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Abstract. We introduce Gianduja, an automatic design method that
generates communication-based behaviors for robot swarms. Gianduja

extends Chocolate, a previously published design method. It does so
by providing the robots with the capability to communicate using one
message. The semantics of the message is not a priori fixed. It is the au-
tomatic design process that implicitly defines it, on a per-mission basis,
by prescribing the conditions under which the message is sent by a robot
and how the receiving peers react to it. We empirically study Gianduja

on three missions and we compare it with the aforementioned Choco-

late and with EvoCom, a rather standard evolutionary robotics method
that generates communication-based behaviors. We evaluate the behav-
iors produced by the three automatic design methods on a swarm of
20 e-puck robots. The results show that Gianduja uses communication
meaningfully and effectively in all the three missions considered. The ag-
gregate results indicate that, on the three missions considered, Gianduja
performs significantly better than the two other methods under analysis.

1 Introduction

In swarm robotics, communication plays a central role and can significantly en-
hance collective performance [3]. Designing effective communication mechanisms
is challenging and design choices can have an important impact on the effective-
ness, complexity, and cost of a swarm [2]. Notwithstanding the advancements
achieved in the last decade [24,29,4,51,7,43,34], the design of robot swarms is
still at dawn and no generally applicable methodology has been proposed so far
[8,11,21]. Automatic design methods are a promising way of approaching the is-
sue [15,6]. In automatic methods, the design problem is cast into an optimization
problem: a space of solutions is searched via an optimization algorithm, with the
goal of maximizing a performance measure. Most of the research on the auto-
matic design of robot swarms has been inspired by neuro-evolution [37,47]. In
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this approach, robots are controlled by a neural network, whose parameters are
obtained via artificial evolution [47,12,44,27,50,31,38,45]. Other methods have
been proposed that are based on different control architectures and/or different
optimization algorithms [30,22,18,16]. Among them, Chocolate [16] produces
probabilistic finite state machines by using the irace optimization algorithm [35]
to assemble preexisting low-level behaviors and conditions, and to fine-tune their
parameters. The low-level behaviors, which define the actions that individual
robots can perform, are: exploration, stop, phototaxis, anti-phototaxis, attrac-
tion to neighbors, repulsion from neighbors. The conditions, which define events
that cause a transition between low-level behaviors, are: black-floor, white-floor,
gray-floor, neighbor-count, inverted-neighbor-count, fixed-probability.

In this paper, we study the automatic design of collective behaviors that rely
on communication. In particular, we are interested in exploring the case in which
messages exchanged by the robots do not have an a priori defined semantics. We
wish to develop an automatic design process that, on a per-mission basis, defines
(i) the conditions under which a robot broadcasts a message and (ii) the effects
that this message has on the behavior of the receiving peers.

We introduce Gianduja, a new instance of AutoMoDe [18]. Gianduja extends
Chocolate by adding the capability of locally broadcasting a single message and
reacting to it. We test Gianduja on three missions that we shall call aggrega-
tion, stop, and decision. We present results of experiments performed with a
swarm of 20 e-puck robots [36].

Within the evolutionary robotics approach, it has already been shown that an
automatic design process can (implicitly) give a semantics to an a priori mean-
ingless message. Nonetheless, this has been demonstrated only on teams of two
robots [1,49]. The novel elements that we propose in this paper are that: (1) we
study the emergence of a message semantics in swarm robotics and we demon-
strate it with a swarm of 20 robots; (2) we show that a message semantics can
emerge also when robots are controlled by a finite state machine; and (3) we
consider three different missions in which the emerging semantics is different.

2 Related Work

Communication—be it direct or indirect, explicit or implicit—is an integral part
of most robot swarms demonstrated so far. As a result, the literature on com-
munication in swarm robotics is extremely large and covering it goes beyond the
scope of this paper. In particular, we will not cover studies in which communi-
cation has been a priori defined by the designer—e.g., [3,9,28,2,14]. Instead, we
will focus on studies in which communication has been automatically designed.

The vast majority of studies in which communication emerged from an auto-
matic design process belong within evolutionary robotics [37,47,48]. Quinn et al.
[41,42] were the first to study the emergence of communication between agents.
In their studies, robots move in an arbitrary direction while staying close to each
other. Robots do not have dedicated communication devices. Nonetheless, they
evolved a simple form of implicit communication: using their proximity sensors,
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robots detect motion in their peers and establish a social interaction. In partic-
ular, they coordinate to assume the roles of leader or follower. Nolfi [39] evolved
a behavior for solving a collective navigation problem. Robots are controlled
by neural networks and can communicate using four different signals. Although
the evolutionary process did not explicitly reward the use of communication, it
produced a behavior in which the robots effectively use communication to coordi-
nate. The behavior obtained was tested in simulation on a swarm of four robots.
Floreano et al. [13] studied the evolution of robots that can produce visual sig-
nals to provide information on food location. The authors evolved behaviors for
a swarm of ten robots that were eventually able to reliably find the food source.
Communication increases the performance of the swarm compared to the case in
which robot cannot communicate. The behavior was then tested with real robots.
Ampatzis et al. [1] evolved the behavior of two robots to recognize features of
the environment and react accordingly. The robots are controlled by neural net-
works and can use their on-board speakers and microphones to send/receive
a sound message. Although communication is not strictly needed to solve the
task and was not explicitly rewarded in the evolutionary process, it emerged as
it improves performance. The behavior obtained was tested both in simulation
and in reality with two s-bot robots. Tuci [49] studied the origin of communica-
tion from an evolutionary perspective. The author considered a setting in which
two robots, which might communicate via a sound message, need to categorize
the environment and act accordingly. Also in this case, although communication
was not explicitly rewarded, the evolutionary process produced behaviors that
effectively use the available communication capabilities to perform the mission.
Experiments were conducted in simulation only.

Among all the studies highlighted above, the research we present in this paper
is most closely related to [1,49]. Indeed, as in those studies, we consider the case
in which the semantics of the message exchanged by the robots is not a priori
defined but is the result of the automatic design process.

3 AutoMoDe-Gianduja

By introducing Gianduja, we address one of the limitations of AutoMoDe: the
instances of AutoMoDe defined so far, Vanilla and Chocolate, are unable to
design behaviors that exploit explicit communication. The behaviors automati-
cally generated by Gianduja can rely on sending and receiving a single message
whose semantics is not fixed a priori. Gianduja is a proper extension of Choc-

olate [16] that adds the ability to (i) locally broadcast a message, (ii) change
state when the message is received (or is not received), and (iii) approach (or
retract from) neighboring peers that broadcast the message.

As Chocolate and Vanilla, Gianduja designs control software for the e-
puck platform. Nonetheless, it considers a reference model that is an extension
of the one considered by Chocolate and Vanilla—RM 1.1 [25]. Precisely, the
extension concerns the ability to (a) locally broadcast the message and (b) sense
the broadcasting peers that are within the perception range. The new reference
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Table 1. Reference model RM 2: novelties with respect to RM 1.1 are highlighted.

Input Value Description

proxi∈{1,...,8} [0,1] reading of proximity sensor i

lighti∈{1,...,8} [0,1] reading of light sensor i

gndj∈{1,2,3} {black, gray, white} reading of ground sensor j

n [0,20] number of neighboring robots perceived

V
(
[0, 0.70] m, [0, 2π] rad

)
direction of attraction to them

b [0,20] number of messaging neighbors perceived

Vb

(
[0, 0.70] m, [0, 2π] rad

)
direction of attraction to them

Output Value Description

vk∈{l,r} [−0.12, 0.12] m s−1 target linear wheel velocity

s {on, off } broadcast message

Period of the control cycle: 100 ms

model, which we shall call RM 2, is given in Table 1. The variables highlighted
are the elements of novelty with respect to RM 1.1: b, Vb, and s. Before we explain
these variables, it is convenient that we first recall the mechanism that allows
robots to perceive their neighbors—both in RM 1.1 and in RM 2. Using their
range-and-bearing module [23], all robots continuously broadcast a “heartbeat”
signal whose payload encodes their unique ID. At every time step, every robot
receives the heartbeat signal of the peers that are within its perception range,
which is of about 0.70 m. It can therefore infer the number of neighboring peers
and their relative positions: range and bearing. This information is made avail-
able to the control software via the variables r and V . The former is the number
of neighboring peers and the latter is a vector indicating the direction of attrac-
tion to these neighboring peers, which is computed based on the framework on
virtual potential fields [46].

In RM 2, every robot locally broadcasts the message by setting a specific bit
of its heartbeat’s payload. Due to this extension, at every time step, a robot
can infer the number and relative position of the neighboring peers that are
broadcasting the message. The information that is made available to the control
software is stored in the variables b and Vb. The former is the number of neigh-
boring peers that broadcast the message and the latter is a vector indicating
the direction of attraction to these neighboring peers, which also in this case is
computed following the framework on virtual potential fields [46]. Formally,

Vb =


∑b

m=1(α/r2
m,∠bm), if b > 0 broadcasting robots are perceived;

(1,∠0), otherwise.

Here, rm and ∠bm are the range and bearing of the m-th neighboring peer that
is broadcasting the message and α a real value parameter. The variable s can be
set by the control software and indicates whether, during the following control



Automatic design of communication-based behaviors for robot swarms 5

cycle, the robot should broadcast the message or not. It can take two values: on
or off .

Gianduja produces control software in the form of probabilistic finite state
machines, as Chocolate does. It does so by combining and fine-tuning (a) the
original transition conditions of Chocolate (and Vanilla) [18,16]; (b) an ex-
tended version of the low-level behaviors of Chocolate (and Vanilla) [18,16];
(c) four additional modules: two low-level behaviors and two transition condi-
tions. We extend the preexisting low-level behaviors of Chocolate (and Vanilla)
by adding a binary parameter: if the parameter is set, the robot continuously
broadcasts the message while performing the low-level behavior; otherwise, it
does not. We conceived the four additional modules specifically for exploiting
the extended functionalities provided by RM 2. The two additional low-level
behaviors are: attraction to message – the robot moves in the direction in-
dicated by Vb; repulsion from message – the robot moves in the opposite
direction. Also these additional behaviors have the aforementioned binary pa-
rameter that specifies whether the message should be broadcast or not. The
two additional conditions are: message count –a state transition occurs if the
number of neighboring peers broadcasting the message is larger than the value of
a parameter; inverted message count – a state transition occurs if the num-
ber of neighboring peers broadcasting the message is smaller than the value
of a parameter. The additional modules are modeled after the original attrac-
tion, repulsion, neighbor-count, and inverted-neighbor-count of Chocolate (and
Vanilla) [18,16]. The optimization algorithm used to search the space of the
possible probabilistic finite state machines that can be obtained by assembling
the available modules and fine-tuning their parameters is irace [35]—the same
algorithm used in Chocolate. As in Chocolate (and Vanilla), valid probabilis-
tic finite state machines have at most four states and each state has at most
four outgoing transitions. Finally, as in Chocolate (and Vanilla), the design
process is performed in simulation using ARGoS [40,20].

4 Experimental Setting

We test Gianduja on three missions and we compare it with two other methods.

4.1 Missions

In all three missions, the robots operate in a dodecagonal area of 4.91 m2. The
arena is surrounded by walls. Its floor is gray, apart from some specific areas
that, on a per-mission basis, could be white or black, as detailed in the follow-
ing. The time available to the robots for performing a mission is T = 120 s. The
three missions considered are aggregation, stop, and decision; they are de-
scribed in the following. We have selected them because, according to our a priori
expectations, communication should play a different role in them. Indeed, we ex-
pect that aggregation can be solved without using communication. On the
other hand, we expect that stop and decision require communication for being
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Fig. 1. Arenas for the three missions: aggregation, stop, and decision (from left to
right); simulation (top) and real setup (bottom).

solved effectively. We also expect that the semantics implicitly attached to the
message by the automatic design process will be different in stop and decision.
We will detail this in the following, on a per-mission basis.

aggregation. The arena’s floor is marked by two circular spots, with diameter
of 0.6 m: one is white and the other black. They are positioned on the left-hand
side of the arena, separated by a gap of 0.25 m. At the beginning of each run, the
robots are randomly positioned in the right-hand half of the arena, so that no
robot is already on the spots—see Fig. 1(right). The mission prescribes that the
robots quickly aggregate on the white spot. The black spot is not supposed to
play any role and simply acts as a disturbance to the automatic design process.
The performance of the robots is measured via the following objective function—
the higher, the better:

Ca = 24 000 −
T∑

t=1

N∑
i=1

Ii(t); Ii(t) =

{
0, if robot i is on the white spot;

1, otherwise.

Here, i is an index that spans over all the robots of the swarm, N is the total
number of robots, and T = 120 s is duration of the experiment. 24 000 is the
maximum theoretical score that the robots could achieve. It is included in the
definition of the objective function to guarantee that its value is non-negative
and ranges from 0 to its theoretical maximum.
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As already mentioned, we think communication is not needed in this mission.

stop. The arena’s floor is marked by a circular white spot, with diameter of
0.2 m, positioned near the walls, on the top-left quadrant. At the beginning of
each experimental run, all robots are randomly positioned in the right-hand half
of the arena: none of them is on the white spot—see Fig. 1(center). The mission
prescribes that the robots search for the spot and, as one of them finds it, all
stop quickly. The performance measure—the higher, the better—is:

Cs = 48 000 −

t̄N +

t̄∑
t=1

N∑
i=1

Īi(t) +

T∑
t=t̄+1

N∑
i=1

Ii(t)

 ;

Ii(t) =

{
1, if robot i is moving;

0, otherwise;
Īi(t) = 1 − Ii(t).

Here, i, N , and T are defined as above; t̄ is the time at which a robot steps on
the white spot for the first time. The performance measure ranges from 0 to its
maximum of 48 000. In the definition of Ii (and Īi), a robot is considered to be
moving if its center has traveled more than 5 mm in the last time step.

We expect that communication is needed in this mission and that Gianduja
produces behaviors in which (i) robots broadcast the message if they step on the
white spot; (ii) upon receiving the message, robots stop and possibly relay it.

decision. The arena’s floor is marked by a circular spot, with diameter of 0.6 m,
located in the center of the arena. The spot can be either white or black, with
a probability of 0.5. A light source is placed outside the arena, on the right-
hand side. At the beginning of each run, robots are randomly positioned—see
Fig. 1(right). The mission prescribes that the robots quickly relocate into the
right-hand half of the arena, when the spot is black; and into the left-hand half,
when the spot is white. The performance measure—the higher, the better—is:

Cd = 24 000 −
T∑

t=1

N∑
i=1

Ii(t);

Ii(t) =

{
0, if robot i is in the correct half of the arena;

1, otherwise.

Here, i, N , and T are defined as above. The performance measure ranges between
0 and its theoretical maximum of 24 000.

Also in this case, we expect that communication is needed. A straightforward
solution would require two distinct messages: one per spot color/half of the arena
in which robots should relocate. As the robots have only one message available,
the solution we foresee is that they go in one direction by default and revert to
the opposite one in case they receive a message sent by a robot that steps on the
spot, should its color indicate that the correct direction is not the default one.
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4.2 Protocol

We compare Gianduja with Chocolate [16,32] and EvoCom. Chocolate was orig-
inally defined in [16] and is used here unmodified. EvoCom is an evolutionary
method that we introduce for this study. It is an extension of EvoStick—a de-
sign method that, via an evolutionary process, tunes the parameters of a neural
networks to control the e-puck platform, as it is modeled by RM 1.1. EvoStick
was formally defined in [18] to serve as a yardstick in the study of Vanilla, but
had been previously analyzed in [19]. It was subsequently included in other em-
pirical studies [17,16,5,33]. EvoCom targets the e-puck platform, as it is modeled
by RM 2—see Table 1. With respect to EvoStick, it has the further capability
of locally broadcasting a message and reacting to it. It features (i) one extra
output node for s; and (ii) five extra input nodes: one for b and four for the
projections of Vb on the four unit vectors pointing at 45°, 135°, 225°, and 315°
with respect to the head of the robot. The neural network is optimized using a
standard evolutionary algorithm, the same adopted in EvoStick—see [18,32] for
the details. Artificial evolution is based on simulations performed with ARGoS
[40,20] —under the same conditions that hold for Gianduja and Chocolate.

We consider a swarm of 20 e-puck robots. For each of the three missions, each
of the three methods under analysis is executed 15 times to obtain 15 instances
of control software. Each design process can rely on a maximum of 200 000
simulated runs. The simulator adopted in the study is ARGoS3, beta 48. We
evaluate each instance of control software obtained by the three design methods:
once in simulation and once on the physical robots. The initial positions of
the robots and the order of the experimental runs are randomized to avoid
any bias. In robot experiments, the value of the objective function is computed
automatically using a tracking system that extracts information from images
taken with an overhead camera every 100 ms.

Statistics. We report per-mission boxplots of the performance registered in sim-
ulation and reality. When appropriate, we report also the outcome of a Wilcoxon
rank-sum test, at 95% confidence [10]. Eventually, we aggregate all the results of
the robot experiments by ranking across each mission the performance obtained
by the instances of control software generated by each method. We present the
outcome of a Friedman test [10] in a plot that displays the average rank of each
method and its 95% interval of confidence. If two intervals do not overlap, the
results we registered for the corresponding methods are significantly different.
In the following, statements like “A performs significantly better that B” imply
that an appropriate statistical test—either a Wilcoxon or a Friedman test—has
been employed and has detected significance with confidence of at least 95%.

5 Results

We present the results on a per-mission basis and then we aggregate them across
the three missions. Numerical results, videos, code, and finite state machines
generated by Gianduja and Chocolate are available in [26].



Automatic design of communication-based behaviors for robot swarms 9

O
b

je
ct

iv
e

fu
n
ct

io
n

EvoCom Gianduja Chocolate

aggregation

5
0
0
0

1
0
0
0
0

1
5
0
0
0

EvoCom Gianduja Chocolate

stop

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

EvoCom Gianduja Chocolate

decision

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

Fig. 2. aggregation, stop, and decision (from left to right). Thick white boxes
represent the results of robot experiments; thin gray ones, those of simulations.

aggregation. Results are reported in Fig. 2(left). Both Gianduja and Choc-

olate perform significantly better than EvoCom. Although Gianduja performs
significantly better than Chocolate in simulation, the results of the two methods
on the robots are similar.

At visual inspection, EvoCom seems to be unable to use communication ef-
fectively. The robots randomly explore the arena—sometimes forming moving
clusters. If they enter the white spot, they spin in place. Also in Chocolate and
Gianduja, robots navigate randomly, but they stop upon reaching the white
spot. In Gianduja, when on the white spot, robots typically broadcast the mes-
sage; the receiving peers converge towards them eventually reaching the white
spot. Although elegant, Gianduja’s solution does not significantly improve over
Chocolate’s one. It can be observed that Gianduja suffers the reality gap more
than Chocolate. This could be due to the fact that the ground sensor of the e-
puck robot is quite prone to report false positives in the detection of white/black
floor. As it can be seen in simulation, the behaviors produced by Gianduja rely
on communication to attract peers once the white spot is detected. In the pres-
ence of false positives, this feature could hinder performance. Chocolate, which
does not rely on communication, is apparently less affected by false positives.

stop. Results are reported in Fig. 2(center). Gianduja performs significantly
better than EvoCom and Chocolate, both in simulation and reality.

At visual inspection, EvoCom seems to be unable to use its communication
capabilities effectively, whereas Gianduja does. In Gianduja, robots move ran-
domly until one reaches the white spot and stop. This robot broadcasts the mes-
sage. The receiving peers relay it and stop. In EvoCom and Chocolate (which
is not endowed with communication capabilities), robot move in random direc-
tions until being stopped by the walls. Although trivial, this behavior often scores
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Fig. 3. Friedman test on the aggregated results of the three missions. The plot repre-
sents the average rank of the three methods and their 95% confidence interval.

better than one would expect because there is some relatively high chance that,
before robots stop against a wall, at least one of them has reached the white
spot. In this mission, the behaviors generated by Gianduja cross the reality gap
better than those of EvoCom and Chocolate.

decision. Results are reported in Fig. 2(right). Gianduja performs significantly
better than EvoCom both in simulation and reality. Concerning the comparison
between Gianduja and Chocolate, although the difference is not significant in
simulation, on the robots Gianduja performs significantly better.

Gianduja uses communication effectively. By default, robots go towards one
side of the arena. If one robot steps on the central spot and its color indicates
that the correct side of the arena is not the default one, the robot itself broad-
casts the message. Receiving peers relay the message and all robots head to the
correct direction. In some instances of control software designed by Gianduja,
the selected default side is the right-hand one, and in others is the left-hand.
Accordingly, robots start by performing phototaxis or anti-phototaxis and then
possibly switch depending on the color of the central spot. In Chocolate, the
behavior is similar but, as the robots are not endowed with communication ca-
pabilities, only the robots that individually step on the central spot are able to
revert their default choice, should it be needed. EvoCom failed to produce any
consistently meaningful behavior. The score has a very large variability and ap-
pears to be determined by chance. In simulation, the performance observed is
even worse than random behavior, which should produce an expected score of
12 000—half of the maximum. In robot experiments, the score observed matches
the profile of a random behavior. Gianduja’s behaviors cross the reality gap
nicely while those of Chocolate appear to experience a large performance drop.
As the performance of EvoCom is particularly poor, any consideration on how
the method handles the reality gap would be meaningless.

Aggregate Results. The aggregate results are presented in Fig. 3. The plot
confirms that, across the three missions considered, Gianduja performs signifi-
cantly better that both Chocolate and EvoCom.
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6 Conclusions

We have studied the problem of the automatic design of collective behaviors that
rely on communication. We have focused on the case in which robots are able
to locally broadcast a single message whose semantics is not fixed a priori: the
automatic design method can re-define it on a per-mission basis, as needed.

We have introduced Gianduja, an automatic design method based on the
previously published Chocolate. Gianduja generates control software by assem-
bling preexisting software modules into a probabilistic finite state machine. We
tested Gianduja on three missions, showing that the way in which the message
is used by the robots is different—and meaningful—in each of them. As desired,
the (implicit) semantics of the message is automatically defined on a per-mission
basis by the design process. On all three missions, Gianduja performs signifi-
cantly better that EvoCom, a rather standard evolutionary robotics methods for
robots that are able to broadcast and receive a message. On two of the three mis-
sions, Gianduja performs also significantly better than Chocolate, which is not
endowed with communication capabilities. The only mission on which the per-
formance of Gianduja and Chocolate is comparable is one in which we a priori
expected that communication is not needed. When aggregated, the results of the
robot experiments indicate that, across the three missions considered, Gianduja
performs significantly better that both EvoCom and Chocolate.

On the missions considered, Gianduja has also shown a weakness: It appears
to be more sensitive than Chocolate to noisy readings from the ground sensor.
We observed this issue in aggregation but it might have had an impact also in
the other two missions. The reason why this issue has a relative lower impact in
the other missions is possibly that communication is strictly needed to accom-
plish them. This clearly gives a major advantage to Gianduja over Chocolate

and greatly compensates the increased sensitivity to sensor noise.
Future work will focus on testing Gianduja on further missions. We will

also study the possibility of extending Gianduja so that it can handle multiple
messages and therefore generate more complex collective behaviors. Finally, we
will address also the sensitivity of Gianduja to sensor noise. A possible way
to handle the issue is to improve the noise models used in simulation so as to
produce behaviors that are more robust to false positives in the detection of
white/black ground. We are considering also to adopt ideas from game theory
to prevent that malicious (or simply fallacious, erroneous, unintended) messages
propagate across the swarm and negatively impact its collective behavior.
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