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Recent trends in robot learning
and evolution for swarm robotics

Jonas Kuckling*

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

Swarm robotics is a promising approach to control large groups of robots.
However, designing the individual behavior of the robots so that a desired
collective behavior emerges is still a major challenge. In recent years, many
advances in the automatic design of control software for robot swarms have
been made, thus making automatic design a promising tool to address this
challenge. In this article, I highlight and discuss recent advances and trends
in offline robot evolution, embodied evolution, and offline robot learning for
swarm robotics. For each approach, I describe recent designmethods of interest,
and commonly encountered challenges. In addition to the review, I provide
a perspective on recent trends and discuss how they might influence future
research to help address the remaining challenges of designing robot swarms.
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1 Introduction

Robot swarms are decentralized systems of relatively simple robots that only rely on
local information to operate (Beni, 2005; Şahin, 2005; Brambilla et al., 2013; Dorigo et al.,
2014; Hamann, 2018). Like animal swarms in nature, a robot swarm is a group of robots
that are efficient at performing tasks due to their cooperation. Robot swarms are multi-
robot systems that exhibit some particular characteristics. They are decentralized and highly
redundant. The high redundancy requires that there is no role in the swarm that can only
be executed by a single robot1. Furthermore, in a robot swarm, there exists no single
central point of control (neither internal nor external to the swarm), as a centralized
point of control would be a single point of failure. Therefore, complex collective behaviors,
such as task allocation, cannot be planned and orchestrated by an operator. Instead,
the swarm is required to be self-organizing: the collective behavior of the swarm must
emerge from the interactions between the individual robots. Additionally, the robots in
the swarm are relatively simple (both in terms of hardware and software) with respect
to the task they perform and have only local sensing and communication capabilities.

1 Classically, a robot swarm is a homogeneous system—i.e., all robots have the same capabilities
and execute the same software. There have been examples of heterogeneous robot swarms
(Dorigo et al., 2013), in which parts of the swarm are specialized in such a way that their
role cannot be performed by some of the other robots in the swarm. Yet, in these examples,
heterogeneous swarms are also redundant to some degree, as each role has at least several
robots being able to perform it.
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These inherent characteristics of robot swarms promote the
development and implementation of robotic systems that exhibit
desirable properties (Şahin, 2005; Dorigo et al., 2014; Hamann,
2018). The self-organized nature of robot swarms promotes the
design of flexible systems: the swarm can adapt to different and
potentially changing environments. Additionally, the redundancy of
the swarm facilitates the creation of systems that are fault tolerant.
The failure of any individual robot (or sometimes significant
portions of the swarm) will not prevent the swarm from achieving
its task. Lastly, as robots only interact with their immediate
neighboring peers, swarms are scalable systems.That is, the addition
or removal of robots from the swarm does not significantly affect
the performance of the swarm. Thanks to these properties, swarm
robotics is considered a prominent approach to control large groups
of autonomous robots (Rubenstein et al., 2014; Werfel et al., 2014;
Mathews et al., 2017; Garattoni and Birattari, 2018; Slavkov et al.,
2018; Yu et al., 2018; Li et al., 2019; Xie et al., 2019; Dorigo et al.,
2020) and has been recently highlighted as one of the grand
challenges of robotics research for the upcoming years (Yang et al.,
2018). The use of robot swarms has been proposed for coordinating
groups of robots inmissions in dynamic or unknown environments,
such as for space exploration, search and retrieval in disaster
situations, or agricultural applications (Carrillo-Zapata et al., 2020;
Dorigo et al., 2020). While no real-world application of swarm
robotics exists yet, they are projected to be developedwithin the next
ten to 15 years (Dorigo et al., 2020).

Although the realization of robot swarms offers several
advantages, their decentralized and self-organized nature makes
them challenging to design. The requirements for the desired
behavior of the swarm are usually expressed at the collective level,
but it is not possible to program the swarm directly. Instead, the
individual robots need to be programmed in such a way that the
desired collective behavior arises.The problem is that each robot can
only act based on the local information that it can perceive. When
programming the robots, the designer needs to predict how the local
behaviors and local interactions between robots will contribute to
the emergence of the desired collective behavior.

Swarm robotics originated from the application of bio-inspired
swarm intelligence principles to robotics (Beckers et al., 1994;
Beni, 2005). Since then, swarm robotics has moved towards a
more matured engineering discipline—often referred to as swarm
engineering (Winfield et al., 2005; Brambilla et al., 2013). Swarm
engineering concerns the creation of arbitrary (not necessarily
bio-inspired) collective behaviors for a robot swarm. The most
common approach to the design of robot swarms is manual design:
a human designer manually implements the control software for
the robots. The designer can refine the control software through
a trial-and-error process until they find the result satisfactory.
While this design process often yields reasonably good results,
it can be error-prone, costly, time-consuming and the quality of
the control software strongly depends on the expertise of the
designer. Furthermore, there is no guarantee that the performance
will reach a satisfactory level within any reasonably available
time budget. Several principled methods and design patterns for
designing collective behaviors have been developed to overcome
the limitations of pure trial-and-error design (Halloy et al., 2007;
Soysal and Şahin, 2007; Hamann and Wörn, 2008; Yamins and
Nagpal, 2008; Berman et al., 2009; Kazadi, 2009; Prorok et al.,

2009; Berman et al., 2011; Beal et al., 2012; Brambilla et al., 2014;
Reina et al., 2015; Lopes et al., 2016; Pinciroli and Beltrame, 2016;
Hamann, 2018). Yet, these methods are restricted to specific
assumptions and no generally applicable methodology has been
proposed yet (Brambilla et al., 2013; Francesca and Birattari, 2016;
Schranz et al., 2021).

An alternative to principled methods are (semi-)automatic
design methods, which are built upon techniques such as robot
evolution or robot learning. In semi-automatic design, a human
designer remains in the loop during the development and
optimization of the control software. That is, the human designer
can observe and intervene in the design process, if necessary. For
example, the human designer could observe the result found by
the design process, change some parameters used in the algorithms
to produce the control software and restart them with the new
parameter values. The semi-automatic design terminates when the
human designer is satisfied with the generated control software.
In a research setting, semi-automatic design allows to assess the
underlying feasibility of these designmethods. However, in practice,
semi-automatic design exhibits similar drawbacks asmanual design.
Namely, the quality of the generated control software depends on
the human designer and their ability to steer the design process. In
fully automatic design (Birattari et al., 2019), no human intervention
beyond the mission specification is possible (Birattari et al., 2020).
That is, the design process runs completely automatic until it
terminates with the generation of an appropriate instance of
control software. (Semi-)Automatic design methods can be further
categorized into online and offline methods (Bredeche et al., 2018;
Birattari et al., 2020). In online design, the design process is executed
while the swarm performs its mission in the target environment,
whereas in offline design, the design process is executed before the
swarm is deployed to perform its mission.

In this work, I discuss recent advances in robot evolution and
robot learning in the context of swarm robotics (see Tables 1–7 for
an index of the considered design methods). The work is organized
as follows. In Section 2, I present offline design methods that rely
on evolutionary algorithms or related techniques. In Section 3,
I present online design methods. In Section 4, I present offline
design methods based on robot learning. In Section 5, I provide a
perspective on important open questions on the application of robot
learning and evolution in swarm robotics.

2 Robot evolution

The application of evolutionary robotics principles (Husbands
and Harvey, 1992; Nolfi and Floreano, 2000) to swarm robotics
is called evolutionary swarm robotics (Trianni, 2008; Nolfi, 2021).
In evolutionary swarm robotics, the control software of the robots
is generated through an artificial evolutionary process. Unless
otherwise specified, the same generated control software is uploaded
to each robot to be executed individually. The evolutionary process
optimizes instances of control software with respect to a mission-
specific objective function, often also called fitness function. The
objective function is used to assess the quality of instances of control
software, and in a way, provides selection pressure to direct the
optimization process. Poorly performing instances are discarded
and the well performing ones are selected to generate new instances

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1134841
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Kuckling 10.3389/frobt.2023.1134841

TABLE 1 Overview of selected neuro-evolutionary research in swarm robotics.

Publication Swarm composition Mission Network topology Algorithm Sim. Real.

Trianni and Nolfi (2011) 3 s-bot robots Synchronization Single layer perceptron Evolutionary algorithm •

Gauci et al. (2014a) 10 e-puck robots Aggregation Fully-recurrent network Classical Evolutionary Programming • •

Duarte et al. (2016) 5–10 aquatic drones Homing, Feedforward network NEAT • •

dispersion,

clustering,

area monitoring

Gomes et al. (2019) 1 aerial, 1 ground robot Foraging Feedforward network NEAT •

Hasselmann et al. (2021) 20 e-puck robots Aggregation, Single layer perceptron, CMA-ES, xNES, NEAT, • •

homing multi-layer perceptron evolutionary algorithm

foraging

sheltering

gate passing

van Diggelen et al. (2022) 14 ground robots Gradient following Fully connected reservoir Differential evolution •

network

TABLE 2 Overview of selected automatic modular design research in swarm robotics.

Publication Swarm composition Mission Architecture Modules Sim. Real.

Hecker et al. (2012) 1–3 ground robots Foraging Finite-state machine Manually implemented • •

Duarte et al. (2014) 50 aquatic drones Patrolling Finite-state machine Evolved continuous-time •

recurrent network

Francesca et al. (2014) 20 e-puck robots Aggregation, Finite-state machine Manually implemented • •

foraging

Ferrante et al. (2015) 4 foot-bot robots Foraging Rule set Manually implemented •

Jones et al. (2018) 25 kilobot robots Foraging Behavior tree Manually implemented • •

Neupane and Goodrich (2019) Foraging, Behavior tree Manually implemented •

co-op. transport,

nest maintenance

Ligot et al. (2020a) 20 e-puck robots Aggregation, Finite-state machine Evolved feedforward • •

foraging networks

TABLE 3 Overview of selected novelty search research in swarm robotics.

Publication Swarm composition Mission Sim. Real.

Gomes et al. (2013) 5–7 e-puck robots Aggregation, resource sharing •

Gomes et al. (2017) 3–8 ground robots Predator-prey, herding, •

cooperative foraging

Gomes and Christensen (2018) 5–10 ground robots Aggregation, clustering, coverage, •

border coverage, dispersion,

phototaxis, flocking

Hasselmann et al. (2023) 20 e-puck robots Foraging, aggregation, sheltering • •
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TABLE 4 Overview of selected other evolution-based research in swarm robotics.

Publication Swarm composition Mission Approach Sim. Real.

Hamann (2014) 20 particles Collective motion Minimizing surprise •

Gauci et al. (2014b) 5–50 e-puck robots Clustering Computation-free control • •

Trianni and López-Ibáñez (2015) 6–10 foot-bot robots Flocking, Multi-objective optimization •

collaboration

Kaiser and Hamann (2019) 100 grid-world agents Collective motion Minimizing surprise •

TABLE 5 Overview of selected embodied evolution research in swarm robotics.

Publication Swarm composition Mission Algorithm Controller update Sim. Real.

Bianco and Nolfi (2004) 64 s-bot robots Self-assembly Not identified Encounter, time-out •

Prieto et al. (2010) 8 e-puck robots Cleaning r-ASiCo Energy •

Bredeche et al. (2012) 9–100 e-puck robots Foraging mEDEA Energy, time-out • •

Silva et al. (2015) 5 e-puck robots Aggregation, odNEAT Energy •

phototaxis,

collective motion

Jones et al. (2019) 9 e-puck robots Collective transport Parallel island model Time-out •

distributed evolution

Cambier et al. (2021) 25–200 kilobot robots Aggregation Cultural evolution Encounter • •

TABLE 6 Overview of selectedmulti-agent reinforcement learning research in swarm robotics.

Publication Swarm composition Mission Algorithm State-space Sim. Real.

Matarić (1997) 4 IS Robotics R2 robots Foraging Q-learning Individual •

Hüttenrauch et al. (2019) 2–10 ground robots Rendez-vous, Trust Region Policy Optimization Individual •

predator-prey

Bloom et al. (2022) 4–8 foot-bot robots Collective transport ADAM Individual •

through recombination and mutation. The methods presented in
this section are automatic offline design methods. That is, methods
in which the design process is executed in a centralized manner
using simulations and before the robots are deployed. For design
methods that run the evolutionary process directly on the robots,
see Section 3.

In the context of swarm robotics, robot evolution is the most
studied automatic design approach. Indeed, evolutionary swarm
robotics has been used to create control software for robot swarms
in a wide variety of mission such as foraging, collective transport,
or pattern formation (Brambilla et al., 2013; Schranz et al., 2020).
Traditionally, evolutionary swarm robotics has relied on neuro-
evolution—the control software in the form of an artificial neural
network is optimized using a centralized evolutionary algorithm
(see Section 2.1). Other related approaches include automatic
modular design (see Section 2.2) andnovelty-search-based design (see

Section 2.3). In automatic modular design, the control software is
composed ofmodules that are assembled intomore complex control
architectures, such as finite-state machines or behavior trees. In
novelty-search-based design methods, the selection pressure does
not arise from the mission-specific objective function, but rather
from a metric of behavioral novelty. While evolutionary swarm
robotics designmethods have demonstrated promising results in the
past, they still face some important challenges that remain unsolved:
notably, the generation of control software that is robust to the reality
gap and the engineering of appropriate objective functions that can
produce a desired collective behavior.

Trianni et al. (2014) and Francesca and Birattari (2016)
provide overviews of robot evolution in the context of swarm
robotics. For reviews of evolutionary robotics in the single-robot
case, see Doncieux et al. (2011), Bongard (2013), Trianni (2014),
Doncieux et al. (2015), and Silva et al. (2016).
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TABLE 7 Overview of selected imitation learning research in swarm robotics.

Publication Swarm composition Mission Algorithm Demonstration Sim. Real.

Li et al. (2016) 5–11 e-puck robots Aggregation, Turing learning Motion trajectories • •

object clustering

Šošić et al. (2017) 200 particles Synchronization Inverse reinforcement learning Motion trajectories •

Alharthi et al. (2022) 20 ground robots Not identified Behavior cloning Video recordings •

Gharbi et al. (2023) 20 e-puck robots Aggregation, Apprenticeship learning Robot positions • •

dispersion,

sheltering

2.1 Neuro-evolution

Neuro-evolution: Robots are controlled by an artificial neural
network that maps sensor inputs to actuator outputs. The weights
of the neural network, and possibly its topology, are optimized
using an evolutionary algorithm with regard to a mission-specific
objective function. The design process results in a single
well-performing instance of control software.

Neuro-evolution is one of the earliest automatic design
methods in swarm robotics (Dorigo et al., 2003; Quinn et al., 2003;
Trianni et al., 2003). In this approach, neural networks are used as
black-box controllers, and the search performed by the evolutionary
algorithm does not require domain-specific heuristic information.
For this reason, neuro-evolutionary design methods are expected
to allow the design of control software with no domain knowledge.
For a review of early neuro-evolutionary design methods, see
Brambilla et al. (2013).

More recently, several authors have focused on systematically
using neuro-evolution to design control software for various robotic
platforms—mainly targeting those that could be possibly used in
real-world deployments. For example, Trianni and Nolfi evolved
a perceptron network to synchronize the movement of a swarm
of s-bot robots (Trianni and Nolfi, 2011). Duarte et al. (2016)
used NEAT (Stanley and Miikkulainen, 2002) to design control
software a swarm of aquatic robots performing tasks such as
homing or dispersion (Duarte et al., 2016). Gomes et al. (2019)
generated control software for robot teams composed of aerial
and ground robots in a foraging task. Hasselmann et al. (2021)
compared NEAT, xNES (Glasmachers et al., 2010) and CMA-ES
(Hansen and Ostermeier, 2001) to generate control software for
a swarm of e-puck (Mondada et al., 2009) robots in five different
missions such as aggregation, homing, shelter, foraging, and gate
passing (Hasselmann et al., 2021). In a different research direction,
researchers have investigated the minimal requirements to evolve
specific collective behaviors. For example, Gauci et al. (2014a)
evolved a recurrent neural network to perform aggregation. In
their study, the authors tested their control software on robots with
minimal capabilities: each robot had a single binary sensor that

controlled the speed of its two wheels. van Diggelen et al. (2022)
evolved a gradient following behavior. Notably, the robots could
perceive only the local value of the gradient, not its direction, and
they could not communicate with other robots.

Neuro-evolutionary approaches have shown many promising
results. Yet, two main challenges remain in the field: fitness
engineering and the reality gap. The first challenge is fitness
engineering, or how to produce appropriate objective functions to
drive the evolutionary process. It is well understood that incorrectly
defined objective functions pose two challenges to the evolutionary
process: bootstrapping and deception (Silva et al., 2016). The issue
of bootstrapping arises when the objective function fails to apply
meaningful selection pressure in low-performance regions of the
search space. As a result, the design process explores the low-
performance regions in an undirected manner and is unable to
converge towards higher performance regions of the search space.
The issue of deception describes the case in which the objective
function contains easily reachable local optima. In this case, the
design process can easily converge towards the local optima and
will result in the generation of a suboptimal collective behavior.
These two issues can usually be overcome by introducing a priori
knowledge into the objective function (fitness engineering) (Trianni
and Nolfi, 2011; Divband Soorati and Hamann, 2015; Silva et al.,
2016). However, the necessity of a priori knowledge conditions
the effectiveness of a neuro-evolutionary design method; as it will
largely depend on the expertise of the designer of the objective
function. The second challenge of neuro-evolution is the reality
gap. The reality gap are the inescapable differences between the
design and deployment environment, and often manifests in a
performance drop when designing control software in simulation
and assessing it on real robots. Yet, not all design methods are
affected similarly by the reality gap, and it is therefore imperative
to assess all automatic design methods not only in simulation
but on real robots (Birattari et al., 2019). In the context of neuro-
evolution,Hasselmann et al. investigated the effects of the reality gap
on different neuro-evolutionary designmethods (Hasselmann et al.,
2021). They showed that, without further mitigation strategies
or mission-specific adaptations, sophisticated neuro-evolutionary
design methods perform similarly poor in reality as a simple
perceptron network.
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2.2 Automatic modular design

Automatic modular design: Robots are controlled by an instance
of control software assembled from modules. Typical architectures
of the control software include finite-state machines and behavior
trees. An optimization algorithm possibly assembles the modules
within the architecture and further fine-tunes the parameters of the
modules, according to a mission-specific objective function. The
design process results in a single well-performing instance of
control software.

Neuro-evolution enables, in practice, the design of control
software without prior domain knowledge. Yet, in cases that
domain knowledge is available, it might be incorporated into the
design method to achieve better results. Instead of relying on
artificial neural networks, automatic modular design methods
generate control software that is composed of software modules
that are assembled into a more complex control architecture—e.g.,
finite-state machines or behavior trees (Colledanchise and
Ögren, 2018). Through the choice and implementation of these
modules, domain knowledge can be incorporated into the design
process.

Duarte et al. (2014) manually decomposed a complex object
removal task into simpler subtasks. They evolved continuous-
time recurrent neural networks that were then assembled, in
a modular way, into a hierarchical controller (according to the
manual decomposition). Ferrante et al. (2015) used grammatical
evolution to design control software for a foraging scenario
with task allocation. They designed behavioral rules from basic
behavioral and conditional modules. Hecker et al. (2012) used a
genetic algorithm to optimize a finite-state machine that controls
the behavior of robots in a foraging swarm. The authors pre-
programmed an initial finite-state machine, which was inspired
by the foraging behavior observed in ants. They used the genetic
algorithm to optimize parameters of the finite-state machine that
were not chosen at design time. Francesca et al. (2014) proposed
AutoMoDe-Vanilla, an automatic modular design method that
assembles finite-state machines out of a set of twelve handcrafted
modules. Several flavors (i.e., implementations) of AutoMoDe have
been proposed to study different elements of the design process,
such as different module sets (Ligot et al., 2020a; Garzón Ramos
and Birattari, 2020; Hasselmann and Birattari, 2020; Spaey et al.,
2020; Mendiburu et al., 2022), hardware-software co-design
(Salman et al., 2019), or optimization algorithms (Kuckling et al.,
2020a; Kuckling et al., 2020b; Cambier and Ferrante, 2022).
Besides finite-state machines, behavior trees have recently gained
attention in the literature on automatic modular design. They
offer several advantages over finite-state machines, like enhanced
modularity and better human readability (Colledanchise and
Ögren, 2018). Jones et al. (2018) evolved behavior trees for
a foraging swarm of kilobot (Rubenstein et al., 2014) robots.
Kuckling et al. investigated the use of behavior trees within the
AutoMoDe framework (Kuckling et al., 2018; Kuckling et al., 2020a;
Ligot et al., 2020b; Kuckling et al., 2022). Neupane and Goodrich
used grammatical evolution to design software for a swarm of
100 robots performing a foraging task (Neupane and Goodrich,
2019).

Automatic modular design methods are an emerging field of
research with promising prospects. Preliminary results indicate that
they are a viable alternative to neuro-evolutionary design methods,
with comparable performance and better transferability between
simulation and real robots. However, this advantage comes at the
cost of devoting effort to specify the modules. An artificial neural
network can map all possible sensory inputs to all possible actuator
outputs. As a result, neuro-evolutionary design methods can be
used to design control software to perform any mission that is
within the capabilities of the robots. In the case of automatic
modular design, a human designer must manually implement the
modules. The choice of modules implicitly restricts the space of
possible missions that can be addressed by an automatic modular
design method (Garzón Ramos and Birattari, 2020). If the set of
modules is too limited, the design method would only produce
satisfactory results for the mission it was conceived for, and the
design spacemight not contain well-performing instances of control
software for other missions. In other words, the design method will
underperform in most cases. In this situation, the underperforming
method can be accepted as it is or it will becomenecessary to develop
a new design method—which ultimately turns into a manual design
method rather than an automatic one. An important question
to be addressed is, therefore, how to develop general automatic
modular design methods that still remain robust to the reality
gap.

2.3 Novelty search and quality diversity
algorithms

Novelty search: Robots are controlled by an instance of control
software in an arbitrary form, although commonly an artificial
neural network is used. Instead of optimizing a mission-specific
objective function, novelty search algorithms are selecting for
control software that exhibits behavioral novelty with regard to
previously encountered behaviors. The design process results in a
set of behaviorally diverse instances of control software.

Quality diversity algorithms: Robots are controlled by an
instance of control software in an arbitrary form. The design
process considers two criteria: the quality with respect to a
mission-specific objective function and the behavioral novelty with
respect to previously encountered instances of control software.
The design process returns either a single well-performing instance
of control software or a set of diverse and relatively
well-performing instances of control software.

Some recent studies focus on the application of novelty
search in swarm robotics. Instead of optimizing a mission-
specific performance measure, novelty search generates a set
of behaviorally diverse instances of control software (Lehman
and Stanley, 2011). This approach promises to avoid the
issue of deception in objective function engineering. The
design method avoids premature convergence by optimizing
behavioral diversity instead of the mission-specific objective
function.

Gomes et al. (2013) used novelty search to generate aggregation
and resource sharing behaviors in a swarm. Additionally, the
authors combined the novelty metric with a performance metric
to overcome limitations where novelty search could not escape
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large, low-performance regions of the search space. In a follow-up
work, Gomes et al. (2017) applied novelty search to co-evolutionary
problems. Gomes and Christensen also investigated how to generate
task-agnostic behavior repertoires using novelty search (Gomes and
Christensen, 2018). Hasselmann et al. (2023) proposed AutoMoDe-
Nata, an automatic modular design method that uses novelty search
to create basic behavioral modules, which then are combined into
probabilistic finite-state machines.

In the papers mentioned above, novelty search-based methods
have shown to generate simple swarm robotics behaviors. Yet, for
more complex collective behaviors, novelty search has not produced
control software that performs as well as control software generated
with a mission-specific objective function (Gomes and Christensen,
2018; Hasselmann et al., 2023). The outcome of novelty search
methods is not a single instance of control software but a set
of them—each of which is a behavior with sufficiently different
traits. Therefore, the design method must also include a strategy
to select the most appropriate behavior of the set (either manually
or automatically). Quality diversity algorithms (Pugh et al., 2016)
combine the benefits of novelty search with the directed search of
evolutionary robotics. Beyond the difficulties of generating complex
collective behaviors, novelty search further faces the challenge of
defining characteristic traits that describe the collective behavior
of the robots. So far, the selection of behavioral characteristics has
beendone ad hoc (Gomes et al., 2013;Gomes andChristensen, 2018;
Hasselmann et al., 2023). However, this ad hoc selection requires
expertise and it can result in potential drawbacks to the design
process when done incorrectly. Vast behavior spaces defined by too
general behavior characteristics will contain dimensions unrelated
to the mission at hand, and they will cause the novelty search
to perform poorly (Gomes et al., 2014). Furthermore, it remains
open whether the behavioral characteristics of a collective behavior
should be defined on a collective level, on an individual level, or with
a combination of the two.

2.4 Other approaches

As discussed previously, a major issue in evolutionary swarm
robotics is the definition of an appropriate objective function.
Other researchers have addressed this issue besides those that
focus on novelty search—although they are less prominent in the
literature.

Multi-objective optimization: Robots are controlled by an instance
of control software in an arbitrary form. Instead of optimizing a
single mission-specific objective function, several objectives are
considered at the same time. The design process results in a set of
non-dominated instances of control software.

Trianni and López-Ibáñez (2015) investigated the use of an
evolutionary multi-objective optimization algorithm in a strictly
collaborativemission.Next to the (singular) objective of themission,
the authors specified a secondary auxiliary objective to overcome
the convergence to certain sub-optimal behaviors—although the
auxiliary conflictedwith themain objective.They showed thatmulti-
objective optimization indeed avoided premature convergence, and

that properly chosen auxiliary objectives have the potential to
overcome the bootstrap problem.

Minimizing surprise: Robots are controlled by two artificial neural
networks. The first neural network is an action network that maps
sensor inputs to actuator outputs; the other is a predictor network
that maps sensor inputs to the predicted sensor inputs of the next
control step. An evolutionary algorithm is used to optimize both
neural networks together, minimizing only the prediction error of
the predictor network. The design process results in a single
instance of control software that minimizes the prediction error of
the predictor network.

Kaiser and Hamann investigated an approach named
“minimizing surprise.” Inspired by the free energy principle (Friston,
2010),Hamannused offline evolution to generate control software in
the form of two neural networks, a prediction network and an action
network (Hamann, 2014). The action network controlled the robot,
whereas the prediction network predicted the next sensor state.
The design process aimed to minimize the prediction error. Results
showed that, despite not selecting for swarm behaviors, basic self-
organizing collective behaviors emerged during the design process.
Kaiser and Hamann extended their work and proposed a system
to systematically engineer self-organizing assembly behaviors using
the “minimizing surprise” approach (Kaiser and Hamann, 2019).

Computation-free control: Robots are controlled by a look-up
table that contains the actuator output for every possible sensor
input. The look-up table is optimized with respect to a
mission-specific objective function. Typically, CMA-ES is used as
optimization algorithm, but other algorithms are possible (e.g.,
exhaustive search). The design process results in a single
well-performing instance of control software.

Gauci et al. (2014b) studied the emergence of collective
behaviors for robots with minimal capabilities. In their study, the
robots only had a single line-of-sight sensor and could set their
velocity based on the discrete readings of this sensor. The authors
used CMA-ES to optimize the mappings of the sensor to velocities
in missions such as clustering, shepherding (Özdemir et al., 2017;
Dosieah et al., 2022), decision making (Özdemir et al., 2018), and
coverage (Özdemir et al., 2019).

The approaches described in this section are promising
alternatives for the design of control software for robot swarms,
but they require further research before they will become robust
engineering techniques. Multi-objective design methods might
overcome issues of deception and bootstrapping, similar to
novelty search. However, they do not require the definition of
behavioral characteristics. Instead, a secondary mission-specific
objective is defined. This also poses a major challenge, as the
definition of secondary objectives requires knowledge of any
undesired behaviors. Minimizing surprise has shown to generate
spatially organized behaviors in which the sensors states are
stable. By defining partial expected sensor readings, generated
instances of control software can be biased towards desired
behaviors, yet other less desired behaviors were still generated.
More research will be necessary to develop techniques to reliably
generate desired behaviors (or classes of desired behaviors)
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via minimizing surprise. Similarly, computation-free control has
been successful in some relatively simple missions, but further
research will be necessary to show its viability in more complex
missions.

3 Embodied evolution and social
learning

Embodied evolution: Robots are controlled by instance of control
software in an arbitrary form, though, typically, an artificial neural
network is chosen. While performing the mission, the robots also
run a decentralized evolutionary algorithm and periodically select a
new instance of control software to execute. Repeatedly during the
execution, the robots may exchange information about the
performance of their executed instances of control software. The
design process results in a single well-performing instance of
control software.

Online design processes in which each robot in the swarm
executes part of a distributed evolutionary algorithm are called
embodied evolution. For example, in the design process, every
robot in the swarm is initialized with and maintains its own set of
genomes. From this genome set, each robot selects one genome and
executes the control software encoded in it. Periodically, all robots
exchange genomes among each other (which may be subjected to
mutation or crossover operations) and they select a new genome to
execute. Embodied evolution provides important advantages with
respect to offline approaches (Watson et al., 2002). As evolution
takes place directly in the mission environment, transferability is no
concern. Besides, the distributed nature of the design process allows
exploring different solutions in parallel. The parallelization of the
design process allows to speed up the production of control software
if compared with centralized online evolutionary methods.

Recent works (Heinerman et al., 2015; Silva et al., 2017;
Bredeche and Fontbonne, 2021) have framed the concepts behind
embodied evolution as a form of robot learning. The authors argue
that embodied evolution is conceptually closer to robot learning
(see Section 4), as the robots are updating their control software
while performing the mission. Yet, the most common technique
to implement embodied evolution remains the application of
evolutionary algorithms.

Only a few studies have been conducted using embodied
evolution in swarm robotics. For example, Bianco and Nolfi
(2004) investigated an embodied evolutionary approach in which
robots share their genomes when physically connecting to other
robots. Prieto et al. (2010) used embodied evolution to program a
swarm of e-puck robots in a cleaning task. Bredeche et al. (2012)
investigated the adaptivity of open-ended evolution to changes in
the environment. Silva et al. (2015) developed an online, distributed
version of NEAT (Stanley and Miikkulainen, 2002) and used it to
evolve control software in three missions. Jones et al. (2019) evolved
behavior trees for a collective pushing task. Cambier et al. (2021)
used an evolutionary language model to tune the parameters of
a probabilistic aggregation controller. For more detailed surveys,
including online evolution for single and multi-robot systems, see
Bredeche et al. (2018); Francesca and Birattari (2016).

Embodied evolution still faces several challenges in the context
of the design of control software for robot swarms. For example,
robots need to execute not only their own control software but also
the design process. This may not be feasible for robots with limited
computational hardware. Furthermore, to conduct the evolutionary
process, the swarm must operate for a relatively long time (as
compared to the normal mission duration), posing more demand
on batteries and increasing the likelihood of sensor or actuator
failures. Additionally, without further safety measures implemented
a priori, the robots risk to damage themselves or the environment,
especially in early parts of the design process. More importantly, the
evolutionary process can only be achieved if the individuals of the
swarm can assess the performance of their chosen genome—ideally
this should be computed for the whole swarm, however, without
further infrastructure this information is not directly available to the
robots as they rely only on local perception.

Three main solutions have been proposed to address the
aforementioned issue: open-ended evolution, decomposition and
simulation-based assessment. In open-ended evolution, the design
process is not driven by an explicit objective function. Instead,
open-ended evolution ties the survival of an instance of control
software to its ability to “reproduce.” Over time, instances of control
software that successfully reproduce will replace instances of control
software that cannot. Implicit selection pressure can be exerted
by tying the chance to reproduce to certain desired actions or
outcomes (Bianco andNolfi, 2004; Prieto et al., 2010; Bredeche et al.,
2012). For example, Bianco and Nolfi consider encounters between
robots as opportunity for reproduction. As the task is self-assembly,
this implicitly rewards instances of control software that manage
to encounter and assemble with other robots. Another typical
choice is to model the performance of the individual robots by
energy levels: taking an action depletes the energy, but certain
outcomes of the actions replenish it. While the robot is active (with
available energy), its control software is periodically exchanged with
neighboring robots. Once the energy is fully depleted, the instance
of control software that was active in the robot is replaced by
another one. Over time, instances of control software that are more
successful at managing their energy level (by achieving the desired
outcomes) will have more opportunities to spread to other robots,
thus prevailing in the swarm and displacing less successful instances
of control software. Like novelty search, open-ended evolution does
not necessarily aim to generate a particular behavior, but rather for
the spontaneous emergence of complex behaviors. As an alternative,
a designer could manually decompose the objective function for
the desired collective behavior into rewards for the actions (or their
outcomes) of individual robots (Silva et al., 2015). Although viable,
this decomposition is especially difficult in tasks that strictly require
cooperation or only provide delayed rewards—e.g., taking an action
does not immediately increase the fitness of the swarm, as it requires
an appropriate second subsequent action to effectively increase
the fitness. This decomposition is similar to the credit assignment
problem encountered in robot learning (see Section 4). Recently,
Jones et al. (2019) proposed an online evolutionarymethod inwhich
robots performed simulations to evaluate the quality of genomes.
This method allows the robots to estimate the performance of a
genome as if it was deployed to the whole swarm—without the
need for decomposing the objective function. However, assessing
the performance in simulation might overestimate the degree of

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1134841
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Kuckling 10.3389/frobt.2023.1134841

cooperation and coordination of the robots, as other members of
the swarm might execute different instances of control software and
not cooperate as expected.

4 Robot learning

Reinforcement learning is a method for producing control
software inwhich an agent attempts to learn a policy that encodes the
set of optimal actions in a dynamic environment (Kaelbling et al.,
1996). Classically, reinforcement learning only considers a single
agent interacting with the environment. In this case, the system is
then often modelled as a Markov decision process. As robot swarms
are composed of several individuals, they are usually modelled
as multi-agent reinforcement learning problems (see Section 4.1).
Robot learning in swarm robotics faces similar challenges as robot
evolution. Namely, reward shaping, the problem of specifying an
appropriate reward function to generate the desired behavior, and
the reality gap, the drop in performance observed when the control
software is designed in simulation and assessed in reality. In multi-
agent reinforcement learning methods, all members of the swarm
typically act independently. Therefore, they are often affected by
the curse of dimensionality, where the action space grows with the
number of robots and the degrees of freedom of each robot. A
variant of reinforcement learning that has found recent application
in swarm robotics is imitation learning (see Section 4.2). Instead
of optimizing the rewards gained from a known reward function,
imitation learning aims to imitate a demonstrated behavior.

For reviews of robot learning in the single and multi-robot
domain, see Kober et al. (2013); Zhao et al. (2020).

4.1 Multi-agent reinforcement learning

Multi-agent reinforcement learning: Robots are controlled by an
instance of control software in an arbitrary form. A reinforcement
learning algorithm is used to optimize the instance of control
software according to a mission-specific reward function. The
design process results in a single well-performing instance of
control software.

Although multi-agent reinforcement learning has been largely
studied in the literature, it has seen little application in swarm
robotics so far. The first application of reinforcement learning
in a swarm robotics scenario is possibly the one of Matarić.
Matarić studied reinforcement learning with a swarm of 4 robots
that perform a foraging mission (Matarić, 1997). In a follow-up
work, Matarić introduced robot communication in the swarm to
synchronize rewards between the robots (Matarić, 1998). More
recently,Hüttenrauch et al. (2019) used deep reinforcement learning
to generate control software for a swarm of virtual agents.
Bloom et al. (2022) investigated the use of four deep reinforcement
learning techniques in a collective transport experiment.

The application of multi-agent reinforcement learning poses
several challenges that still hinder its application in swarm robotics.
A first challenge arises from the fact that, in swarm robotics,
the desired behavior is usually expressed at the collective level,

whereas the learning must happen at the individual level. Thus,
when designing control software using reinforcement learning,
the mission designer needs to decompose the reward function
of the whole swarm into rewards that can be assigned for
individual contributions. This problem is also known as spatial
credit assignment. To this date, no generally applicable methodology
exists to address this problem and most works use manual credit
assignment (Matarić, 1998; Hüttenrauch et al., 2019; Bloom et al.,
2022).

Another important issue is the representation of the state and
action spaces in the learning process. Typically, a multi-agent
reinforcement learning uses joint action and state spaces, which are
concatenated over the individual action and state spaces of each
individual agent. These joint spaces, however, suffer heavily from
the curse of dimensionality, as they scale poorly both in the size of
the individual spaces and in the number of agents. Consequently,
addressing large swarm sizes is infeasible in practice. Furthermore,
the joint space is not observable by any individual agent, due
to the locality of information in a robot swarm. In this sense,
the problem of multi-agent reinforcement learning for swarms is
more correctly modelled by a partially observable Markov decision
process (Kaelbling et al., 1996). In the literature, two techniques have
been mostly used to overcome the partial observability: reducing
the joint action and state space to those that are pertinent to a
single robot (Hüttenrauch et al., 2019; Bloom et al., 2022); or sharing
information to synchronize the state beliefs of all members of the
swarm (Matarić, 1998). In the first technique, a robot has no model
of the behavior of its peers and they are assumed to be part of the
environment. The environment that a robot experiences is therefore
non-stationary; the state transitions depend not only on the actions
of the individual robot but also the (changing, due to learning)
behavior of its peers. In the second technique, the swarm retains
some level of homogeneity by sharing information between robots.
Thus, the learning process does not run independently for each
robot but requires some mechanism for synchronization. When
using simulations, the centralized-learning/decentralized-execution
approach can be used (Hüttenrauch et al., 2019; Bloom et al., 2022).
In this approach, observations of all robots are collected centrally
and used to update the policy during the learning phase. However,
the policy is executed decentralized on each individual robot.

4.2 Imitation learning

Imitation learning: Given demonstrations of a desired behavior, an
algorithm generates an instance of control software that performs
the desired behavior. Different techniques, such as behavior
cloning, Turing learning, and imitation learning, have been
proposed to imitate the demonstrated behavior.

A research field in reinforcement learning that has become
of interest for swarm robotics researchers is imitation learning
(Osa et al., 2018). In imitation learning, the reward function is
assumed to be unknown. Instead, the learning process has access to
demonstrations of the desired behavior. The agents attempt to learn
a policy that results in a behavior that is similar to the behavior that
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has been provided in a demonstration. By its own nature, imitation
learning methods face a similar challenge as those of novelty search
(see Section 2.3). Namely, how to represent a behavior numerically
and how to quantitatively measure the similarity of two behaviors.

Turing learning: The robots are controlled by an artificial neural
network. Demonstrations are used to learn another artificial neural
network that discriminates between the demonstrated behavior
and the generated ones. The design process iterates between
generating an instance of control software and updating the
discriminator. New instances of control software are generated in
such a way that they can fool the discriminator. Afterwards, the
discriminator is updated to once more correctly distinguish
between the demonstrated behavior and previously generated
ones. The design process results in a single instance of control
software, that is behaviorally similar to the demonstrated behavior,
and the learned discriminator.

Within the research on imitation learning and swarm robotics,
Li et al. (2016) proposed Turing learning for swarm systems.
Inspired by the Turing test, the system learns two programs.
A first program controls the robots in the swarm, whereas the
second program attempts to distinguish between trajectories from
the originally demonstrated behavior and trajectories from the
behaviors that are being generated through learning.

Behavior cloning: Robots are controlled by an instance of control
software in an arbitrary form. Demonstrations are used to learn an
instance of control software that, under the same conditions,
behaves the same as the demonstrated behavior. The reward
function computes the similarity of the generated behavior with
regard to the demonstrated one. The design process results in a
single instance of control software that closely reproduces the
demonstrated behavior.

Alharthi et al. (2022) used video recordings of simulated robots
to learn a behavior tree corresponding to the demonstrated
collective behavior. The authors measure several swarm-level
metrics, such as center of mass or length of communication paths in
the swarm, and use the Jaccard distance to compute similarity with
the original behavior.

Inverse reinforcement learning: Robots are controlled by an
instance of control software in an arbitrary form. Demonstrations
are used to learn the reward function that would be maximized by
the demonstrated behavior. The design process results in the
learned reward function, which can then be used to learn an
instance of control software for the robots.

Šošić et al. (2017) used inverse reinforcement learning to learn
the behavior of two predefined particle models. Using SwarmMDP
(a variant of decentralized, partially observable Markov decision
processes), they reduced the multi-agent reinforcement learning
problem to a single-agent problem. Gharbi et al. (2023) used
apprenticeship learning (Abbeel and Ng, 2004) to learn collective
behaviors from demonstrations of desired spatial organizations for
a swarm.

Few studies have focused on the application of imitation learning
in swarm robotics. Methods that are being currently developed face

two challenges. The first challenge is that existing methods typically
require detailed demonstrations to produce their corresponding
control software. The more detailed the demonstrations, the easier
it is to imitate them. Most work on imitation learning in swarm
robotics uses an already available behavior to generate trajectories
that must be learned again by the swarm (Li et al., 2016; Šošić et al.,
2017; Alharthi et al., 2022). The obvious drawback of this approach
is that it is only suitable for cases in which an implementation of
the desired collective behavior already exists. Alternatively, other
approaches have focused on only demonstrating a few key elements
of the collective behavior, instead of a full trajectory (Gharbi et al.,
2023). The second challenge is that there is no well-established
method to measure the similarity between a demonstrated behavior
and a generated one. As in novelty search (see Section 2.3), a
collective behavior can be described by several possible forms
of representations; with both characteristics at the collective and
local level. The definition of characteristics at the collective level
requires less domain-specific expertise to decide on, but their
mathematical formulation is challenging. Individual characteristics
are comparably simpler to compute, yet decomposing the desired
collective behavior into its individual parts requires prior knowledge
of the mission at hand.

As discussed in this section, few studies in swarm robotics have
considered robot learning but have shown it to be a viable alternative
to robot evolution for the design of robot swarms. Among these
studies,multi-agent reinforcement learning aims to learn policies for
a given reward function. Yet, like robot evolution, it faces two major
challenges: reward shaping (the corresponding problem to fitness
engineering) and the reality gap. Imitation learning, conversely,
produces control software by imitating a demonstrated desired
behavior without the reward function being known. However, it
faces a similar challenge as novelty search; it relies on computing
behavioral similarity (as opposed to behavioral novelty in novelty
search).

5 Perspectives

As highlighted in the previous sections, the research on the
design of control software for robot swarms has resulted in
many promising automatic design methods. Yet, several important
challenges remain. In this section, I discuss the issues that affect
broad categories of automatic design methods. Additionally, I give
an outlook on techniques and methods that I believe could become
useful in addressing the challenges in the automatic design of control
software for robot swarms.

How can we develop design methods that are robust to the reality
gap?

While offline design has shown many promising results, a
major challenge remains in the issue of the reality gap. Several
approaches have been proposed to reduce the effects of the reality
gap. For example, system identification can be used to develop more
realistic simulators that intend to minimize the differences between
simulation and reality (Bongard and Lipson, 2004; Zhao et al.,
2020). However, this approach is unlikely to succeed (Jakobi,
1997), especially in swarm robotics. First, a simulation can
never be identical to the system that is being simulated (Jakobi,
1997). Although investing more resources to make high-fidelity
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simulationsmore accurate can indeed reduce the effects of the reality
gap to some extent. Performing these high-fidelity simulations for
up to thousands (or possibly more) individual robots would require
more computing power than can reasonably be provided at the
moment. Second, the robots in a swarm are relatively simple and
some fault or inaccuracy in their sensors and actuators is acceptable,
or even expected. Consequently, if the simulation accurately models
the inaccuracies of each robot, the robots of the swarm would not
be longer interchangeable: different robots are modeled to behave
differently under the same circumstances. This assumption would
negatively impact the desirable properties of a robot swarm. In a
more general sense, research has shown that the reality gap does
not affect all design methods equally and can lead to rank inversions
across design methods. Indeed, a design method can perform better
in simulation but worse in reality when compared to another design
method (Ligot and Birattari, 2020). Therefore, I contend the focus
should be on developing design methods that are inherently robust
to the reality gap.

In evolutionary swarm robotics, it is often assumed that no or
very little domain knowledge exists. Consequently, control software
is commonly generated from scratch. However, in many tasks, there
exists a reasonable amount of prior domain knowledge that could
be used to ease the design process. Automatic modular design
allows to incorporate this domain knowledge in the form of software
modules (Birattari et al., 2021). Furthermore, the transferability of
individual modules can be tested during the conception of the
design method. However, the correct introduction of prior domain
knowledge remains dependent on the expertise of the designer.
Future research will therefore need to consider automatic modular
design methods in which the modules are conceived in a mission-
agnostic way; thus reducing the dependency on mission-specific
domain knowledge.

When no domain knowledge is available a priori, other methods
could be used. For example, other possible approach could be
to periodically assess the transferability of the generated control
software during the design process (Koos et al., 2013). The design
method will therefore solve a multi-objective optimization problem,
in which both the performance in simulation and in reality are
considered. Assessing the control software in reality is expensive in
comparison to the assessment performed in simulation. Therefore,
such a design method would need to also select which instances
of control software are assessed on physical robots. An often-made
assumption is that control software that results in similar behaviors
in simulation will transfer similarly well into reality. Starting from
this assumption, one could possibly restrict the assessment of control
software on real robots to instances that are behaviorally novel2.
Ideally, the assessment should be further limited to promising
solutions that have the potential to perform well in reality. However,
the overly strict application of this idea might result in design
methods that risk overlooking solutions that perform worse in
simulation but transfer well into reality.

A further improvement could be to include a secondary
simulation context (pseudo-reality) to assess the transferability of

2 Similar considerations as for novelty search and imitation
learning—regarding what metrics can be used to characterize a
behavior—apply also to this criterion.

the control software. Ligot and Birattari have shown that the
effects of the reality gap can be reproduced in simulation-only
experiments (Ligot and Birattari, 2020). If combined with other
transferability techniques, pseudo-reality could offer an inexpensive
context to quickly assess the transferability of many instances of
control software. Periodically, some instances of control software are
assessed on real robots to validate the results of the pseudo-reality
context and to refine it, if necessary.

How can we create online design methods for robot swarms?
Online design does not face the reality gap problem, which

makes it an interesting research direction. However, the online
design of robot swarms still faces several challenges. Most notably,
the robots in the swarm require a way to assess their own
performance solely on the local information available to them.

Another important challenge is how to avoid endangering the
robots while they are interacting in an unknown environment,
without the need to implement safety features a priori. Ideally, one
could imagine that a rather general baseline behavior (or a set
of baseline behaviors) is designed offline in simulation. Once the
swarm is deployed in the mission environment, the swarm would
then use the baseline behavior as a starting point to design its control
software for the specific mission. In the simplest case, the swarm
might perform a tuning of the parameters of the control software to
counteract the reality gap. In more advanced scenarios, the robots
might choose and combine from a set of baseline control software
to find an appropriate behavior for the mission on-the-fly, and then
fine-tune the parameter of the resulting control software.

How can we design control software for complex missions?
While robot swarms have already been successfully employed

in a wide variety of common abstract missions, these missions
usually are too simple when compared to real-world applications.
More complex missions could include those with multiple, possibly
conflicting objectives, or missions with dynamic environments.
It is well understood that the shaping of reward and objective
functions is critical, as the design process is likely to exploit any
unintended local optima of the objective function (Divband Soorati
and Hamann, 2015; Silva et al., 2016). Further study is required to
develop engineering techniques and patterns to define appropriate
objective functions.

Alternatively, incremental evolution (Gomez and Miikkulainen,
1997) and curriculum learning (Bengio et al., 2009) might find
application in swarm robotics. In these approaches, a complex task is
decomposed into simpler ones. The design process designs control
software in increasingly complex tasks, using the previously found
instances of control software as starting points for the following
designs.

Orthogonal to previously mentioned approaches is
(cooperative) co-evolution (Nolfi and Floreano, 1998), in which
multiple subgroups of robots are evolved independently of each
other to cooperate or compete in the same environment. While it is
not an approach directly applicable to homogeneous systems, this
approach could be beneficial for the design of heterogeneous robot
swarms.

How can we design control software from other mission
specifications than objective functions?

As mentioned before, the choice of an objective function
is not straightforward. With the problems of bootstrapping
and deception present, the designer of an objective function
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requires not only domain knowledge of the task at hand, but
also expertise in modeling collective behaviors as mathematical
functions.

Novelty search has shown promising results to overcome
some of these issues, however, it might lack some of the
domain knowledge that can be introduced through the objective
function, and that is required to obtain good performing control
software. Quality-diversity algorithms combine the search for
well-performing solutions commonly found in robot evolution
with the exploratory search of novelty search (Mouret and
Clune, 2015). Other approaches could include open-ended
evolution or open-ended learning to generate varieties of different
sophisticated swarm behaviors (Stanley et al., 2017; Packard et al.,
2019).

Looking beyond swarm robotics, several different approaches
in machine learning and evolutionary robotics have moved
beyond mission-specific objective functions. For example, large
language models are trained to predict the probability that a
certain symbol follows the previous sequence of symbols, in
an effort to imitate the texts encountered in the training set
(Radford et al., 2019; Brown et al., 2020)3. Notably, languagemodels
are not trained on other desirable objectives except the imitation,
such as grammatical correctness, reading comprehension, or
trivia knowledge, yet perform well on benchmarks evaluating
such objectives (Brown et al., 2020). In the context of swarm
robotics, imitating examples obtained from nature might be also
a viable approach to designing collective behaviors. Early works
in the field were inspired by swarms in nature and often aimed
at engineering artificial swarms that behaved similarly. Using
imitation learning, it could be possible to automatically learn
collective behaviors from swarms found in nature. Additionally,
in single robot systems, another research direction makes use
of demonstrations provided by human teachers (Osa et al., 2018;
Krishnan et al., 2019). If these notions are applied to swarm
robotics, a human teacher could demonstrate a desired collective
behavior that is then used to learn the individual behavior of the
robots.

6 Conclusion

The design problem in swarm robotics arises from the
complexity of predicting the numerous interactions of the robots at
design time. Automatic design of control software has shown to be a
promising approach to tackle the design problem. However, it faces
two major challenges: overcoming the reality gap and engineering

3 In the context of language models, a symbol is not necessarily only
a character but could also be a representation of any other syntactic
element, such as words.

appropriate objective functions. In this work, I first presented
recent advances in the automatic design of control software
for robot swarms. After, I discussed shortcomings of proposed
approaches and provided perspectives on how to possibly overcome
those.
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