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ABSTRACT2

A robot swarm is a decentralized system characterized by locality of sensing and communication,3
self-organization, and redundancy. These characteristics allow robot swarms to achieve scalability,4
flexibility and fault tolerance, properties that are especially valuable in the context of simultaneous5
localization and mapping (SLAM), specifically in unknown environments that evolve over time. So6
far, research in SLAM has mainly focused on single- and centralized multi-robot systems—i.e.,7
non-swarm systems. While these systems can produce accurate maps, they are typically not8
scalable, cannot easily adapt to unexpected changes in the environment, and are prone to failure9
in hostile environments. Swarm SLAM is a promising approach to SLAM as it could leverage the10
decentralized nature of a robot swarm and achieve scalable, flexible and fault-tolerant exploration11
and mapping. However, at the moment of writing, swarm SLAM is a rather novel idea and the12
field lacks definitions, frameworks, and results. In this work, we present the concept of swarm13
SLAM and its constraints, both from a technical and an economical point of view. In particular, we14
highlight the main challenges of swarm SLAM for gathering, sharing, and retrieving information.15
We also discuss the strengths and weaknesses of this approach against traditional multi-robot16
SLAM. We believe that swarm SLAM will be particularly useful to produce abstract maps such as17
topological or simple semantic maps and to operate under time or cost constraints.18
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1 INTRODUCTION
A robot swarm is a decentralized system that can collectively accomplish missions that a single robot could20
not accomplish alone. Locality of sensing and communication, self-organization, and redundancy enable21
desirable properties such as scalability, flexibility, and fault tolerance (Dorigo et al., 2014; Brambilla et al.,22
2013) that make a robot swarm the ideal candidate to perform missions in large unknown environments in23
which the risk that individual robots fail or are lost is high. In particular, a robot swarm could autonomously24
perform simultaneous localization and mapping (SLAM) by using self-organized exploration schemes to25
navigate in hazardous dynamic environments. Yet, no well-defined methodology exists for performing26
SLAM with a robot swarm.27

SLAM has been largely studied (Durrant-Whyte and Bailey, 2006) and most of the existing methods are28
generic, platform- and application-independent. They have been developed mostly for single robots that29
are usually heavily equipped and expensive. This implies that any hardware failure seriously affects the30
whole system. Also, they cannot be directly adapted to centralized multi-robot systems, even less to robot31
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swarms as they usually require external infrastructures to ensure inter-robot communication or localization32
(a single point of failure that hinders fault tolerance).33

Some important questions need to be addressed before effective swarm SLAM can be achieved: How34
should the swarm explore the environment and gather information? How should the robots share the35
information gathered? How should the information be retrieved and used to produce maps?36

2 LITERATURE REVIEW
Mapping consists in creating a representation of the environment based on known robots poses and sensors37
data. Nowadays, it is frequently hypothesized that poses are a priori unknown and need to be estimated.38
Hence, the SLAM problem has been studied extensively in the past decades (Parker, 2000; Durrant-Whyte39
and Bailey, 2006; Dissanayake et al., 2011). A large number of methods have been developed through the40
years:41

• for producing different types of maps—mostly occupancy grids (Elfes, 1989), but also42
topological (Fraundorfer et al., 2007) and semantic maps (Wolf and Sukhatme, 2008);43

• to operate in generic environments (Thrun, 1998; Bailey, 2002), but also in specific ones such as44
underwater (White et al., 2010) or highly populated regions (Hähnel et al., 2003b);45

• and using a wide variety of sensors such as cameras, LIDARs, and sonars (Kelly and Sukhatme, 2011;46
Hähnel et al., 2003a; Elfes, 1987).47

Popular methods include GMapping (Grisetti et al., 2007, 2005), HectorSLAM (Kohlbrecher and Meyer,48
2012), and KartoSLAM (Gerkey, 2014), as they are widely used in ROS (Madhira et al., 2017). SLAM was49
originally developed for single-robot systems and its adaptation to multi-robot systems is a more recent50
research direction. Mapping with multi-robot systems has been addressed in the form of two sub-problems:51
multi-robot SLAM (Thrun et al., 2000) and multi-robot exploration (Senthilkumar and Bharadwaj, 2012).52

Multi-robot SLAM concerns the collective production of maps and estimation of robots’ position. Saeedi53
et al. (2016) provided a review of the many methods—based on the Extended Kalman Filter (EKF-SLAM),54
particle filters (PF-SLAM), and map merging, among others—that have been proposed. The review55
enumerates ten open issues related to multi-robot SLAM (e.g., uncertainty on robots’ relative poses, loop56
closure detection, out-of-sequence measurements, etc.) and evaluates widely used methods against these57
issues. Most of these methods are only able to address satisfactorily one or two issues, the maximum being58
four. A number of challenges remain: in particular, scaling the number of robots and the environment size59
or operating in dynamic scenarios.60

Multi-robot exploration concerns the collective exploration of the environment. Despite the importance61
of exploration in SLAM, this task has been directly addressed more rarely than mapping and localization.62
Indeed, most multi-robot SLAM methods rely on path planning rather than exploration schemes specifically63
designed for multi-robot systems (Rone and Ben-Tzvi, 2013).64

Multi-robot SLAM is still a growing field, and a number of research directions are yet to be explored.65
Among them, swarm SLAM is an alternative, promising approach that takes advantage of the characteristics66
of robot swarms. Although existing SLAM methods could be implemented in robot swarms, they would67
introduce constraints that would affect the flexibility and the fault tolerance of the system: centralized68
mechanisms or complex inter-robot interactions. The issues that one can encounter when adapting SLAM69
to robot swarms are described by Barca and Sekercioglu (2013). Mapping is one of the research issues70
mentioned by Mohan and Ponnambalam (2009) in their swarm robotics review but the authors do not71
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elaborate on it. A rather simple swarm SLAM demonstration and a distributed localization algorithm have72
been reported by Rothermich et al. (2004). However, the authors do not explain how the individual maps73
are merged nor the role of the designer in the definition of the robots’ behavior. Moreover, the method74
was not properly evaluated and some information about the experimental conditions is missing, e.g., the75
duration of the experiments. It is only recently that Ramachandran et al. (2020) performed a real swarm76
SLAM experiment, which evaluates the efficiency of the so-called Informed Correlated Lévy Walk—i.e., a77
variant of random walk. Kegeleirs et al. (2019) performed another swarm SLAM experiment. A swarm of78
10 e-puck robots had to map different bounded indoor environments using different exploration schemes.79
Individual maps were produced by each e-puck using GMapping and were merged afterwards on a remote80
computer. This current limitation of the approach prevents the realization of a fully decentralized method.81

3 SWARM SLAM
A robot swarm presents characteristics that differentiate it from centralized multi-robot systems.82

First, robots in a swarm only interact with close peers and the neighboring environment. Contrary to83
most centralized multi-robot systems, they do not need global knowledge nor supervision to operate.84
Hence, modifying the size of the swarm does not require reprogramming the individual robots nor have85
major impact on the qualitative collective behavior. This allows robot swarms to achieve scalability—i.e.,86
preserving performances as more agents join the system—as they can cope with any size of environment,87
within a reasonably large range. However, a method only working on very expensive robots will not be88
practically scalable in real-word application because of economical constraints that would likely prevent89
the acquisition of a large swarm. Hence, swarm SLAM methods should be designed taking into account90
the cost of the individual robots.91

Then, as swarms are decentralized and self-organized, individual robots can dynamically allocate92
themselves to different tasks and hence meet the requirements of specific environments and operating93
conditions, even if these conditions evolve at operation time. This adaptation capability provides swarm94
SLAM with flexibility. The use of pre-existing infrastructures or sources of global information is not to be95
proscribed altogether, but the method should perform well regardless of the availability of these resources.96
For example, a pre-existing, incomplete map could be given to the robots to help them meet a critical97
time requirement, but the robots should be able to produce satisfactory results even if they start without98
any information. Flexibility is also required regarding the robotics platform: if a swarm SLAM method99
only works with a very specialized hardware configuration, its flexibility is compromised. Indeed, any100
environment or operating condition that hinder this configuration to operate would prevent the adoption of101
the method. Also, implementing a specialized configuration on many robots might increase the required102
amount of resources to an extent that would prevent any realistic large-scale application103

Finally, a robot swarm is characterized by high redundancy resulting from the large number of robots104
composing it. Redundancy, together with the absence of centralized control, prevents robot swarms from105
having a single point of failure—i.e., a component that, if unexpectedly missing or failing, prevents correct106
operation. Hence, a swarm SLAM method can achieve fault tolerance as the swarm can cope with the loss107
or failure of some robots (and also with noise, thanks to redundancy of measurements). This also requires108
that any equipment entirely depending on uncontrollable conditions should not be essential to succeed. For109
example, robots can use Wi-Fi to transmit information only if they can make use of a local communication110
system, should the network become unavailable. Again, fault tolerance has economical implications: losing111
robots should not have a significant impact on either the cost of the mission or its success. If the robots in112
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the swarm are not expendable, a method using these robots cannot be considered fault tolerant as it could113
not be used in applications where losing robots is possible.114

Considering these characteristics, we think that swarm SLAM is not meant to target the same applications115
as multi-robot SLAM: a robot swarm is most useful in cases where the main constraint is time or cost rather116
than high precision. Hence, they seem best suited to produce rough abstract maps, such as topological117
or simple semantic maps, rather than precise metric maps. Indeed, when a precise map is required, one118
usually has sufficient time to build it: a patrolling robot has sufficient time to build a complete map of the119
building it is supposed to protect before beginning its protection task. On the contrary, when time (or cost)120
is the main constraint, it is usually acceptable to produce approximate but informative maps: robots sent to121
explore a disaster area and to locate survivors can quickly give to the rescuers an approximate path to the122
victims location. Swarm SLAM methods also seem appropriate to map hazardous dynamic environments.123
When the environment evolves over time, a single or a small group of robots needs time to update the map,124
while a sufficiently large swarm could do it very quickly. For example, the underground exploration of125
unknown caverns subject to landslides could benefit from the expendable nature and the coverage offered126
by robot swarm. Also in this case, precision is not necessarily required, as the very fact that something127
has changed in the environment is usually the most valuable information: a rough representation of this128
modification could be sufficient.129

4 CHALLENGES
Given the current state of the art, it is unrealistic to expect that a swarm SLAM method can perfectly130
satisfy all the above constraints, at least in the short term. Scalability should be assessed more often,131
but large-scale experiments are difficult to perform, even with inexpensive robots. Flexibility should be132
achieved within reasonable constraints: a method that works indoor but not outdoor is not flexible, but a133
method that requires chains to be added to the robots wheels to allow them to operate in the snow could134
still be considered flexible. Fault tolerance is still an open issue in swarm SLAM as the most common way135
to produce a map in a multi-robot system, map-merging, implies some sort of centralization and hence a136
single point of failure. Moreover, if an heterogeneous swarm (i.e., a swarm composed of different robot137
types) could by itself constitute a single point of failure (if one type of robots is completely lost/destroyed),138
fault tolerance could still be achieved if the swarm comprises sufficiently many robots of each type.139

In addition, metrics for scalability, flexibility and fault tolerance should be defined in order to evaluate140
swarm SLAM methods. In practice, these notions depend on aspects, such as economic or scientific141
hypotheses, whose quantification would be either difficult or based on arbitrary decisions—e.g., is a method142
not working in outer space flexible enough? Therefore, the researchers should thoroughly discuss the143
scalability (i.e., how large the operating environment can be?), the flexibility (i.e., how compliant the144
system is to different operating conditions?), and the fault tolerance (i.e., how resistant the system is to145
failure and perturbations?) of their methods, in particular in research involving real robots. Metrics specific146
to the SLAM algorithm, the exploration capabilities, and swarm robotics should also be taken into account.147
The SLAM algorithm should be categorized by its complexity, computation time and footprint as well as148
its accuracy, in the form of relative pose error (RPE) and absolute trajectory error (ATE). The exploration149
capabilities should be evaluated in terms of completeness and time to achieve. In the case of swarm SLAM,150
it is expected that completeness is reached once a sufficient portion of the environment has been explored151
and mapped, due to the inherent probabilistic nature of robot swarms. Finally, the complexity in the design152
of the swarm control software as well as the communication efforts should also be taken into account. The153
environmental conditions, the dynamics of this environment as well as the number of robots in the swarm154
and their cost would be parameter of the evaluation.155
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Before a scalable, flexible and fault-tolerant swarm SLAM method can be achieved, some questions need156
to be answered.157
How should the swarm explore the environment and gather information?158

Exploration is an essential part of SLAM. Path planning is usually the adopted strategy in multi-robot159
SLAM, but other exploration schemes such as frontier-based exploration or potential fields have also160
been studied (Rone and Ben-Tzvi, 2013). However, in swarm robotics, simpler exploration schemes are161
generally used, in particular random walks (Dimidov et al., 2016; Kegeleirs et al., 2019). A straightforward162
option would be to adapt path planning techniques to robot swarms. Yet, these techniques have been163
designed for centralized systems and do not take advantage of the decentralized, collective behaviors of164
robot swarms. We believe that a better option would be to take advantage of swarm-specific behaviors165
such as aggregation/dispersion and flocking. Also, when working with robot swarms, one should consider166
how the control software of the individual robots will be designed. Studies have shown that the automatic167
off-line design of robot swarm can outperform manual design (Birattari et al., 2019, 2020) by building168
control software from simple atomic behaviors. A recent work in automatic design has also shown that169
exploration capabilities might come from the interaction between atomic behaviors and not only from the170
exploration schemes embedded in these atomic behaviors (Spaey et al., 2021). Using simple, swarm-specific171
exploration schemes would hence be beneficial to both the design process and the efficiency of a swarm172
SLAM method.173

Regarding the information to be gathered, the experiment of Kegeleirs et al. (2019) has shown that a174
robot swarm can produce an occupancy grid of a closed indoor environment in simulation, but struggles175
in reality because of poor-quality close-range proximity sensors. This means that, provided with the176
right sensors, a robot swarm can potentially produce any kind of map, as shown by Allen et al. (2020).177
However, swarm SLAM methods would benefit from low-cost, simple robots that will likely have imprecise178
sensors. They should hence focus on more abstract maps that do not require high precision. A promising,179
distributed approach for building semantic maps has been proposed by Rosinol et al. (2020), even though180
its computational complexity might be too high for robot swarms.181

Concerning localization, a distributed localization method is required, but little research exists on182
this subject (Roumeliotis and Bekey, 2002; Prorok et al., 2012). Nonetheless, if high precision is not a183
requirement, an approximation of each robot’s location is acceptable and the localization issue becomes184
easier to solve.185
How should the robots share the information gathered?186

When mapping with multiple robots, information must be shared at some point. The most common187
approaches in multi-robot SLAM are raw and processed data sharing (Saeedi et al., 2016). With a robot188
swarm, neither seems optimal. Sharing raw data from the sensors is straightforward, but it might scale189
poorly as the huge amount of data could become impossible to transfer quickly enough. Sharing processed190
data could solve this problem by reducing the amount of data to be shared, but most existing methods are191
centralized and rely on external infrastructures such as GPS or remote computers to assemble the different192
subsets of data.193

A fault-tolerant option would be to use a mobile ad-hoc network such as the one proposed by Di Caro194
et al. (2005), or the distributed approach presented by Majcherczyk et al. (2020). When mapping dynamic195
environments, if the valuable information is only the location at which a modification happened, a very196
schematic map could be sufficient and drastically reduce the amount of data to be shared. A few promising197
candidates to achieve fully decentralized swarm SLAM are distributed mapping (Fox et al., 2006; Lajoie198
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et al., 2020; Ghosh et al., 2020) and graph-based mapping (Kümmerle et al., 2011)—the latter seems199
particularly appropriate for building topological or semantic maps.200

Some practical issues also need to be addressed. Reaching a consensus in a decentralized system requires201
additional delays and data sharing, which cannot be neglected for cost- or time-constrained applications.202
Yet, in swarm SLAM, this consensus is controlled by locality and effective divide-and-conquer strategies203
could lessen the consensus cost (Yazdani et al., 2019). Also, practical scenarios might require a more sparse204
distribution of the swarm that would limit inter-robot communication (Tarapore et al., 2020).205

How should the information be retrieved and used to produce maps?206

Retrieving the map without centralizing the information is an open issue in swarm SLAM. Indeed, the most207
intuitive approach, map-merging, requires the individual maps to be gathered on a single system to merge208
them, like in the experiment of Kegeleirs et al. (2019). A solution could be to merge the individual maps209
in all the robots and then to retrieve the map from any of them, but this is unrealistic without the use of210
an external infrastructure. Again, a mobile ad-hoc network could preserve the system’s fault tolerance. In211
this case, we believe that the amount of data transiting by each robot for sharing an occupancy grid would212
be too hefty in a large environment, causing important delays. It would also require significant storage213
capacity on each robot, increasing the general cost. However, this solution might work with abstract maps214
that require less data, especially when mapping dynamic environments.215

Finally, one can consider a situation in which retrieving the map is not necessary. Indeed, retrieving the216
map mostly makes sense if a human operator needs it, either for themself or for transferring it to another217
robotic system. While this is often the case, as the purpose of most SLAM methods is precisely to build218
maps to be used by another party, one could consider maps that are only useful for the robots that built it.219
For example, a cleaning robot builds maps whose sole purpose is to help the robot navigate the environment.220
In swarm robotics, building a map could help the robots in their exploration and improve their performance.221
This map does not need to be accessible to the human operators and can hence be shared, completely or222
even partially, among the robots only.223

5 CONCLUSION
In this paper, we have reviewed the current state of the art in multi-robot and swarm SLAM. Swarm SLAM224
is currently an emerging research topic that lacks definitions, frameworks, and results. We have presented225
swarm SLAM methods as alternatives to autonomously build a map in a decentralized, scalable, flexible226
and fault-tolerant way. This implies a number of constraints that we have discussed, both in their technical227
and economical implications. We have then sketched our vision of future applications of swarm SLAM228
as well as the main challenges in this SLAM approach. We believe that swarm SLAM could play an229
important role in time- or cost-constrained scenarios or for monitoring dynamic environments. However, to230
fulfill these goals, swarm SLAM still needs appropriate, distributed data sharing strategies, both among231
robots and between robots and human operators. Moreover, a thorough examination of swarm exploration232
schemes could benefit to both swarm SLAM and swarm robotics in general.233
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