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Empirical assessment and comparison of
neuro-evolutionary methods for the automatic
off-line design of robot swarms
Ken Hasselmann 1,2, Antoine Ligot 1,2, Julian Ruddick 1 & Mauro Birattari 1✉

Neuro-evolution is an appealing approach to generating collective behaviors for robot

swarms. In its typical application, known as off-line automatic design, the neural networks

controlling the robots are optimized in simulation. It is understood that the so-called reality

gap, the unavoidable differences between simulation and reality, typically causes neural

network to be less effective on real robots than what is predicted by simulation. In this paper,

we present an empirical study on the extent to which the reality gap impacts the most

popular and advanced neuro-evolutionary methods for the off-line design of robot swarms.

The results show that the neural networks produced by the methods under analysis per-

formed well in simulation, but not in real-robot experiments. Further, the ranking that could

be observed in simulation between the methods eventually disappeared. We find compelling

evidence that real-robot experiments are needed to reliably assess the performance of neuro-

evolutionary methods and that the robustness to the reality gap is the main issue to be

addressed to advance the application of neuro-evolution to robot swarms.
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Neuro-evolutionary robotics1 is an appealing approach to
realizing collective behaviors for robot swarms2–4. In this
approach, each individual robot is controlled by a neural

network that maps sensor readings to actuator commands. The
parameters of the network, and possibly its topology, are obtained
by optimizing a mission-specific performance measure via arti-
ficial evolution.

The neuro-evolutionary approach appears to be appropriate in
swarm robotics5 because it bypasses the main problem that
designers face: defining what the individual robots should do so
that the desired collective behavior emerges from their interac-
tions. This problem is particularly hard because of the complexity
of the interactions between robots and the loosely-coupled nature
of a robot swarm. Indeed, which robot interacts with which other
and when this happens is unknown at design time, being the
result of the contingencies experienced by the swarm at execution
time. Although swarm robotics is considered as a prominent
research direction6–13, no general approach has been proposed so
far to defining what the individuals should do to obtain the
desired collective behavior3—although approaches exist that solve
the problem under specific hypotheses14–22. Because neuro-
evolutionary robotics, likewise other more or less related
optimization-based design methods23–28, bypasses the problem of
explicitly reducing the desired collective behavior to the one of
the individuals, it appears to be, together with the other
optimization-based methods, the only truly general approach to
realizing robot swarms.

Neuro-evolutionary methods for the design of collective
behaviors for robot swarms can be divided in two classes: off-line
and on-line design. In off-line design, the design process is per-
formed based on computer simulation and the resulting control
software is subsequently deployed to the robots. In on-line design,
the design process is performed continuously while the swarm
operates in the target environment. For further information on
the off-line design of robot swarms and on its on-line counter-
part, we refer the reader to Birattari et al.29, Bredeche et al.30, and
to the references therein. For a review of the neuro-evolutionary
approach to swarm robotics, we refer the reader to Francesca and
Birattari31. We refer the reader also to the vast literature on
neuro-evolutionary robotics applied to single- and multi-robot
systems32–35.

In the literature on neuro-evolutionary swarm robotics,
empirical assessments and comparative analyses are rare31. In
particular, to the best of our knowledge, no study has been
published that compares any neuro-evolutionary method on
multiple missions and reports results obtained in experiments
performed with real robots. Yet, there is a general understanding
that, due to the so-called reality gap36,37—that is, the unavoidable
difference between simulation models and the real world—results
obtained in simulation cannot be considered as a valid assessment
of a neuro-evolutionary method for the automatic off-line design
of robot swarms. It has been conjectured that the reality-gap
problem is a sort of “overfitting” of the conditions experienced
during the design process, which takes place in simulation; as a
consequence of this overfitting, the control software fails to
generalize to reality26,38–40. Indeed, a performance drop when
moving from simulation to reality has been often reported in the
literature26,39,41. Some recent results indicate that the reality gap
is a relative problem with some design methods that are affected
to a great extent, while others appear to be intrinsically more
robust40.

In this paper, we present the results of an empirical study in
which we assessed and compared some of the most advanced
neuro-evolutionary methods for the off-line design of robot
swarms. Figure 1 provides an image of the robot used in the
experiments and the reference model that describes the

programming interface through which the control software
interacts with the underlying hardware. The results indicate that
all the neuro-evolutionary methods under analysis are affected by
the reality gap. This was possibly to be expected because of the
aforementioned performance drop that has been often observed
when moving from simulation to reality. What was not neces-
sarily to be expected, because it had not emerged in any previous
research, is that the extent to which the neuro-evolutionary
methods under analysis are affected by the reality gap is so
conspicuous that all differences we observed in simulation dis-
appeared in the real-robot experiments. Eventually, the control
software they produced performed at most only marginally better
than a trivial random walk behavior that we included in the study
as a control.

Results
Experimental setup. The methods comprised in the study
include: (a) Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES)42, for generating both single- and multi-layer per-
ceptrons. CMA-ES is widely considered as one of the most
effective evolutionary algorithms available and is especially valued
for its advanced search capabilities. (b) Exponential Natural
Evolution Strategies (xNES)43, for generating, also in this case,
both single- and multi-layer perceptrons. xNES is closely related
to CMA-ES and is sometimes preferred to the latter because it is
considered to be more principled, as all the update rules needed
for covariance matrix adaptation are derived from a single
mechanism. (c) Neuro-Evolution of Augmenting Topologies
(NEAT)44, initialized with either a fully-connected single-layer
perceptron or a network in which input and output nodes are
disconnected; in both cases, we studied two sets of hyper-para-
meters, one that allows the generation of recurrent networks and
one that does not. NEAT is particularly valued for its capability to
shape the network topology automatically. (d) EvoStick26, a
straightforward implementation of the most basic ideas of the
neuro-evolutionary approach. To the best of our knowledge,
EvoStick is the only neuro-evolutionary method for the
automatic design of robot swarms that has been tested on more
than a single mission without undergoing any manually-applied
mission-specific adaptation26,41. EvoStick is without any
doubt less sophisticated and advanced than its competitors CMA-
ES, xNES, and NEAT.

As baselines, we included in the study also: (1) Chocolate41,
a design method that belongs to the AutoMoDe family26. It
generates control software by assembling predefined software
modules into a probabilistic finite-state machine and by fine-
tuning their free parameters. The software modules are low-level
behaviors (e.g., random walk, photo-taxis, stop) and conditions to
transition from one low-level behavior to another (e.g., the floor is
black, only few peers are perceived in the neighborhood). The
modules are written once and for all in a mission-agnostic way.
AutoMoDe was explicitly conceived to be robust to the reality
gap. The definition of the approach was inspired by the notion of
bias/variance trade-off of machine learning45. The idea was to
introduce bias in the design process by restricting the design
space—that is, the space of the possible behaviors that can be
produced. Indeed, the space of the finite-state machines that can
be produced by Chocolate is smaller than the space of the
neural networks that can be produced by a typical neuro-
evolutionary method. This bias was introduced with the goal of
reducing the variance and preventing that the control software
produced overfits the features of the simulator that do not have a
counterpart in the real world38,40. This is eventually deemed to
increase the intrinsic robustness of the method to the reality gap.
(2) RandomWalk, a trivial behavior in which robots move
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randomly in the environment. Contrary to all the other
aforementioned methods comprised in the study, RandomWalk
is not an optimization-based design method: no parameter/
feature of the behavior is optimized. For a design method, being
unable to improve over RandomWalk is to be considered as a
major failure.

We tested the methods under analysis for their ability to
generate control software for five missions, in a fully automatic
way. The missions were formally specified via a performance
measure to be maximized, and the methods under analysis were
tested on them without undergoing any manually-applied
mission-specific modification. The control software generated
by the methods was automatically cross-compiled for the target
platform and was deployed without undergoing any modification.
All the methods designed software for the same target platform,
used the same realistic physics-based simulator with the same
simulation models, and were provided the same resources—
notably, the same number of simulation runs to be performed
within the design process. Also, all the methods adopted the same
devices that are widely considered as the standard practice for
reducing the impact of the reality gap and for increasing the
robustness of the control software generated: the injection of

noise in simulation models and the randomization of the initial
conditions37.

The five missions considered (Fig. 2) are rather typical
collective missions. Their level of complexity is comparable with
the one of those that, at the moment of writing, are customarily
studied in the automatic off-line design of robot swarm.
Admittedly, relatively more complex missions have been
considered in the semi-automatic design literature—e.g., see
Ferrante et al.46. This is understandable: semi-automatic design
provides for human intervention within the design process and
allows the designer to tailor the optimization process to the single
specific mission considered. This eventually enables one to tackle
relatively more complex missions that are out of reach for fully
automatic design, at least at the current state of development of
the field. As we have previously observed47, in (fully) automatic
design, the challenge does not lie much in the complexity of each
single mission, but rather in the fact that the design method must
be able to produce control software for different missions without
undergoing any modification.

We ran each method under analysis ten times on each of the
five missions and we tested the control software they generated in
real-robot experiments and also in simulation, so as to assess the

Fig. 1 The robot and its reference model. a The e-puck robot in the configuration used for the experiments presented in the paper. Details are provided in
“Methods”. b The reference model RM 1.1, which formally describes the programming interface through which, in the experiments presented in the paper,
the control software interacts with the underlying hardware. The range-and-bearing vector points to the aggregate position of the neighboring peers
perceived; its magnitude increases with the number of neighboring peers perceived and decreases with their distance. Formally, V ¼ ∑n

m¼1ð 1
1þrm

;ffbmÞ,
where rm and ∠bm are range and bearing of neighbor m, respectively. If no neighboring peer is perceived, the vector points in front of the robot and has
unitary magnitude; formally, V= (1,∠0).
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Fig. 2 Arenas for the five missions. a XOR-AGGREGATION, simulation; b, real robots. c, HOMING, simulation; d, real robots. e, FORAGING, simulation;
f, real robots. g, SHELTER, simulation; h, real robots. i, DIRECTIONAL-GATE, simulation; j, real robots. The 20 robots operate in a dodecagonal arena of
4.91 m2, the red glow in (e, f, g, h, i), and (j) indicates the presence of a light source at the bottom side of the arena. Dimensions (in meters) of the
elements present in the arenas are given in (a, c, e, g,) and (i). Details on the experimental setup are provided in “Methods” and videos of the robot
experiments are available as Supplementary Movies 1–5.
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impact of the reality gap on the different methods. A detailed
description of all the methods, the robotics platform, the
simulator, the five missions, the experimental design, and the
statistics adopted is given in “Methods”.

The impact of the reality gap. The results (Figs. 3 and 4) show
that, on the missions considered in the study, all the neuro-
evolutionary methods under analysis experienced a major drop in
performance because of the reality gap. For each mission and
method, the empirical distributions of all the data gathered in
simulation and real-robot experiments are given in Fig. 5.

When evaluated in simulation, the control software produced
by the neuro-evolutionary methods under analysis generally
performed well, and comparably with the one of Chocolate; in
some cases, even better. All methods under analysis performed
significantly better than RandomWalk (Fig. 3a). Results were
different when the control software was evaluated in real-robot
experiments. The performance of all design methods dropped due

to the reality gap, as it is often the case. Only the performance of
RandomWalk remained substantially stable—this because, as
observed above, RandomWalk is not a design method: no
optimization process is involved and therefore overfitting does
not happen. All the neuro-evolutionary methods experienced a
large drop, whereas the one of Chocolate is relatively smaller.
Also from a qualitative point of view, the control software
produced by the neuro-evolutionary methods displayed different
behaviors in simulation and reality, whereas the one produced by
Chocolate behaved similarly in simulation and reality, and
even more so RandomWalk—see Fig. 6 and Supplementary
Movie 6. Eventually, all neuro-evolutionary methods performed
significantly worse than Chocolate and their results were only
marginally better than those of RandomWalk (Fig. 3a).

It is important to notice that the reality gap faced by the
methods under analysis is the same: they all adopt the same
simulator and design control software for the same platform. Yet,
the extent to which the methods were affected is different. As it
has been already observed40, the reality-gap problem is a relative

Fig. 3 Aggregated results. a Aggregate performance in simulation (white narrow boxes) and in reality (gray wide boxes) across the five missions
considered, represented by notched box-and-whisker plots, where the notches represent the 95% confidence interval on the median. If notches on different
boxes do not overlap, the medians of the corresponding methods differ significantly, with a confidence of at least 95%. Graphical conventions adopted in
box-and-whisker plots are described in “Methods” under the heading Statistics. Prior to the aggregation and for each missions, the results are normalized
between the lowest and highest performance observed in reality by any of the design methods. As a result, the normalized performance in reality ranges
between 0 and 1, but the one in simulation might exceed 1 (shadowed area). Indeed, in many cases, the performance observed in simulation exceeded the
best one observed in the real-robot experiments. The performance of Chocolate and RandomWalk, the two methods included in the study as yardsticks,
is grayed out so as to focus the attention of the reader to the neuro-evolutionary methods under analysis. b Friedman rank-sum test on the performance in
reality: expected rank and 95% confidence interval. If two segments do not overlap, the rank of the corresponding methods differ significantly, with a
confidence of at least 95%. Also here, the performance of Chocolate and RandomWalk is grayed out to focus the attention to the neuro-evolutionary
methods. The videos of all robot experiments are available as Supplementary Movie 1–5.
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problem, with some methods being more heavily affected and
others being intrinsically more robust.

The simulator provides a reasonably faithful representation of
reality. This is particularly clear if one compares the performance
in simulation and reality of RandomWalk, which does not
involve any optimization performed in simulation and is
therefore not exposed to overfitting—see Supplementary Movie 6.
This allows one to appraise the accuracy of the simulator,
independently of any overfitting that, as mentioned above, varies
on a per-method basis.

A further observation is that the five missions can be
accomplished to a satisfactory extent under the experimental
conditions considered. Specifically, they can be accomplished by
the platform adopted and by a robot swarm of the given size.
Moreover, control software to accomplish these missions can be
produced automatically using the available resources: the
simulator provides a reasonably faithful representation of reality
(albeit not perfect, as no simulation does) and the number of
simulation runs allotted to each design process was appropriate.
This is shown by the satisfactory results obtained in the robot
experiments by Chocolate—see Supplementary Movies 1–5.
Concerning the neuro-evolutionary methods, the fact that the
number of simulation runs allotted was sufficiently large is
confirmed by the satisfactory performance obtained in simulation
by the control software they produced.

Discussion
The performance of the different neuro-evolutionary methods
under analysis is similar. The few differences that can be observed
between the results obtained in simulation disappeared when the
control software generated was tested in real-robot experiments.

A remarkable fact is that, on the missions considered, the more
advanced methods—that is, CMA-ES, xNES, and NEAT—did not
yield any relevant improvement over EvoStick, the straight-
forward implementation of the neuro-evolutionary approach.
This holds true both for simulation and robot experiments. The
data indicate that, at least on the missions considered, neither the
effective search of CMA-ES and xNES, nor the advanced abilities
of NEAT to shape the topology of networks have the potential to
improve the performance of the neuro-evolutionary approach.
The real issue to be addressed is the robustness to the reality gap.

In the missions considered, the main discrepancies between the
behaviors observed in simulation and reality concern the way in
which robots cover the space. Robots tend to cluster (mostly
against the walls) in reality more than they do in simulation. This
is likely due to the fact that friction between robots and between
robots and walls is not modeled in a sufficiently accurate way: in
simulation, robots slip against each other and against the walls;
while in reality, they remain more easily stuck. Another dis-
crepancy we observed concerns the shape of the trajectories. In
simulation, all robots can be observed to move orderly, following
circular trajectories; in reality, some robots display similar tra-
jectories while those of others tend to be squashed and irregular.
This is likely due to the fact that, although the swarm is in
principle homogeneous and it is simulated as such, the real robots
tend to differ slightly one from the other in their sensors and
actuators. As a result, the real robots fail to display the ordered
and cohesive collective motion that can be observed in simula-
tion. The issue is particularly noticeable in FORAGING and
DIRECTIONAL-GATE. Both discrepancies (clustering and irre-
gular trajectories) are accrued by density: the more the robots
converge to a same restricted area, the more the behavior
observed in reality differs from the simulated one. Although the

Fig. 4 Results per missions. Performance obtained in simulation (white narrow boxes) and in reality (gray wide boxes) in all five missions: a XOR-
AGGREGATION, b HOMING, c FORAGING, d SHELTER, e DIRECTIONAL-GATE. The results are presented using notched box-and-whiskers plots, where
the notches represent the 95% confidence interval on the median. If notches on different boxes do not overlap, the medians of the corresponding methods
differ significantly, with a confidence of at least 95%. Graphical conventions adopted in box-and-whisker plots are described in “Methods” under the
heading Statistics. The performance of Chocolate and RandomWalk is grayed out so as to focus the attention of the reader to the neuro-evolutionary
methods under analysis. The videos of all robot experiments are available as Supplementary Movie 1–5.
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discrepancies observed can be used to improve the simulator for
future applications, we do not think that they provide informa-
tion that can contribute to address the reality-gap problem in a
universally valid way. It should be noted that reducing the dif-
ferences between simulation and reality on the basis of the
observation of control software produced by specific methods on
specific missions could lead to ad hoc solutions that do not
necessarily generalize to other methods, missions, platforms,
environment, and scenarios32,35,48. Also, reducing the differences
between simulation and reality a posteriori—that is, after obser-
ving that the control software produced in simulation does not
behave satisfactorily in reality—is not compatible with the spirit
and purpose of automatic off-line design as it requires human
intervention and assessments on real robots.

The satisfactory results obtained in the real-robot experiments
by Chocolate—both in absolute terms and relatively to those
obtained by the neuro-evolutionary methods under analysis—
corroborate the validity of the original idea that motivated the
definition of AutoMoDe and the development of Chocolate
itself. Indeed, the results confirm that a restricted design space is
associated with a reduced risk of overfitting and an increased
robustness to the reality gap. It is our contention that, in the
experiment presented above, Chocolate crossed the reality gap
successfully because of its relatively small design space. By the
same token, we contend that the neuro-evolutionary methods
under analysis failed to cross the reality gap successfully because,
in their definition, no explicit attention was made to restrict the
size of the design space.

Supported by the results presented above, we contend that, to
advance the application of neuro evolution to the automatic off-
line design of collective behaviors for robot swarms, the research
community should focus on addressing the reality-gap problem.
A number of ideas have already been proposed in the literature
and belong into two distinct approaches40: (1) increase the
accuracy of simulators as much as possible; (2) conceive design
methods that are intrinsically robust to the reality gap. The two
approaches are not mutually exclusive and can profitably coexist
within the same design method. We definitely agree that simu-
lation accuracy must be pursued. Yet, as simulation models will
never be perfect and the risk of overfitting cannot be eliminated
altogether, the quest for accurate simulators does not eliminate
the need for robust methods. It is therefore our contention that
future research should aim at increasing the intrinsic robustness
of design methods. Making the optimization algorithms more
effective or enhancing their ability to automatically shape the
topology of the networks appears to be a secondary concern, at
least in this phase of the development of the field.

Although most of the ideas proposed to address the reality-
gap problem do not fit the framework of the automatic off-line
design considered here and, to the best of our knowledge, have
never been applied in swarm robotics, they could be possibly
adapted or could be the starting point to develop original
methods for enhancing the robustness of neuro-evolutionary
robotics. For example, Koos et al.39 proposed a method that
builds and updates a model of the differences between the
performance in simulation and reality. The model is used to

Fig. 5 Distributions. Empirical distribution of the performance of the control software generated by each method under analysis on each of the five mission
considered. The last column displays the normalized performance of each method, aggregated across the five missions. Aggregation is performed using the
min-max normalization technique described in Methods under the heading Statistics. The black line represents the empirical distribution of the
performance observed in real-robot experiments; the gray one, the one obtained in simulation.
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constrain the design process to generate only control software
whose real-world performance is expected to be correctly pre-
dicted by the simulator. The method requires periodic runs
with the robots during the design process, which cannot
therefore rely on simulation only. Floreano and Mondada49

proposed a method that originally blends ideas from off-line

and on-line design: the update rules of the neurons and their
parameters are defined off-line in simulation; the synaptic
weights are subsequently adapted on-line. Also the idea
underlying the development of Chocolate—that is, restrict-
ing the design space to reduce the risk of overfitting—could be
possibly applied in the context of neuro-evolutionary robotics.

Fig. 6 Trajectories of the robots throughout the entire median runs. For each method on each mission, we report the execution in simulation (top row for
each mission) and reality (bottom row for each mission) of the instance of control software that obtained a median performance in reality, out of the
instances produced by that method for that mission. The color of a spot represents the amount of time a robot spent on that spot during the execution. If a
robot were to stay on a spot for more than a quarter of the entire execution, the color of that spot would be dark blue (value 0.25 in the color scale). The
figure indicates that the control software produced by the evolutionary approaches cover the space differently in simulation and reality: in reality, the
robots tend to form clusters, mostly against the walls. Differences between simulation and reality are less pronounced for Chocolate and barely
noticeable for RandomWalk. For each mission and each method, a direct comparison of the behavior in simulation and reality is available in Supplementary
Movie 6.
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Indeed, restricting the design space is effectively a form of
regularization and a variety of regularization techniques that
could be ported to neuro-evolutionary robotics have already
been described in the neural network literature50,51. For
example, although further research is needed to develop a
reliable method, previous results52 indicate that a popular
regularization technique known as early stopping53–56 has the
potential to increase the robustness to the reality gap of neuro-
evolutionary methods for the automatic design of robot
swarms. In the light of the results of our experiments, we are
convinced that the adoption of an appropriate regularization
technique is the most promising direction to be explored in the
development of the neuro-evolutionary approach to the auto-
matic off-line design of robot swarms.

Our main conclusions are: (i) Experiments with real robots are
of paramount importance to have a correct picture: simulation
gives a falsely overoptimistic assessment of the methods under
analysis. (ii) The advanced features of CMA-ES, xNES, and NEAT
do not appear to provide any practical advantage over the
straightforward EvoStick. In any case, possible (minor) dif-
ferences observed between the methods in simulation disappear
when the control software is ported to the robots. (iii) The real
issue is the lack of robustness to the reality gap of the currently
available neuro-evolutionary methods for the automatic off-line
design of robot swarms. This is the issue on which, in our opi-
nion, future research should focus. (iv) RandomWalk was sub-
stantially unaffected by the reality gap. This corroborates the
conjecture that the performance drop associated with the reality
gap is to be understood as the result of a sort of overfitting, which
does not happen in the case of the random walk as it does not
involve any optimization performed in simulation. (v) Choco-
late experienced a much smaller performance drop than the
neuro-evolutionary methods under analysis. This confirms the
validity of the original idea of reducing the risk of overfitting by
restricting the design space, which is effectively a regularization
technique. It is our contention that this technique—or another of
the several regularization techniques previously described in the
neural network literature—can be ported to neuro-evolutionary
robotics and is a promising avenue to address the reality-gap
problem in the application of neuro-evolution to the automatic
off-line design of control software for robot swarms.

Methods
e-puck. The robot used in the research is the e-puck57, a small differential-drive
robot that measures 50 mm of height and 70 mm of diameter. The e-puck is
equipped with several sensors and actuators including infrared transceivers to
detect the presence of surrounding obstacles and/or measure the intensity of the
ambient light, and ground sensors to read the gray-scale color of the ground
beneath. For the purpose of the research presented here, the e-puck was enhanced
with two extension boards: (i) the range-and-bearing58, which enables a robot to
sense the presence of neighboring peers and estimate their relative position; and (ii)
the Overo Gumstix, a Linux board that increases the computing power and flex-
ibility of the robot. A picture of the e-puck in the configuration adopted in the
experiments is given in Fig. 1a.

Reference model. In this study, the e-puck is formally described by the reference
model RM 1.1 given in Fig. 1b—see Hasselmann et al.59 for more details. All design
methods comprised in the study generate control software that interacts with the e-
puck exclusively through the variables defined in RM 1.1.

Simulator. All simulations are performed using ARGoS60, a simulator specifically
conceived to simulate robot swarms. We used version 48 of ARGoS, along with the
ARGoS-Epuck library61, which provides models for all extension boards. The
library also enables the cross-compilation of the control software for the e-puck
platform so that it can be ported to the robots without any modification62. The
models of the e-puck’s components have been conceived on the basis of real-world
data sampled from the robot’s sensors and actuators, according to the best
practice37,63.

Arena. The robots operate in an arena of 4.91 m2 surrounded by walls and possibly
containing obstacles. The floor is gray, with some regions that are white or black,
depending on the mission to be performed—see below. In some missions, a single
light source, placed next to the arena, is on for the whole duration of an experi-
mental run. This light source is filtered with a red gel to avoid overexposure of the
overhead camera of the tracking system (see Experimental setting), but still be
detectable by the robots’ light sensors, which are particularly sensitive to the infra-
red and the lower range of the visible spectrum.

Design methods under analysis. All neuro-evolutionary methods under analysis
generate neural networks with 2 output and 25 input nodes. The 2 outputs define
the velocity of the wheels. Concerning the inputs, 1 is a bias node, 8 encode the
readings of the proximity sensors, 8 those of the light sensors, 3 those of the ground
sensors, 1 encodes the number of neighbors perceived, and 4 the projections of the
range-and-bearing vector V on the four unit vectors that point at 45°, 135°, 225°,
and 315° with respect to the head of the robot. Inputs and outputs are described by
RM 1.1—see Fig. 1b. The values of the synaptic weights range in [− 5; 5].

CMA-ES-slp is based on CMA-ES42, an evolutionary algorithm in which the
population is described in statistical terms via the covariance matrix of its
distribution—slp is the mnemonic for single-layer perceptron: the network
generated has a fully-connected feed-forward topology without hidden layers. The
population size λ and the initial step-size σ0 are hyper-parameters of the
optimization algorithm. We set λ= 100, a common choice in the literature31; and
σ0= 5, that is, half the width of the parameter range, the initial population will
therefore cover the entire search space—the same choice was made also in several
other studies64–66.

CMA-ES-mlp is derived from CMA-ES-slp and differs from it only in the
topology of the network, which is here a fully-connected feed-forward neural
network with one hidden layer composed of 14 nodes, including a bias node. The
size of the hidden layer is the average of the number of nodes in the input and
output layers, as recommended by Heaton67—mlp is the mnemonic for multi-layer
perceptron: the input nodes are initially all connected to the hidden nodes, which
are in turn all connected to the output.

xNES-slp is based on xNES43, an evolutionary algorithm similar to CMA-ES
but in which the update rule is defined in a principled way. The hyper-parameters
and their values are the same as in CMA-ES-slp. Also the network topology is the
same one adopted in CMA-ES-slp.

xNES-mlp is derived from xNES-slp and differs from it only in the network
topology, which is here a fully-connected feed-forward neural network with one
hidden layer of 14 nodes, including 1 bias node—the same topology adopted in
CMA-ES-mlp.

NEAT-A-slp is based on NEAT44, a neuro-evolutionary algorithm that
optimizes both the weights and the topology of the neural network. The design
process is initialized with a fully connected feed-forward neural network with no
hidden layers—slp is the mnemonic for single layer perceptron: the input nodes are
initially all connected to the output. The hyper-parameters of NEAT-A-slp are
those originally published by Stanley and Miikkulainen44 and recommended by
them. They are labeled as pole2_markov in the original software package released
by the authors.

NEAT-A-nl is derived from NEAT-A-slp and differs from it only in the
initialization of the design process, which is here a disconnected network—nl is the
mnemonic for no link: the input nodes are initially disconnected from the output.

NEAT-B-slp is similar to NEAT-A-slp and differs from it only in the value
of a few hyper-parameters. The hyper-parameters of NEAT-B-slp are those
labeled as params256 in the original software package published by Stanley and
Miikkulainen44. The differences between set A (presented above) and B are that set
B has a higher compatibility coefficient (leading to less species creation), set A
penalizes old species whereas set B does not, and most importantly that set B can
generate recurrent networks.

NEAT-B-nl is derived from NEAT-B-slp and differs from it only in the
initialization of the design process, which is here a disconnected network: the input
nodes are initially disconnected from the output.

EvoStick is a rather standard neuro-evolutionary robotics method. It was
introduced by Francesca et al.68 and then used as a yardstick to evaluate other
design methods26,41. To the best of our knowledge, EvoStick is the only neuro-
evolutionary method that has been tested on more that one single mission without
undergoing any mission-specific modification. EvoStick generates a fully-
connected feed-forward neural network with no hidden nodes. EvoStick uses an
evolutionary algorithm based on elitism and mutation. A population of 100
individuals is sampled at the beginning of the process; at each generation, the best
20 individuals are selected and passed unchanged to the following generation;
random mutations are applied to these same 20 individuals to form the remaining
80 individuals of the new population.

Chocolate belongs to the AutoMoDe26 family of design methods. It
generates control software by assembling predefined modules into probabilistic
finite-state machines and by fine-tuning their free parameters41. The modules on
which Chocolate operates are 6 low-level behaviors and 6 conditions. A low-
level behavior is an action that a robot performs and a condition is a criterion for
transitioning from the current low-level behavior to another one. The low-level
behaviors are: exploration, stop, phototaxis, anti-phototaxis, attraction-to-
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neighbors, repulsion-from-neighbors. The 6 conditions are: black-floor, white-
floor, gray-floor neighbor-count, inverted-neighbor-count, fixed-probability. The
space of the possible combinations of the aforementioned modules is explored
using Iterated F-race69.

RandomWalk is a ballistic-motion random walk: the robot moves straight until
it encounters an obstacle. When this happens, the robot rotates on itself for a
random number of timesteps and resumes it straight motion, if the path is clear;
otherwise, it rotates for another random number of timesteps. This sequence is
repeated indefinitely. RandomWalk is not an automatic design method as no
parameter is tuned. It is included in the study as a lower bound on the
performance.

Missions. XOR-AGGREGATION: the robots must choose one of two black areas and
aggregate to it. The size of the black areas and their positions are given in Fig. 2.
The performance of the swarm is measured by the following objective function:

Fa ¼ ∑
T

t¼1
∑
N

i¼1
IiðtÞ; IiðtÞ ¼

1; if robot i is in the area with the majority of robots;

0; otherwise:

�
ð1Þ

T= 180 s is the duration of the experimental run and N= 20 is the size of
the swarm.

HOMING: the robots start in the upper part of the arena and must aggregate on
the black area situated at the bottom. The size of the black area and its position are
given in Fig. 2. The performance of the swarm is measured by the following
objective function:

Fh ¼ ∑
N

i¼1
IiðTÞ; IiðTÞ ¼

1; if robot i is in the black area at timeT;

0; otherwise:

�
ð2Þ

T= 120 s is the duration of the experimental run and N= 20 is the size of
the swarm.

FORAGING: the robots must find one of the black areas, which represent food
sources, and go back to the white one, which represents the nest. A light source is
positioned behind the nest. The size of the areas of interest and their positions are
given in Fig. 2. The performance of the swarm is measured by the following
objective function:

Ff ¼ K; ð3Þ
where K is the total number of round trips performed. The duration of an
experimental run is T= 180 s and the swarm size is N= 20.

SHELTER: the robots must aggregate in the shelter, a rectangular white area
positioned in the center of the arena and surrounded by walls on three sides. A
light source is positioned outside the arena, in front of the open side of the shelter.
The arena also features two black circular areas, next to the shelter. These areas do
not have any predefined purpose/role in the definition of the mission: they are
noise-features of the environment. The size of the shelter, the one of the black
areas, and their positions are given in Fig. 2. The performance of the swarm is
measured by the following objective function:

Fs ¼ ∑
T

t¼1
∑
N

i¼1
IiðtÞ; IiðtÞ ¼

1; if robot i is in the shelter;

0; otherwise:

�
ð4Þ

T= 180 s is the duration of the experimental run and N= 20 is the size of
the swarm.

DIRECTIONAL-GATE: the robots must traverse the gate, which is positioned in the
center of the arena. They must do so from North to South. The gate is identified by
white ground and the robots can follow a black corridor to reach it. The size of the
gate, the one of the corridor, and their positions are given in Fig. 2. The
performance of the swarm is measured by the following objective function:

Fg ¼ K � K 0; ð5Þ
where K is the number of times robots traverse the gate in the correct sense and K 0

is the number of times they traverse it in the wrong one. The duration of an
experimental run is T= 120 s and the swarm size is N= 20.

Protocol
Experimental setting. All real world experiments presented in this paper were
performed in a controlled environment. The simulation environment was made to
reproduce this setup as closely as possible. All experiments involved a swarm of 20
e-puck robots that operated in a wooden-wall arena with black and white paper
patches on the ground. For each mission, each method was executed 10 times so as
to obtain 10 instances of control software. Each design process was allowed the
same budget of 200,000 simulation runs. To avoid introducing any bias, robot
experiments were randomized and no experimental run performed was discarded.
The performance of the swarm was computed automatically using data provided by
a tracking system70 that registered the position of the robots throughout the
duration of each experimental run. The position of the robots was not commu-
nicated to the robots themselves, which had only a local perception of the envir-
onment, coherently with the tenets of swarm robotics. The tracking system is based
on an overhead camera and recognizes tags mounted on the robots—see Fig. 1a.
Videos of all the experimental runs were recorded using the camera of the tracking
system and are available as Supplementary Movies 1–5.

Statistics. We used notched box-and-whiskers plots to represent the performance of
the different methods. In these plots, the thick horizontal line represents the
median; the box extends to the upper and lower quartile; the upper/lower whiskers
extends to the maximal/minimal observation that falls between the upper/lower
quartile and 1.5 times the interquartile range; circles represent outliers, that is
observations that fall beyond the whiskers. Notches on the box represent a 95%
confidence interval on the median, and extend to ± 1:58 IQR =

ffiffiffi
n

p
, where IQR is

the interquartile range and n is the number of observations. The difference between
the medians of two boxes is significant with a confidence of at least 95% if the
notches of the respective boxes do not overlap71.

To aggregate the performances of the different methods across all missions, we
used the min-max normalization technique: for each mission, we normalized the
performances obtained in reality and in simulation with the minimal and maximal
performance obtained in reality across all design methods. As a result, the
normalized performance in reality ranges between 0 and 1, but the normalized
performance in simulation might exceed 1 if instances of control software
performed better in simulation than the maximal performance value obtained in
reality. We also executed a Friedman test72, which aggregates all results by ranking
the performance of all methods across all missions. We present the results in a plot
that represents an estimate of the expected rank of each method and the relative
95% confidence interval. The performance of two methods is significantly different
with confidence of at least 95% if the corresponding intervals do not overlap.

Data availability
All results obtained in simulation and real robot experiments are available as
Supplementary Data 1. Source data are provided with this paper.

Code availability
The software used in the study is available online via the following repositories: ARGoS3-
NEAT (https://doi.org/10.5281/zenodo.4849517) for the implementation of NEAT-A-
{slp∣nl}, NEAT-B-{slp∣nl} and EvoStick; ARGoS3-pagmo2 (https://doi.org/
10.5281/zenodo.4849533) for the implementation of CMA-ES and xNES; ARGoS3-
AutoMoDe (https://doi.org/10.5281/zenodo.4849541) for the implementation of
Chocolate and RandomWalk; demiurge-epuck-dao (https://doi.org/10.5281/
zenodo.4849535) for the reference model of the robots used by all design methods;
experiments-loop-functions (https://doi.org/10.5281/zenodo.4849539) for the functions
used to compute the score in the various missions; argos3-epuck (https://doi.org/10.5281/
zenodo.4882714) for the e-puck robot ARGoS3 plugin; ARGoS3 (https://doi.org/10.5281/
zenodo.4889111) for the ARGoS3 simulator; and irace (https://doi.org/10.5281/
zenodo.4888996) for the Iterated F-race algorithm. The scripts for installing the software
and running the experiments and the control software automatically generated by the
different methods comprised in the study presented here are available as Source Data.
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