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Most studies in swarm robotics treat the swarm as an
isolated system of interest. Investigations into heterogeneous
swarms [1], [2] examine various types of robots working
in conjunction, yet these too are considered collectively as
a single entity. While there are instances where swarms are
supported by external systems [3], it remains rare for swarms
to act in service of another system.

We argue that the prevailing view of swarms as self-
sufficient, independent systems limits the scope of potential
applications for swarm robotics. Specifically, certain scenar-
ios, such as search and rescue operations, might not derive
substantial advantage from deploying a robot swarm as an
autonomous solution. However, the assistance provided by a
swarm could prove invaluable to human rescuers.

Robot swarms are uniquely poised for effective infor-
mation acquisition. Their distributed nature allows them
to rapidly collect environmental data and continuously up-
date this information through peer-to-peer sharing. We refer
to this collective data-gathering capability as “swarm per-
ception.” In swarm robotics, extensive research has been
conducted on collective behaviors [4], [5] and collective
decision-making [6], [7], often highlighting the importance
of swarm perception. For example, the works of Valentini et
al. [8] and Zakir et al. [9], use swarm perception as a tool
in a study evaluating collective decision-making.

Swarm perception enables a swarm to dynamically mon-
itor its surroundings, detecting and reporting changes, even
in environments whose structure is initially unknown. While
the information gathered is typically utilized internally to
refine the swarm’s collective behavior, it can also be seen as
a vast, evolving shared database filled with mission-specific
environmental data. By granting external systems access to
this database—for instance, through communication between
swarm robots and an external robot—the swarm can provide
critical information that aids the external system’s task.
However, there is a notable scarcity of research focused on
leveraging swarm perception to benefit external systems.

The potential beneficiaries of swarm support extend be-
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yond artificial systems. Indeed, the notion of a swarm aiding
another system has already been explored within the realm
of human-swarm interaction [10], [11]: the human operator
can leverage the information gathered by the swarm to
improve operational efficiency or safety. For example, a
rescuer could utilize the swarm’s data to pinpoint victims’
locations, or a speleologist might depend on maps created by
the swarm for planning explorations. The concept of a robot
swarm supporting firefighters has been previously addressed
by Naghsh et al. [12]. However, research on human-swarm
interaction remains limited to date.

We anticipate that a heterogeneous architecture comprising
a robot swarm would be especially valuable for tasks such as
identifying and tracking targets (specifically people), surveil-
lance, and scouting activities. Tracking individuals across
multiple cameras, known as multi-target, multi-camera track-
ing (MTMCT), poses a significant challenge [13]. Person re-
identification (Re-ID) techniques are developed to address
these challenges, particularly for tracking pedestrians across
multiple non-overlapping camera views [14]–[16]. Person
Re-ID often relies on low-resolution CCTV cameras; this
necessitates the extraction of whole-body features, a process
that is affected by variables such as occlusions, lighting
conditions, body poses, and clothing alterations [17]. The
small size and mobility of individual robots in a swarm
afford them the ability to access diverse viewpoints within an
environment, enabling close-up observations from multiple
angles. This versatility facilitates the implementation of more
effective identification systems, such as facial recognition
based on combined observations to enhance detection ac-
curacy. Furthermore, in scenarios where environments are
unknown and strategies dependent on fixed sensor place-
ments or path planning are impractical [18], identifying and
tracking people become exceedingly complex.

In contrast, robot swarms can continuously share informa-
tion about identified individuals, enabling effective tracking
as individuals move through the environment. This shared
intelligence allows for real-time updates on the locations of
identified individuals, enhancing the swarm’s capability to
support the navigation of other robots within the system.
For instance, a hospital robot tasked with delivering medica-
tions or supplies could utilize the swarm’s data to pinpoint
and navigate directly to the requesting doctor’s location,
showcasing the practical utility of swarm-assisted operations
in dynamic environments. In surveillance or monitoring,
it is typical to deploy multiple CCTV cameras that relay
information back to a central surveillance unit. Robot swarms
could complement traditional CCTV systems and offer a



significant enhancement to such traditional setups by swiftly
communicating any incidents to the security or monitoring
team, including those that occur within the cameras’ blind
spots. Crucially, swarm robots possess the capability to not
just detect but actively manage events. Unlike passive camera
systems, a robot swarm can initiate immediate, localized
responses to mitigate incidents as they await the arrival
of specialized personnel, or they might even resolve the
situation independently.

As early as 2006, Schmickl et al. [19] envisioned a
scenario in which a robot swarm could gather environmental
data to create a map. This foresight has since evolved into
the development of swarm-based simultaneous localization
and mapping (swarm SLAM), a sophisticated form of swarm
perception. Despite its potential [20], it was only recently that
Lajoie and Beltrame [21] introduced the first swarm SLAM
framework by integrating existing SLAM technologies—
specifically RTABMap [22] and GTsam [23])—with an in-
novative, decentralized technique for prioritizing inter-robot
loop closures. However, the current implementation of this
method primarily generates pose graphs and demands struc-
tured navigation characterized by long, straight movements—
conditions that are not typically associated with swarm be-
havior, which often relies on random walks. Generally, robot
swarms excel at creating abstract or coarse maps swiftly
rather than detailed occupancy grids, a trait that somewhat re-
stricts their utility within the swarm itself. Nevertheless, this
mapping capability is exceptionally well-suited to scouting
tasks, where the swarm’s objective is to relay information
to another system. In such applications, a robot swarm can
rapidly produce a basic map of a vast, unexplored area.
This preliminary mapping provides valuable navigational
assistance to other robots or offers a comprehensive overview
for human operators, showcasing the unique strengths of
swarm SLAM in exploratory and reconnaissance missions.

While robot swarms hold promise as support mechanisms
for other systems, several challenges hinder their widespread
adoption. First, the exploration into enabling technologies for
robot swarms, such as SLAM and computer vision, is a rel-
atively recent development. Although some initial successes
have been recorded, the reliability of current solutions does
not yet meet the standards required for practical applications.

Moreover, the field of swarm robotics has been limited by
a scarcity of experiments conducted in real-world environ-
ments. Much of the research to date has been confined to
simulations or carried out in simplistic settings using robots
like the E-Puck [24] and the Kilobot [25], which are designed
specifically for research. While these platforms are cost-
effective and suitably compact for large-scale experiments,
their capabilities fall short of what is needed for realistic
environmental testing. Recently developed, more advanced
platforms such as the S-Drone [26], the Mercator [27] or
the Summit XL [28], offer enhanced capabilities but have
yet to see widespread adoption. There is also uncertainty
regarding whether findings from existing research platforms
will be applicable to the advanced robots necessary for
real-world tasks. Despite the success of automatic design

Fig. 1: A swarm of robots, depicted in white, navigates
through an office setting, identifies individuals, and logs both
their locations and the times of detection. This information
is shared among the swarm to maintain updated records and
is also communicated to another robot, shown in black, that
requests this information.

methods in simulations, they often struggle with the reality
gap [29], [30], making it challenging to anticipate how
these methods will perform with more sophisticated robots.
However, approaches like AutoMoDe [31], [32] have shown
some promise in bridging the reality gap [33], [34], and the
broader transfer gap [35].

Another critical consideration is the secure storage and
sharing of information collected by the swarm [36]. The
inherent decentralized and distributed nature of robot swarms
provides a measure of data security, as information is not
centralized. Nonetheless, practical applications may necessi-
tate reliance on more centralized and potentially vulnerable
infrastructures, especially when swarms need to share data
with other systems. Additionally, robot swarms could be
susceptible to various attack vectors, including the threat of
byzantine robots [37]. Blockchain technology has been iden-
tified as a potential solution to offer transparency, security,
and trust within robot swarms [38].

To overcome these obstacles, collaboration with industry
could play a crucial role by aligning research with practical
needs. With the support of Toyota Motor Europe, we realized
a demonstration of the ideas presented in this article. The
demonstration1, showcases a swarm of Mercators [27] aiding
a Toyota Human Support Robot (HSR) in delivering an item
to a person in an unknown location. The concept is illustrated
in Figure 1. Our vision is that further experiments in this
direction would open the field of swarm robotics to new
perspectives and eventually enable concrete applications.

1The video, also submitted to this workshop, is available at
https://www.youtube.com/watch?v=8vkeuyJllY8.

https://www.youtube.com/watch?v=8vkeuyJllY8
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