environment (and the processes

by which the robots interact within that environment). However, due to the lim-

itations discussed in Sections 2.4 and 2.7, we do not have direct access to the

target environment. Instead, the approach operates on a stand-in for the actual

environment—a simulation environment. By the nature of simulations, these are

only representations of the real environment and can never capture all the dynamics

of the real world. Even realistic simulations can only ever be approximations

of reality and will contain their own idiosyncrasies. This means that the design

process operates on data that is generated by a different process (simulation) than

the context in which the control software will be used (reality).

Related to optimization-based offline design of control software is the domain

of reinforcement learning. In reinforcement learning, the interactions between the

agents and the environment are assumed to be a Markov decision process (MDP)

and a policy is learned that maximizes the reward obtained from the Markov

decision process. However, as it is often assumed that the Markov decision process

used for training is the process of interest, there often is little need for generalization.

There have been some works to address the issue of generalization in the context of

reinforcement learnig (Cobbe et al., 2019). The issue becomes similar prominent as

for optimization-based offline design of control software, when policies are learned

in simulation for embodied agents, e.g., robots (Muratore et al., 2022). In fact, we

argue that the case of reinforcement learning in simulation for embodied agents

is equivalent to optimization-based offline design of control software. However,

reinforcement learning in the broader setting often lacks the generalization or

transferability approach that is characteristic to optimization-based offline design

of control software.

Another related domain is supervised machine learning. In supervised learning,

the goal is to fit a model on a training set, generated by a process of interest, to

predict the relationship between input and output. The model might be a classifier,

104

a regression model, or a recommender system. However, the interest of supervised

learning is not on modelling the training set, but rather generalization (Goodfellow

et al., 2016), that is, the performance of the model on previously unseen data. A

major hypothesis in this approach is that the data for the training set is generated

by the (same) process of interest that generates the unseen data for the application

of the model. This implies that finding a predictor on the training set means finding

a predictor for the process of interest. The training set is therefore a stand-in for

the actual process of interest. The evaluation on the test set is necessary to ensure

that the predictor did not over-fit the distribution of the training data (which due to

sampling techniques and/or noise will vary from the “true” underlying distribution).

Often, the training and test set are generated from the same sample of the process

(e.g., from a train/test split). This comes at the risk that the sample itself was

not representative of the process of interest. Consequently, another commonly

employed technique is a validation set. The validation set, like the training and

test set, is a sample obtained from the process of interest. However, it is sampled

separately from the training and test set, to avoid introducing the same biases as in

the training or test set. When the process of interest is time-invariant, this means

that the hypothesis, that the training set is representative of the process of interest,

remains unaffected. However, when the process of interest is not time-invariant

this means that the training set might be “outdated” and not representative of the

current state of the process.

While there are many similarities between reinforcement learning, supervised

learning and optimization-based offline design of control software, the reality gap

separates optimization-based offline design most clearly from the other domains. In

particular, the presence of the reality gap is caused by the fact that in optimization-

based offline design, the design process does not directly operate on the process

of interest, whereas reinforcement learning and supervised learning assume that

the learning process either operates directly on the process of interest or at least on

data sampled from it. Therefore, addressing the reality gap needs to be a constant

consideration, when developing optimization-based design methods for swarm

robotics. We believe that any optimization-based offline design process needs to ad-

dress the reality gap starting from the conception of the design process. Ultimately,

this will lead to a trade-off between allowing and restricting the expressiveness of

the control software.

105

Chapter 7

Conclusions & Future work

Optimization-based offline design of control software for robot swarms has shown

to generate well-performing control software in a wide range of missions. Yet,

despite its relevance, the study of the optimization algorithm has received little

attention from the swarm robotics community. In this dissertation, I have presented

my work on optimization in the automatic modular design of control software for

robot swarms. It forms a first step towards understanding the role of optimization

in the context of optimization-based offline design of control software for robot

swarms. I have begun by surveying the literature in-depth and by concluding that

only few works have studied more than one optimization algorithm. Among those

few works (Francesca et al., 2015; Cambier and Ferrante, 2022) the optimization

algorithms were a means to an end rather than the subject of study. I then argued

that it would be necessary to study the impact of optimization, one of the central

elements in optimization-based design.

To that end, I have created four design methods based on different optimization

algorithms (Cherry, IcePop, Schwarzwälder2, and Schwarzwälder3).

These design methods, together with Chocolate, cover local-search algorithms,

model-free global search algorithms, and model-based global search algorithms. I

have tested the developed design methods across several missions, often both in

simulation and reality. The tools and protocols presented in this dissertation can be

used in future work to study more aspects of the role of optimization.

I was able to make a few key observations that hold across all studies performed.

The resilience of automatic modular design to the reality gap seems to be inherent to

the modular design approach, and has not been affected much by the optimization

algorithm. Indeed, all considered design methods were able to transfer satisfactorily

onto real robots, whereas EvoStick usually failed. Furthermore, I observed that

the selection of the optimization algorithm had an impact on the performance of the

generated control software. For large design budgets, both local search algorithms

(iterative improvement and simulated annealing) and a model-based optimization

106

algorithm (SMAC3) were able to outperform Iterated F-race. However, these

gains in performance came at a price. In the case of the local search algorithms,

it was necessary to specify the neighborhood function. The definition of this

function implicitly defines the search space for the local search algorithms and

an incorrect specification could hinder the ability of local search algorithms to

find well-performing instances of control software. In the case of model-based

optimization algorithms, I observed that the maintenance of the model resulted in

a significantly increased run time of the design process.

Lastly, I identified three levels of optimization-based design. For each level, I

described the conceptual approach to optimization that was encompassed in it and

I discussed several past and future avenues to it.

7.1 Research contributions in detail

In Chapter 2, I have provided a review of the state of the art, with a special focus on

optimization-based design of control software. In particular, I focussed on recent

design methods of design approaches such as neuro-evolution, automatic modular

design, or imitation learning. The results of the review highlighted that the role

of the optimization algorithm has rarely been studied in the literature and thus

motivated the research presented in this dissertation.

In Chapter 4, I have developed two automatic modular design methods based

on local search algorithms. AutoMoDe-Cherry is uses iterative improvement as

local search algorithm and AutoMoDe-IcePop uses simulated annealing. The

results of this chapter provided new insights into the structure of the search space.

In particular, it appeared that the search space is structured in such a way that

local search-based design methods can easily design control software with similar

performance as Iterated F-race. Furthermore, I studied a few selected hyperpa-

rameter combinations for the design methods. The results showed that no studied

hyperparameter combination performed reliably better than the chosen default

parameters.

In Chapter 5, I have focussed on model-based optimization algorithms. To that

end, I have developed Schwarzwälder2 and Schwarzwälder3, two auto-

matic modular design methods that are based on SMAC2 and SMAC3, respectively.

I have compared these design methods with Chocolate and EvoStick on a

set of 30 randomly generated missions. The results of this chapter showed that

Schwarzwälder3 was able to find better fine-tuned software than Chocolate

but in general the two design methods relied on similar strategies. Furthermore,

the relative performance ranks between modular design methods encountered in

simulation did not change when assessing the control software in reality.

Lastly, in Chapter 6, I developed my vision on optimization-based design of

107

control software for robot swarms. I identified three levels of optimization-based

design and I have analyzed the characteristics of each of them. Additionally, I have

discussed similarities and differences between these levels and related domains.

7.2 Future work

The research presented in this dissertation has opened some future research ques-

tions. For example, my research on local search algorithms showed that the chosen

neighborhood structure seems to facilitate the design of well-performing instances

of control software. An avenue for future research would therefore be to better

understand the shape of the search space and its relation to the neighborhood

function. Similarly, it would be of interest to investigate the effect of different

representations of the search space used in the other design methods, such as

Chocolate, Schwarzwälder2, and Schwarzwälder3.

Another interesting avenue of future work would be to better understand the

implications of model-based optimization algorithms. In particular, the apparent

time and performance trade-off between Chocolate and Schwarzwälder3,

but also the reasons for which Schwarzwälder3 outperformed Schwarzwäl-

der2 in simulation and reality.

Furthermore, some limitations to the work presented in this dissertation remain.

For example, I only considered different optimization algorithms in missions that I

knew could already be solved by Iterated F-race. Therefore, I did not investigate the

limitations of each optimization algorithm in terms of the missions for which it can

successfully design control software. It is likely, for example, that design methods

based on local search algorithms will not be able to find well-performing instances

of control software in mission with many local optima in their search space.

For future work, it would be necessary to study how the different optimization

algorithms perform in more complex missions.

Another avenue for future work is that I only considered to use the same opti-

mization algorithm for the complete design process. Future work could therefore

focus on combining different optimization algorithms within the same design

method. For example, the design method could first run a design only on the

modules (without parameter tuning) using a global search algorithm. In order to

assess the performance of any selection of modules, a smaller design is run to

tune the parameters of the selection, for example using local search. Alternatively,

one might run a design with only rough parameter thresholds (e.g., high, medium,

low) and the exact parameters are determined during an online tuning phase on the

robots.

108

Appendix A

Behavior trees as an alternative

control architecture

Besides the optimization algorithms, I also studied an alternative control architec-

ture—behavior trees. Behavior trees have been adopted in several AI and robotics

applications (Colledanchise and Ögren, 2018). Compared to finite-state machines,

they offer increased modularity and human understandability. Additionally, they

implement two-way control transfers. These properties make behavior trees an

interesting alternative to finite-state machines.

This appendix is organized as follows. In Section A.1, I give a brief introduction

into behavior trees. In Section A.2, I describe AutoMoDe-Maple, an automatic

modular design method that assembles the modules of Chocolate into behavior

trees. In Section A.3, I describe my experiments to design behavior trees using iter-

ative improvement. In Section A.4, I present AutoMoDe-Cedrata, an automatic

modular design method that uses modules that were specially designed to be used

in behavior trees.

A.1 Behavior trees

In this section, I give a brief description of behavior trees and their functioning.

I adopted the framework that Marzinotto et al. (2014) proposed to unify the

different variants of behavior trees described in the literature. The original idea

of behavior trees was proposed for the Halo 2 video game (Isla, 2005). Since

then, behavior trees have found applications in many computer games, for example,

Spore and Bioshock (Champandard et al., 2010). Recently, behavior trees have

attracted the interest of the research community. Initial research focused on the

automatic generation of behaviors in video games, for example, the commercial

game DEFCON (Lim et al., 2010) and the Mario AI competition (Perez et al.,

109

2011). Even more recently, behavior trees have found applications in the control

of unmanned aerial vehicles (Ögren, 2012), surgical robots (Hu et al., 2015), and

collaborative robots (Paxton et al., 2017).

A behavior tree is a control architecture that can be expressed as a directed

acyclic graph with a single root. With a fixed frequency, the root generates a tick

that controls the execution. The tick is propagated through the tree and activates

each node that it visits. The path that the tick takes through the tree is determined

by the inner nodes, which are called control-flow nodes. Once the tick reaches

a leaf node, a condition is evaluated or an action is performed. Then, the leaf

node immediately returns the tick to its parent together with one of the following

three values: success, failure, or running. A condition node returns success, if

its associated condition is fulfilled; failure, otherwise. An action node performs

a single control step of its associated action and returns success, if the action is

completed; failure, if the action failed; running, if the action is still in progress.

When a control-flow node receives a return value from a child, it either immediately

returns this value to its parent, or it continues propagating the tick to the remaining

children. There are six types of control-flow nodes:

Sequence (→): ticks its children sequentially, starting from the leftmost child,

as long as they return success. Because it does not remember the last child that

returned running, it is said to be memory-less. Once a child returns running or

failure, the sequence node immediately passes the returned value, together with

the tick, to its parent. If all children return success, the node also returns success.

Selector (?): memory-less node that ticks its children sequentially, starting from

the leftmost child, as long as they return failure. Once a child returns running or

success, the selector node immediately passes the returned value, together with the

tick, to its parent. If all children return failure, the node also returns failure.

Sequence∗ (→∗): version of the sequence node with memory: resumes ticking

from the last child that returned running, if any.

Selector∗ (?∗): version of the selector node with memory: resumes ticking from

the last child that returned running, if any.

Parallel (⇒): ticks all its children simultaneously. It returns success if a defined

fraction of its children return success; failure if the fraction of children return

failure; running otherwise.

Decorator (δ): is limited to a single child. It can alter the number of ticks passed

to the child and the return value according to a custom function defined at design

time.

Behavior trees offer a number of benefits over finite-state machines. In the

context of automatic modular design, the most important properties of behavior

trees are their enhanced expressiveness, the principle of two-way control transfers,

and their inherent modularity (Ögren, 2012; Colledanchise and Ögren, 2018).

Ögren and coworkers have shown that behavior trees generalize finite-state

110

machines only with selector and sequence nodes (Ögren, 2012; Marzinotto et al.,

2014). With parallel nodes, behavior trees are able to express individual behaviors

that have no representation in classical finite-state machines. Additionally, behavior

trees implement the principle of two-way control transfers: the control can be

passed from a node to its child, and can also be returned from the child, along with

information about the state of the system. In finite-state machines, the control flow

is one-directional: the control goes from one state to another via a transition and

cannot be returned. I foresee that this feature can be exploited to automatically

design control software that is more robust to unexpected sensory input and that

can naturally deal with failing behaviors. Finally, behavior trees are inherently

modular: each subtree is a valid behavior tree. Due to this property, behavior trees

are more easily manipulated than finite-state machines. Indeed, one can move,

modify, or prune subtrees without compromising the structural integrity of the

behavior tree. The modularity of behavior trees could simplify the conception of

tailored optimization algorithm based on local manipulations.

A.2 AutoMoDe-Maple

Together with my coworkers (Kuckling et al., 2018b; Ligot et al., 2020b), I de-

veloped AutoMoDe-Maple. Maple is an automatic modular design method that

generates control software in the form of behavior trees. It produces control soft-

ware for the e-puck robot (see Chapter 3.2), with capabilities formalized through

RM1.1 (see Chapter 3.3). The behavior trees are designed by selecting, combining,

and fine-tuning a set of predefined modules: the six low-level behaviors and the

six conditions defined by Francesca et al. (2014) for Vanilla, and later used in

Chocolate (Francesca et al., 2015) (see Chapter 3.4.1). Maple was introduced

with the purpose of exploring the use of behavior trees as a control architecture

in the automatic modular design of robot swarms. To conduct a meaningful study

of the potential of behavior trees as a control architecture, we compared Maple

with Chocolate, an automatic modular design method that generates control

software in the form of probabilistic finite-state machines (see Chapter 3.4). We

conceived Maple to be as similar as possible to Chocolate so that differences

in performance between the two methods can only be attributed to the different

control architecture they adopt. Maple and Chocolate generate control soft-

ware for the same robotic platform, they have at their disposal the same set of

modules, and they use the same optimization algorithm, namely Iterated F-race

(see Chapter 3.1).

In a probabilistic finite-state machine generated by Chocolate, every state

has an associated low-level behavior and each transition has an associated condition.

Because low-level behaviors (the states of the finite-state machine) are executed

111

→∗

?

C1 A1

?

C2 A2

?

C3 A3

?

C4 A4

Figure originally published in Ligot et al. (2020b).

Figure A.1: Illustration of a behavior tree with restricted structure that Maple can

produce. Maple generates a behavior tree by defining first the number of selector

subtrees (highlighted by the dashed box), and by then specifying and fine-tuning

the condition and action nodes that compose each selector subtree.

until an external condition (a transition) is enabled, they do not have inherent

termination criteria. The absence of termination criteria implies that, when used as

action nodes in a behavior tree generated by Maple, the low-level behaviors of

Chocolate can only return running. As a result, part of the control-flow nodes

of behavior trees do not work as intended—see Section A.1. If the goal would

have been to develop a high-performing design method based on behavior trees, we

would have needed to redefine the low-level behaviors so as to add the possibility

to return failure and success when used as action nodes. However, modifying the

low-level behaviors would have resulted in having a set of modules in Maple that

is different from the one of Chocolate, which would not have allowed us to

isolate the element we wish to study: the control architecture. Instead, Maple

used the unmodified modules of Chocolate, and generated behavior trees with

a restricted structure that only uses a subset of the control-flow nodes.

This restricted structure only used a subset of the control-flow nodes of the

classical implementation of behavior trees. The top-level node was a sequence*

node (→∗) and could have up to four selector subtrees attached to it. A selector

subtree was composed of a selector node (?) with two leaf nodes: a condition

node as the left leaf node, and an action node as the right leaf node. Figure A.1

illustrates a behavior tree with the restricted structure adopted here. The maximal

number of subtrees, and therefore the number of action nodes, was limited to four

to mimic the restrictions of Chocolate, which generates probabilistic finite-state

machines with up to four states.

In the example of Figure A.1, the left-most selector subtree (highlighted by the

112

dashed box) is first ticked and action A1 is executed as long as condition C1 returns

failure. If condition C1 returns success, the top-level node (→∗) ticks the second

selector subtree, and A2 is executed, provided that C2 returns failure. Because

the top-level node is a control-flow node with memory, the tick will resume at the

second subtree in the following control cycle. A2 is therefore executed as long as

C2 returns failure. Although actions A1 and A4 are not in adjacent sub-trees, A4

can be executed directly after A1 granted that conditions C1, C2, and C3 return

success and C4 returns failure. When condition C4 of the last selector subtree

returns success, the top-level node of the tree also returns success and no action is

performed. In this case, the tree is ticked again at the next control cycle, and the

top-level node ticks the left-most selector subtree again.

The size of the space spanning all possible instance of control software that can

be produced by Maple is in O (|B|4 |C|4), where B and C are the sets of low-level

behaviors and conditions, respectively (Kuckling et al., 2018a). The search space

can be formally defined as:

[

T,#N (2), N
(2)
i ,#Li, Lij, L

p
ij

]

, with i =
{

1, ...,#N (2)
}

, j = {1, ...,#Li} ,

where T ∈ {sequence*} is the type of the top-level node; #N (2) ∈ {1, ..., 4} is

the number of level 2 nodes; N
(2)
i ∈ {selector} is the type of the level 2 node i;

#Li ∈ {2} is the number of leafs of node i; Lij is the type of the j-th leaf of

node i, with Li1 ∈ C and Li2 ∈ B; and Lp
ij are the parameters of leaf Lij .

A.2.1 Experiments

We studied Maple on two missions: FORAGING and AGGREGATION. In order

to better appraise the performance of Maple, we also designed control software

using Chocolate. The two missions were performed in a dodecagonal arena

delimited by walls and covering an area of 4.91m2. Twenty e-puck robots were

distributed uniformly in the arena at the beginning of each experimental run, and

the duration of the missions was limited to 120 s.

FORAGING

Because the robots cannot physically carry objects, an idealized form of foraging

was considered. In this version, an item was considered picked up when a robot

entered a source of food, and that a robot dropped a carried item when it entered

the nest. A robot could only carry one item at a time. In the arena, a source of food

was represented by a black circle, and the nest was represented by the white area

(see Figure A.2). The two black circles had a radius of 0.15m, they were separated

by a distance of 1.2m, and were located at 0.45m away from the white area. A

113

Figure originally published in Ligot et al. (2020b).

Figure A.2: FORAGING. Left: Simulated arena. Right: Real arena. The red glow

visible in the picture is due to a red gel we placed in front of the light source. With

the red gel, the light does not disturb the overhead camera that is used to track the

position of the robots and compute the objective function. Yet, the light is still

perceived by the robots that use their infrared sensors to sense it.

light source was placed behind the white area to indicate the position of the nest to

the robots.

The goal of the swarm was to retrieve as many items as possible from the

sources to the nest. The objective function was defined as:

FFor = I, (A.1)

where I is the number of items deposited in the nest.

AGGREGATION

The swarm had to select and aggregate on one of the two black areas (see Fig-

ure A.3). The two black areas had a radius of 0.3m and were separated by a

distance of 0.4m. The objective function was defined as:

FAgg = max(Nl, Nr)/N, (A.2)

where Nl and Nr are the number of robots located on the left and right black

area, respectively; and N is the total number of robot in the swarm. The objective

function was computed at the end of a run and was maximized when all the robots

had aggregated on the same black area.

114

Figure originally published in Ligot et al. (2020b).

Figure A.3: AGGREGATION. The objective function FA is computed as the maxi-

mal fraction of robots situated either on the left area (Nl/N) or on the right area

(Nr/N). It is evaluated at the end of an experimental run. Left: Simulated arena,

with FA = 0.1 as 2 robots stand on the left black area (Nl = 2) and no robot stands

on the right one (Nr = 0). Right: Real arena, with FA = 0.65 as Nl = 5 and

Nr = 13.

Dummy control software

Throughout the three studies, we compared the performance of automatically

generated control software to the one of two instances of control software—one

per mission—that we called “dummy” control software. They performed a simple,

naive and trivial behavior that we considered as a baseline for each mission. With

this comparison, we assessed whether the automatic design methods could produce

behaviors that were more sophisticated than trivial solutions. To produce the two

instances of dummy control software, we used the same low-level behaviors and

conditions that Maple and Chocolate had at their disposal to generate control

software, see Section 3.4.1. For FORAGING, we considered a strategy in which the

robots moved randomly in the environment. We obtained this strategy by using

the low-level behavior Exploration. For AGGREGATION, we considered a strategy

in which the robots explored the environment randomly, and stopped when they

encountered a black spot. We obtained this strategy by combining the modules

Exploration, Black Floor, and Stop. To fine-tune the parameters of the modules,

we used Iterated F-race with a design budget of 1000 simulation runs.

Protocol

We considered a swarm of 20 e-puck robots. To account for the stochasticity of

the design process, we executed each design method several times, and therefore

115

produce several instances of control software. The number of executions of the

design methods varied with the study. To evaluate the performance of a design

method, each instance of control software was executed once in simulation. In

Study 1, each instance of control software was also executed once in reality.

Simulations were performed with ARGoS3 and real robot experiments were

performed in the IRIDIA experimental arena (see Section 3.6). During an eval-

uation run, some robots tipped over due to collisions. To avoid damages, we

intervened to put them upright.

The performance of the design methods in the three studies is presented in

the form of box-and-whiskers boxplots (see Section 3.7). In addition, the median

performance of the dummy control software assessed in simulation is presented

with a dotted horizontal line. The instances of control software produced, the

experimental data collected in simulation and in reality, and videos of the behavior

displayed by the swarm of physical robots are available online as supplementary

material (Kuckling, 2023).

A.2.2 Results

Performance in simulation and reality

In the first study, Maple’s ability to produce control software that crosses the

reality gap satisfactorily was evaluated. To do so, we compared the performance of

control software generated by three design methods—Maple, Chocolate and

EvoStick—both in simulation and in reality. Previous research (Francesca et al.,

2015) indicated that Chocolate crosses the reality gap more satisfactorily than

EvoStick. Francesca et al. (2014, 2015) argued that Chocolate’s ability to

cross the reality gap is mainly due to its modular nature. Because Maple shares

with Chocolate the same modular nature and differs from it only in the control

architecture adopted, we expected Maple to also experience smaller performance

drops than EvoStick.

We executed each design method 10 times, and thus produced 10 instances of

control software. The design budget allocated to each method was 50k simulation

runs. The results are depicted in Figure A.4.

FORAGING. In simulation, the performance of the control software produced

by the three automatic design methods was similar, and was significantly better

than the one of the dummy strategy. In reality, EvoStick was significantly worse

than Maple and Chocolate. The performance of all three methods dropped

significantly when passing from simulation to reality, but EvoStick suffered

from the effects of the reality gap the most.

116

simulation reality
Maple

Cho
cola

te
Evo

Stick
0

20

40

Sc
or
e

Foraging

Maple
Cho

cola
te

Evo
Stick

0.0

0.5

1.0
Aggregation

Figure adapted from Ligot et al. (2020b).

Figure A.4: Results of Study 1. The dark grey boxes represent performance

obtained in the design context, white boxes represent performance obtained in

reality. The dotted line represents the median performance of the dummy control

software assessed in simulation (see Section A.2.1).

Most of the instances of control software generated by Maple and Choco-

late displayed similar strategies: the robots explored the environment randomly

and once a black area (that is, a source of food) was found, they navigated towards

the light to go back to the white area (that is, the nest). One instance of control

software produced by Maple used the Anti-Phototaxis low-level behavior to leave

the nest faster once an item has been dropped. Three instances of control software

produced by Chocolate displayed an even more sophisticated strategy: the

robots only explored the gray area in the search for the sources of food. In other

words, the robots always directly left the nest if they entered it, independently

of whether they dropped an item or not. The performance drops experienced by

Maple and Chocolate when porting the instances of control software from

simulation to reality were probably due to the fact that, sometimes, robots are

unable to move due to frictions. When this happened, they failed to contribute to

the foraging process.

In simulation, the instances of control software generated by EvoStick

displayed fundamentally different behaviors than the ones produced by Maple

and Chocolate: the robots navigated following circular trajectories that crossed

at least one source of food and the nest. In reality, the robots were not able to

reproduce these circular trajectories. Contrarily to Maple and Chocolate, and

with the exception of few cases, the instances of control software generated by

EvoStick did not display an effective foraging behavior.

117

AGGREGATION. In simulation, EvoStick performed significantly better than

Maple and Chocolate, which showed similar performance. In reality, a rank

inversion was observed: Maple and Chocolate performed significantly better

than EvoStick. Indeed, the performance of EvoStick dropped considerably,

whereas the performance drop experienced by Maple and Chocolate was

smaller.

The instances of control software produced by Maple and Chocolate ef-

ficiently searched the arena and made the robots stop on the black areas once

they are found. In simulation, with the control software produced by EvoStick,

the robots followed the border of the arena and then adjusted their trajectory to

converge towards neighboring peers that were already situated on a black spot. In

reality, the control software generated by EvoStick did not display the same

behavior: robots were unable to find the black areas as efficiently as in simulation

because they tended to stay close to the borders of the arena. Moreover, the robots

tended to leave the black areas quickly when they were found. Although the three

design methods performed significantly better than the dummy control software in

simulation, none of the methods produced control software that made the physical

robots reach a consensus on the black area on which they should aggregate.

Influence of the design budget

In the second study, the performance of Maple and Chocolate across different

design budgets was investigated. Because the search space (that is, all instances of

control software that can be generated) of Chocolate is significantly larger than

the one of Maple—O (|B|4|C|16) and O (|B|4|C|4), respectively (Kuckling et al.,

2018a)—we expected Maple to converge to high performing solutions faster than

Chocolate.

Six design budgets were considered: 500, 1000, 5000, 10 000, 50 000 and

200 000 simulation runs. For each design budget, we executed each design method

20 times, and thus produced 20 instances of control software. In total, the two

design methods were executed 120 times each. The results are depicted in Fig-

ure A.5.

FORAGING. The performance of the methods showed different trends when

the design budget increased. For Maple, there was a significant improvement

of the performance between design budgets of 1k and 5k, and between 50k and

200k simulation runs. For Chocolate, the performance increased significantly

between design budgets of 5k and 10k, 10k and 50k, and 50k and 200k simulation

runs.

With very small design budgets—0.5k and 1k simulation runs—Maple and

Chocolate showed similar performance: they were unable to find solutions that

118

Maple Chocolate

500 1k 5k 10k 50k 200k
0

20

40

Sc
or
e

Foraging

500 1k 5k 10k 50k 200k
0.0

0.5

1.0
Aggregation

Figure adapted from Ligot et al. (2020b).

Figure A.5: Performance of Maple and Chocolate over multiple design bud-

gets, expressed in number of simulation runs. The dotted line represents the median

performance of the dummy control software (see Section A.2.1).

were better than the dummy control software. With a small design budget—5k

simulation runs—Maple performed significantly better than Chocolate. Also,

with 5k simulation runs, Chocolate and the dummy control software showed

similar performance. With a large design budget—200k runs—Chocolate per-

formed significantly better than Maple. Indeed, the instances of control software

generated by Chocolate displayed a more sophisticated foraging strategy than

those generated by Maple: to increase the rate of discovery of the food sources,

the robots only explored the gray area of the arena, and stayed away from the

nest. It appears that, with Maple’s restrictions on the structure of the behavior

trees, it is impossible to produce the same strategy. Rather, with Maple, the robots

explored the whole arena in order to find the food sources. Finally, the behavior

trees generated by Maple with a design budget of 5k simulation runs were only

outperformed by probabilistic finite-state machines when 200k simulation runs

were allocated to Chocolate.

AGGREGATION. The performance of the control software generated by both

methods increased almost constantly with the design budget. Also for this mission,

Chocolate required a design budget of at least 10k simulation runs in order to

generate control software that was significantly better than the dummy control

software. Contrarily, Maple only required 1k simulation runs. With 1k and 5k

simulation runs, Maple outperformed Chocolate. For larger design budgets,

Maple and Chocolate showed similar performance.

Although the design budgets considered allowed the two methods to outperform

119

the dummy control software in multiple occasions, neither of them generated

control software that completed the mission satisfactorily. Indeed, the maximal

median performance obtained was FAgg = 0.65, which means that only 13 out of

the 20 robots were on the same black spot.

Maple and some of its possible variants

In the third study, the changes in performance were explored when variations to

the control architecture of Maple are introduced. The exploration of alternative

architectures was not exhaustive: we only considered variants that generated

behavior trees whose structure is similar to the one of the behavior trees generated

by Maple. We limited our exploration to variants that generate trees with: 3 levels

(top-level, inner, and leaf nodes); up to 4 branches connected to the top-level node;

and exactly 2 leaf nodes per branch. Because the action nodes of Maple can

only return running, many of the variants following these contraints are unable to

combine low-level behaviors into meaningful and elaborate individual behaviors.

Figure A.6 illustrates behavior trees for which the leaf nodes are kept un-

changed, but the inner node types may vary with respect to those of Maple. To

refer to these variants, we use the following notation: 〈top〉 (〈inner〉), where 〈top〉
and 〈inner〉 are the types of the top-level node and the inner nodes, respectively.

With this notation, the class of behavior trees produced by Maple can be formally

indicated as→∗(?)—the top-level node is a sequence* and the inner nodes are

selector nodes. If the inner nodes of a variant can be chosen from 2 different types,

we refer to it as 〈top〉 (〈inner1〉|〈inner2〉). For example, each inner node of the

variant→∗(→|?) can be either a sequence or a selector node. We considered the

following variants:

→∗(→): The top-level node is a sequence* node and the inner nodes are sequence

nodes. See Figure A.6a. This variant is not interesting as only action A1

can be executed, granted that condition C1 returns success. If condition C1

returns failure, no action is executed.

?∗(?): The top-level node is a selector* node and the inner nodes are selector

nodes. See Figure A.6b. This variant is not interesting as only action A1

can be executed, granted that condition C1 returns failure. If condition C1

returns success, no action is executed.

→ (?): The top-level node is a sequence node and the inner nodes are selector

nodes. See Figure A.6c. This variant is similar to→∗(?) of Maple. However,

because the top level node does not remember which subtree last returned

running, the history of the past events is lost. In order for an action to be

executed, all conditions situated to its left need to return success. Due to the

120

absence of memory, we do not consider this variant promising—and neither

any other memory-less one.

?∗(→): The top-level node is a selector* and the inner nodes are sequence nodes.

See Figure A.6d. In this variant, the action node of a subtree is executed

as long as the condition returns success, whereas it is executed until the

condition returns success in Maple. We included this variant in our study

and we reported the performance of it under the name CFN (control-flow

nodes).

→∗(→|?): The top-level node is a sequence* and the inner nodes can be sequence

or selector nodes. See Figure A.6e. This variant can produce meaningful

behavior trees only if the inner nodes are selector nodes, which is exactly like

in Maple’s→∗(?). Indeed, if the inner node of a given subtree is a sequence

and the condition returns failure, then the execution of the behavior tree

terminates. At the following iteration, the leftmost branch of the top-level

node is ticked. Therefore, branches situated at the right of a sequence node

are not likely to be ticked.

?∗(→|?): The top-level node is a selector* and the inner nodes can be sequence

or selector nodes. See Figure A.6f. This variant can produce meaningful

behavior trees only if the inner nodes are selector nodes, which is exactly

like variant ?∗(→). Indeed, if the inner node of a given subtree is a selector

and the condition returns success, then the execution of the behavior tree

terminates. At the following iteration, the leftmost branch of the top-level

node is ticked. Therefore, branches situated at the right of a selector node

are not likely to be ticked.

We also considered variants in which the inner nodes are kept unchanged, but the

leaves are modified with respect to those of Maple. An illustration of some of

these variants can be found in Figure A.7.

FL (free leaves): Each leaf node is to be chosen between condition and action

nodes. See Figure A.7a. Four pairs of leaf nodes are possible: condition–

condition (see first branch), condition–action (which corresponds to the

leaf pair imposed in Maple, see second branch), action–condition (see

third branch), and action–action (see fourth branch). For each subtree, the

optimization algorithm is free to chose any pair of leaf nodes. The variant can

express disjunction of conditions: a branch following a condition–condition

leaf pair is ticked if the first or the second condition is met. However, the

variant introduces dead-end states: when an action on the left hand side of a

leaf pair is ticked, the action is executed for the remaining of the simulation

run. We included this variant in our study.

121

CA|CC (condition–action or condition–condition): The right-hand side leaf node

can be a condition or an action node. Two pairs of leaf nodes are thus

possible: condition–action, condition–condition. With respect to FL, this

variant can also express disjunction of conditions, but does not allow for

dead-end states. We included this variant in our study.

ND (negation decorator): A negation decorator node can be instantiated above

a condition node. See Figure A.7b. The negation decorator returns failure

(success) if the condition returns success (failure). With the set of conditions

available, it is particularly interesting to place a negation decorator above

a condition on the color of the ground perceived (that is Black Floor, Grey

Floor, or White Floor). Indeed, placing a negation decorator node above a

Neighborhood Count condition is equivalent to having an Inverted Neighbor-

hood Count condition, and vice versa. Similarly, a negation decorator above

a Fixed Probability condition with ρ is equivalent to a Fixed Probability with

1− ρ. However, a negation decorator above a condition on a given color is

equivalent to assessing the conditions for the two other colors simultaneously.

We included this variant in our study.

SP (success probability): This variant adopts Maple’s→∗(?), but each action

node has a probability ρ to return success. The probability ρ is a real

value in the range [0, 1] and is tuned by the optimization process. With this

probability, we simulate the capability of the action nodes to assess if the

low-level behaviors are successfully executed. We included this variant in

our study.

We assessed the performance of different variations of the control architecture,

namely CFN, FL, ND, SP and CA|CC. For each variant, 20 instances of control

software were produced, all generated by the same optimization process with

a design budget of 50k simulation runs. We compared the performance of the

variants to the one of Maple.

FORAGING. None of the variants outperformed Maple. The methods Maple,

ND, and CA|CC performed similarly. Moreover, they outperformed CFN, FL, SP,

and the dummy control software. The variants CFN, FL, and the dummy control

software showed similar performance.

All the instances of control software generated by Maple showed similar

behaviors: the robots explored the arena until they found one of the food sources,

then navigated towards the nest using the light as a guidance. In some cases, the

robots used the Anti-Phototaxis low-level behavior to directly leave the nest once

they deposited an item.

122

With variant ND, we could manually design control software that displayed an

elaborate strategy: the robots increased the rate at which they discover food sources

by only exploring the gray area of the arena. This behavior cannot be expressed by

Maple (see Section A.2.2). An example of a behavior tree adopting variant ND that

display this strategy is illustrated in the supplementary material (Kuckling, 2023).

In this example, the elaborate strategy only emerged if the success probability of

the condition node below the negation decorator was set to 1. Indeed, if the success

probability was slightly lower, the behavior displayed was radically different,

and more importantly, inefficient. It appears that, with the allocated budget, this

necessary condition made it unlikely for Iterated F-race to produce this strategy.

Iterated F-race was not able to take advantage of the disjunction of conditions

that is available in CA|CC to find better solutions that those of Maple. Indeed,

we were unable to do so ourself. However, the increased search space of CA|CC
does not hinder the optimization process as results obtained are similar to those of

Maple.

In variant SP, the success probabilities, together with the conditions, were

termination mechanisms for the subtrees. The additional termination mechanisms

made it harder for Iterated F-race to exploit correlations between conditions and

actions that led to behaviors as efficient as those generated by Maple. Most of the

produced control software relied essentially on the Exploration low-level behavior.

With variant CFN, one can generate a behavior tree that expresses the same

elaborate strategies that can be generated with variant ND. However, CFN is faced

with a similar problem as ND: the success probability of the conditions needs to be

set to 1 in order for that elaborate strategy to emerge. With a success probability set

to a lower value, the condition node might return failure even though its condition

is met, and the subtree might therefore terminate prematurely. The allocated

design budget was not large enough for Iterated F-race to find behavior trees with

meaningful connections between the conditions and behaviors, which resulted in

poor performance.

The performance of the variant FL showed the highest variance. Sometimes,

the behavior trees generated were similar to those produced by Maple. However,

in many cases, the left leaf node of subtrees was an action node with an associated

Exploration low-level behavior. Once this node is reached, this low-level behavior

was executed until the end of the experimental run. As a result, the performance

observed was similar to the one of the dummy control software.

AGGREGATION. Variant CFN outperformed Maple. Maple, FL, ND, and SP

showed similar performance. Maple outperformed CA|CC. Every variant produced

behavior trees that outperformed the dummy control software.

All the instances of control software generated by Maple and the different vari-

123

ants made use of the Exploration and Attraction low-level behaviors to efficiently

search for the black spots. Maple and FL used the Stop low-level behavior for

the robots to stay on the discovered spot. Contrarily, the majority of the behavior

trees adopting variant CFN, ND, SP, and CA|CC did not have the Stop low-level

behaviors as action nodes. Instead, they took advantage of the fact that, when no

action node was executed, the robot stood still. CFN is the only variant for which

Iterated F-race was able to exploit this feature to outperform Maple.

A.2.3 Discussion

We devised Maple to be as similar as possible to Chocolate: the two methods

share the same optimization algorithm, the same set of predefined modules, and

generate control software on the basis of the same reference model. The only

difference between Maple and Chocolate is the control architecture adopted.

The results show that Maple is robust to the reality gap. Indeed, Maple and

Chocolate performed similarly, and they suffered from a reduced performance

drop with respect to EvoStick, an evolutionary swarm robotics method. These

results confirm Francesca et al. (2014) conjecture that AutoMoDe is robust to the

reality gap due to its modular nature. They also indicate that the architecture into

which the predefined modules are combined is a secondary issue.

However, the restrictions on the structure of the behavior trees have shown

that they inhibit Maple’s expressiveness. Indeed, for FORAGING and with a

large design budget, Chocolate was able to generate more efficient solutions

that cannot be expressed by Maple. Conversely, Maple is able to converge to

efficient solutions faster than Chocolate because of the smaller search space.

The restrictions on the behavior trees produced by Maple, imposed by the absence

of termination criteria of the low-level behaviors adopted, thus seem to be a double-

edged sword: they facilitate the initial search for efficient solutions, but curb the

expressiveness of behavior trees.

Future work should develop along two avenues. The first one should be

dedicated to further investigate the use of Vanilla’s and Chocolate’s low-

level behaviors as action nodes of behavior trees. For example, the control software

generated by Maple with different design budgets should be assessed in robot

experiments. The same holds for control software generated by Maple’s variants.

Also, further variants should be explored by relaxing the restrictions on the number

of levels, branches, and leaves. For the relevant ones, the effect of the design budget

should be investigated. As a second avenue, future work should be devoted to

defining a high-performing design method based on behavior trees. To do so, one

should first devise low-level behaviors with appropriate termination criteria—that

is, behaviors that returns success, failure, or running. Then, one should develop an

ad-hoc optimization algorithm that takes advantage of the inherent modularity of

124

→∗

→

C1 A1

→

C2 A2

(a) Variant→∗(→)

?∗

?

C1 A1

?

C2 A2

(b) Variant ?∗(?)

→

?

C1 A1

?

C2 A2

(c) Variant→(?)

?∗

→

C1 A1

→

C2 A2

(d) Variant ?∗(→) or CFN

→∗

?

C1 A1

→

C2 A2

(e) Variant→∗(→|?)

?∗

→

C1 A1

?

C2 A2

(f) Variant ?∗(→|?)
Figure originally published in Ligot et al. (2020b).

Figure A.6: Maple’s variants. In these variants, the arrangement of the leaf nodes

is unchanged with respect to Maple. The number of branches connected to the

top-level node, and their order, has been determined without any a priori.

125

→∗

?

C1 C2

?

C3 A1

?

A2 C4

?

A3 A4

(a) Variant FL (free leaves)

?∗

→

δ

C1

A1

→

C2 A2

(b) Variant ND (negation decorator)

Figure originally published in Ligot et al. (2020b).

Figure A.7: Maple’s variants. In these variants, the inner nodes are unchanged

with respect to Maple. The number of branches connected to the top-level node,

and their order, has been determined without any a priori.

126

simulation
Maple CFN FL ND SP

CC|
CA

0

20

40

Sc
or
e

Foraging

Maple CFN FL ND SP
CC|

CA

0.0

0.5

1.0
Aggregation

Figure adapted from Ligot et al. (2020b).

Figure A.8: Performance of different variants of Maple. The dotted line represents

the median performance of the dummy control software (see Section A.2.1).

127

behavior trees.

A.3 AutoMoDe-Cherry-BT

I have also developed AutoMoDe-Cherry-BT, a variant of Cherry that assem-

bles behavior trees instead of finite-state machines. The behavior trees follow the

same constraints as Maple (see Section A.2). Consequently, I had to define a

new neighborhood structure, instead of the one used for finite-state machines (see

Section A.3.1). All other elements of Cherry-BT are the same as for Cherry.

A.3.1 Neighborhood structure

In the context of this work, I only considered behavior trees that followed a

restricted architecture, as described for Maple. Behavior trees in the restricted

architecture have three levels of nodes. The top-level node is a sequence* node.

Underneath it are up to four so-called condition-action subtrees; composed of a

selector node with a condition node as the first child and an action node as the

second child. This architecture allows a behavior in an action node to be executed

until the condition in its sibling condition node is met. From the following tick, the

next condition-action subtree will receive the tick and execute the next behavior.

In this section, I describe additional properties that a behavior tree must have in

order to be considered a valid instance of control software. I also describe a set of

perturbation operators that transform a valid behavior tree into another valid one.

Validity

In the context of this work, a behavior tree is considered to be a valid instance of

control software if it fulfills the following criteria:

V1) Root node: The behavior tree has exactly one root node.

V2) Top-level node: The behavior tree has exactly one top-level node (the sole

child of the tick-generating root node). The top-level node is a sequence*

(→∗) node.

V3) Number of subtrees: The top-level node has between one and four children,

all of which are selector (?) nodes.

V4) Condition-action subtree: Each selector (?) node has exactly two children.

The first (left) child is a condition node and the second (right) child is an

action node.

128

Perturbation operators

P1) Add selector subtree: If the behavior tree has less than the maximum number

of selector subtrees, let i be the number of selector subtrees and 0 ≤ j ≤ i be

an integer.

Add a selector subtree after the jth child of the top-level node (j = 0 meaning

the new tree is added as the first child).

P2) Remove selector subtree: If the behavior tree has at least two selector sub-

trees, let t be a selector subtree.

Remove the selector subtree t from the tree.

P3) Change subtree order: If the behavior tree has at least two selector subtrees,

let t be a selector subtree, i be the number of selector subtrees, j the position

of t in the tree, and 1 ≤ k ≤ i be an integer, but k 6= j.

Move the selector subtree t to be the kth child of the top-level node.

P4) Change condition of condition node: Let c be a condition node.

Change the associated condition of c to a different one from the set of modules.

P5) Change behavior of action node: Let a be an action node.

Change the associated behavior of a to a different behavior from the set of

modules.

P6) Change parameter of a condition: Let c be a condition node and p a param-

eter of the associated condition of c.
Set a new value for p within the bounds defined for the condition.

P7) Change parameter of a behavior: Let a be an action node and p a parameter

of the associated behavior of a.

Set a new value for p within the bounds defined for the behavior.

Perturbation operators P1-P3 are structural perturbations, that is, they change the

graph representation of the behavior tree. In our specific restricted architecture, P3

has no structural effect on the graph structure, as the condition-action subtrees are

structurally identically, reordering them does not change the overall structure of

the behavior tree. However, it has the potential to create structural changes in a less

restricted setting, therefore it is justified to classify it as a structural perturbation as

well. P4-P5 are modular perturbations and P6-P7 are parametric perturbations, as

they only influence a single module or its parameters, respectively.

A.3.2 Experiments

I validated Cherry-BT in the same experimental setup as Cherry (see Sec-

tion 4.3.1). In particular, I investigated three different cases for the initial instances

of control software (Cherry-BT-Minimal, Cherry-BT-Random, Cherry-

BT-Hybrid) and designed control software for the four missions AAC, SCA,

129

FORAGING, and GUIDED SHELTER.

A.3.3 Results

For the sake of completeness, I report again on the results obtained in the exper-

iments described in Section 4.3 together with those performed for Cherry-BT

and its variants. All results are available in the supplementary material (Kuckling,

2023).

Results 12.5k

Figure A.9 shows the performance of all design methods when they are allo-

cated a budget of 12 500 (12.5k) simulation runs. In all missions except GUIDED

SHELTER, the design methods Maple, Chocolate, Cherry-BT-Minimal,

Cherry-Minimal, Cherry-BT-Random, Cherry-Random, Cherry-BT-

Hybrid, Cherry-Hybrid performed similar to their counterpart that used the

alternative architecture (behavior tree or finite-state machine). The only excep-

tions were Cherry-BT-Hybrid and Cherry-Hybrid. In the mission AAC,

Cherry-Hybrid was significantly better than Cherry-BT-Hybrid, and in the

mission FORAGING, Cherry-BT-Hybrid was significantly better than Cher-

ry-Hybrid. The performance I registered for all design methods generating

control software in the form of behavior trees was similar, except for Cherry-BT-

Hybrid outperforming AutoMoDe-Maple in the mission GUIDED SHELTER.

In all four missions, EvoStick exhibited a large drop in performance, when

assessed in pseudo-reality. The other design methods did not exhibit such a large

drop, except in the mission SCA, where every design method except for Cher-

ry-BT-GP, Maple and Cherry-BT-Hybrid suffered from a large performance

drop when assessed in pseudo-reality. This is an indicator that these design

methods might have a good transferability, allowing them to cross the reality gap

satisfactorily.

Results 25k

Figure A.10 shows the results for all design runs with a budget of 25 000 (25k) sim-

ulations. In three of the four missions (AAC, FORAGING, and GUIDED SHELTER),

Cherry-Minimal and Cherry-Random outperformed their respective counter-

parts Cherry-BT-Minimal and Cherry-BT-Random. Additionally, Cherry-

Hybrid outperformed Cherry-BT-Hybrid in the missions AAC and GUIDED

SHELTER. For the design methods Maple, Cherry-BT-Minimal, Cherry-BT-

Random and Cherry-BT-Hybrid I registered similar performance throughout

130

all four missions, although in the mission FORAGING Cherry-BT-Random out-

performed Maple and Cherry-BT-Minimal. EvoStick was able to generate

sufficiently good control software in the design context, outperforming several

other methods.

Comparison of the generated behavior trees in the mission FORAGING yielded

no apparent different strategies, and as such the differences in performance can

only be explained in such a way that Cherry-BT-Random was able to select

more effective parameters than Maple or Cherry-BT-Minimal.

When assessed in a pseudo-reality context, however, EvoStick was the worst

performing design method, and was outperformed by all other methods in the

three missions AAC, FORAGING, and GUIDED SHELTER. In SCA, EvoStick

performed best in the design context and although it suffered from a significant

drop of performance when assessed in pseudo-reality, it still ranged as one of the

best performing design methods in pseudo-reality.

In the mission SCA, the designed finite-state machines suffered from a larger

performance drop when assessed in pseudo-reality. This could be an indicator

that these instances of control software were overdesigned for the specific design

context and would not transfer well into reality. Yet, the performance in pseudo-

reality was still similar to the performance of the generated behavior trees in

pseudo-reality.

Results 50k

Figure A.11 shows the results of all design methods for a budget of 50 000 (50k)

simulations. In three of the four missions (AAC, FORAGING, and GUIDED SHEL-

TER), the best design method for finite-state machines was able to outperform the

best design method for behavior trees. This further supports my previous under-

standing that behavior trees, in the restricted topology, are too constrained and do

not provide the same expressiveness as the finite-state machines (Kuckling et al.,

2018b,a). In the missions AAC, SCA and FORAGING, I registered lower perfor-

mance for those behavior trees designed by Cherry-BT-GP than those designed

by the other methods. All three approaches to choosing the initial instance of con-

trol software—Minimal, Random, and Hybrid, performed similarly through

all four missions (for a fixed architecture).

Throughout all four missions, EvoStick suffered from the largest pseudo-

reality gap. The control software generated in the form of behavior trees showed

only small drops in performance when assessed in pseudo-reality, as in the previous

experiments. The finite-state machines designed by Chocolate also experienced

small drops of performance, while the finite-state machines generated by iterative

improvement, showed larger drops of performance when assessed in pseudo-

reality. This could be an indicator of potential overdesign for these design methods,

131

however, the effect was not as big as for EvoStick.

A.3.4 Discussion

The design methods that operate on behavior trees did not improve their solution

quality significantly when the budget was increased. This could be an indication

that all considered design methods for the restricted behavior tree architecture

found solutions close to the actual optimum for that restricted architecture. This

reasoning seems to be supported by the fact, that neither Cherry-BT-GP nor

Maple, two design methods based on optimization algorithms that are known to

avoid local optima, found any solutions outperforming the iterative improvement

based design methods. Unfortunately, the design methods that operate on the

restricted behavior tree architecture failed to achieve the same performance as

those that operated on finite-state machines. This can be attributed to the smaller

search space, defined through the restricted architecture (Kuckling et al., 2018a).

While the design process converged more quickly towards the suspected optimum,

it could not reach the same solution quality as for the finite-state machines.

The investigation of the generated control software and the resulting behaviors

has not shown any indication, as to why finite-state machines suffer more strongly

from the pseudo-reality gap than the generated behavior trees. I can only speculate

about possible reasons, but future work will be required to confirm or reject these

hypotheses. One hypothesis would be that the bias/variance trade-off can also be

observed through the restrictions applied to the behavior tree architecture. In the

restricted behavior tree architecture, the execution of the current behavioral module

can only be terminated by meeting a single condition. In the generated finite-state

machines, many states have however at least two different outgoing transitions

with different associated conditions. Therefore, when assessed in pseudo-reality,

there are at least two different transitions, which could trigger prematurely or delay

triggering, thus altering the behavior of a robot.

Across all missions, all design methods based on iterative improvement per-

formed similarly. Differences that may be observed for a given mission or a given

budget did not generalize to all observed results. This indicates that, also for the

behavior trees, for any considered combination of budget and mission, the starting

solution did not seem to play an important role in the solution quality.

A.4 AutoMoDe-Cedrata

As highlighted in our study on Maple, the lack of behavioral modules to re-

turn success and failure required us to impose a rigid architecture that could

only express linear sequences of behaviors. In order to overcome this limitation,

132

simulation pseudo-reality

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid
0

5000

10000

15000

20000

sc
or

e

AAC

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid
0

2000

4000

6000
SCA

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid

method

0

10

20

30

40

sc
or

e

Foraging

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid

method

0

250

500

750

1000

Guided Shelter

Figure adapted from Kuckling et al. (2020a).

Figure A.9: Results for all design methods for a budget of 12.5k. The dark grey

boxes represent performance obtained in the design context, light grey boxes

represent performance obtained in the pseudo-reality context.

133

simulation pseudo-reality

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid
0

5000

10000

15000

20000

sc
or

e

AAC

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid
0

2000

4000

6000
SCA

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid

method

0

10

20

30

40

sc
or

e

Foraging

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid

method

0

250

500

750

1000

Guided Shelter

Figure adapted from Kuckling et al. (2020a).

Figure A.10: Results for all design methods for a budget of 25k. The dark grey

boxes represent performance obtained in the design context, light grey boxes

represent performance obtained in the pseudo-reality context.

134

simulation pseudo-reality

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid
0

5000

10000

15000

20000

sc
or

e

AAC

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid
0

2000

4000

6000
SCA

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid

method

0

10

20

30

40

sc
or

e

Foraging

Ev
oS

tic
k

GP

Cho
co

lat
e
M
ap

le

Che
-M

ini
mal

Che
-B

T-M
ini

mal

Che
-R

an
do

m

Che
-B

T-R
an

do
m

Che
-H

yb
rid

Che
-B

T-H
yb

rid

method

0

250

500

750

1000

Guided Shelter

Figure adapted from Kuckling et al. (2020a).

Figure A.11: Results for all design methods for a budget of 50k. The dark grey

boxes represent performance obtained in the design context, light grey boxes

represent performance obtained in the pseudo-reality context.

135

Table A.1: The e-puck reference model RM2.2 used in Cedrata (Hasselmann

et al., 2018).

Sensors Variables

Proximity prox ∈ [1, 8], ∠q ∈ [0, 2π]
Ground gnd ∈ {0, 0.5, 1}
Range-and-bearing n ∈ N, r ∈ [0.5, 20], ∠b ∈ [0, 2π]

ns, rs, ∠bs, for s ∈ {1, ..., 6}

Actuators Variables

Signal broadcast s ∈ {0, 1, ..., 6}
Wheels vl, vr ∈ [−v, v], with v = 0.16m/s
Control cycle period: 100ms

I developed AutoMoDe-Cedrata, an automatic modular design method that

contained behavioral modules that could return success and failure. Cedrata

designs control software for a the e-puck robot, formalized through reference model

RM2.2 (see Section A.4.1). On the basis of this reference model, I designed seven

behavioral and seven conditional modules (see Section A.4.2). Cedrata then

assembled these modules into behavior trees with a less restricted architecture (see

Section A.4.3). Cedrata uses Iterated F-race (see Section 3.1) as the optimiza-

tion algorithm. I also defined Cedrata-GP and Cedrata-GE, two variants of

Cedrata that were using genetic programming (Koza, 1992) and grammatical

evolution (O’Neill and Ryan, 2003) as optimization algorithms, respectively, but

where otherwise identical to Cedrata (see Section A.4.5).

A.4.1 Reference model

The reference model RM2.2, on which Cedrata is based, is shown in Ta-

ble A.1 (Hasselmann et al., 2018). RM2.2 also targets the e-puck robot (see

Section 3.2) but provides a different form of access than RM1.1 to its sensors and

actuators. The proximity sensors can detect obstacles up to 30 cm away, the ground

sensors can sense the floor color on a grey scale and the range-and-bearing board

can transmit messages up to 50 cm. The control software can set the speed of the

two wheels of the robot independently. It also always sends a signal value s, that

can be equal to 0, which is a special value that means no signal and that is sent

by default, or an integer in {1, ..., 6}. Similar to Hasselmann and Birattari (2020),

signal values do not have a particular semantic, instead, it is the role of the design

process to assign semantics to the signals. For the sensors, the reference model

provides an aggregated vector (in the form of magnitude and direction) over all

136

Table A.2: Behavior and condition modules and their parameters used in

Cedrata.

Behavior Short Parameters

Exploration Exp τ
Stop Stop

Grouping Group Nmax, Nmin, α
Isolation Isol Nmax, Nmin, α
Meeting Meet s, dmin

Acknowledgement Ack s, tmax

Emit Signal ESig s
Condition Short Parameters

Black Floor Bflr β
Grey Floor Gflr β
White Floor Wflr β
Neighborhood Count Ngb η, ξ
Inverted Neighborhood Count INgb η, ξ
Fixed probability FP β
Receiving signal RSig s

proximity readings and a single aggregated ground reading. The reference model

also provides access to the number of neighboring robots n and a vector to their

center of mass. Similarly, it provides the number of messaging robots and a vector

to the center of mass of the messaging robots, for each signal s ∈ S. The control

cycle period is 100ms, that is, every 100ms the sensors are updated and the control

software is invoked, generating a new tick in the behavior tree.

A.4.2 Modules

Based on the reference model RM2.2, I defined fourteen modules—seven behavior

modules and seven condition modules. In the following descriptions of the signal-

based conditions and behaviors, the set of signals {1, ..., 6} will be denoted S.

Some modules can use a special value any that is activated if any of the signals in

S is received. The set S∗ = S ∪ {any} will denote the sets used by these modules.

The design process is free to choose several instances of the same module in an

instance of control software and can tune the parameters independently for each

instance of a module.

Behaviors are associated to action nodes and allow the robot to interact with

the environment. The action nodes can return success or failure if the behavior

137

ends in a state that it considers being a success or a failure. Otherwise, they return

running. The behavior modules are defined as follows:

Exploration The robot performs a random walk. It moves straight until it per-

ceives an obstacle in front of itself. Then the robot turns on the spot for

a random number of time steps in {0, ..., τ}, where τ ∈ {1, ..., 100} is a

tunable parameter. This behavior always returns running.

Stop The robot stays still. This behavior always returns running.

Grouping The robot tries to get closer to its neighbors by moving towards the

geometric center of its neighbors. If the number of neighbors becomes

greater than Nmax , the behavior returns success, where Nmax is a tunable

parameter. If the number of neighbors becomes smaller than Nmin , the

behavior returns failure, where Nmin is a tunable parameter. Otherwise,

it returns running. The speed of convergence is controlled by the tunable

parameter α ∈ [1, 5]. The robot moves in the direction w = w′−kw0, where

w′ is the target component and kw0 is the obstacle avoidance component. If

robots are perceived, then w′ = wr&b = (α · r,∠b), otherwise w′ = (1,∠0).
kw0 is the obstacle avoidance component, with k being a constant fixed to 5
and w0 defined as w0 = (prox,∠q).

Isolation The robot tries to move away from its neighbors by moving in the

opposite direction of the geometric center of its neighbors. If the number of

neighbors becomes smaller than Nmin , the behavior returns success, where

Nmin is a tunable parameter. If the number of neighbors becomes greater

than Nmax , the behavior returns failure, where Nmax is a tunable parameter.

Otherwise, it returns running. The speed of divergence is controlled by the

tunable parameter α ∈ [1, 5]. The Isolation behavior uses the same embedded

collision avoidance as in Grouping, but with w′ defined as: w′ = −wr&b

if robots are perceived, where wr&b is defined as in the Grouping behavior.

Otherwise w′ = (1,∠0).

Meeting The robot listens for a signal s ∈ S∗ emitted by other robots and moves

towards the geometrical center of the emitters. The behavior returns success

if the distance between the robot and the geometrical center is smaller than

a distance dmin, where dmin is a tunable parameter. The behavior returns

failure if the robot does not perceive any robot sending the expected signal.

Otherwise, the behavior returns running. The Meeting behavior uses the

same embedded collision avoidance as in Grouping, but with w′ defined as:

w′ = wr&b = (α · rs,∠bs) if robots emitting s are perceived. Otherwise

w′ = (1,∠0).

138

Acknowledgement The robot sends a signal s ∈ S and waits for an answer in

the form of the same signal, where s is a tunable parameter. The behavior

returns success if the signal is received or running if not. After tmax ticks,

the behavior returns failure if the signal is still not received, where tmax is

a tunable parameter. This behavior also sets the velocity of both wheels to

zero.

Emit Signal The robot sets its emitted signal to s ∈ S for the current tick, where

s is a tunable parameter. This behavior always returns success. This behavior

also sets the wheel velocity to zero.

Conditions are associated to condition nodes and check an aspect of the environ-

ment. The condition nodes return success, when their condition is met, or failure,

otherwise. The condition modules are defined as follows:

Black Floor When all ground sensors detect a black floor, the condition returns

success with probability β, where β is a tunable parameter.

Grey Floor When all ground sensors detect a grey floor, the condition returns

success with probability β, where β is a tunable parameter.

White Floor When all ground sensors detect a white floor, the transition is en-

abled with probability β, where β is a tunable parameter.

Neighborhood Count Returns success with probability z(n) = 1
1+eη(ξ−n) , where

n is the number of robots in the neighborhood, ξ ∈ {0, 1, ..., 10} and η ∈
[0, 20] are tunable parameters.

Inverted Neighborhood Count Same as Neighborhood Count but with probabil-

ity 1− z(n).

Fixed Probability Returns success with probability β, where β is a tunable pa-

rameter.

Receiving Signal Returns success if the robot has perceived a neighbor sending

s ∈ S∗ in the last 10 ticks, where s is a tunable parameter.

A.4.3 Control architecture

In Cedrata, the optimization process can create a tree that has a maximum of

three levels and a maximum of three children per node. The top-level node must be

a control-flow node. Nodes of the second level can be control-flow nodes, action

nodes or condition nodes. If it is an action node or a condition node, then the node

can have no children itself. Not all branches are forced to have the same depth:

139

Figure originally published in Kuckling et al. (2022).

Figure A.12: The possible behavior tree structure for Cedrata. In Cedrata,

the top-level node can be any control-flow node. Underneath it the tree can have

between one and three nodes, chosen among control-flow nodes, action nodes and

condition nodes. If a control-flow node is chosen, then it can have between one

and three children, which are either action nodes or condition nodes.

the top-level node could have some children that are control-flow nodes and some

that are action or condition nodes. Nodes on the third level can only be action

nodes or condition nodes. The structure of such trees is depicted in Figure A.12.

The optimization process can choose any control-flow node type to be either a

sequence, sequence*, selector or selector* node. For a formal definition of these

nodes, see Marzinotto et al. (2014). Prior research has shown that high complexity

in automatic design methods can increase the difficulties in crossing the reality

gap (Francesca et al., 2014, 2015; Hasselmann et al., 2021). In order to match the

complexity of other AutoMoDe methods (Kuckling et al., 2018a), the tree may

have at most four action nodes and four condition nodes. The constraints on the

depth and on the number of children implicitly impose that the tree contains no

more than four control nodes.

A.4.4 Cedrata-GP and Cedrata-GE

The optimization algorithm of Cedrata is Iterated F-race (see Section 3.1). How-

ever, other researchers have used genetic programming or grammatical evolution

to design behavior trees (Jones et al., 2018b; Neupane and Goodrich, 2019). There-

fore, I also developed Cedrata-GP and Cedrata-GE that are using genetic

programming and grammatical evolution, respectively, as their optimization algo-

rithm. Cedrata-GP and Cedrata-GE use the same reference model, modules

and architecture as Cedrata. They differ only in the optimization algorithm

employed.

Cedrata-GP uses genetic programming (Koza, 1992) as the optimization

140

Table A.3: Parameters for genetic programming and grammatical evolution. Param-

eters for genetic programming are those used in the work of Jones et al. (2018b)

and parameters for grammatical evolution are those used in the work of Neupane

and Goodrich (2019).

Parameter Genetic Programming Grammatical Evolution

Initialization half-and-half uniform-tree

Selection strategy tournament selection truncation

Tournament size 3 –

Selection proportion – 50%

Crossover one-point crossover one-point crossover

Population size 25 100

Number of elites 3 1

Crossover probability 0.8 0.9

Uniform mutation probabil-

ity

0.05 –

Shrink mutation probability 0.1 –

Node replacement mutation

probability

0.5 –

Ephemeral mutation proba-

bility

0.5 –

Flip per codon mutation

probability

– 0.01

Codon size – 1000

algorithm. The parameters of this design method are those used in the work of

Jones et al. (2018b) and summarized in Table A.3. We use the genetic programming

implementation of the DEAP library (Fortin et al., 2012).

Cedrata-GE uses grammatical evolution (O’Neill and Ryan, 2003) as the

optimization algorithm. The parameters of this design method are those used in

the work of Neupane and Goodrich (2019) and summarized in Table A.3. We use

the grammatical evolution implementation of PonyGE2 (Fenton et al., 2017).

A.4.5 Experiments

I validated Cedrata, Cedrata-GP, and Cedrata-GE on a set of two mis-

sions: MARKER AGGREGATION and STOP. Both missions were performed in

a dodecagonal arena (see Figure A.13) and lasted 250 s. All code and data is

available from the supplementary material (Kuckling, 2023).

141

(a) MARKER AGGREGATION (b) STOP

Figure originally published in Kuckling et al. (2022).

Figure A.13: Layouts of the arena for the missions considered.

MARKER AGGREGATION

In the mission MARKER AGGREGATION (see Figure A.13a), the robots had to

aggregate within the dotted area. The area itself was not perceivable by the robots.

Instead, a black spot was placed in the middle of the aggregation area that can

serve as a marker. The objective function for this mission was the cumulative time

that the robots spend within the aggregation area:

FMA =
2500
∑

i=0

N i
A, (A.3)

where N i
A is the number of robots in the aggregation area at time step i. The higher

the score of the objective function, the better the robots performed the mission.

STOP

In the mission STOP (see Figure A.13b), the robots had to find a white spot and

then stop as soon as possible. A robot was considered moving, if it had traveled

more than 5mm in the last time step. The objective function for this mission was

reduced for each robot that was not moving at any given time step before the white

spot has been found and for each robot that was moving after the white spot had

been found and additionally for the time that the swarm needed to discover the

142

white spot:

FStop = 100000−
(

t̄N +
t̄
∑

t=1

N
∑

i=1

Īi(t) +
2500
∑

t̄

N
∑

i=1

Ii(t)

)

, (A.4)

where t̄ is the time step during which the white spot was discovered, Ii(t) is an

indicator that a robot i has moved in time step t and Īi(t) is an indicator that a

robot i has not moved in time step t. The higher the score of the objective function,

the better the robots perform the mission.

Design methods

I considered Cedrata, Cedrata-GP, and Cedrata-GE, as described in this

chapter. I also included several manual designs. For the manual designs, I asked

human designers—with prior experience in swarm robotics, but not with behavior

trees—to design control software within the same constraints as Cedrata, that

is, with the same modules and architecture. The human designers had access to

the AutoMoDe Editor (Kuckling et al., 2021a), a tool that allows the designers

to visualize and manipulate the behavior trees and to launch simulations of the

designed behavior tree. The human designers received feedback about their de-

signed behavior tree through the objective function and a visual representation of

the arena and the behavior of the swarm.

Lastly, I included a reference design as an additional point of reference for

the reader. These reference designs were not part of the experimental protocol.

They were not optimized and did not aim to be the best performing solutions for

each mission, but simply to provide a sensible solution. These designs served to

highlight particular strategies that I expected to be discovered in each mission.

They were not known to the human designers prior to their manual designs.

Reference designs

The reference design for the mission MARKER AGGREGATION is shown in Fig-

ure A.14a. In this design, robots explored the arena until they found the marker.

Then, using the signal framework, they attracted their neighbors to the aggregation

area. At any given time step, the tick traversed the three subtrees from left to

right. The left subtree handled the case where the robot is on the marker. If the

condition Black Floor evaluated true, then the tick was passed on to the action

node, which invoked the Emit Signal behavior. Since Emit Signal always returns

success and the action node is the last child of the sequence node, this subtree then

returned success as well. This caused the selector node to also return success. If

the condition Black Floor is not met, then the tick is passed into the middle subtree,

143

?

Exp→

MeetGflr

→

ESigBflr

(a) MARKER AGGREGATION

?

Exp→

ESigRSig

→

ESigWflr

(b) STOP

Figure originally published in Kuckling et al. (2022).

Figure A.14: The reference designs for the two missions. The conditions and

actions names have been abbreviated in the following way: Exp: Exploration;

Meet: Meeting; ESig: Emit Signal; Bflr: Black Floor; Gflr: Grey Floor; Wflr:

White Floor; RSig: Receiving Signal.

which handled the case where the robot was on the grey floor and perceived at

least one signaling neighbor. Here, if the condition Grey Floor is met, the robot

executed one time step of the Meeting behavior. If Meeting returned success or

running, then the tick left the tree. If either Meeting or Grey Floor returned failure,

then the tick was passed to the last subtree. This subtree only consists of an action

node with the Exploration behavior.

The reference design for the mission STOP is shown in Figure A.14b. In

this design, robots sent and forwarded signals to their neighbors to transmit the

information that the white spot had been discovered. If a robot received a signal,

it stopped; if it did not receive any signal, it explored the arena to find the white

spot. At any given time step, the tick traversed the three subtrees from left to right.

The left subtree handled the case in which the robot was on the white spot. While

the condition White Floor evaluated true, the robot executed the behavior Emit

Signal to signal the other robots the discovery of the spot. If the condition White

Floor was not met, then the tick was passed to the middle subtree that forwarded

received signals. If the condition Receiving Signal was met, then the tick was

passed to the Emit Signal behavior that emitted the same signal as is checked for

in the Receiving Signal condition. If the Receiving Signal condition was not met,

then the tick was passed to the right subtree, which consisted only of an action

node with the Exploration behavior.

Protocol

For each mission, Cedrata was executed with different budgets: 20 000, 50 000,

100 000 and 200 000 simulation runs. The budget specified the number of simula-

tions that the design process was allowed to perform before it returned the best

144

control software produced. Additionally, Cedrata-GP and Cedrata-GE were

tested on a budget of 200 000 simulation runs. For each combination of method,

mission and budget, 10 independent runs of the methods were performed, leading

to 10 instances of control software. The manual designs were done by four human

designers per mission, with a maximum design duration of 4 hours.

Simulations were performed in a realistic and physics-based simulation en-

vironment (see Section 3.6). The generated instances of control software of all

designs methods are assessed in pseudo-reality to investigate the impact of the

reality gap.

A.4.6 Results

Figure A.15 shows the results for the missions STOP and MARKER AGGREGATION.

Results are shown for both the performance in simulation and pseudo-reality.

In the mission MARKER AGGREGATION, there is a clear trend of increasing

performance for Cedrata with increasing budget. A detailed investigation of

the generated control software revealed that Cedrata developed two general

solution strategies: one strategy was based on the communication framework,

while the other was not. In the communication-less strategy (for an example, see

Figure A.16a), the robots explored the arena until they discovered the black spot,

at which point they usually stopped. In the communication-based strategy (see

Figure A.16b), however, the robots made use of the communication behaviors to

quickly aggregate within the target area. The communication-based designs were

similar in that regard to the reference design. The performance of Cedrata for

each budget then seemed to primarily depend on the ratio of the two strategies.

Indeed, for design budgets of 20 000 and 50 000 simulation runs, Cedrata only

produced control software that uses the communication-less strategy. For a budget

of 100 000 simulation runs, Cedrata produced a single solution that followed the

communication-based strategy and for a budget of 200 000 simulation runs, four

designs made use of that strategy. It appears that the ratio of communication-less to

communication-based strategies depended on the available budget. Indeed, as the

communication-based strategy required at least two modules to interact correctly,

Iterated F-race is more likely to discover such a combination the more often it

sampled new solutions, which depended on the number of iterations and therefore

the budget.

When comparing all considered design methods, the manual designers all found

solutions that made use of communication. Their control software performed

similar well as the communication-based behavior trees generated by Cedrata

and better than the reference design, which was not meant to be the best performing

solution, but just to highlight the general strategy. The human designers were

therefore not only able to discover the strategy but also to find a reasonable tuning

145

for the parameter.

Cedrata-GP and Cedrata-GE both failed to generate any solution making

use of the communication modules, even for a budget of 200 000 simulation

runs. Interestingly, both design methods generated solutions that, under the right

circumstances, performed nearly as good as the best instances of control software

generated by Cedrata. However, this appears to be mostly due to the initial

starting position favoring quick aggregation within the target zone and in total both

Cedrata-GP and Cedrata-GE performed worse than Cedrata.

Unlike in the mission MARKER AGGREGATION, there was no improvement for

increasing budgets in the mission STOP. Instead, the performance remained rela-

tively stable. Investigation of the generated behavior trees revealed that Cedrata

failed to make use of the communication modules for this mission. All generated

behavior trees employed a strategy, where the robots were using the Isolation

behavior (for an example, see Figure A.16c). As a result, the swarm expanded

and, with high probability, a robot passed over the white spot. At the end of the

expansion phase, the robots slowed down and moved relatively little, often falling

below the threshold of 5mm per time step. Some behavior trees also included an

Exploration module for cases when no neighbors were detected.

Comparing all design methods showed that the manual designs, just like the

reference design, made use of the communication framework and showed the

best performance. Both Cedrata-GP and Cedrata-GE found solutions that

followed the same Isolation-based strategy as Cedrata and achieved similar

performances. For all design methods, there were some runs where the performance

was relatively close to 0. Often, in these runs, the control software failed to find

the white spot.

I made some observations that held for all considered missions: The first obser-

vation is that all design methods showed a relatively small pseudo-reality gap. That

is, they experience only a small drop in performance when assessing the control

software in pseudo-reality. I believe that this is a first indicator that Cedrata and

the design methods based on it might transfer well into reality as well. A second

observation is that all behavior trees generated by Cedrata, Cedrata-GP and

Cedrata-GE contained many modules that never were ticked by the behavior

tree. I believe this to be because of the reduced restrictions in the architecture,

which allowed modules to be easily placed in the tree in a way that ensured they

would never receive a tick. The design process had no explicit way of distinguish-

ing necessary and superfluous modules and all techniques that aim at generating

new behavior trees (random sampling around elites, cross-overs, mutations) were

therefore highly likely to transfer some of the superfluous modules into the newly

generated behavior tree. This poses a challenge to the automatic design process.

Namely, that the design process will spend some resources on tuning these su-

perfluous modules, which have no influence on the behavior of the swarm, thus

146

effectively wasting a part of the allocated budget. Lastly, I observed that the auto-

matic design process had difficulties generating communication-based behaviors.

In both missions, MARKER AGGREGATION and STOP, the human designers found

well performing solutions that made use of the communication framework. Only

in the mission MARKER AGGREGATION was Cedrata able to generate at least a

few solutions following a similar strategy. My initial hypothesis was that this might

have been caused by some properties of the underlying optimization algorithm,

Iterated F-race. I have therefore replaced Iterated F-race with two different opti-

mization algorithms, whose parametrization we have taken from other works in the

swarm robotics literature. Unfortunately, both Cedrata-GP and Cedrata-GE

appeared to have even greater difficulties generating communication-based behav-

iors than Cedrata. I believe that this could be due to the fact that communication

requires two corresponding modules, a sender and a receiver, while all other

strategies can rely on a single module.

A.4.7 Discussion

The results generated by the human designers showed that the modules and con-

straints of Cedrata were sensible, as the human designers were able to design

control software that performed satisfactorily. Furthermore, as the human designers

had no prior experience with behavior trees, this seems to be an indicator that be-

havior trees are an intuitive control architecture to design for. The automatic design

method Cedrata, on the other hand, was not able to generate communication-

based behaviors. I hypothesized that this might have been due to some property of

the optimization algorithm Iterated F-race, and therefore I created Cedrata-GP

and Cedrata-GE, two variants of Cedrata that were based on genetic program-

ming and grammatical evolution, respectively. Neither of these two variants was

able to generate communication-based strategies either.

For future work, I would like to investigate in more detail how an automatic

design process can discover meaningful communication-based strategies and why

the approach taken in this work failed. The results of this work indicated that

simply tuning the parameters of an optimization algorithm would probably not be

enough. Nevertheless it would be interesting to investigate the effects of different

parameters on the performance of generated solutions, especially with respect to

the exploration-exploitation trade-off. Another issue for investigation could be

the mapping of behavior trees into representations that can be manipulated by the

genetic programming and grammatical evolution implementations. One possible

approach to create communication-based behaviors could be to create an interleaved

optimization process. Starting from a minimal communicating solution, the design

process alternates between fixing the sending or the receiving part of the behavior

tree and optimizing the remaining part of the tree. Another approach to solve

147

simulation pseudo-reality

20k 50k 100k 200k
budget

0

20000

40000

sc
or

e

Marker Aggregation

Manual
Refere

nce
Cedrata

Cedrata
-GP

Cedrata
-GE

Marker Aggregation

20k 50k 100k 200k
budget

0

25000

50000

75000

100000

sc
or

e

Stop

Manual
Refere

nce
Cedrata

Cedrata
-GP

Cedrata
-GE

method

Stop

Figure adapted from Kuckling et al. (2022).

Figure A.15: Results for the mission MARKER AGGREGATION (top) and STOP

(bottom). The left plots show the development of the performance over increasing

budget for Cedrata. The right plots show the comparison of all design methods

under consideration for a budget of 200 000 simulation runs. The dark grey boxes

represent performance obtained in the design context, light grey boxes represent

performance obtained in the pseudo-reality context.

148

?

Exp→

ExpMeetINgb

→

ESigAckBflr

(a) MARKER AGGREGATION, without communication

?∗

ESig→∗

StopWflrStop

→

ESigExpGflr

(b) MARKER AGGREGATION, communication-based

→∗

?∗

RSigExpRSig

→

WflrRSigIsol

(c) STOP

Figure originally published in Kuckling et al. (2022).

Figure A.16: Typical behavior trees generated by Cedrata.

149

this problem could be cooperative co-evolution. One could possibly create two

distinct populations that are given a sending or receiving module, respectively. This

ensures the existence of communication from the starting population. Subsequent

generations could then refine the communication protocol and integrate it with the

other modules. Additionally, the results presented here showed that Cedrata and

its variants were able to perform satisfactorily also in pseudo-reality. While this is

an indicator that the design approaches might cross the reality gap well, I would

like to confirm this hypothesis by performing real robot experiments.

150

Appendix B

Search space considerations

B.1 Search space size for AutoMoDe-Chocolate

and AutoMoDe-Maple

B.1.1 Search space for finite-state machines

General case

Consider a finite-state machine with up to smax states. Each state has at least one

and at most tmax outgoing transitions that cannot point back into the same state

they origin from. The number of all such finite-state machines (written |SFSM |)
can be described by equation B.1:

|SFSM | =
smax
∑

s=1

|SFSM (s)|

= |SFSM (1)|+
smax
∑

s=2

|SFSM (s)|.
(B.1)

|SFSM (s)| describes the number of possible finite-state machines with exactly s
states. The trivial case of s = 1 needs to be handled separately as a finite-state

machine with exactly one state does not have any transitions. There are exactly

|SFSM (1)| = |B| finite-state machines with exactly one state, as only the behavior

for the single state can be chosen. For more than one state s > 1, the number of

possible finite-state machines can be described by the number of s (independent)

choices, one for each state. This can be modeled by choosing s times independently

from the set of all possible states (multiplication principle). In this model, the state

already contains information about all outgoing transitions (e.g. their number, the

151

target, and the condition).

|SFSM (s)| = |Sstate1(s)| ∗ |Sstate2(s)| ∗ ... ∗ |Sstates(s)| =
s
∏

i=1

|Sstate(s)|. (B.2)

If the number of states in a finite-state machine is fixed to s, then number of

configurations for each state is the same, and can be expressed by |Sstate(s)|. This

is because each state is composed of the behavior (chosen from B) and up to tmax

outgoing transitions to the s− 1 other states.

|Sstate(s)| =
tmax
∑

t=1

(

|B| ∗
t
∏

j=1

|Stransition(s)|
)

. (B.3)

The number of possible outgoing transition is defined by the (independent) choice

of a condition (from the set C) and the target state. The target state can be modeled

by a mapping from the states unto the set {1, 2, ..., s−1}. Therefore there are s−1
possible target states for the transitions.

|Stransition(s)| = |C| ∗ (s− 1). (B.4)

By substituting the equation for the number of outgoing transitions of a state

(equation B.4) into the equation for the number of possible configurations of a state

(equation B.3) we obtain:

|Sstate(s)| =
tmax
∑

t=1

(

|B| ∗
t
∏

j=1

(|C| ∗ (s− 1))

)

=
tmax
∑

t=1

(

|B| ∗ |C|t ∗ (s− 1)t
)

.

(B.5)

Substituting the result obtained in equation B.5 into equation B.2 then leads to:

|SFSM (s)| =
s
∏

i=1

tmax
∑

t=1

(

|B| ∗ |C|t ∗ (s− 1)t
)

=

(

tmax
∑

t=1

(

|B| ∗ |C|t ∗ (s− 1)t
)

)s

.

(B.6)

Finally after substituting equation B.6 into equation B.1, we obtain an equation for

the size of the search space for all finite-state machines with up to smax states and

tmax outgoing transitions per state:

|SFSM | = |B|+
smax
∑

s=2

(

tmax
∑

t=1

(

|B| ∗ |C|t ∗ (s− 1)t
)

)s

. (B.7)

152

Chocolate

In Chocolate the finite-state machines are limited to four states and each state

can only have up to four outgoing transitions. Inserting the values smax = 4 and

tmax = 4 into equation B.7 leads to the following equation:

#S(FSM) = 43046721 |B|4 |C|16 + 57395628 |B|4 |C|15 + 47829690 |B|4 |C|14

+ 31886460 |B|4 |C|13 + 16474671 |B|4 |C|12 + 7085880 |B|4 |C|11

+ 2598156 |B|4 |C|10 + 787320 |B|4 |C|9 + 203391 |B|4 |C|8

+ 43740 |B|4 |C|7 + 7290 |B|4 |C|6 + 972 |B|4 |C|5 + 81 |B|4 |C|4

+ 4096 |B|3 |C|12 + 6144 |B|3 |C|11 + 6144 |B|3 |C|10 + 5120 |B|3 |C|9

+ 3072 |B|3 |C|8 + 1536 |B|3 |C|7

+ 640 |B|3 |C|6 + 192 |B|3 |C|5 + 48 |B|3 |C|4 + 8 |B|3 |C|3 + |B|2 |C|8

+ 2 |B|2 |C|7 + 3 |B|2 |C|6 + 4 |B|2 |C|5 + 3 |B|2 |C|4 + 2 |B|2 |C|3

+ |B|2 |C|2 + |B|
(B.8)

In this equation, each summand x |B|b |C|c indicates the number of possible finite-

state machines with b states and a total of c transitions. The term x denotes the

number of possible finite state machines that combine c transitions and b states

with the restriction of at most tmax outgoing transitions per state.

For example 2 |B|2 |C|7 denotes that Chocolate can generate 2 different

topologies of finite-state machines containing 2 states and 7 outgoing transitions.

Because of the limit of tmax = 4 outgoing transitions per state, 3 of the 7 outgoing

transitions need to be associated to one state, and the 4 remaining transitions to the

other state. However each of the two states can have the four transitions, leading to

two possible distributions.

Summing the coefficients of equation B.8 results in a total of 207 387 017
different topologies of finite-state machines.

The defining factor for the size of the search space is however the search space

defined by the modules. Even without taking the parameters into account, there are

616 = 2 821 109 907 456 possible ways of assigning a condition to each transition

in the case of the maximum number of states and transitions. We can therefore

conclude that the size of the search space for Chocolate is in O
(

|B|4 |C|16
)

.

153

B.1.2 Search space for behavior trees

General case

Consider a behavior tree with depth d, that is, d+1 nodes on the longest path from

the (implicitly) defined root node to a leaf node. Additionally, let the top-level

node (only child of the root), be at level 1. All of its children are at level 2, their

children at level 3, and so on. In this case the level of a node is equivalent to its

depth in the tree.

Suppose that we fix a level i. On this level i we can choose either a control-flow

node out of a subset of all possible control-flow nodes Ni ∈ N , or a leaf node

(either action or condition node). Additionally, every control-flow node on level i
must have between cmin and cmax children.

Let BT=l be the set of behavior trees with a depth of exactly l. That is the there

are exactly l nodes from the top-level node to the furthest leaf node.

Similarly let BT<l be the set of behavior trees where there exists no path

between the top-level node and any leaf node that has at least l nodes in it. It should

be noted that the following equality holds true:

BT<l =
l−1
⋃

i=1

BT=i. (B.9)

The last important notation is BT≤l, the set of all behavior trees with a depth of at

most l. The following two equalities hold up:

BT≤l = BT<l+1 (B.10)

BT≤l = BT=l ∪ BT<l. (B.11)

The number of behavior trees with at most l levels can be described by the following

recursive formula:

|BT=1| = |B|+ |C| (B.12)

|BT≤l+1| = |BT=l+1|+ |BT<l+1|
= |BT=l+1|+ |BT≤l|

=
1
∑

i=l+1

|BT=i| .
(B.13)

It should be noted that this formula covers the recursive anchor for l = 1 (the leaf

nodes). If the restrictions applied to a behavior tree allow it, this recursive formula

can also have a recursive anchor for BT=i, i > 1.

154

For |BT=i| , i > 1 we can show the following:

|BT=i| = |Ni|
cmax
∑

c=cmin

(|BT=i−1|+ |BT<i−1|)c − |BT<i−1|c . (B.14)

That is because no behavior trees with i > 1 levels can be a leaf node. Additionally

they if they have a depth of i, they need to have at least one subtree under the

top-level node with exactly i− 1 levels. It is however not necessary to only have

a single subtree with these many levels. Indeed any number of subtrees (with at

least more than one) are acceptable. By the inclusion-exclusion principle, we can

include all behavior trees as subtrees that have either l − 1 or less then l − 1 levels

((|BT=i−1|+ |BT<i−1|)c) but we need to include the case that all subtrees have

less then l − 1 levels (|BT<i−1|c). This needs to be done for all mutually exclusive

choices for the number of children and all independent choices of the control-flow

node.

Maple

In Maple we have a restricted version of the behavior trees, that can have exactly

three levels. Because of the special restrictions, we can define a recursive anchor for

BT=2, describing our selector subtrees. There are |C| ∗ |B| possible combinations

for the selector subtrees, because of the independent choices of the selector node

(no true single choice), condition for the condition node and behavior for the action

node.
|BT=2| = |{?}| ∗ |C| ∗ |B|

= |C| ∗ |B| . (B.15)

Additionally all other levels (in this case only the top-level) can have between

cmin = 1 and cmax = 4 children. If we use these restrictions in equation B.14 it

results in:

|BT=3| = |N3|
cmax
∑

c=cmin

(|BT=2|+ |BT<2|)c − |BT<2|c

= |{→∗}|
4
∑

c=1

(|BT=2|+ 0)c − 0c

=
4
∑

c=1

(|BT=2|)c

=
4
∑

c=1

(|C| ∗ |B|)c

= |C|1 |B|1 + |C|2 |B|2 + |C|3 |B|3 + |C|4 |B|4 .

(B.16)

155

Here again the coefficients of x |C|i |B|i describe the number of ways it is possible

to construct a restricted behavior tree with i. However there is just a single way of

combining the subtrees (all under the top-level node).

B.2 Proofs of completeness for perturbation opera-

tors

Finite-state machines

Completeness of the perturbation operators

In this section, I provide proofs that any valid finite-state machine can be trans-

formed into any other valid finite-state machine through the application of the

perturbation operators P1 - P11 (see Section 4.3).

Corollary FSM.1 Given a valid finite-state machine, according to the criteria of

this section, if a state has the maximum number of outgoing transitions, then at

least two of its outgoing transitions point to the same end state.

Proof. In this setting, a valid finite-state machine has at most four states (see the

definitions of validity further up). If a state has the maximum number of four

outgoing transitions and no transition is allowed to be self-referencing, then each

outgoing transition can point to one of the other states, which are at most three

possibilities. The pigeonhole principle now states that there needs to be at least

two of the four outgoing transitions pointing towards the same end state.

Completeness of perturbation operators Let FSM and FSM ′ be two finite-

state machines that are valid instances of control software according to the previous

definition. FSM can be transformed into FSM ′ through the use of the perturbation

operators defined in this section.

Proof. The proof of the aforementioned statement will be divided in several steps.

After all steps have been executed, the initial finite-state machine FSM has been

transformed into FSM ′. The transformation steps are:

1. add states, if necessary;

2. transform into clique;

3. remove unneeded states, if necessary;

4. remove unneeded transitions, if necessary;

5. add transitions;

6. move initial state;

156

7. match modules;

8. match parameters.

Step 1 If FSM has fewer states than FSM ′: repeatedly apply the operator P3

(add state) to add states to FSM until it has the same number of states as FSM ′.

This also adds one incoming and one outgoing transition to each state. If a state

needs to be added, but all other states already have the maximum number of

outgoing transitions, select one state s and one transition t outgoing of s into s′ in

such a way that s has another transition to s′ (this is possible because of Corollary

FSM.1). Remove this transition t with the operator P2 (remove transition). Now

add the additional state s′′ using the operator P3 (add state), creating a transition

from s to s′ and a transition from s to any other state in the finite-state machine.

Step 2 For each ordered pair of states s, s′ in the finite-state machine, add a

transition from s to s′ through the application of the operator P1 (add transition),

if it does not already exist. If s already has the maximum number of outgoing

transitions, then P1 (add transition) is not applicable. Instead, select one transition

from s to s′′, where s′′ is another state such that at least two transitions point from s
to s′′ (possible because of Corollary FSM.1) and change its endpoint to s′ through

the application of P6 (move transition end). This step transforms the state transition

graph of FSM into a directed clique.

Step 3 For every state, define a matching from the states of FSM ′ to the states of

FSM . As Step 1 guarantees that FSM has at least the same number of states as

FSM ′ and step 2 did not alter the number of states in FSM , every state of FSM ′

can be matched to a state in FSM . Excess states in FSM are not matched and are

marked for deletion. Using operator P4 (remove state), remove every such state s
that has been marked for deletion. This is possible, as the state is definitely not an

articulation vertex, as the remaining states and their transitions still form a directed

clique.

Step 4 For every state s in FSM and every outgoing transition of s, if FSM ′ has

at least one transition from s = start(t) to end(t), then match t to one of these

transitions. Else remove this transition through the application of the perturbation

operator P2 (remove transition). This is possible, as this can never remove the

last outgoing transition of s. Indeed the corresponding state in FSM ′ has at

least one outgoing transition, or it is the only state in both finite-state machines

FSM and FSM ′ so neither finite-state machine has a transition to remove anyway.

Also, it cannot remove the only incoming transition into another state, as this

transformation preserves at least one of the incoming transitions from s to s′. If

157

this matching would delete all incoming transitions into s′, this would mean that

there is no state s′′ in FSM ′ either that has a transition to s′, thus creating an invalid

configuration.

Step 5 For every state s in FSM , if s has fewer outgoing transitions than its

corresponding state in FSM ′, apply operator P1 (add transition) repeatedly, adding

outgoing transitions to s until it has the same number of outgoing transitions as

its corresponding state. Match this newly generated transition to a transition in

FSM ′ that has no matching yet. Use perturbation operator P6 (move transition

end) to move the end state of the newly created transition to match the end state of

the corresponding transition in FSM ′. This again is possible because the newly

created transition could not have been the only incoming transition into its original

end state, otherwise this state would have been in an invalid configuration after

step 4.

Step 6 Use the perturbation operator P7 (change initial state) to move the initial

state to the state s whose corresponding state in FSM ′ is the initial state of FSM ′.

Step 7 For each state s in FSM , use perturbation operator P9 (change behavior)

to match the behavior associated with s to the same behavior that is associated with

its corresponding state in FSM ′.

For each transition t in FSM , use perturbation operator P8 (change condition)

to match the condition associated with t to the same condition that is associated

with its corresponding transition in FSM ′.

Step 8 For each state s in FSM , use perturbation operator P11 (change behavior

parameters) to match the behavioral parameters of the behavior associated with s
to the same parameters as of the behavior that is associated with the corresponding

state of s in FSM ′.

For each transition t in FSM , use perturbation operator P10 (change condition

parameters) to match the conditional parameters of the condition associated with t
to the same parameters as of the condition that is associated with the corresponding

transition of t in FSM ′.

158

Behavior trees

Completeness of perturbation operators

In this section, I provide proofs that any valid behavior tree can be transformed

into any other valid behavior tree through the application of the perturbation

operators P1 - P7 (see Section A.3).

Let BT and BT ′ be two behavior trees that are valid instances of control

software according to the previous definition. BT can be transformed into BT ′

through the use of the perturbation operators P1 - P7.

Proof. The proof of the aforementioned statement will be divided into several

steps. After all steps have been executed, the initial behavior tree BT has been

transformed into BT ′.

By definition, BT and BT ′ already contain the same single root (V1) and the

same single top-level node that is, by definition, a sequence* (→∗) node (V2). The

following steps will ensure that all other parts of the behavior tree will be identical

as well:

1. add selector subtrees, if necessary;

2. remove selector subtrees, if necessary;

3. update modules;

4. update parameters.

Step 1 If BT has fewer selector subtrees than BT ′, then apply the perturbation

operator P1 (add subtree) repeatedly until the number of selector subtrees is the

same in the two trees.

Step 2 If BT has more selector subtrees than BT ′, then apply the perturbation

operator P2 (remove subtree) repeatedly until the number of selector subtrees is the

same in the two trees. Step 1 and step 2 ensure that the two trees are structurally

the same and all inner nodes already have the correct control node type associated.

Additionally, create a matching between each leaf node in BT to a leaf node in

BT ′, matching the two positionally identical leaf nodes in each behavior tree with

each other.

Step 3 Traverse the leaf nodes of BT . If the current leaf node is a condition

node, apply perturbation operator P4 (change condition) changing the condition to

the one in the corresponding condition node in BT ′. If the leaf node is an action

node, apply perturbation operator P5 (change behavior) to change the behavior

associated with that action node to the one associated with the corresponding node

in BT ′.

159

Step 4 Traverse the leaf nodes of BT . If the current leaf node is a condition

node, apply the perturbation operator P6 (change condition parameter) onto that

node matching the parameters of the corresponding node in BT ′. If the leaf node

is an action node, apply the perturbation operator P7 (change behavior parameter)

onto that node to match the parameters of the corresponding node in BT ′.

160

Bibliography

Aarts, E., Korst, J., and Michiels, W. (2005). “Simulated annealing”. In: Search

Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques. Ed. by E. K. Burke and G. Kendall. Boston, MA, USA: Springer,

pp. 187–210. DOI: 10.1007/0-387-28356-0_7.

Abbeel, P. and Ng, A. Y. (2004). “Apprenticeship learning via inverse reinforcement

learning”. In: ICML 2004. Ed. by C. Brodley. New York, NY, USA: ACM, p. 1.

DOI: 10.1145/1015330.1015430.

Alharthi, K., Abdallah, Z. S., and Hauert, S. (2022). “Understandable controller

extraction from video observations of swarms”. In: Swarm Intelligence: 13th

International Conference, ANTS 2022. Ed. by M. Dorigo, H. Hamann, M.

López-Ibáñez, J. Garcı́a-Nieto, A. Engelbrecht, C. Pinciroli, V. Strobel, and

C. Camacho-Villalón. Vol. 13491. Lecture Notes in Computer Science. Cham,

Switzerland: Springer, pp. 41–53. DOI: 10.1007/978-3-031-20176-

9_4.

Allen, J. M., Joyce, R., Millard, A. G., and Gray, I. (2020). “The Pi-puck ecosys-

tem: hardware and software support for the e-puck and e-puck2”. In: Swarm

Intelligence: 12th International Conference, ANTS 2020. Ed. by M. Dorigo,

T. Stützle, M. J. Blesa, C. Blum, H. Hamann, M. K. Heinrich, and V. Strobel.

Vol. 12421. Lecture Notes in Computer Science. Cham, Switzerland: Springer,

pp. 243–255. DOI: 10.1007/978-3-030-60376-2_19.

Ansótegui, C., Sellmann, M., and Tierney, K. (2009). “A gender-based genetic

algorithm for the automatic configuration of algorithms”. In: Principles and

Practice of Constraint Programming - CP 2009. Ed. by I. P. Gent. Vol. 5732.

Lecture Notes in Computer Science. Berlin, Germany: Springer, pp. 142–157.

DOI: 10.1007/978-3-642-04244-7_14.

Aristotle (1967). Politics. Translated by H. Rackham. Cambridge, MA, USA:

Harvard University Press.

Arvin, F., Turgut, A. E., Bazyari, F., Arikan, K. B., Bellotto, N., and Yue, S.

(2014). “Cue-based aggregation with a mobile robot swarm: a novel fuzzy-

based method”. In: Adaptive Behavior 22.3, pp. 189–206. DOI: 10.1177/

1059712314528009.

161

https://doi.org/10.1007/0-387-28356-0_7
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1007/978-3-031-20176-9_4
https://doi.org/10.1007/978-3-031-20176-9_4
https://doi.org/10.1007/978-3-030-60376-2_19
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1177/1059712314528009
https://doi.org/10.1177/1059712314528009

Bäck, T., Fogel, D. B., and Michalewicz, Z., eds. (1997). Handbook of Evolutionary

Computation. First. Bristol, United Kingdom: IOP Publishing.

Balaprakash, P., Birattari, M., and Stützle, T. (2007). “Improvement strategies

for the F-Race algorithm: sampling design and iterative refinement”. In: Hy-

brid Metaheuristics: 4th International Workshop, HM 2007. Ed. by T. Bartz-

Beielstein, M. J. Blesa, C. Blum, B. Naujoks, A. Roli, G. Rudolph, and M.

Sampels. Vol. 4771. Lecture Notes in Computer Science. Berlin, Germany:

Springer, pp. 108–122. DOI: 10.1007/978-3-540-75514-2_9.

Beni, G. (2005). “From swarm intelligence to swarm robotics”. In: Swarm Robotics:

SAB 2004 International Workshop. Ed. by E. Şahin and W. M. Spears. Vol. 3342.

Lecture Notes in Computer Science. Berlin, Germany: Springer, pp. 1–9. DOI:

10.1007/978-3-540-30552-1_1.

Berlinger, F., Gauci, M., and Nagpal, R. (2021). “Implicit coordination for 3D

underwater collective behaviors in a fish-inspired robot swarm”. In: Science

Robotics 6.50, eabd8668. DOI: 10.1126/scirobotics.abd8668.

Berman, S., Halász, Á. M., Hsieh, M. A., and Kumar, V. (2009). “Optimized

stochastic policies for task allocation in swarms of robots”. In: IEEE Transac-

tions on Robotics 25.4, pp. 927–937. DOI: 10.1109/TRO.2009.2024997.

Berman, S., Kumar, V., and Nagpal, R. (2011). “Design of control policies for

spatially inhomogeneous robot swarms with application to commercial pollina-

tion”. In: 2011 IEEE International Conference on Robotics and Automation

(ICRA). Piscataway, NJ, USA: IEEE, pp. 378–385. DOI: 10.1109/ICRA.

2011.5980440.

Bianco, R. and Nolfi, S. (2004). “Toward open-ended evolutionary robotics: evolv-

ing elementary robotic units able to self-assemble and self-reproduce”. In: Con-

nection Science 16.4, pp. 227–248. DOI: 10.1080/09540090412331314759.

Birattari, M. (2004). “The Problem of Tuning Metaheuristics as Seen from a

Machine Learning Perspective”. PhD thesis. Brussels, Belgium: Université

Libre de Bruxelles.

Birattari, M., Ligot, A., Bozhinoski, D., Brambilla, M., Francesca, G., Garattoni, L.,

Garzón Ramos, D., Hasselmann, K., Kegeleirs, M., Kuckling, J., Pagnozzi, F.,

Roli, A., Salman, M., and Stützle, T. (2019). “Automatic off-line design of

robot swarms: a manifesto”. In: Frontiers in Robotics and AI 6, p. 59. DOI:

10.3389/frobt.2019.00059.

Birattari, M., Ligot, A., and Hasselmann, K. (2020). “Disentangling automatic

and semi-automatic approaches to the optimization-based design of control

software for robot swarms”. In: Nature Machine Intelligence 2.9, pp. 494–499.

DOI: 10.1038/s42256-020-0215-0.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). “A racing algo-

rithm for configuring metaheuristics”. In: GECCO’02: Proceedings of the 4th

Annual Conference on Genetic and Evolutionary Computation. Ed. by W. B.

162

https://doi.org/10.1007/978-3-540-75514-2_9
https://doi.org/10.1007/978-3-540-30552-1_1
https://doi.org/10.1126/scirobotics.abd8668
https://doi.org/10.1109/TRO.2009.2024997
https://doi.org/10.1109/ICRA.2011.5980440
https://doi.org/10.1109/ICRA.2011.5980440
https://doi.org/10.1080/09540090412331314759
https://doi.org/10.3389/frobt.2019.00059
https://doi.org/10.1038/s42256-020-0215-0

Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrish-

nan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz,

J. F. Miller, E. K. Burke, and N. Jonoska. San Francisco, CA, USA: Morgan

Kaufmann Publishers, pp. 11–18.

Bloom, J., Mukherjee, A., and Pinciroli, C. (2022). A study of reinforcement

learning algorithms for aggregates of minimalistic robots. https://arxiv.

org/abs/2203.15129.

Bongard, J. C. and Lipson, H. (2004). “Once more unto the breach: co-evolving

a robot and its simulator”. In: Artificial Life IX: Proceedings of the Ninth

International Conference on the Simulation and Synthesis of Living Systems.

Ed. by J. B. Pollack, M. A. Bedau, P. Husbands, R. A. Watson, and T. Ikegami.

A Bradford Book. Cambridge, MA, USA: MIT Press, pp. 57–62. DOI: 10.

7551/mitpress/1429.003.0011.

Boston Dynamics (2017). What’s new, Atlas? https://youtu.be/fRj34o4hN4I. ac-

cessed on 2022-12-23.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge, United

Kingdom: Cambridge University Press. DOI: 10.1017/CBO9780511804441.

Bozhinoski, D. and Birattari, M. (2018). “Designing control software for robot

swarms: software engineering for the development of automatic design meth-

ods”. In: RoSE’18: Proceedings of the 1st International Workshop on Robotics

Software Engineering. New York, NY, USA: ACM, pp. 33–35. DOI: 10.1145/

3196558.3196564.

Bozhinoski, D. and Birattari, M. (2022). “Towards an integrated automatic design

process for robot swarms”. In: Open Research Europe 1, p. 112. DOI: 10.

12688/openreseurope.14025.1.

Brambilla, M., Brutschy, A., Dorigo, M., and Birattari, M. (2014). “Property-driven

design for swarm robotics: a design method based on prescriptive modeling

and model checking”. In: ACM Transactions on Autonomous Adaptive Systems

9.4, 17:1–17:28. DOI: 10.1145/2700318.

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). “Swarm robotics:

a review from the swarm engineering perspective”. In: Swarm Intelligence 7.1,

pp. 1–41. DOI: 10.1007/s11721-012-0075-2.

Bredeche, N. and Fontbonne, N. (2021). “Social learning in swarm robotics”. In:

Philosophical Transactions of the Royal Society of London. Series B: Biological

Sciences 377.1843, p. 20200309. DOI: 10.1098/rstb.2020.0309.

Bredeche, N., Haasdijk, E., and Prieto, A. (2018). “Embodied evolution in col-

lective robotics: a review”. In: Frontiers in Robotics and AI 5, p. 12. DOI:

10.3389/frobt.2018.00012.

Bredeche, N., Montanier, J.-M., Liu, W., and Winfield, A. F. T. (2012). “Environment-

driven distributed evolutionary adaptation in a population of autonomous

163

https://arxiv.org/abs/2203.15129
https://arxiv.org/abs/2203.15129
https://doi.org/10.7551/mitpress/1429.003.0011
https://doi.org/10.7551/mitpress/1429.003.0011
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1145/3196558.3196564
https://doi.org/10.1145/3196558.3196564
https://doi.org/10.12688/openreseurope.14025.1
https://doi.org/10.12688/openreseurope.14025.1
https://doi.org/10.1145/2700318
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1098/rstb.2020.0309
https://doi.org/10.3389/frobt.2018.00012

robotic agents”. In: Mathematical and Computer Modelling of Dynamical

Systems 18.1, pp. 101–129. DOI: 10.1080/13873954.2011.601425.

Brooks, R. A. (1992). “Artificial life and real robots”. In: Towards a Practice

of Autonomous Systems: Proceedings of the First European Conference on

Artificial Life. Ed. by F. J. Varela and P. Bourgine. Cambridge, MA, USA: MIT

Press, pp. 3–10.

Burke, E. K. and Bykov, Y. (2017). “The late acceptance hill-climbing heuristic”.

In: European Journal of Operational Research 258.1, pp. 70–78. DOI: 10.

1016/j.ejor.2016.07.012.

Cambier, N., Albani, D., Frémont, V., Trianni, V., and Ferrante, E. (2021). “Cultural

evolution of probabilistic aggregation in synthetic swarms”. In: Applied Soft

Computing 113.B, p. 108010. DOI: 10.1016/j.asoc.2021.108010.

Cambier, N. and Ferrante, E. (2022). “AutoMoDe-Pomodoro: an evolutionary

class of modular designs”. In: GECCO’22: Proceedings of the Genetic and

Evolutionary Computation Conference. Ed. by J. E. Fieldsend. New York, NY,

USA: ACM, pp. 100–103. DOI: 10.1145/3520304.3529031.

Campo, A., Garnier, S., Dédriche, O., Zekkri, M., and Dorigo, M. (2011). “Self-

organized discrimination of resources”. In: PLOS ONE 6.5, e19888. DOI:

10.1371/journal.pone.0019888.

Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S.,

and Dorigo, M. (2010). “Artificial pheromone for path selection by a foraging

swarm of robots”. In: Biological Cybernetics 103.5, pp. 339–352. DOI: 10.

1007/s00422-010-0402-x.

Castelló Ferrer, E., Yamamoto, T., Dalla Libera, F., Liu, W., Winfield, A. F. T.,

Nakamura, Y., and Ishiguro, H. (2016). “Adaptive foraging for simulated and

real robotic swarms: the dynamical response threshold approach”. In: Swarm

Intelligence 10.1, pp. 1–31. DOI: 10.1007/s11721-015-0117-7.

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983). Graphical

Methods For Data Analysis. Belmont, CA, USA: CRC Press.

Champandard, A. J., Dawe, M., and Hernandez-Cerpa, D. (2010). Behavior trees:

three ways of cultivating game AI. https://www.gdcvault.com/

play/1012744/Behavior-Trees-Three-Ways-of. Game Devel-

opers Conference, AI Summit.

Cheung, N. (2017). Technology Behind the Intel Drone Light Shows. https://

www.roboticstomorrow.com/article/2017/05/technology-

behind-the-intel-drone-light-shows/10022/. accessed on

2023-01-07.

Chignoli, M., Kim, D., Stanger-Jones, E., and Kim, S. (2021). “The MIT humanoid

robot: design, motion planning, and control for acrobatic behaviors”. In: 2020

IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids).

164

https://doi.org/10.1080/13873954.2011.601425
https://doi.org/10.1016/j.ejor.2016.07.012
https://doi.org/10.1016/j.ejor.2016.07.012
https://doi.org/10.1016/j.asoc.2021.108010
https://doi.org/10.1145/3520304.3529031
https://doi.org/10.1371/journal.pone.0019888
https://doi.org/10.1007/s00422-010-0402-x
https://doi.org/10.1007/s00422-010-0402-x
https://doi.org/10.1007/s11721-015-0117-7
https://www.gdcvault.com/play/1012744/Behavior-Trees-Three-Ways-of
https://www.gdcvault.com/play/1012744/Behavior-Trees-Three-Ways-of
https://www.roboticstomorrow.com/article/2017/05/technology-behind-the-intel-drone-light-shows/10022/
https://www.roboticstomorrow.com/article/2017/05/technology-behind-the-intel-drone-light-shows/10022/
https://www.roboticstomorrow.com/article/2017/05/technology-behind-the-intel-drone-light-shows/10022/

Ed. by T. Asfour. Piscataway, NJ, USA: IEEE, pp. 1–8. DOI: 10.1109/

HUMANOIDS47582.2021.9555782.

Christensen, A. L. and Dorigo, M. (2006). “Evolving an integrated phototaxis and

hole-avoidance behavior for a swarm-bot”. In: Artificial Life X: Proceedings of

the Tenth International Conference on the Simulation and Synthesis of Living

Systems. Ed. by L. M. Rocha, L. S. Yaeger, M. A. Bedau, D. Floreano, R. L.

Goldstone, and A. Vespignani. A Bradford Book. Cambridge, MA, USA: MIT

Press, pp. 248–254.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. (2019). “Quantifying

generalization in reinforcement learning”. In: Proceedings of the 36th Interna-

tional Conference on Machine Learning (ICML 2019). Ed. by K. Chaudhuri

and R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.

PMLR, pp. 1282–1289. DOI: 10.1007/978-3-540-71541-2_4.

Colledanchise, M. and Ögren, P. (2018). Behavior Trees in Robotics and AI: An In-

troduction. First. Chapman & Hall/CRC Artificial Intelligence and Robotics Se-

ries. Boca Raton, FL, USA: CRC Press. DOI: 10.1201/9780429489105.

Conover, W. J. (1999). Practical Nonparametric Statistics. Third. Wiley Series in

Probability and Statistics. New York, NY, USA: John Wiley & Sons.

Correll, N. and Martinoli, A. (2007). “Robust distributed coverage using a swarm

of miniature robots”. In: 2007 IEEE International Conference on Robotics

and Automation (ICRA). Piscataway, NJ, USA: IEEE, pp. 379–384. DOI: 10.

1109/ROBOT.2007.363816.

Dantzig, G. B. (1990). “Origins of the simplex method”. In: A history of scientific

computing. Ed. by S. G. Nash. New York, NY, USA: ACM, pp. 141–151. DOI:

10.1145/87252.88081.

De Masi, G., Prasetyo, J., Mankovskii, N., Ferrante, E., and Tuci, E. (2021). “Robot

swarm democracy: the importance of informed individuals against zealots”.

In: Swarm Intelligence 15.4, pp. 315–338. DOI: 10.1007/s11721-021-

00197-3.

Diggelen, F. van, Luo, J., Karagüzel, T. A., Cambier, N., Ferrante, E., and Eiben, A.

(2022). “Environment induced emergence of collective behavior in evolving

swarms with limited sensing”. In: GECCO’22: Proceedings of the Genetic and

Evolutionary Computation Conference. Ed. by J. E. Fieldsend. New York, NY,

USA: ACM, pp. 31–39. DOI: 10.1145/3512290.3528735.

Dimidov, C., Oriolo, G., and Trianni, V. (2016). “Random walks in swarm robotics:

an experiment with Kilobots”. In: Swarm Intelligence: 10th International

Conference, ANTS 2016. Ed. by M. Dorigo, M. Birattari, X. Li, M. López-

Ibáñez, K. Ohkura, T. Stützle, and C. Pinciroli. Vol. 9882. Lecture Notes

in Computer Science. Cham, Switzerland: Springer, pp. 185–196. DOI: 10.

1007/978-3-319-44427-7_16.

165

https://doi.org/10.1109/HUMANOIDS47582.2021.9555782
https://doi.org/10.1109/HUMANOIDS47582.2021.9555782
https://doi.org/10.1007/978-3-540-71541-2_4
https://doi.org/10.1201/9780429489105
https://doi.org/10.1109/ROBOT.2007.363816
https://doi.org/10.1109/ROBOT.2007.363816
https://doi.org/10.1145/87252.88081
https://doi.org/10.1007/s11721-021-00197-3
https://doi.org/10.1007/s11721-021-00197-3
https://doi.org/10.1145/3512290.3528735
https://doi.org/10.1007/978-3-319-44427-7_16
https://doi.org/10.1007/978-3-319-44427-7_16

Divband Soorati, M. and Hamann, H. (2015). “The effect of fitness function

design on performance in evolutionary robotics: the influence of a priori knowl-

edge”. In: GECCO’15: Proceedings of the 2015 Annual Conference on Genetic

and Evolutionary Computation. Ed. by S. Silva. New York, NY, USA: ACM,

pp. 153–160. DOI: 10.1145/2739480.2754676.

Dorigo, M., Birattari, M., and Brambilla, M. (2014). “Swarm robotics”. In: Schol-

arpedia 9.1, p. 1463. DOI: 10.4249/scholarpedia.1463.

Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T.,

Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A.,

Christensen, A. L., Decugnière, A., Di Caro, G. A., Ducatelle, F., Ferrante, E.,

Förster, A., Martinez Gonzales, J., Guzzi, J., Longchamp, V., Magnenat, S.,

Mathews, N., Montes de Oca, M., O’Grady, R., Pinciroli, C., Pini, G., Retornaz,

P., Roberts, J., Sperati, V., Stirling, T., Stranieri, A., Stützle, T., Trianni, V., Tuci,

E., Turgut, A. E., and Vaussard, F. (2013). “Swarmanoid: a novel concept for

the study of heterogeneous robotic swarms”. In: IEEE Robotics & Automation

Magazine 20.4, pp. 60–71. DOI: 10.1109/MRA.2013.2252996.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). “Ant system: optimization by a

colony of cooperating agents”. In: IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics) 26.1, pp. 29–41. DOI: 10.1109/3477.

484436.

Dorigo, M. and Stützle, T. (2014). Ant Colony Optimization. Cambridge, MA,

USA: MIT Press.

Dorigo, M., Theraulaz, G., and Trianni, V. (2020). “Reflections on the future

of swarm robotics”. In: Science Robotics 5, eabe4385. DOI: 10.1126/

scirobotics.abe4385.

Dorigo, M., Theraulaz, G., and Trianni, V. (2021). “Swarm robotics: past, present,

and future [point of view]”. In: Proceedings of the IEEE 109.7, pp. 1152–1165.

DOI: 10.1109/JPROC.2021.3072740.

Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella Thomas, H., Baldassarre, G.,

Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., and Gambardella, L. M.

(2003). “Evolving self-organizing behaviors for a Swarm-bot”. In: Autonomous

Robots 17, pp. 223–245. DOI: 10.1023/B:AURO.0000033973.24945.

f3.

Dosieah, G. Y., Özdemir, A., Gauci, M., and Groß, R. (2022). “Moving mixtures

of active and passive elements with robots that do not compute”. In: Swarm

Intelligence: 13th International Conference, ANTS 2022. Vol. 13491. Lecture

Notes in Computer Science. Cham, Switzerland: Springer, pp. 183–195. DOI:

10.1007/978-3-031-20176-9_15.

Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S. M., and

Christensen, A. L. (2016). “Evolution of collective behaviors for a real swarm

166

https://doi.org/10.1145/2739480.2754676
https://doi.org/10.4249/scholarpedia.1463
https://doi.org/10.1109/MRA.2013.2252996
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1126/scirobotics.abe4385
https://doi.org/10.1126/scirobotics.abe4385
https://doi.org/10.1109/JPROC.2021.3072740
https://doi.org/10.1023/B:AURO.0000033973.24945.f3
https://doi.org/10.1023/B:AURO.0000033973.24945.f3
https://doi.org/10.1007/978-3-031-20176-9_15

of aquatic surface robots”. In: PLOS ONE 11.3, e0151834. DOI: 10.1371/

journal.pone.0151834.

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014). “Hybrid control for

large swarms of aquatic drones”. In: ALIFE 14: The Fourteenth International

Conference on the Synthesis and Simulation of Living Systems. Ed. by H.

Sayama, J. Rieffel, S. Risi, R. Doursat, and H. Lipson. Cambridge, MA, USA:

MIT Press, pp. 785–792. DOI: 10.7551/978-0-262-32621-6-ch105.

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2015). “Evolution of hybrid

robotic controllers for complex tasks”. In: Journal of Intelligent & Robotic

Systems 78.3-4, pp. 463–484. DOI: 10.1007/s10846-014-0086-x.

Eberhart, R. and Kennedy, J. (1995). “A new optimizer using particle swarm the-

ory”. In: Proceedings of the Sixth International Symposium on Micro Machine

and Human Science, MHS’95. Piscataway, NJ, USA: IEEE, pp. 39–43. DOI:

10.1109/MHS.1995.494215.

Ebert, J. T., Gauci, M., and Nagpal, R. (2017). “Multi-feature collective decision

making in robot swarms”. In: AAMAS ’18: Proceedings of the 17th Interna-

tional Conference on Autonomous Agents and MultiAgent Systems. Richland,

SC, USA: International Foundation for Autonomous Agents and Multiagent

Systems (IFAAMAS), pp. 1711–1719.

École polytechnique fédérale de Lausanne (2010). Omnidirectional vision turret

for the e-puck. http://www.e-puck.org/index.php?option=

com_content&view=article&id=26&Itemid=21.

Edmonds, J. and Karp, R. M. (1972). “Theoretical improvements in algorithmic

efficiency for network flow problems”. In: Journal of the ACM 19.2, pp. 248–

264. DOI: 10.1145/321694.321699.

Elamvazhuthi, K. and Berman, S. (2019). “Mean-field models in swarm robotics:

a survey”. In: Bioinspiration & Biomimetics 15, p. 015001. DOI: 10.1088/

1748-3190/ab49a4.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). “Neural architecture search: a

survey”. In: Journal of Machine Learning Research 20.55, pp. 1–21.

Engebråten, S. A., Moen, J., Yakimenko, O. A., and Glette, K. (2020). “A frame-

work for automatic behavior generation in multi-function swarms”. In: Frontiers

in Robotics and AI 7, p. 175. DOI: 10.3389/frobt.2020.579403.

Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., and O’Neill,

M. (2017). PonyGE2: grammatical evolution in Python. https://arxiv.

org/abs/1703.08535.

Feo, T. A. and Resende, M. G. C. (1989). “A probabilistic heuristic for a computa-

tionally difficult set covering problem”. In: Operations Research Letters 8.2,

pp. 67–71. DOI: 10.1016/0167-6377(89)90002-3.

Ferrante, E., Duéñez-Guzmán, E. A., Turgut, A. E., and Wenseleers, T. (2013).

“GESwarm: grammatical evolution for the automatic synthesis of collective

167

https://doi.org/10.1371/journal.pone.0151834
https://doi.org/10.1371/journal.pone.0151834
https://doi.org/10.7551/978-0-262-32621-6-ch105
https://doi.org/10.1007/s10846-014-0086-x
https://doi.org/10.1109/MHS.1995.494215
http://www.e-puck.org/index.php?option=com_content&view=article&id=26&Itemid=21
http://www.e-puck.org/index.php?option=com_content&view=article&id=26&Itemid=21
https://doi.org/10.1145/321694.321699
https://doi.org/10.1088/1748-3190/ab49a4
https://doi.org/10.1088/1748-3190/ab49a4
https://doi.org/10.3389/frobt.2020.579403
https://arxiv.org/abs/1703.08535
https://arxiv.org/abs/1703.08535
https://doi.org/10.1016/0167-6377(89)90002-3

behaviors in swarm robotics”. In: GECCO’13: Proceedings of the 15th annual

conference on Genetic and evolutionary computation. Ed. by C. Blum. New

York, NY, USA: ACM, pp. 17–24. DOI: 10.1145/2463372.2463385.

Ferrante, E., Turgut, A. E., Duéñez-Guzmán, E. A., Dorigo, M., and Wenseleers, T.

(2015). “Evolution of self-organized task specialization in robot swarms”. In:

PLOS Computational Biology 11.8, e1004273. DOI: 10.1371/journal.

pcbi.1004273.

Feurer, M. and Hutter, F. (2019). “Hyperparameter optimization”. In: Automated

Machine Learning. Ed. by F. Hutter, L. Kotthoff, and J. Vanschoren. The

Springer Series on Challenges in Machine Learning. Cham, Switzerland:

Springer, pp. 3–33. DOI: 10.1007/978-3-030-05318-5_1.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné, C.

(2012). “DEAP: evolutionary algorithms made easy”. In: Journal of Machine

Learning Research 13, pp. 2171–2175.

Francesca, G. (2017). “A modular approach to the automatic design of control

software for robot swarms: from a novel perspective on the reality gap to

AutoMoDe”. PhD thesis. Brussels, Belgium: Université Libre de Bruxelles.

Francesca, G. and Birattari, M. (2016). “Automatic design of robot swarms: achieve-

ments and challenges”. In: Frontiers in Robotics and AI 3.29, pp. 1–9. DOI:

10.3389/frobt.2016.00029.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn,

G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V.,

and Birattari, M. (2015). “AutoMoDe-Chocolate: automatic design of control

software for robot swarms”. In: Swarm Intelligence 9.2–3, pp. 125–152. DOI:

10.1007/s11721-015-0107-9.

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M. (2014).

“AutoMoDe: a novel approach to the automatic design of control software

for robot swarms”. In: Swarm Intelligence 8.2, pp. 89–112. DOI: 10.1007/

s11721-014-0092-4.

Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., and Birattari, M. (2012).

“Analysing an evolved robotic behaviour using a biological model of colle-

gial decision making”. In: From Animals to Animats 12: 12th International

Conference on Simulation of Adaptive Behavior, SAB 2012. Ed. by T. Ziemke,

C. Balkenius, and J. Hallam. Vol. 7426. Lecture Notes in Computer Science.

Berlin, Germany: Springer, pp. 381–390. DOI: 10.1007/978-3-642-

33093-3_38.

Franzin, A. and Stützle, T. (2019). “Revisiting simulated annealing: a component-

based analysis”. In: Computers & Operations Research 104, pp. 191–206. DOI:

10.1016/j.cor.2018.12.015.

168

https://doi.org/10.1145/2463372.2463385
https://doi.org/10.1371/journal.pcbi.1004273
https://doi.org/10.1371/journal.pcbi.1004273
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1007/978-3-642-33093-3_38
https://doi.org/10.1007/978-3-642-33093-3_38
https://doi.org/10.1016/j.cor.2018.12.015

Friedman, M. (1937). “The use of ranks to avoid the assumption of normality im-

plicit in the analysis of variance”. In: Journal of the American Statistical Associ-

ation 32.200, pp. 675–701. DOI: 10.1080/01621459.1937.10503522.

Friedman, M. (1939). “A correction: the use of ranks to avoid the assumption of

normality implicit in the analysis of variance”. In: Journal of the American

Statistical Association 34.205, p. 109. DOI: 10.1080/01621459.1939.

10502372.

Friston, K. (2010). “The free-energy principle: a unified brain theory?” In: Nature

Reviews Neuroscience 11, pp. 127–138. DOI: 10.1038/nrn2787.

Garattoni, L. and Birattari, M. (2018). “Autonomous task sequencing in a robot

swarm”. In: Science Robotics 3.20, eaat0430. DOI: 10.1126/scirobotics.

aat0430.

Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., and Birattari, M. (2015).

Software infrastructure for e-puck (and TAM). Tech. rep. TR/IRIDIA/2015-004.

Brussels, Belgium: IRIDIA, Université Libre de Bruxelles.

Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., and Ther-

aulaz, G. (2005). “Aggregation behaviour as a source of collective decision in a

group of cockroach-like-robots”. In: Advances in Artificial Life: 8th European

Conference, ECAL 2005. Ed. by M. S. Capcarrère, A. A. Freitas, P. J. Bentley,

C. G. Johnson, and J. Timmis. Vol. 3630. Lecture Notes in Computer Science.

Berlin, Germany: Springer, pp. 169–178. DOI: 10.1007/11553090_18.

Garzón Ramos, D. and Birattari, M. (2020). “Automatic design of collective

behaviors for robots that can display and perceive colors”. In: Applied Sciences

10.13, p. 4654. DOI: 10.3390/app10134654.

Gauci, M., Chen, J., Dodd, T. J., and Groß, R. (2014a). “Evolving aggregation

behaviors in multi-robot systems with binary sensors”. In: Distributed Au-

tonomous Robotic Systems: The 11th International Symposium. Ed. by M. A.

Hsieh and G. Chirikjian. Vol. 104. Springer Tracts in Advanced Robotics.

Berlin, Germany: Springer, pp. 355–367. DOI: 10.1007/978-3-642-

55146-8_25.

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014b). “Clustering ob-

jects with robots that do not compute”. In: AAMAS ’14: Proceedings of the

2014 international conference on Autonomous agents and multi-agent systems.

Richland, SC, USA: International Foundation for Autonomous Agents and

Multiagent Systems (IFAAMAS), pp. 421–428.

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014c). “Self-organized

aggregation without computation”. In: The International Journal of Robotics

Research 33.8, pp. 1145–1161. DOI: 10.1177/0278364914525244.

Gazi, V. (2005). “Swarm aggregations using artificial potentials and sliding-mode

control”. In: IEEE Transactions on Robotics 21.6, pp. 1208–1214. DOI: 10.

1109/TRO.2005.853487.

169

https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/01621459.1939.10502372
https://doi.org/10.1080/01621459.1939.10502372
https://doi.org/10.1038/nrn2787
https://doi.org/10.1126/scirobotics.aat0430
https://doi.org/10.1126/scirobotics.aat0430
https://doi.org/10.1007/11553090_18
https://doi.org/10.3390/app10134654
https://doi.org/10.1007/978-3-642-55146-8_25
https://doi.org/10.1007/978-3-642-55146-8_25
https://doi.org/10.1177/0278364914525244
https://doi.org/10.1109/TRO.2005.853487
https://doi.org/10.1109/TRO.2005.853487

Geman, S., Bienenstock, E., and Doursat, R. (1992). “Neural networks and the

bias/variance dilemma”. In: Neural Computation 4.1, pp. 1–58. DOI: 10.

1162/neco.1992.4.1.1.

Gharbi, I., Kuckling, J., Garzón Ramos, D., and Birattari, M. (2023). “Show me

what you want: inverse reinforcement learning to automatically design robot

swarms by demonstration”. In: submitted for publication.

Giernacki, W., Skwierczyński, M., Witwicki, W., Wroński, P., and Kozierski, P.

(2017). “Crazyflie 2.0 quadrotor as a platform for research and education in

robotics and control engineering”. In: 2017 22nd International Conference on

Methods and Models in Automation and Robotics (MMAR). Piscataway, NJ,

USA: IEEE, pp. 37–42. DOI: 10.1109/MMAR.2017.8046794.

Glasmachers, T., Schaul, T., Yi, S., Wierstra, D., and Schmidhuber, J. (2010).

“Exponential natural evolution strategies”. In: GECCO’10: Proceedings of the

12th annual conference on Genetic and evolutionary computation. New York,

NY, USA: ACM, pp. 393–400. DOI: 10.1145/1830483.1830557.

Glover, F. (1989). “Tabu search–part I”. In: ORSA Journal on Computing 1.3,

pp. 190–206. DOI: 10.1287/ijoc.1.3.190.

Glover, F. and Kochenberger, G. A., eds. (2003). Handbook of Metaheuristics.

Vol. 57. International Series in Operations Research & Management Science.

Boston, MA, USA: Springer. DOI: 10.1007/b101874.

Gomes, J. and Christensen, A. L. (2018). “Task-agnostic evolution of diverse

repertoires of swarm behaviours”. In: Swarm Intelligence: 11th International

Conference, ANTS 2018. Ed. by M. Dorigo, M. Birattari, C. Blum, A. L.

Christensen, A. Reina, and V. Trianni. Vol. 11172. Lecture Notes in Computer

Science. Cham, Switzerland: Springer, pp. 225–238. DOI: 10.1007/978-3-

030-00533-7_18.

Gomes, J., Mariano, P., and Christensen, A. L. (2017). “Novelty-driven cooperative

coevolution”. In: Evolutionary Computation 25.2, pp. 257–307. DOI: 10.

1162/EVCO_a_00173.

Gomes, J., Mariano, P., and Christensen, A. L. (2019). “Challenges in cooperative

coevolution of physically heterogeneous robot teams”. In: Natural Computing

18, pp. 29–46. DOI: 10.1007/s11047-016-9582-1.

Gomes, J., Urbano, P., and Christensen, A. L. (2013). “Evolution of swarm robotics

systems with novelty search”. In: Swarm Intelligence 7.2–3, pp. 115–144. DOI:

10.1007/s11721-013-0081-z.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. First. Cam-

bridge, MA, USA: MIT Press.

Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., and

Magdalena, L. (2009). “Open e-puck range & bearing miniaturized board

for local communication in swarm robotics”. In: 2009 IEEE International

170

https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1109/MMAR.2017.8046794
https://doi.org/10.1145/1830483.1830557
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1007/b101874
https://doi.org/10.1007/978-3-030-00533-7_18
https://doi.org/10.1007/978-3-030-00533-7_18
https://doi.org/10.1162/EVCO_a_00173
https://doi.org/10.1162/EVCO_a_00173
https://doi.org/10.1007/s11047-016-9582-1
https://doi.org/10.1007/s11721-013-0081-z

Conference on Robotics and Automation (ICRA). Ed. by K. Kosuge. Piscataway,

NJ, USA: IEEE, pp. 3111–3116. DOI: 10.1109/ROBOT.2009.5152456.

Hajek, B. (1988). “Cooling schedules for optimal annealing”. In: Mathematics of

Operations Research 13.2, pp. 311–329. DOI: 10.1287/moor.13.2.311.

Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Saı̈d, I.,

Durier, V., Canonge, S., Amé, J.-M., Detrain, C., Correll, N., Martinoli, A.,

Mondada, F., Siegwart, R., and Deneubourg, J.-L. (2007). “Social integration

of robots into groups of cockroaches to control self-organized choices”. In:

Science 318.5853, pp. 1155–1158. DOI: 10.1126/science.1144259.

Hamann, H. (2014). “Evolution of collective behaviors by minimizing surprise”.

In: ALIFE 14: The Fourteenth International Conference on the Synthesis and

Simulation of Living Systems. Ed. by H. Sayama, J. Rieffel, S. Risi, R. Doursat,

and H. Lipson. Cambridge, MA, USA: MIT Press, pp. 344–351. DOI: 10.

1162/978-0-262-32621-6-ch055.

Hamann, H. (2018). Swarm robotics: a formal approach. Cham, Switzerland:

Springer. ISBN: 978-3-319-74526-8. DOI: 10.1007/978-3-319-74528-

2.

Hamann, H., Schmickl, T., Wörn, H., and Crailsheim, K. (2012). “Analysis of

emergent symmetry breaking in collective decision making”. In: Neural Com-

puting and Applications 21.2, pp. 207–218. DOI: 10.1007/s00521-010-

0368-6.

Hamann, H., Valentini, G., Khaluf, Y., and Dorigo, M. (2014). “Derivation of a

micro-macro link for collective decision-making systems”. In: Parallel Problem

Solving from Nature – PPSN XIII: 13th International Conference. Ed. by

T. Bartz-Beielstein, J. Branke, B. Filipič, and J. Smith. Vol. 8672. Lecture

Notes in Computer Science 1. Cham, Switzerland: Springer, pp. 181–190. DOI:

10.1007/978-3-319-10762-2.

Hamann, H. and Wörn, H. (2008). “A framework of space–time continuous models

for algorithm design in swarm robotics”. In: Swarm Intelligence 2.2–4, pp. 209–

239. DOI: 10.1007/s11721-008-0015-3.

Hamann, H., Wörn, H., Crailsheim, K., and Schmickl, T. (2008). “Spatial macro-

scopic models of a bio-inspired robotic swarm algorithm”. In: 2008 IEEE/RSJ

International Conference On Intelligent Robots And Systems (IROS). Pis-

cataway, NJ, USA: IEEE, pp. 1415–1420. DOI: 10.1109/IROS.2008.

4651038.

Hannaford, B., Rosen, J., Friedman, D. C. W., King, H., Roan, P., Cheng, L.,

Glozman, D., Ma, J., Nia Kosari, S., and White, L. (2013). “Raven-II: an open

platform for surgical robotics research”. In: IEEE Transactions on Biomedical

Engineering 60.4, pp. 954–959. DOI: 10.1109/TBME.2012.2228858.

171

https://doi.org/10.1109/ROBOT.2009.5152456
https://doi.org/10.1287/moor.13.2.311
https://doi.org/10.1126/science.1144259
https://doi.org/10.1162/978-0-262-32621-6-ch055
https://doi.org/10.1162/978-0-262-32621-6-ch055
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1007/s00521-010-0368-6
https://doi.org/10.1007/s00521-010-0368-6
https://doi.org/10.1007/978-3-319-10762-2
https://doi.org/10.1007/s11721-008-0015-3
https://doi.org/10.1109/IROS.2008.4651038
https://doi.org/10.1109/IROS.2008.4651038
https://doi.org/10.1109/TBME.2012.2228858

Hansen, N. and Ostermeier, A. (2001). “Completely derandomized self-adaptation

in evolution strategies”. In: Evolutionary Computation 9.2, pp. 159–195. DOI:

10.1162/106365601750190398.

Hasan, A. (2022). “Building an integrated framework for the automatic modular

design of robot swarms”. MA thesis. Brussels, Belgium: IRIDIA, Université

Libre de Bruxelles.

Hasselmann, K. (2023). “Advances in the automatic modular design of control

software for robot swarms: Using neuroevolution to generate modules”. PhD

thesis. Brussels, Belgium: IRIDIA, Université Libre de Bruxelles.

Hasselmann, K. and Birattari, M. (2020). “Modular automatic design of collective

behaviors for robots endowed with local communication capabilities”. In: PeerJ

Computer Science 6, e291. DOI: 10.7717/peerj-cs.291.

Hasselmann, K., Ligot, A., and Birattari, M. (2023). “Towards the automatic design

of automatic methods for the design of robot swarms”. In: submitted for journal

publication.

Hasselmann, K., Ligot, A., Francesca, G., Garzón Ramos, D., Salman, M., Kuck-

ling, J., Mendiburu, F. J., and Birattari, M. (2018). Reference models for Auto-

MoDe. Tech. rep. TR/IRIDIA/2018-002. Brussels, Belgium: IRIDIA, Université

Libre de Bruxelles.

Hasselmann, K., Ligot, A., Ruddick, J., and Birattari, M. (2021). “Empirical

assessment and comparison of neuro-evolutionary methods for the automatic

off-line design of robot swarms”. In: Nature Communications 12, p. 4345. DOI:

10.1038/s41467-021-24642-3.

Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., and Moses, M. E. (2012).

“Formica ex machina: ant swarm foraging from physical to virtual and back

again”. In: Swarm Intelligence: 8th International Conference, ANTS 2012. Ed.

by M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. P. Engelbrecht,

R. Groß, and T. Stützle. Vol. 7461. Lecture Notes in Computer Science. Berlin,

Germany: Springer, pp. 252–259. DOI: 10.1007/978-3-642-32650-

9_25.

Heinerman, J., Rango, M., and Eiben, A. (2015). “Evolution, individual learning,

and social learning in a swarm of real robots”. In: 2015 IEEE Symposium Series

on Computational Intelligence, SSCI 2015. Los Alamitos, CA, USA: IEEE

Computer Society, pp. 1055–1062. DOI: 10.1109/SSCI.2015.152.

Hoff, N. R., Sagoff, A., Wood, R. J., and Nagpal, R. (2010). “Two foraging

algorithms for robot swarms using only local communication”. In: 2010 IEEE

International Conference on Robotics and Biomimetics (ROBIO). Piscataway,

NJ, USA: IEEE, pp. 123–130. DOI: 10.1109/ROBIO.2010.5723314.

Hoos, H. H. and Stützle, T. (2005). Stochastic Local Search: Foundations &

Applications. First. San Francisco, CA, USA: Morgan Kaufmann Publishers.

DOI: 10.1016/B978-1-55860-872-6.X5016-1.

172

https://doi.org/10.1162/106365601750190398
https://doi.org/10.7717/peerj-cs.291
https://doi.org/10.1038/s41467-021-24642-3
https://doi.org/10.1007/978-3-642-32650-9_25
https://doi.org/10.1007/978-3-642-32650-9_25
https://doi.org/10.1109/SSCI.2015.152
https://doi.org/10.1109/ROBIO.2010.5723314
https://doi.org/10.1016/B978-1-55860-872-6.X5016-1

Hu, D., Gong, Y., Hannaford, B., and Seibel, E. J. (2015). “Semi-autonomous

simulated brain tumor ablation with RavenII surgical robot using behavior

tree”. In: 2015 IEEE International Conference on Robotics and Automation

(ICRA). Piscataway, NJ, USA: IEEE, pp. 3868–3875. DOI: 10.1109/ICRA.

2015.7139738.

Hüttenrauch, M., Šošić, A., and Neumann, G. (2019). “Deep reinforcement learning

for swarm systems”. In: Journal of Machine Learning Research 20.54, pp. 1–

31.

Hutter, F., Hoos, H. H., and Leyton Brown, K. (2011). “Sequential model-based

optimization for general algorithm configuration”. In: Learning and Intelligent

Optimization: 5th International Conference, LION 5. Ed. by C. A. Coello

Coello. Vol. 6683. Lecture Notes in Computer Science. Berlin, Germany:

Springer, pp. 507–523. DOI: 10.1007/978-3-642-25566-3_40.

Hutter, F., Hoos, H. H., Leyton Brown, K., and Stützle, T. (2009). “ParamILS:

an automatic algorithm configuration framework”. In: Journal of Artificial

Intelligence Research 36, pp. 267–306. DOI: 10.1613/jair.2861.

Ijspeert, A. J., Martinoli, A., Billard, A., and Gambardella, L. M. (2001). “Collabo-

ration through the exploitation of local interactions in autonomous collective

robotics: the stick pulling experiment”. In: Autonomous Robots 11.2, pp. 149–

171. DOI: 10.1023/A:1011227210047.

Isla, D. (2005). “Handling complexity in the Halo 2 AI”. In: Game Developers

Conference, GDC 2005. Vol. 12. London, United Kingdom: Game Developers

Conference (GDC).

Jakobi, N., Husbands, P., and Harvey, I. (1995). “Noise and the reality gap: the

use of simulation in evolutionary robotics”. In: Advances in Artificial Life:

Third European Conference on Artificial Life. Ed. by F. Morán, A. Moreno, J. J.

Merelo, and P. Chacón. Vol. 929. Lecture Notes in Artificial Intelligence. Berlin,

Germany: Springer, pp. 704–720. DOI: 10.1007/3-540-59496-5_337.

Jones, S., Milner, E., Sooriyabandara, M., and Hauert, S. (2022). DOTS: an open

testbed for industrial swarm robotic solutions. https://arxiv.org/

abs/2203.13809.

Jones, S., Studley, M., Hauert, S., and Winfield, A. F. T. (2018a). “A two teraflop

swarm”. In: Frontiers in Robotics and AI 5, p. 11. DOI: 10.3389/frobt.

2018.00011.

Jones, S., Studley, M., Hauert, S., and Winfield, A. F. T. (2018b). “Evolving

behaviour trees for swarm robotics”. In: Distributed Autonomous Robotic

Systems: The 13th International Symposium. Ed. by R. Groß, A. Kolling, S.

Berman, E. Frazzoli, A. Martinoli, F. Matsuno, and M. Gauci. Vol. 6. Springer

Proceedings in Advanced Robotics. Cham, Switzerland: Springer, pp. 487–501.

DOI: 10.1007/978-3-319-73008-0_34.

173

https://doi.org/10.1109/ICRA.2015.7139738
https://doi.org/10.1109/ICRA.2015.7139738
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1613/jair.2861
https://doi.org/10.1023/A:1011227210047
https://doi.org/10.1007/3-540-59496-5_337
https://arxiv.org/abs/2203.13809
https://arxiv.org/abs/2203.13809
https://doi.org/10.3389/frobt.2018.00011
https://doi.org/10.3389/frobt.2018.00011
https://doi.org/10.1007/978-3-319-73008-0_34

Jones, S., Winfield, A. F. T., Hauert, S., and Studley, M. (2019). “Onboard evolution

of understandable swarm behaviors”. In: Advanced Intelligent Systems 1.6,

p. 1900031. DOI: 10.1002/aisy.201900031.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). “Reinforcement learning:

a survey”. In: Journal of Artificial Intelligence Research 4, pp. 237–285. DOI:

10.1613/jair.301.

Kaiser, T. K. and Hamann, H. (2019). “Engineered self-organization for resilient

robot self-assembly with minimal surprise”. In: Robotics and Autonomous

Systems 122, p. 103293. DOI: 10.1016/j.robot.2019.103293.

Kaiser, T. K. and Hamann, H. (2022). “Innate motivation for robot swarms by

minimizing surprise: from simple simulations to real-world experiments”. In:

IEEE Transactions on Robotics 38.6, pp. 3582–3601. DOI: 10.1109/TRO.

2022.3181004.

Kazadi, S. (2009). “Model independence in swarm robotics”. In: International

Journal of Intelligent Computing and Cybernetics 2.4, pp. 672–694. DOI: 10.

1108/17563780911005836.

Kerschke, P., Hoos, H. H., Neumann, F., and Trautmann, H. (2019). “Automated

algorithm selection: survey and perspectives”. In: Evolutionary Computation

27.1, pp. 3–45. DOI: 10.1162/evco_a_00242.

KhudaBukhsh, A. R., Xu, L., Hoos, H. H., and Leyton Brown, K. (2016). “SATen-

stein: automatically building local search SAT solvers from components”. In:

Artificial Intelligence 232, pp. 20–42. DOI: 10.1016/j.artint.2015.

11.002.

Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P. (1983). “Optimization by

simulated annealing”. In: Science 220.4598, pp. 671–680. DOI: 10.1126/

science.220.4598.671.

Kober, J., Bagnell, J. A., and Peters, J. (2013). “Reinforcement learning in robotics:

a survey”. In: The International Journal of Robotics Research 32.11, pp. 1238–

1274. DOI: 10.1177/0278364913495721.

Kochenderfer, M. J. and Wheeler, T. A. (2019). Algorithms for Optimization.

Cambridge, MA, USA: MIT Press.

Koos, S., Mouret, J.-B., and Doncieux, S. (2013). “The transferability approach:

crossing the reality gap in evolutionary robotics”. In: IEEE Transactions on

Evolutionary Computation 17.1, pp. 122–145. DOI: 10.1109/TEVC.2012.

2185849.

Korte, B. and Vygen, J. (2018). Combinatorial Optimization: Theory and Algo-

rithms. Sixth. Algorithms and Combinatorics. Berlin, Germany: Springer. DOI:

10.1007/978-3-662-56039-6.

Koza, J. R. (1992). Genetic programming: on the programming of computers by

means of natural selection. First. A Bradford Book. Cambridge, MA, USA:

MIT Press.

174

https://doi.org/10.1002/aisy.201900031
https://doi.org/10.1613/jair.301
https://doi.org/10.1016/j.robot.2019.103293
https://doi.org/10.1109/TRO.2022.3181004
https://doi.org/10.1109/TRO.2022.3181004
https://doi.org/10.1108/17563780911005836
https://doi.org/10.1108/17563780911005836
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1016/j.artint.2015.11.002
https://doi.org/10.1016/j.artint.2015.11.002
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1109/TEVC.2012.2185849
https://doi.org/10.1109/TEVC.2012.2185849
https://doi.org/10.1007/978-3-662-56039-6

Krieger, M. J. B., Billeter, J.-B., and Keller, L. (2000). “Ant-like task allocation

and recruitment in cooperative robots”. In: Nature 406, pp. 992–995. DOI:

10.1038/35023164.

Kuckling, J. (2023). Optimization in the automatic modular design of

control software for robot swarms: supplementary material. https : / /

iridia.ulb.ac.be/supp/.

Kuckling, J., Hasselmann, K., Pelt, V. van, Kiere, C., and Birattari, M. (2021a). Au-

toMoDe Editor: a visualization tool for AutoMoDe. Tech. rep. TR/IRIDIA/2021-

009. Brussels, Belgium: IRIDIA, Université Libre de Bruxelles.

Kuckling, J., Hoos, H. H., Stützle, T., and Birattari, M. (2023). “Comparison of

different optimization algorithms in the automatic modular design of control

software for robot swarms”. In: to be submitted for journal publication.

Kuckling, J., Ligot, A., Bozhinoski, D., and Birattari, M. (2018a). Search space for

AutoMoDe-Chocolate and AutoMoDe-Maple. Tech. rep. TR/IRIDIA/2018-012.

Brussels, Belgium: IRIDIA, Université Libre de Bruxelles.

Kuckling, J., Ligot, A., Bozhinoski, D., and Birattari, M. (2018b). “Behavior trees

as a control architecture in the automatic modular design of robot swarms”.

In: Swarm Intelligence: 11th International Conference, ANTS 2018. Ed. by

M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. Reina, and V. Trianni.

Vol. 11172. Lecture Notes in Computer Science. Cham, Switzerland: Springer,

pp. 30–43. DOI: 10.1007/978-3-030-00533-7_3.

Kuckling, J., Pelt, V. van, and Birattari, M. (2021b). “Automatic modular design of

behavior trees for robot swarms with communication capabilities”. In: Appli-

cations of Evolutionary Computation: 24th International Conference, EvoAp-

plications 2021. Ed. by P. A. Castillo and J. L. Jiménez Laredo. Vol. 12694.

Lecture Notes in Computer Science. Cham, Switzerland: Springer, pp. 130–145.

DOI: 10.1007/978-3-030-72699-7_9.

Kuckling, J., Pelt, V. van, and Birattari, M. (2022). “AutoMoDe-Cedrata: automatic

design of behavior trees for controlling a swarm of robots with communication

capabilities”. In: SN Computer Science 3, p. 136. DOI: 10.1007/s42979-

021-00988-9.

Kuckling, J., Stützle, T., and Birattari, M. (2020a). “Iterative improvement in the

automatic modular design of robot swarms”. In: PeerJ Computer Science 6,

e322. DOI: 10.7717/peerj-cs.322.

Kuckling, J., Ubeda Arriaza, K., and Birattari, M. (2020b). “AutoMoDe-IcePop:

automatic modular design of control software for robot swarms using simulated

annealing”. In: Artificial Intelligence and Machine Learning: BNAIC 2019,

BENELEARN 2019. Ed. by B. Bogaerts, G. Bontempi, P. Geurts, N. Harley, B.

Lebichot, T. Lenaerts, and G. Louppe. Vol. 1196. Communications in Computer

and Information Science. Cham, Switzerland: Springer, pp. 3–17. DOI: 10.

1007/978-3-030-65154-1_1.

175

https://doi.org/10.1038/35023164
https://iridia.ulb.ac.be/supp/
https://iridia.ulb.ac.be/supp/
https://doi.org/10.1007/978-3-030-00533-7_3
https://doi.org/10.1007/978-3-030-72699-7_9
https://doi.org/10.1007/s42979-021-00988-9
https://doi.org/10.1007/s42979-021-00988-9
https://doi.org/10.7717/peerj-cs.322
https://doi.org/10.1007/978-3-030-65154-1_1
https://doi.org/10.1007/978-3-030-65154-1_1

KUKA Group (2021). Audi relies on technology know-how from KUKA. https:

//www.kuka.com/en-be/company/press/news/2021/09/

audi-auftragsmeldung-karosseriebau. accessed on 2023-01-07.

Landau, D. P. and Binder, K. (2014). A Guide to Monte Carlo Simulations in

Statistical Physics. Fourth. Cambridge, United Kingdom: Cambridge University

Press. DOI: 10.1017/CBO9781139696463.

Legarda Herranz, G., Garzón Ramos, D., Kuckling, J., Kegeleirs, M., and Birattari,

M. (2022). Tycho: a robust, ROS-based tracking system for robot swarms. Tech.

rep. TR/IRIDIA/2022-009. Brussels, Belgium: IRIDIA, Université Libre de

Bruxelles.

Lehman, J. and Stanley, K. O. (2011). “Abandoning objectives: evolution through

the search for novelty alone”. In: Evolutionary Computation 19.2, pp. 189–223.

DOI: 10.1162/EVCO_a_00025.

Lerman, K. and Galstyan, A. (2002). “Mathematical model of foraging in a group

of robots: effect of interference”. In: Autonomous Robots 13.2, pp. 127–141.

DOI: 10.1023/A:1019633424543.

Lerman, K., Galstyan, A., Martinoli, A., and Ijspeert, A. J. (2001). “A Macro-

scopic Analytical Model of Collaboration in Distributed Robotic Systems”. In:

Artificial Life 7.4, pp. 375–393. DOI: 10.1162/106454601317297013.

Lerman, K., Jones, C., Galstyan, A., and Matarić, M. J. (2006). “Analysis of dy-

namic task allocation in multi-robot systems”. In: The International Journal of

Robotics Research 25.3, pp. 225–241. DOI: 10.1177/0278364906063426.

Li, S., Batra, R., Brown, D., Chang, H.-D., Ranganathan, N., Hoberman, C., Rus,

D., and Lipson, H. (2019). “Particle robotics based on statistical mechanics

of loosely coupled components”. In: Nature 567.7748, pp. 361–365. DOI:

10.1038/s41586-019-1022-9.

Li, W., Gauci, M., and Groß, R. (2016). “Turing learning: a metric-free approach

to inferring behavior and its application to swarms”. In: Swarm Intelligence 10,

pp. 211–243. DOI: 10.1007/s11721-016-0126-1.

Ligot, A. (2023). “Assessing and forecasting the performance of optimization-

based design methods for robot swarms: Experimental protocol & pseudo-

reality predictors”. PhD thesis. Brussels, Belgium: IRIDIA, Université Libre

de Bruxelles.

Ligot, A. and Birattari, M. (2020). “Simulation-only experiments to mimic the

effects of the reality gap in the automatic design of robot swarms”. In: Swarm

Intelligence 14, pp. 1–24. DOI: 10.1007/s11721-019-00175-w.

Ligot, A. and Birattari, M. (2022). “On using simulation to predict the performance

of robot swarms”. In: Scientific Data 9, p. 788. DOI: 10.1038/s41597-

022-01895-1.

Ligot, A., Cotorruelo, A., Garone, E., and Birattari, M. (2022). “Towards an

empirical practice in off-line fully-automatic design of robot swarms”. In:

176

https://www.kuka.com/en-be/company/press/news/2021/09/audi-auftragsmeldung-karosseriebau
https://www.kuka.com/en-be/company/press/news/2021/09/audi-auftragsmeldung-karosseriebau
https://www.kuka.com/en-be/company/press/news/2021/09/audi-auftragsmeldung-karosseriebau
https://doi.org/10.1017/CBO9781139696463
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1023/A:1019633424543
https://doi.org/10.1162/106454601317297013
https://doi.org/10.1177/0278364906063426
https://doi.org/10.1038/s41586-019-1022-9
https://doi.org/10.1007/s11721-016-0126-1
https://doi.org/10.1007/s11721-019-00175-w
https://doi.org/10.1038/s41597-022-01895-1
https://doi.org/10.1038/s41597-022-01895-1

IEEE Transactions on Evolutionary Computation. DOI: 10.1109/TEVC.

2022.3144848.

Ligot, A., Hasselmann, K., and Birattari, M. (2020a). “AutoMoDe-Arlequin: neural

networks as behavioral modules for the automatic design of probabilistic finite

state machines”. In: Swarm Intelligence: 12th International Conference, ANTS

2020. Ed. by M. Dorigo, T. Stützle, M. J. Blesa, C. Blum, H. Hamann, M. K.

Heinrich, and V. Strobel. Vol. 12421. Lecture Notes in Computer Science.

Cham, Switzerland: Springer, pp. 109–122. DOI: 10.1007/978-3-030-

60376-2_21.

Ligot, A., Hasselmann, K., Delhaisse, B., Garattoni, L., Francesca, G., and Birattari,

M. (2017). AutoMoDe, NEAT, and EvoStick: implementations for the e-puck

robot in ARGoS3. Tech. rep. TR/IRIDIA/2017-002. Brussels, Belgium: IRIDIA,

Université Libre de Bruxelles.

Ligot, A., Kuckling, J., Bozhinoski, D., and Birattari, M. (2020b). “Automatic

modular design of robot swarms using behavior trees as a control architecture”.

In: PeerJ Computer Science 6, e314. DOI: 10.7717/peerj-cs.314.

Lim, C.-U., Baumgarten, R., and Colton, S. (2010). “Evolving behaviour trees for

the commercial game DEFCON”. In: Applications of Evolutionary Computa-

tion. EvoApplications 2010: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoIN-

TELLIGENCE, EvoNUM, and EvoSTOC. Ed. by C. Di Chio, S. Cagnoni, C.

Cotta, M. Ebner, A. Ekárt, A. I. Esparcia-Alcázar, C.-K. Goh, J. J. Merelo,

F. Neri, M. Preuss, J. Togelius, and G. N. Yannakakis. Vol. 6024. Lecture

Notes in Computer Science. Cham, Switzerland: Springer, pp. 100–110. DOI:

10.1007/978-3-642-12239-2_11.

Lin, S. and Kernighan, B. W. (1973). “An effective heuristic algorithm for the

traveling-salesman problem”. In: Operations Research 21.2, pp. 498–516. DOI:

10.1287/opre.21.2.498.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins,

C., Ruhkopf, T., Sass, R., and Hutter, F. (2022). “SMAC3: a versatile bayesian

optimization package for hyperparameter optimization”. In: Journal of Machine

Learning Research 23.54, pp. 1–9.

Liu, W. and Winfield, A. F. T. (2010). “Modeling and optimization of adaptive

foraging in swarm robotic systems”. In: The International Journal of Robotics

Research 29.14, pp. 1743–1760. DOI: 10.1177/0278364910375139.

Lopes, Y. K., Trenkwalder, S. M., Leal, A. B., Dodd, T. J., and Groß, R. (2016).

“Supervisory control theory applied to swarm robotics”. In: Swarm Intelligence

10.1, pp. 65–97. DOI: 10.1007/s11721-016-0119-0.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., and Stützle,

T. (2016). “The irace package: iterated racing for automatic algorithm configu-

ration”. In: Operations Research Perspectives 3, pp. 43–58. DOI: 10.1016/

j.orp.2016.09.002.

177

https://doi.org/10.1109/TEVC.2022.3144848
https://doi.org/10.1109/TEVC.2022.3144848
https://doi.org/10.1007/978-3-030-60376-2_21
https://doi.org/10.1007/978-3-030-60376-2_21
https://doi.org/10.7717/peerj-cs.314
https://doi.org/10.1007/978-3-642-12239-2_11
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1177/0278364910375139
https://doi.org/10.1007/s11721-016-0119-0
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002

Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). “Iterated local search”. In:

Handbook of Metaheuristics. Ed. by F. Glover and G. A. Kochenberger. Vol. 59.

International Series in Operations Research & Management Science. Boston,

MA, USA: Springer, pp. 320–353. DOI: 10.1007/0-306-48056-5_11.

Ludwig, L. and Gini, M. (2006). “Robotic swarm dispersion using wireless intensity

signals”. In: Distributed Autonomous Robotic Systems 7. Ed. by M. Gini and

R. Voyles. Tokyo, Japan: Springer, pp. 325–332. DOI: 10.1007/4-431-

35881-1_14.

Lundy, M. and Alistair, M. (1986). “Convergence of an annealing algorithm”. In:

Mathematical Programming 34.1, pp. 111–124. DOI: 10.1007/BF01582166.

Maron, O. and Moore, A. W. (1997). “The Racing Algorithm: model selection

for lazy learners”. In: Artificial Intelligence Review 11.1–5, pp. 193–225. DOI:

10.1023/A:1006556606079.

Marshall, J. A. R., Reina, A., and Bose, T. (2019). “Multiscale modelling tool:

mathematical modelling of collective behaviour without the maths”. In: PLOS

ONE 14.9, e0222906. DOI: 10.1371/journal.pone.0222906.

Martinoli, A., Easton, K., and Agassounon, W. (2004). “Modeling swarm robotic

systems: a case study in collaborative distributed manipulation”. In: The Inter-

national Journal of Robotics Research 23.4-5, pp. 415–436. DOI: 10.1177/

0278364904042197.

Martinoli, A., Ijspeert, A. J., and Mondada, F. (1999). “Understanding collective

aggregation mechanisms: from probabilistic modelling to experiments with

real robots”. In: Robotics and Autonomous Systems 29.1, pp. 51–63. DOI:

10.1016/S0921-8890(99)00038-X.

Marzinotto, A., Colledanchise, M., Smith, C., and Ögren, P. (2014). “Towards a

unified behavior trees framework for robot control”. In: 2014 IEEE Interna-

tional Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA:

IEEE, pp. 5420–5427. DOI: 10.1109/ICRA.2014.6907656.

Massink, M., Brambilla, M., Latella, D., Dorigo, M., and Birattari, M. (2013).

“On the use of Bio-PEPA for modelling and analysing collective behaviours in

swarm robotics”. In: Swarm Intelligence 7.2-3, pp. 201–228. DOI: 10.1007/

s11721-013-0079-6.

Matarić, M. J. (1997). “Reinforcement learning in the multi-robot domain”. In:

Autonomous Robots 4.1, pp. 73–83. DOI: 10.1023/A:1008819414322.

Matarić, M. J. (1998). “Using communication to reduce locality in distributed

multi-agent learning”. In: Journal of Experimental & Theoretical Artificial

Intelligence 10.3, pp. 357–369. DOI: 10.1080/095281398146806.

Mathews, G. B. (1897). “On the partition of numbers”. In: Proceedings of the

London Mathematical Society 28, pp. 486–490. DOI: 10.1112/plms/s1-

28.1.486.

178

https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/4-431-35881-1_14
https://doi.org/10.1007/4-431-35881-1_14
https://doi.org/10.1007/BF01582166
https://doi.org/10.1023/A:1006556606079
https://doi.org/10.1371/journal.pone.0222906
https://doi.org/10.1177/0278364904042197
https://doi.org/10.1177/0278364904042197
https://doi.org/10.1016/S0921-8890(99)00038-X
https://doi.org/10.1109/ICRA.2014.6907656
https://doi.org/10.1007/s11721-013-0079-6
https://doi.org/10.1007/s11721-013-0079-6
https://doi.org/10.1023/A:1008819414322
https://doi.org/10.1080/095281398146806
https://doi.org/10.1112/plms/s1-28.1.486
https://doi.org/10.1112/plms/s1-28.1.486

Mathews, N., Christensen, A. L., O’Grady, R., Mondada, F., and Dorigo, M. (2017).

“Mergeable nervous systems for robots”. In: Nature Communications 8.1, p. 439.

DOI: 10.1038/s41467-017-00109-2.

Matthey, L., Berman, S., and Kumar, V. (2009). “Stochastic strategies for a swarm

robotic assembly system”. In: 2009 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, pp. 1953–1958. DOI: 10.1109/ROBOT.

2009.5152457.

Mendiburu, F. J., Garzón Ramos, D., Morais, M. R. A., Lima, A. M. N., and

Birattari, M. (2022). “AutoMoDe-Mate: automatic off-line design of spatially-

organizing behaviors for robot swarms”. In: Swarm and Evolutionary Compu-

tation 74, p. 101118. DOI: 10.1016/j.swevo.2022.101118.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,

E. (1953). “Equation of state calculations by fast computing machines”. In:

The Journal of Chemical Physics 21.6, pp. 1087–1092. DOI: 10.1063/1.

1699114.

Mitra, D., Romeo, F., and Sangiovanni-Vincentelli, A. (1985). “Convergence and

finite-time behavior of simulated annealing”. In: 1985 24th IEEE Conference

on Decision and Control. Piscataway, NJ, USA: IEEE, pp. 761–767. DOI:

10.1109/CDC.1985.268600.

Mladenović, N. and Hansen, P. (1997). “Variable neighborhood search”. In: Com-

puters & Operations Research 24.11, pp. 1097–1100. DOI: 10.1016/S0305-

0548(97)00031-2.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,

S., Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009). “The e-puck, a robot

designed for education in engineering”. In: ROBOTICA 2009: Proceedings

of the 9th Conference on Autonomous Robot Systems and Competitions. Ed.

by P. Gonçalves, P. Torres, and C. Alves. Castelo Branco, Portugal: Instituto

Politécnico de Castelo Branco, pp. 59–65.

Mondada, F., Franzi, E., and Ienne, P. (1997). “Mobile robot miniaturisation: a

tool for investigation in control algorithms”. In: Experimental Robotics III:

3rd International Symposium. Ed. by T. Yoshikawa and F. Miyazaki. Vol. 200.

Lecture Notes in Control and Information Sciences. London, United Kingdom:

Springer, pp. 501–513. DOI: 10.1007/BFb0027617.

Mondada, F., Guignard, A., Bonani, M., Bar, D., Lauria, M., and Floreano, D.

(2003). “SWARM-BOT: from concept to implementation”. In: 2003 IEEE/RSJ

International Conference On Intelligent Robots And Systems (IROS 2003).

Vol. 2. Piscataway, NJ, USA: IEEE, pp. 1626–1631. DOI: 10.1109/IROS.

2003.1248877.

Moscato, P. and Cotta, C. (2010). “A modern introduction to memetic algorithms”.

In: Handbook of metaheuristics. Ed. by M. Gendreau and J.-Y. Potvin. Vol. 146.

International Series in Operations Research & Management Science. Boston,

179

https://doi.org/10.1038/s41467-017-00109-2
https://doi.org/10.1109/ROBOT.2009.5152457
https://doi.org/10.1109/ROBOT.2009.5152457
https://doi.org/10.1016/j.swevo.2022.101118
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1109/CDC.1985.268600
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1007/BFb0027617
https://doi.org/10.1109/IROS.2003.1248877
https://doi.org/10.1109/IROS.2003.1248877

MA, USA: Springer, pp. 141–183. DOI: 10.1007/978-1-4419-1665-

5_6.

Muratore, F., Ramos, F., Turk, G., Yu, W., Gienger, M., and Peters, J. (2022).

“Robot learning from randomized simulations: a review”. In: Frontiers in

Robotics and AI 9, p. 799893. DOI: 10.3389/frobt.2022.799893.

Neupane, A. and Goodrich, M. (2019). “Learning swarm behaviors using gram-

matical evolution and behavior trees”. In: Proceedings of the Twenty-Eighth

International Joint Conference on Artificial Intelligence, IJCAI-19. Ed. by

S. Kraus. CA, USA: IJCAI Organization, pp. 513–520. DOI: 10.24963/

ijcai.2019/73.

Nikolaev, A. G. and Jacobson, S. H. (2010). “Simulated annealing”. In: Handbook

of metaheuristics. Ed. by M. Gendreau and J.-Y. Potvin. Vol. 146. International

Series in Operations Research & Management Science. Boston, MA, USA:

Springer, pp. 1–39. DOI: 10.1007/978-1-4419-1665-5_1.

Nolfi, S. (2021). Behavioral and Cognitive Robotics: An Adaptive Perspective.

Rome, Italy: Institute of Cognitive Sciences and Technologies, National Re-

search Council.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelli-

gence, and Technology of Self-Organizing Machines. First. A Bradford Book.

Cambridge, MA, USA: MIT Press.

Nouyan, S., Groß, R., Bonani, M., Mondada, F., and Dorigo, M. (2009). “Team-

work in self-organized robot colonies”. In: IEEE Transactions on Evolutionary

Computation 13.4, pp. 695–711. DOI: 10.1109/TEVC.2008.2011746.

O’Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic

Programming in an Arbitrary Language. First. Genetic Programming Series.

Boston, MA, USA: Springer. DOI: 10.1007/978-1-4615-0447-4.

Ögren, P. (2012). “Increasing modularity of UAV control systems using computer

game behavior trees”. In: AIAA Guidance, Navigation, and Control Conference.

Ed. by J. Thienel et al. Reston, VA, USA: AIAA Meeting Papers, pp. 358–393.

DOI: 10.2514/6.2012-4458.

Oğuz, S., Heinrich, M. K., Allwright, M., Zhu, W., Wahby, M., Garone, E., and

Dorigo, M. (2022). S-drone: an open-source quadrotor for experimentation in

swarm robotics. Tech. rep. TR/IRIDIA/2022-010. Brussels, Belgium: IRIDIA,

Université Libre de Bruxelles.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., and Peters, J.

(2018). “An algorithmic perspective on imitation learning”. In: Foundations

and Trends® in Robot. 7.1–2, pp. 1–179. DOI: 10.1561/2300000053.

Oung, R. and D’Andrea, R. (2011). “The distributed flight array”. In: Mechatronics

21.6, pp. 908–917. DOI: 10.1016/j.mechatronics.2010.08.003.

180

https://doi.org/10.1007/978-1-4419-1665-5_6
https://doi.org/10.1007/978-1-4419-1665-5_6
https://doi.org/10.3389/frobt.2022.799893
https://doi.org/10.24963/ijcai.2019/73
https://doi.org/10.24963/ijcai.2019/73
https://doi.org/10.1007/978-1-4419-1665-5_1
https://doi.org/10.1109/TEVC.2008.2011746
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.2514/6.2012-4458
https://doi.org/10.1561/2300000053
https://doi.org/10.1016/j.mechatronics.2010.08.003

Özdemir, A., Gauci, M., Bonnet, S., and Groß, R. (2018). “Finding consensus

without computation”. In: IEEE Robotics and Automation Letters 3.3, pp. 1346–

1353. DOI: 10.1109/LRA.2018.2795640.

Özdemir, A., Gauci, M., and Groß, R. (2017). “Shepherding with robots that do not

compute”. In: ECAL 2017, the Fourteenth European Conference on Artificial

Life. Cambridge, MA, USA: MIT Press, pp. 332–339. DOI: 10.7551/ecal_

a_056.

Özdemir, A., Gauci, M., Kolling, A., Hall, M. D., and Groß, R. (2019). “Spatial

coverage without computation”. In: 2019 IEEE International Conference on

Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, pp. 9674–9680.

DOI: 10.1109/ICRA.2019.8793731.

Padberg, M. and Rinaldi, G. (1991). “A branch-and-cut algorithm for the resolution

of large-scale symmetric traveling salesman problems”. In: SIAM Review 33.1,

pp. 60–100. DOI: 10.1137/1033004.

Paxton, C., Hundt, A., Jonathan, F., Guerin, K., and Hager, G. D. (2017). “CoSTAR:

instructing collaborative robots with behavior trees and vision”. In: 2017 IEEE

International Conference on Robotics and Automation (ICRA). Piscataway, NJ,

USA: IEEE, pp. 564–571. DOI: 10.1109/ICRA.2017.7989070.

Payton, D., Daily, M., Estowski, R., Howard, M., and Lee, C. (2001). “Pheromone

robotics”. In: Autonomous Robots 11, pp. 319–324. DOI: 10.1023/A:

1012411712038.

Perez, D., Nicolau, M., O’Neill, M., and Brabazon, A. (2011). “Evolving behaviour

trees for the Mario AI competition using grammatical evolution”. In: Appli-

cations of Evolutionary Computation. EvoApplications 2011: EvoCOMPLEX,

EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC. Ed. by

C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. I. Esparcia-Alcázar,

J. J. Merelo, F. Neri, M. Preuss, H. Richter, J. Togelius, and G. N. Yannakakis.

Vol. 6624. Lecture Notes in Computer Science. Berlin, Germany: Springer,

pp. 123–132. DOI: 10.1007/978-3-642-20525-5_13.

Pérez Cáceres, L. (2017). “Automatic Algorithm Configuration: Analysis, Improve-

ments and Applications”. PhD thesis. Brussels, Belgium: Université Libre de

Bruxelles.

Pérez Cáceres, L., Pagnozzi, F., Franzin, A., and Stützle, T. (2018). “Automatic

configuration of GCC using irace”. In: Artificial Evolution. EA 2017. Ed. by E.

Lutton, P. Legrand, P. Parrend, N. Monmarché, and M. Schoenauer. Vol. 10764.

LNCS. Cham, Switzerland: Springer, pp. 202–216. DOI: 10.1007/978-3-

319-78133-4_15.

Pierce, D. (2018). Robot Vacuums Are Finally Good—-Here’s Which One to Buy.

https://www.wsj.com/articles/robot- vacuums- are-

finally-goodheres-which-one-to-buy-11544968981. ac-

cessed on 2023-01-22.

181

https://doi.org/10.1109/LRA.2018.2795640
https://doi.org/10.7551/ecal_a_056
https://doi.org/10.7551/ecal_a_056
https://doi.org/10.1109/ICRA.2019.8793731
https://doi.org/10.1137/1033004
https://doi.org/10.1109/ICRA.2017.7989070
https://doi.org/10.1023/A:1012411712038
https://doi.org/10.1023/A:1012411712038
https://doi.org/10.1007/978-3-642-20525-5_13
https://doi.org/10.1007/978-3-319-78133-4_15
https://doi.org/10.1007/978-3-319-78133-4_15
https://www.wsj.com/articles/robot-vacuums-are-finally-goodheres-which-one-to-buy-11544968981
https://www.wsj.com/articles/robot-vacuums-are-finally-goodheres-which-one-to-buy-11544968981

Pinciroli, C. and Beltrame, G. (2016). “Buzz: a programming language for robot

swarms”. In: IEEE Software 33.4, pp. 97–100. DOI: 10.1109/MS.2016.

95.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-

ews, N., Ferrante, E., Di Caro, G. A., Ducatelle, F., Birattari, M., Gambardella,

L. M., and Dorigo, M. (2012). “ARGoS: a modular, parallel, multi-engine

simulator for multi-robot systems”. In: Swarm Intelligence 6.4, pp. 271–295.

DOI: 10.1007/s11721-012-0072-5.

Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., and Birattari, M. (2011).

“Task partitioning in swarms of robots: an adaptive method for strategy selec-

tion”. In: Swarm Intelligence 5.3–4, pp. 283–304. DOI: 10.1007/s11721-

011-0060-1.

Preiss, J. A., Honig, W., Sukhatme, G. S., and Ayanian, N. (2017). “Crazyswarm:

a large nano-quadcopter swarm”. In: 2017 IEEE International Conference on

Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, pp. 3299–3304.

DOI: 10.1109/ICRA.2017.7989376.

Prieto, A., Becerra, J. A., Bellas, F., and Duro, R. J. (2010). “Open-ended evolution

as a means to self-organize heterogeneous multi-robot systems in real time”.

In: Robotics and Autonomous Systems 58.12, pp. 1282–1291. DOI: 10.1016/

j.robot.2010.08.004.

Prorok, A., Correll, N., and Martinoli, A. (2011). “Multi-level spatial modeling

for stochastic distributed robotic systems”. In: The International Journal of

Robotics Research 30.5, pp. 574–589. DOI: 10.1177/0278364911399521.

Prorok, A., Hsieh, M. A., and Kumar, V. (2017). “The impact of diversity on optimal

control policies for heterogeneous robot swarms”. In: IEEE Transactions on

Robotics 33.2, pp. 346–358. DOI: 10.1109/TRO.2016.2631593.

Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2003). “Evolving controllers

for a homogeneous system of physical robots: structured cooperation with

minimal sensors”. In: Philosophical Transactions of the Royal Society of Lon-

don. Series A: Mathematical, Physical and Engineering Sciences 361.1811,

pp. 2321–2343. DOI: 10.1098/rsta.2003.1258.

R Development Core Team (2008). The R Project for Statistical Computing. http:

//www.R-project.org.

Ramos, R. P., Oliveira, S. M., Vieira, S. M., and Christensen, A. L. (2019).

“Evolving flocking in embodied agents based on local and global applica-

tion of Reynolds’ rules”. In: PLOS ONE 14.10, e0224376. DOI: 10.1371/

journal.pone.0224376.

Reina, A., Bose, T., Trianni, V., and Marshall, J. A. R. (2018). “Effects of spa-

tiality on value-sensitive decisions made by robot swarms”. In: Distributed

Autonomous Robotic Systems: The 13th International Symposium. Ed. by R.

Groß, A. Kolling, S. Berman, E. Frazzoli, A. Martinoli, F. Matsuno, and M.

182

https://doi.org/10.1109/MS.2016.95
https://doi.org/10.1109/MS.2016.95
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-011-0060-1
https://doi.org/10.1007/s11721-011-0060-1
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1016/j.robot.2010.08.004
https://doi.org/10.1016/j.robot.2010.08.004
https://doi.org/10.1177/0278364911399521
https://doi.org/10.1109/TRO.2016.2631593
https://doi.org/10.1098/rsta.2003.1258
http://www.R-project.org
http://www.R-project.org
https://doi.org/10.1371/journal.pone.0224376
https://doi.org/10.1371/journal.pone.0224376

Gauci. Vol. 6. Springer Proceedings in Advanced Robotics. Springer, pp. 461–

473. DOI: 10.1007/978-3-319-73008-0_32.

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., and Trianni, V. (2015).

“A design pattern for decentralised decision making”. In: PLOS ONE 10.10,

e0140950. DOI: 10.1371/journal.pone.0140950.

Rubenstein, M., Cornejo, A., and Nagpal, R. (2014). “Programmable self-assembly

in a thousand-robot swarm”. In: Science 345.6198, pp. 795–799. DOI: 10.

1126/science.1254295.

Şahin, E. (2005). “Swarm robotics: from sources of inspiration to domains of

application”. In: Swarm Robotics: SAB 2004 International Workshop. Ed. by E.

Şahin and W. M. Spears. Vol. 3342. Lecture Notes in Computer Science. Berlin,

Germany: Springer, pp. 10–20. DOI: 10.1007/978-3-540-30552-1_2.

Salman, M., Ligot, A., and Birattari, M. (2019). “Concurrent design of control

software and configuration of hardware for robot swarms under economic

constraints”. In: PeerJ Computer Science 5, e221. DOI: 10.7717/peerj-

cs.221.

Schede, E., Brandt, J., Tornede, A., Wever, M., Bengs, V., Hüllermeier, E., and

Tierney, K. (2022). “A survey of methods for automated algorithm configu-

ration”. In: Journal of Artificial Intelligence Research 75, pp. 425–487. DOI:

10.1613/jair.1.13676.

Schmickl, T. and Hamann, H. (2011). “BEECLUST: a swarm algorithm derived

from honeybees”. In: Bio-inspired Computing and Networking. Ed. by Y. Xiao.

Boca Raton, FL, USA: CRC Press, pp. 95–137. DOI: 10.1201/b10781.

Schmickl, T., Thenius, R., Moslinger, C., Timmis, J., Tyrrell, A., Read, M., Hilder,

J., Halloy, J., Campo, A., Stefanini, C., Manfredi, L., Orofino, S., Kernbach, S.,

Dipper, T., and Sutantyo, D. (2011). “CoCoRo – the self-aware underwater

swarm”. In: 2011 Fifth IEEE Conference on Self-Adaptive and Self-Organizing

Systems Workshops (SASOW). Ed. by A. Lomuscio, P. Scerri, A. Bazzan, and

M. Huhns. Piscataway, NJ, USA: IEEE, pp. 120–126. DOI: 10.1109/SASOW.

2011.11.

Schranz, M., Di Caro, G. A., Schmickl, T., Elmenreich, W., Arvin, F., Şekercioğlu,

Y. A., and Sende, M. (2021). “Swarm intelligence and cyber-physical sys-

tems: concepts, challenges and future trends”. In: Swarm and Evolutionary

Computation 60.14, p. 100762. DOI: 10.1016/j.swevo.2020.100762.

Schranz, M., Umlauft, M., Sende, M., and Elmenreich, W. (2020). “Swarm robotic

behaviors and current applications”. In: Frontiers in Robotics and AI 7, p. 36.

DOI: 10.3389/frobt.2020.00036.

Silva, F., Correia, L., and Christensen, A. L. (2017). “Evolutionary online behaviour

learning and adaptation in real robots”. In: Royal Society Open Science 4.7,

p. 160938. DOI: 10.1098/rsos.160938.

183

https://doi.org/10.1007/978-3-319-73008-0_32
https://doi.org/10.1371/journal.pone.0140950
https://doi.org/10.1126/science.1254295
https://doi.org/10.1126/science.1254295
https://doi.org/10.1007/978-3-540-30552-1_2
https://doi.org/10.7717/peerj-cs.221
https://doi.org/10.7717/peerj-cs.221
https://doi.org/10.1613/jair.1.13676
https://doi.org/10.1201/b10781
https://doi.org/10.1109/SASOW.2011.11
https://doi.org/10.1109/SASOW.2011.11
https://doi.org/10.1016/j.swevo.2020.100762
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.1098/rsos.160938

Silva, F., Duarte, M., Correia, L., Oliveira, S. M., and Christensen, A. L. (2016).

“Open issues in evolutionary robotics”. In: Evolutionary Computation 24.2,

pp. 205–236. DOI: 10.1162/EVCO_a_00172.

Silva, F., Urbano, P., Correia, L., and Christensen, A. L. (2015). “odNEAT: an algo-

rithm for decentralised online evolution of robotic controllers”. In: Evolutionary

Computation 23.3, pp. 421–449. DOI: 10.1162/EVCO_a_00141.

Slavkov, I., Carrillo-Zapata, D., Carranza, N., Diego, X., Jansson, F., Kaandorp, J.,

Hauert, S., and Sharpe, J. (2018). “Morphogenesis in robot swarms”. In: Science

Robotics 3.25, eaau9178. DOI: 10.1126/scirobotics.aau9178.

Soares, J. M., Navarro, I., and Martinoli, A. (2015). “The Khepera IV mobile robot:

performance evaluation, sensory data and software toolbox”. In: Robot 2015:

Second Iberian Robotics Conference: Advances in Robotics, Volume 1. Ed. by

L. P. Reis, A. P. Moreira, P. U. Lima, L. Montana, and V. F. Muñoz Martı́nez.

Vol. 417. Advances in Intelligent Systems and Computing. Cham, Switzerland:

Springer, pp. 767–781. DOI: 10.1007/978-3-319-27146-0_59.

Šošić, A., Khuda Bukhsh, W. R., Zoubir, A. M., and Koeppl, H. (2017). “Inverse

reinforcement learning in swarm systems”. In: AAMAS ’17: Proceedings of

the 16th Conference on Autonomous Agents and MultiAgent Systems. Richland,

SC, USA: International Foundation for Autonomous Agents and Multiagent

Systems (IFAAMAS), pp. 1413–1421.

Soysal, O. and Şahin, E. (2005). “Probabilistic aggregation strategies in swarm

robotic systems”. In: 2005 IEEE Swarm Intelligence Symposium, SIS 2005.

Piscataway, NJ, USA: IEEE, pp. 325–332. DOI: 10.1109/SIS.2005.

1501639.

Soysal, O. and Şahin, E. (2007). “A macroscopic model for self-organized aggre-

gation in swarm robotic systems”. In: Swarm Robotics: Second International

Workshop, SAB 2006. Ed. by E. Şahin, W. M. Spears, and A. F. T. Winfield.

Vol. 4433. Lecture Notes in Computer Science. Berlin, Germany: Springer,

pp. 27–42. DOI: 10.1007/978-3-540-71541-2_3.

Spaey, G., Kegeleirs, M., Garzón Ramos, D., and Birattari, M. (2020). “Evalu-

ation of alternative exploration schemes in the automatic modular design of

robot swarms”. In: Artificial Intelligence and Machine Learning: BNAIC 2019,

BENELEARN 2019. Ed. by B. Bogaerts, G. Bontempi, P. Geurts, N. Harley,

B. Lebichot, T. Lenaerts, and G. Louppe. Vol. 1196. Communications in Com-

puter and Information Science. Cham, Switzerland: Springer, pp. 18–33. DOI:

10.1007/978-3-030-65154-1_2.

Spears, W. M. and Spears, D., eds. (2012). Physicomimetics: Physics-Based Swarm

Intelligence. Berlin, Germany: Springer. DOI: 10.1007/978-3-642-

22804-9.

Spears, W. M., Spears, D., Heil, R., Kerr, W., and Hettiarachchi, S. (2005). “An

overview of physicomimetics”. In: Swarm Robotics: SAB 2004 International

184

https://doi.org/10.1162/EVCO_a_00172
https://doi.org/10.1162/EVCO_a_00141
https://doi.org/10.1126/scirobotics.aau9178
https://doi.org/10.1007/978-3-319-27146-0_59
https://doi.org/10.1109/SIS.2005.1501639
https://doi.org/10.1109/SIS.2005.1501639
https://doi.org/10.1007/978-3-540-71541-2_3
https://doi.org/10.1007/978-3-030-65154-1_2
https://doi.org/10.1007/978-3-642-22804-9
https://doi.org/10.1007/978-3-642-22804-9

Workshop. Ed. by E. Şahin and W. M. Spears. Vol. 3342. Lecture Notes in

Computer Science. Berlin, Germany: Springer, pp. 84–97.

Stanley, K. O. and Miikkulainen, R. (2002). “Evolving neural networks through

augmenting topologies”. In: Evolutionary Computation 10.2, pp. 99–127. DOI:

10.1162/106365602320169811.

Stranieri, A., Turgut, A. E., Salvaro, M., Garattoni, L., Francesca, G., Reina, A.,

Dorigo, M., and Birattari, M. (2013). IRIDIA’s arena tracking system. Tech.

rep. TR/IRIDIA/2013-013. Brussels, Belgium: IRIDIA, Université Libre de

Bruxelles.

Sugawara, K. and Sano, M. (1997). “Cooperative acceleration of task performance:

foraging behavior of interacting multi-robots system”. In: Physica D: Nonlinear

Phenomena 100.3-4, pp. 343–354. DOI: 10.1016/S0167-2789(96)

00195-9.

Talamali, M. S., Saha, A., Marshall, J. A. R., and Reina, A. (2021). “When less

is more: robot swarms adapt better to changes with constrained communica-

tion”. In: Science Robotics 6.56, eabf1416. DOI: 10.1126/scirobotics.

abf1416.

The Creative Cloud Team (Adobe) (2017). Extending Your Reality: What Happens

When You Let a Drone Carry Your Camera Away. https://blog.adobe.

com/en/2017/12/04/extending- reality- happens-let-

drone-carry-camera-away. accessed on 2023-01-07.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton Brown, K. (2013). “Auto-WEKA:

combined selection and hyperparameter optimization of classification algo-

rithms”. In: KDD ’13: Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining. Ed. by R. Ghani, T. E. S.

abd Paul Bradley, R. Parekh, and J. He. New York, NY, USA: ACM, pp. 847–

855. DOI: 10.1145/2487575.2487629.

Trianni, V. (2008). Evolutionary Swarm Robotics. Berlin, Germany: Springer. DOI:

10.1007/978-3-540-77612-3.

Trianni, V., Groß, R., Labella Thomas, H., Şahin, E., and Dorigo, M. (2003).

“Evolving aggregation behaviors in a swarm of robots”. In: Advances in Artifi-

cial Life: 7th European Conference, ECAL 2003. Ed. by W. Banzhaf, J. Ziegler,

T. Christaller, P. Dittrich, and J. T. Kim. Vol. 2801. Lecture Notes in Computer

Science. Berlin, Germany: Springer, pp. 865–874. DOI: 10.1007/978-3-

540-39432-7_93.

Trianni, V. and López-Ibáñez, M. (2015). “Advantages of task-specific multi-

objective optimisation in evolutionary robotics”. In: PLOS ONE 10.8, e0136406.

DOI: 10.1371/journal.pone.0136406.

Trianni, V. and Nolfi, S. (2011). “Engineering the evolution of self-organizing

behaviors in swarm robotics: a case study”. In: Artificial Life 17.3, pp. 183–202.

DOI: 10.1162/artl_a_00031.

185

https://doi.org/10.1162/106365602320169811
https://doi.org/10.1016/S0167-2789(96)00195-9
https://doi.org/10.1016/S0167-2789(96)00195-9
https://doi.org/10.1126/scirobotics.abf1416
https://doi.org/10.1126/scirobotics.abf1416
https://blog.adobe.com/en/2017/12/04/extending-reality-happens-let-drone-carry-camera-away
https://blog.adobe.com/en/2017/12/04/extending-reality-happens-let-drone-carry-camera-away
https://blog.adobe.com/en/2017/12/04/extending-reality-happens-let-drone-carry-camera-away
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1007/978-3-540-39432-7_93
https://doi.org/10.1007/978-3-540-39432-7_93
https://doi.org/10.1371/journal.pone.0136406
https://doi.org/10.1162/artl_a_00031

Trianni, V., Tuci, E., Ampatzis, C., and Dorigo, M. (2014). “Evolutionary swarm

robotics: a theoretical and methodological itinerary from individual neuro-

controllers to collective behaviours”. In: The Horizons of Evolutionary Robotics.

Ed. by P. A. Vargas, E. A. Di Paolo, I. Harvey, and P. Husbands. Boston, MA,

USA: MIT Press, pp. 153–178. DOI: 10.7551/mitpress/8493.003.

0008.

Ugur, E., Turgut, A. E., and Şahin, E. (2007). “Dispersion of a swarm of robots

based on realistic wireless intensity signals”. In: 2007 22nd International

Symposium on Computer and Information Sciences (ISCIS). Ed. by E. G.

Schmidt, İ. Ulusoy, N. K. Çiçekli, U. Halıcı, and M. V. Atalay. Piscataway, NJ,

USA: IEEE, pp. 1–6. DOI: 10.1109/ISCIS.2007.4456899.

Valentini, G., Ferrante, E., Hamann, H., and Dorigo, M. (2016). “Collective deci-

sion with 100 Kilobots: speed versus accuracy in binary discrimination prob-

lems”. In: Autonomous Agents and Multi-Agent Systems 30.3, pp. 553–580.

DOI: 10.1007/s10458-015-9323-3.

Valentini, G., Hamann, H., and Dorigo, M. (2014). “Self-organized collective

decision making: the weighted voter model”. In: AAMAS ’14: Proceedings

of the 2014 international conference on Autonomous agents and multi-agent

systems. Richland, SC, USA: International Foundation for Autonomous Agents

and Multiagent Systems (IFAAMAS), pp. 45–52.

Vigelius, M., Meyer, B., and Pascoe, G. (2014). “Multiscale modelling and analysis

of collective decision making in swarm robotics”. In: PLOS ONE 9.11, e111542.

DOI: 10.1371/journal.pone.0111542.

Vitanza, A., Rosseti, P., Mondada, F., and Trianni, V. (2019). “Robot swarms as an

educational tool: the Thymio’s way”. In: International Journal of Advanced

Robotic Systems, pp. 1–13. DOI: 10.1177/1729881418825186.

wallonia.be (2014). An Oscar for Flying-Cam! https://www.wallonia.

be/en/news/un-oscar-pour-flying-cam. accessed on 2023-01-

07.

Walter, W. G. (1950). “An imitation of life”. In: Scientific American 182.5, pp. 42–

45.

Watson, R. A., Ficici, S. G., and Pollack, J. B. (2002). “Embodied evolution: dis-

tributing an evolutionary algorithm in a population of robots”. In: Robotics and

Autonomous Systems 39.1, pp. 1–18. DOI: 10.1016/S0921-8890(02)

00170-7.

Werfel, J., Petersen, K., and Nagpal, R. (2014). “Designing collective behavior in a

termite-inspired robot construction team”. In: Science 343.6172, pp. 754–758.

DOI: 10.1126/science.1245842.

Winfield, A. F. T., Harper, C. J., and Nembrini, J. (2005a). “Towards dependable

swarms and a new discipline of swarm engineering”. In: Swarm Robotics: SAB

2004 International Workshop. Ed. by E. Şahin and W. M. Spears. Vol. 3342.

186

https://doi.org/10.7551/mitpress/8493.003.0008
https://doi.org/10.7551/mitpress/8493.003.0008
https://doi.org/10.1109/ISCIS.2007.4456899
https://doi.org/10.1007/s10458-015-9323-3
https://doi.org/10.1371/journal.pone.0111542
https://doi.org/10.1177/1729881418825186
https://www.wallonia.be/en/news/un-oscar-pour-flying-cam
https://www.wallonia.be/en/news/un-oscar-pour-flying-cam
https://doi.org/10.1016/S0921-8890(02)00170-7
https://doi.org/10.1016/S0921-8890(02)00170-7
https://doi.org/10.1126/science.1245842

Lecture Notes in Computer Science. Berlin, Germany: Springer, pp. 126–142.

DOI: 10.1007/978-3-540-30552-1_11.

Winfield, A. F. T., Sa, J., Fernández-Gago, M. C., Dixon, C., and Fisher, M.

(2005b). “On formal specification of emergent behaviours in swarm robotic

systems”. In: International Journal of Advanced Robotic Systems 2.4. DOI:

10.5772/5769.

Witze, A. (2022). “NASA’s Perseverance rover begins key search for life on Mars”.

In: Nature 606, pp. 441–442. DOI: 10.1038/d41586-022-01543-z.

Xie, H., Sun, M., Fan, X., Lin, Z., Chen, W., Wang, L., Dong, L., and He, Q.

(2019). “Reconfigurable magnetic microrobot swarm: multimode transforma-

tion, locomotion, and manipulation”. In: Science Robotics 4.28, eaav8006. DOI:

10.1126/scirobotics.aav8006.

Yamins, D. and Nagpal, R. (2008). “Automated global-to-local programming in

1-D spatial multi-agent systems”. In: AAMAS ’08: The Seventh International

Conference on Autonomous Agents and Multiagent Systems. Ed. by L. Padgham,

D. Parkes, J. Müller, and S. Parsons. Vol. 2. Richland, SC, USA: International

Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS),

pp. 615–622.

Yang, G.-Z., Bellingham, J., Dupont, P. E., Fischer, P., Floridi, L., Full, R., Jacob-

stein, N., Kumar, V., McNutt, M., Merrifield, R., Nelson, B. J., Scassellati, B.,

Taddeo, M., Taylor, R., Veloso, M., Wang, Z. L., and Wood, R. J. (2018). “The

grand challenges of Science Robotics”. In: Science Robotics 3.14, eaar7650.

DOI: 10.1126/scirobotics.aar7650.

Yu, J., Wang, B., Du, X., Wang, Q., and Zhang, L. (2018). “Ultra-extensible ribbon-

like magnetic microswarm”. In: Nature Communications 9.1, p. 3260. DOI:

10.1038/s41467-018-05749-6.

Zhao, W., Queralta, J. P., and Westerlund, T. (2020). “Sim-to-real transfer in deep

reinforcement learning for robotics: a survey”. In: 2020 IEEE Symposium

Series on Computational Intelligence, SSCI 2020. Piscataway, NJ, USA: IEEE,

pp. 737–744. DOI: 10.1109/SSCI47803.2020.9308468.

187

https://doi.org/10.1007/978-3-540-30552-1_11
https://doi.org/10.5772/5769
https://doi.org/10.1038/d41586-022-01543-z
https://doi.org/10.1126/scirobotics.aav8006
https://doi.org/10.1126/scirobotics.aar7650
https://doi.org/10.1038/s41467-018-05749-6
https://doi.org/10.1109/SSCI47803.2020.9308468

	Summary
	Acknowledgments
	Introduction
	Original contributions
	Further contributions
	Outline

	State of the art
	Swarm behaviors
	Aggregation
	Dispersion
	Foraging
	Collective decision making

	Robotic platforms
	Ground-based mobile robots
	Aerial drones
	Aquatic robots

	Microscopic and macroscopic models
	Design methods
	Formal design
	Manual design
	Optimization-based design

	Online optimization-based design
	Offline optimization-based design
	Neuro-evolution
	Automatic modular design
	Multi-agent reinforcement learning
	Imitation Learning
	Other approaches

	Reality gap
	AutoMoDe
	Optimization
	Optimization problems
	Optimization algorithms
	Metaheuristics

	Automatic algorithm configuration

	Methods
	Iterated F-race
	The e-puck robot
	Reference model RM1.1
	Chocolate
	Modules
	Control architecture

	EvoStick
	Experimental environment
	Statistical analysis

	Local-search based optimization algorithms
	Local search algorithms
	Iterative improvement
	Simulated annealing

	Neighborhood structure
	AutoMoDe-Cherry
	Experiments
	Results
	Discussion

	AutoMoDe-IcePop
	Experiments
	Results
	Discussion

	Limitations and possible improvements

	Model-based optimization algorithms
	SMAC
	Design methods
	Experiments
	Missions
	Protocol

	Results
	Runtime analysis
	Discussion
	Limitations and possible improvements

	Perspective on optimization-based design
	Level 1 - Tuning
	Level 2 - Assembling
	Level 3 - Shaping
	Outlook

	Conclusions & Future work
	Research contributions in detail
	Future work

	Behavior trees as an alternative control architecture
	Behavior trees
	AutoMoDe-Maple
	Experiments
	Results
	Discussion

	AutoMoDe-Cherry-BT
	Neighborhood structure
	Experiments
	Results
	Discussion

	AutoMoDe-Cedrata
	Reference model
	Modules
	Control architecture
	Cedrata-GP and Cedrata-GE
	Experiments
	Results
	Discussion

	Search space considerations
	Search space size for AutoMoDe-Chocolate and AutoMoDe-Maple
	Search space for finite-state machines
	Search space for behavior trees

	Proofs of completeness for perturbation operators

	Bibliography

