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ABSTRACT
We investigate the automatic design of communication in swarm robotics through
two studies. We first introduce Gianduja an automatic design method that generates
collective behaviors for robot swarms in which individuals can locally exchange a
message whose semantics is not a priori fixed. It is the automatic design process that,
on a per-mission basis, defines the conditions under which the message is sent and the
effect that it has on the receiving peers. Then, we extend Gianduja to Gianduja2 and
Gianduja3, which target robots that can exchange multiple distinct messages. Also in
this case, the semantics of the messages is automatically defined on a per-mission basis
by the design process. Gianduja and its variants are based on Chocolate, which does
not provide any support for local communication. In the article, we compare Gianduja
and its variants with a standard neuro-evolutionary approach. We consider a total of
six different swarm robotics missions. We present results based on simulation and tests
performedwith 20 e-puck robots. Results show that, typically, Gianduja and its variants
are able to associate a meaningful semantics to messages.

Subjects Adaptive and Self-Organizing Systems, Agents and Multi-Agent Systems, Artificial
Intelligence, Robotics
Keywords Swarm robotics, Communication, Automatic design, Swarm, Robotics

INTRODUCTION
Communication can have a major impact on the performance of groups of robots (Kirby,
2002). This is particularly true in swarm robotics, where robots are deemed to cooperate to
effectively perform amission that an individual would not be able to perform alone (Dorigo,
Birattari & Brambilla, 2014). In general, designing collective behaviors for robot swarms is
challenging (Brambilla et al., 2013). Including effective communication mechanisms in the
design makes it even more challenging (Balch, 2004).

Automatic methods are a promising way for designing robot swarms (Francesca &
Birattari, 2016). In automatic design, the design problem is reformulated as an optimization
problem in which design choices are the parameters to be optimized. An optimization
algorithm searches the space of the possible solutions to maximize a mission-specific
performance metric. Most of the advances in the automatic design of robot swarms
belong in the neuro-evolutionary approach; robots are controlled by an artificial neural
network that is trained via an evolutionary algorithm—for example, see Jakobi, Husbands &
Harvey (1995), Urzelai & Floreano (2000), Nolfi & Floreano (2000), Trianni (2008), Gauci
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et al. (2014) and Silva et al. (2015). Besides neuro-evolution, other approaches have been
proposed. For example, Francesca et al. (2014a) used probabilistic finite-state machines as
a control architecture for the individual robots, while Jones et al. (2016) and Kuckling et al.
(2018) used behavior trees.

In this paper, we study the automatic design of collective behaviors for robot swarms
that are capable of local communication. We consider robots that can locally exchange
messages. Our goal is to define and study methods that design collective behaviors for
these robots and automatically define a semantics for the messages they can exchange.
We propose Gianduja, an automatic design method that extends Chocolate (Francesca et
al., 2015) by adding messaging capabilities to the robots—Gianduja and Chocolate are
described in the following. By extending the capabilities of Chocolate, we also intend to
corroborate the hypothesis made in Francesca et al. (2014a) that adding bias to the design
method, by restricting the representational power of the control architecture it optimizes,
allows it to generate solution that are more robust to the so-called reality gap (Ligot &
Birattari, 2019; Jakobi, Husbands & Harvey, 1995). In Gianduja, robots can exchange a
single bit of information, which amounts to broadcasting a message or not. We consider
also two variants of Gianduja: Gianduja2 and Gianduja3, in which robots can exchange
two and three bits of information, respectively—details are provided in the following.
We first study Gianduja on three missions that a robot swarm can perform relying on
exchanging one bit of information. Then, we study Gianduja2 and Gianduja3 on more
complex missions in which a one-bit communication is not sufficiently informative to
allow the coordination of the swarm.

Using a neuro-evolutionary approach,Quinn (2001) has already shown that it is possible
to assign an implicit semantics to a message via an automatic design process. Nonetheless,
his result is only marginally relevant to our research as it concerns only a pair of robots
rather than a swarm. Moreover, the result was obtained on a single specific mission and
does not immediately generalize to other missions. The study was performed in simulation
only. In this paper, we automatically design collective behaviors based on communication
for six different missions and we test them on a swarm of 20 e-puck robots. For all missions
considered, the automatic design methods are able to assign an implicit semantics to the
messages that robots exchange.

The research we present in this article belongs in the so-called automatic off-line
design (Francesca & Birattari, 2016; Birattari et al., 2019). We consider a number of
missions and for each of them, the control software is designed automatically, without any
human intervention. The design phase is performed in simulation and the control software
generated is directly ported to the robots, without any manual modification, to be assessed.
Each mission is formally specified through a performance measure, an arrangement of
the environment, and the definition of an area from which the robots are deployed. We
follow the tenets of the research in automatic off-line design, as defined in Birattari et al.
(2019): ‘‘(i) automatic off-line design methods should not be mission-specific and should
be able to address a whole class of missions without undergoing any modification; (ii)
once a mission is specified, human intervention is not provided for in any phase of the
design process’’. This implies that the designer cannot either conceive a specific method
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for a given mission at hand or fit an existing one to it by, for example, fine-tuning the
parameters of the optimization algorithm. Specifically, the designer cannot run the design
process multiple times and assess the outcome using simulated or real-robot experiments
to gain insight on the mission at hand for then using their understanding to improve the
simulation models or to modify/enrich the objective function in order to bootstrap the
design process or prevent that undesirable behaviors emerge.

RELATED WORK
The emergence of signaling, syntax, and language in artificial agents has been widely studied
from the perspectives of language sciences and engineering—for example, Steels (1998),
Billard & Dautenhahn (1999), Cangelosi (2001), Loula et al. (2010)). In swarm robotics,
two forms of communication are considered; indirect and direct communication. The
first mainly refers to a form of communication displayed by social insects and known
as stigmergy. This type of communication occurs by modification of the environment
(Deneubourg et al., 1990; Garnier, Gautrais & Theraulaz, 2007). Direct communication, on
the other hand, implies direct exchange of information between agents. In robotics, this
kind of communication is usually implemented using infrared messaging, radio signals,
sound signals or visual color signals (Gutiérrez et al., 2009; Quinn, 2001; Trianni, Labella
& Dorigo, 2004; Ducatelle et al., 2011; Ferrante et al., 2014; Campo et al., 2010). In this
paper, we focus on the design of direct communication between robots of a swarm. In the
following, we refer to direct communication as simply communication.

The literature is extensive when it comes to multi-robot systems that use a form of
communication. However interesting, many of these studies are outside the scope of this
paper because they concern systems in which communication is a priori designed—
for example, Balch & Arkin (1994), Cao et al. (1997); Jones & Mataric (2004); Fong
& Nourbakhsh (2009); Balch (2004), Werfel, Petersen & Nagpal (2014), Ducatelle et al.
(2011); Ferrante et al. (2014); Campo et al. (2010). We focus here on studies that involve
the automatic design of communication in swarm robotics. Most existing studies
on communication in swarm robotics were conducted in the framework of neuro-
evolutionary robotics (Nolfi & Floreano, 2000; Trianni, Labella & Dorigo, 2004;Wischmann
& Pasemann, 2006; Trianni, 2008; Marocco & Nolfi, 2006a; Wischmann, Floreano & Keller,
2012; Trianni, 2014; Uno et al., 2011). Quinn and coworkers (2001, 2003) studied for
the first time the emergence of communication between agents. In their studies, robots
developed communicative behaviors by detecting certain motion patterns of their peers,
without the use of a dedicated communication device. The robots established a social
interaction and assumed leader and follower roles. In Nolfi (2005) and Marocco & Nolfi
(2006b), a group of robots evolved to solve a collective navigation problem. Robots were
controlled by a neural network and could use four different signals. Without directly
rewarding communicative behaviors, the evolutionary process produced behaviors that
make an effective use of communication. The system was tested in simulation and on a
swarm of four robots. Floreano et al. (2007) also studied the evolution of communicative
behaviors using neuro-evolutionary robotics. In their study, the robots used visual signals
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to communicate the location of a food source. In their experiments conducted with
physical robots, communication increased the performance of the swarm with respect
to a non-communicative swarm. In Ampatzis et al. (2008), two robots had to recognize
features of their environment and react accordingly. The robots were controlled by neural
networks and could use their on-board speakers and microphones to communicate using
acoustic signals. During the evolutionary process, communication emerged as a result
of the performance improvement it allowed, even though it was not directly rewarded.
The authors tested the performance of the robots both in simulation and reality with
two s-bot robots (Mondada et al., 2003). Trianni & Nolfi (2009) studied the emergence
of syncing behaviors in robot swarms. In this work s-bots robots capable of sending a
sound message had to synchronise their motion. The robot were controlled by a neural
network trained with an evolutionary algorithm. The authors tested the scalability of
the system in simulation with up to 96 robots and tested with two and then three real
robots. The origin of communication from a neuro-evolutionary perspective was studied
by Tuci (2009). The same two robots considered in the previous study had to perform
a categorization task using communication based on acoustic signals. The evolutionary
process produced behaviors that use communication to improve performance although
communication was not explicitly rewarded. Experiments were conducted in simulation
only. In Marocco & Nolfi (2006a), the authors studied the emergence of communication
behavior in a swarm of four simulated robots tackling an aggregation task. The robots
were controlled by a neural-network and had to equally divide themselves in the two
circular spots placed in the arena. The analysis of the evolutionary process showed
that the robots acquired the ability to solve the problem by developing an effective
communication system. The authors point out that co-adaptation of communication and
motor skills on the robot play a big role in the emergence of communication. In Uno
et al. (2011) the authors extended the work of Marocco & Nolfi (2006a) by investigating
the relationship between robots and conditions of emergence of communication from
the point of view of language sciences. The setup and task in this study is similar to
the one of Marocco & Nolfi (2006a). Simulation were conducted using a swarm of two
robots conducting an aggregation task with color spot cues. The work of De Greeff &
Nolfi (2010) also extends the one of Marocco & Nolfi (2006b). In their works the authors
studied the importance of direct and indirect communication (namely explicit and implicit
communication) by using bluetooth for direct communication and proximity sensors
for indirect communication. The robots were controlled by a neural-network that was
evolved using an evolutionary algorithm. Experiments with real robots were conducted
with two e-puck robots. Communication was also studied by Wischmann, Floreano &
Keller (2012), who compared different communication strategies evolved from the same
initial population and highlighted the trade-off between communication efficiency and
robustness. Experiments were run in simulation only.

The research we present in this paper is related to the one of Ampatzis et al. (2008)
and Tuci (2009). Indeed, our goal is to define an automatic design process in which
messages that do not have an a priori semantics are effectively used to communicate.
Messages are associated with a semantics by the design process, on a per-mission basis.
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GIANDUJA
Gianduja and all its variants that we will present in the following are based on Chocolate

(Francesca et al., 2015). As Chocolate, they belong to the AutoMoDe class of methods
originally defined by Francesca et al. (2014b). These methods automatically generate
control software by assembling predefined, mission-agnostic software modules. Like
Chocolate, Gianduja produces control software for the e-puck platform (Mondada et
al., 2009), extended with three hardware modules: the Overo Gumstix, the ground sensor,
and the range and bearing. The e-puck is a circular two-wheeled robot, whose diameter
is about 70 mm. It has 8 IR transceivers, positioned all around its body, that double as
light and proximity sensors. The Overo Gumstix module is a single-board computer that
allows the e-puck to run Linux. The ground sensor module allows the e-puck to perceive
the color of the floor. The range-and-bearing module (Gutiérrez et al., 2009) is an infrared
communication device for local sensing and messaging. It operates by broadcasting every
100 ms a 2-byte ping : one byte encodes the sender ID and the other an arbitrary payload.
The ping can be received by robots within a range of about 0.7 m from the sender. A
robot that receives a ping is able to estimate the relative position of the sender in polar
coordinates—range and bearing, hence the name of the device.

As in Chocolate, the control software also in Gianduja, has the form of a probabilistic
finite-state machine, which is assembled using pre-existing, mission-independent modules.
Modules are either behaviors to be used as states of the state machine or conditions to be
associated with its edges. Conditions determine whether a transition should happen or
not. Modules may have tunable parameters that modify their functioning. The topology
of the probabilistic finite-state machine, the behaviors and the conditions to be included,
and the value of their parameters are determined by an optimization algorithm that
maximize a mission-specific performance measure. The optimization algorithm adopted
in Gianduja, as well as in Chocolate, is iterated F-race (Balaprakash, Birattari & Stützle,
2007; Birattari et al., 2010). Within the optimization process, simulations are performed
using ARGoS3 (Pinciroli et al., 2012).

The only element in which Gianduja differs from Chocolate is that in Gianduja the
modules have parameters that control local communication between robots. Each robot
can locally broadcast messages and receive those broadcast by neighboring peers. Messages
are a priori pure signifiers: they are not associated to any semantics. It is the optimization
algorithm that, on a per-mission basis, gives a meaning to messages, that is, associates a
semantics to signifiers. In the context of this research, giving a meaning to a message means
to define (i) the conditions under which the sender broadcasts the message and (ii) the
effects that the message has on the recipient’s behavior.

In the following, we present the results of two studies. In Study A, we focus on the
automatic design of collective behaviors for robots that locally broadcast one bit of
information using the range-and-bearing module. In practice, robots communicate by
setting a one-bit flag of the ping’s payload. A robot that perceives a neighboring peer via
the range-and-bearing module—that is, that receives its ping—will read the flag: if it is set,
the neighboring peer is broadcasting the message; otherwise, it is not.

Hasselmann and Birattari (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.291 5/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.291


In Study B, we generalize Study A to robots that locally broadcast two (or three) bits
of information via the range-and-bearing module. In this case, a robot communicates by
writing two (or three) bits of the ping’s payload. As a result, robots broadcast/react to three
(or seven) distinct messages—that is, 22−1 (or 23−1), where the−1 accounts for the case
in which a robot does not broadcast any message.

Experiments in Study A are performed with real robots and in the so-called pseudo-
reality. A pseudo-reality is a simulation model, different from the one on which the
design process has been performed. It has been shown that experimental runs in pseudo-
reality provide indications on the intrinsic ability of a method to cross the reality gap
successfully (Ligot & Birattari, 2019). After having validated the ability of pseudo-reality
to provide reliable evaluations, we will adopt it as the exclusive device to perform the
experiments on Study B. Performing these experiments with real robots would be time
consuming and would not give any further contribution to the scientific message of the
paper.

Study A: One bit of information.
In this section, we study the automatic design of behaviors for robots that exchange one
bit of information.

Design methods
In Study A, we consider four design methods.

Chocolate
Chocolate (Francesca et al., 2015) generates probabilistic finite-state machines by
assembling parametricmodules—behaviors and conditions—that exploit the capabilities of
the e-puck platform, as formally defined by the reference model RM1.1; further details are
available in Hasselmann et al. (2018). It is important to notice that Chocolate’s modules
are strictly part of the definition of Chocolate itself. They were defined once and for all
in a mission-agnostic way (Francesca et al., 2014b). They are not supposed to be modified
or integrated by other modules when Chocolate is applied to a specific mission. Yet,
these modules have parameters that impact their functioning and that are automatically
fine-tuned on a per-mission basis. In Chocolate, low-level behaviors are:

exploration: the robot performs a random walk, while avoiding obstacles;
stop: the robot stands still;
phototaxis: the robot goes towards the light source, if perceived;
anti-phototaxis: the robot goes in the opposite direction;
attraction-to-neighbors: the robot goes towards its neighboring peers;
repulsion-from-neighbors: the robot goes in the opposite direction.

Conditions are:
black-floor: change state if floor is black;
white-floor: change if it is white;
gray-floor: change if it is gray;
neighbor-count: change if sufficiently many neighboring peers are perceived;
inverted-neighbor-count: change if they are sufficiently few;
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fixed-probability: change state with a fixed probability.
For details on these modules and their tunable parameters, we refer the reader to the

original publication in which the modules were introduced (Francesca et al., 2014b).
The topology of the probabilistic finite-state machine, the modules to be included and

their parameters are defined by an optimization process. The space of the probabilistic
finite-state machines that Chocolate can possibly generate is constrained to those
comprising at most four states having each at most four outgoing edges. As an optimization
algorithm, Chocolate uses the implementation of iterated F-race provided by the R package
irace (López-Ibáñez et al., 2016), with its default parameters. Iterated F-race is based
on F-race (Birattari et al., 2002), a racing procedure (Maron & Moore, 1997) originally
proposed for the automatic configuration of stochastic optimization algorithms and
metaheuristics (Hoos & Sttzle, 2004; Gendreau & Potvin, 2019). In F-race, a set of candidate
solutions are randomly sampled and then sequentially evaluated, over a set of test cases,
to eventually select the most suitable one. Along the sequential evaluation of candidate
solutions, a Friedman test is repeatedly performed to identify candidate solutions that
perform significantly worse than at least another one. These solutions are discarded so
that the evaluation can focus on the best ones. The algorithm terminates when only one
candidate solution remains or when a predefined budget of evaluations is depleted. Iterated
F-race consists of multiple iterations of F-race. After the first iteration, each subsequent one
operates on a set of candidate solutions that are sampled around those that the previous
iteration selected as the best ones. The algorithm terminates when a predefined budget
of evaluations is depleted. Within the optimization process, simulations are performed
using the ARGoS3 simulator (Pinciroli et al., 2012), version beta 48, together with the
argos3-epuck library (Garattoni et al., 2015). ARGoS3 is a modular multi-physics robot
simulator specifically conceived to simulate robot swarms. Chocolate uses ARGoS3’s 2D
dynamic physics engine to simulate the robots and the environment. The argos3-epuck
library provides low-level implementations of the sensors and actuators of the e-puck
robot with fine control on noise levels for all actuators and sensors. ARGoS3 and the
argos3-epuck library inject a realistic level of sensor and actuator noise in all simulations
as suggested byMiglino, Lund & Nolfi (1995) as a good practice for reducing the impact of
the reality gap.

As Chocolate is unable to produce behaviors that leverage communication, it will likely
fail to be effective on the missions we consider in the following of the paper. We include it
in the analysis to act as a baseline, so as to appraise the importance of communication.

EvoCom
EvoCom is an automatic design method that extends EvoStick (Francesca et al., 2014a) by
adding communication capabilities. EvoStick is a standard neuro-evolutionary robotics
method. It was used in Francesca et al. (2014a) as a yardstick against which the authors
compared their newly proposed method, but had been previously analyzed in Francesca et
al. (2012). EvoStick was then included in other empirical studies (Francesca et al., 2014a;
Francesca et al., 2015; Birattari et al., 2010; Ligot & Birattari, 2019). We chose EvoStick as
a starting point for our development because, to the best of our knowledge, it is the only
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Table 1 Reference model RM 2.Novelties are highlighted with respect to RM 1.1. They concern the
ability to send and react to one bit of information. Vb is computed in the same way as V by restricting to
broadcasting neighboring robots.

Input Value Description

proxi∈{1,...,8} [0,1] reading of proximity sensor i
lighti∈{1,...,8} [0,1] reading of light sensor i
gndj∈{1,2,3} {black, gray, white} reading of ground sensor j
n [0,19] number of neighboring robots perceived
V

(
[0.5,20],[0,2π ]

)
their relative aggregate position

b [0,19] number of messaging neighbors perceived
Vb

(
[0.5,20],[0,2π ]

)
their relative aggregate position

Output Value Description

vk∈{l,r} [−0.12,0.12] target linear wheel velocity
s {on,off } broadcast state

Notes.
Period of the control cycle: 100 ms.

neuro-evolutionary method for the design of robot swarms that has so far been studied
following the tenets of off-line automatic design (Birattari et al., 2019), as defined in the
Introduction. Namely, it is the only neuro-evolutionary design method that has been tested
on multiple missions without any mission-specific modification so as to evaluate its ability
to generate control software without any human intervention. The goal for EvoCom is to
introduce a comparison point with Gianduja, the idea is not to find the best possible
neural network topology for a given mission but rather to use a general purpose topology
that could work with any given mission.

EvoCom creates a feed-forward fully-connected neural network with no hidden nodes,
which comprises 30 input nodes and 3 output nodes. Inputs and outputs are based on the
elements of the reference model RM2, see Table 1.

The inputs are: 8 proximity sensors, 8 light sensors, 3 ground sensors, 10 values computed
based on data from the range-and-bearing module, and 1 bias. The outputs are: 2 for wheel
speed and 1 for broadcasting the message. The proximity sensors, light sensors, and ground
sensors directly feed their value, as defined in RM2, to the corresponding inputs of the
neural network. The range-and-bearing module determines the values of 10 inputs: 5
inputs concern the detection of neighboring peers and are computed on the basis of n and
V ; the other 5 concern messages received and are computed on the basis of b and Vb. Also
in the case of n, V , b, and Vb, the definition is given in RM2. One of the five inputs devoted
to neighboring peers equals z(n)= 1− 2

1+en ; the other four are the scalar projection of V
onto four unit vectors that point at 45◦, 135◦, 225◦, and 315◦ with respect to the front of
the robot. One of the five inputs devoted to messages equals z(b)= 1− 2

1+eb ; the other four
are the scalar projection of Vb onto the aforementioned four unit vectors. The two output
nodes encoding wheel speed range in [−0.12,0.12] m/s . The one devoted to the message
takes a binary value: 1 if the message should be broadcast, 0 otherwise. The activation of
the output neurons is computed as the weighted sum of all input units plus a bias term,
filtered through a logistic function. All synaptic weights are real values in the range [−5,5]
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and are optimized with an evolutionary algorithm. The initial population comprises 100
randomly generated individuals. At each iteration, each individual is evaluated 10 times in
simulation. A new population is obtained via elitism and mutation: the best 20 individuals
are kept unmodified, while the other 80 are obtained by mutation of the 20 best ones.
The evolutionary algorithm stops when a predefined budget of evaluations is depleted. All
simulations are performed using ARGoS3 and the argos3-epuck library under the same
conditions and with the same noise levels as in Chocolate.

Gianduja
As already mentioned, Gianduja is the main method that we propose in this paper. It
addresses the limitation of Chocolate regarding local communication: in Chocolate,
robots cannot explicitly communicate and are only capable of detecting the presence of
peers in their neighborhood. In Gianduja, as this method is based on the same reference
model as EvoCom, namely RM2, robots are able to locally broadcast one message (one bit
of information) and react to it. Messages are sent via the range-and-bearing module by
setting a bit of the ping’s payload. Robots can thus identify their neighbors and estimate
their position.

Gianduja generates control software for the e-puck platform, as formally specified by
RM2, which is the same reference model adopted in EvoCom. Gianduja operates on eight
low-level behaviors. Six are the same of Chocolate, extended with a binary parameter m:
ifm= 1, the message is broadcast while the behavior is performed; otherwise, it is not. The
other two are:

attraction-to-message: the robot goes towards messaging peers;
repulsion-from-message: the robot goes in the opposite direction.

The direction of the messaging peers is provided by Vb, as defined in RM2. Behavior
transitions can be triggered by eight conditions. Six are the same of Chocolate, the other
two are:

message-count: change state if sufficiently many peers are messaging;
inverted-message-count: change if they are sufficiently few.

Under the message-count condition, a state transition happens with probability
z(b)= 1

1+eη(ξ−b) ; under inverted-message-count, the probability is z̄(b)= 1−z(b). Here, η
and ξ are parameters of the behavior to be assigned by the design process.

In all other respects, Gianduja is identical to Chocolate. In particular, the two methods
adopt the same optimization algorithm with the same parameters, the same simulator with
the same noise levels, and the same constraints on how probabilistic finite-state machines
are assembled.

GiandujaE
GiandujaE is derived from Gianduja and differs from it only in the way received messages
are handled. GiandujaE does not use conditions message-count and inverted-message-
count. The mechanism for handling the number of messages received is embedded in all
remaining conditions, which are extendedwith two parameters:message ID ν and threshold
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τ . Message ID can take two values: if ν= 0, the condition behaves as in Gianduja; if ν= 1,
the condition is enabled and behaves as in Gianduja only if the number of neighboring
peers that are messaging is larger than the threshold τ , which can take an integer value
between 0 and 20.

In the following of the paper, a letter E in the name of the method indicates that received
messages are handled as described above—the letter E is the mnemonic for embedded. In
principle, this way of handling messages allows more complex behaviors to be obtained.
It should be expected that the conjunction of a condition along with the presence of a
message allows probabilistic finite-state machine of simpler structure, without sacrificing
capabilities.

Experimental setting
We test and compare the four design methods described above on three different missions.

Missions
In all missions, robots operate in a dodecagonal arena of 4.91 m2. The arena is surrounded
by walls. The floor is gray, although some areas may be black or white, depending on
the specific mission. Details are provided in the following. All mission are intended to be
performed by a swarm of N = 20 robots within T = 120 s.

The three missions are AGGREGATION, STOP, and DECISION. We select them
because, a priori, one could imagine that communication would play a different role
in each of them. Indeed, it is reasonable to expect that AGGREGATION can be solved
without the use of communication but that communication can contribute to increasing
performance. On the other hand, it is reasonable to expect that DECISION and STOP
strictly require communication to be performed. It is also reasonable to expect that the
semantics that the optimization would associate to themessage is different for eachmission.

AGGREGATION. Two circular spots of diameter 0.6 m mark the floor of the arena:
one is white and the other black. They are positioned on the left-hand half of the arena,
0.25 m apart. At the beginning of each run, the robots are randomly positioned in the
right-hand half of the arena so that no robot is on the spots—see Figs. 1A, 1D. The robots
must aggregate on the white spot as quickly as possible. The black spot is included in the
arena to acts as a possible disturbance to the automatic design process.

Performance is measured by the following objective function—the higher, the better:

Ca= 24000−
T∑
t=1

N∑
i=1

Ii(t ); Ii(t )=

{
0, if robot i is on the white spot;
1, otherwise.

Performance is non-negative and its theoretical maximum is 24000.
STOP. One circular white spot with diameter 0.2 m is located near the walls of the arena,

in the top-left quadrant. The spot is smaller than in the other missions so that it is more
challenging for the robots to find it. At the beginning of each run, the robots are randomly
positioned in the right-hand half of the arena so that none of them is on the spot—see
Figs. 1B, 1E). The robots must find the spot as quickly as possible and stop right after.
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Figure 1 Arenas for the three missions: AGGREGATION (A,D), STOP(B,E), and DECISION (C,F);
simulation (A,B,C) and real setup (D,E,F). In DECISION, the central spot may be either black or white-
with equal probability.

Full-size DOI: 10.7717/peerjcs.291/fig-1

Performance is measured by the following objective function—the higher the better:

Cs= 48000−

t̄N +
t̄∑

t=1

N∑
i=1

Īi(t )+
T∑

t=t̄+1

N∑
i=1

Ii(t )

;
Ii(t )=

{
1, if robot i is moving;
0, otherwise;

Īi(t )= 1− Ii(t ).

Here, t̄ is the time at which the first robot finds the white spot. In the definition of Ii (and
Īi), a robot is moving if it traveled more than 5 mm in the last 100 ms. We adopted this
definition to avoid penalizing EvoComwhich is unable to generate behaviors in which robots
can stop still, due to the way the outputs of the neural network are encoded. Performance
is non-negative and its theoretical maximum is 48000.

DECISION. One circular spot with diameter 0.6 m is located in the center of the arena.
In each experimental run, the spot can be either black or white, with equal probability. A
light source is positioned outside the arena, at its right. At the beginning of each run, the
robots are randomly positioned in the arena—see Figs. 1C, 1F. The robots must gather in
the right-hand half of the arena if the spot is white, or in the left-hand side if it is black.
The performance measure—the higher, the better—is:

CD= 24000−
T∑
t=1

N∑
i=1

Ii(t );
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1The choice of performing a single
evaluation of each instance of control
software produced is dictated by statistical
considerations. Given a fixed number of
evaluations, this setting is the one that
minimizes the variance of the estimation of
the expected performance. For a discussion
see Birattari (2020) and the references
therein. For a formal proof—albeit refering
to the different but formally equivalent
problem of estimating the expected
performance of a heuristic optimization
algorithm—see Birattari (2004) and
Birattari (2009).

Ii(t )=

{
0, if robot i is in the correct half of the arena;
1, otherwise.

Performance is non-negative and its theoretical maximum is 24000.

Protocol
We compare four design methods on three missions. All experiments involve a swarm of
20 e-puck robots. For each mission, each method is executed 14 times so as to obtain 14
instances of control software. Each execution is allowed a budget of 200000 simulation
runs. We evaluate each method by running the 14 instances of control software it produced
once in simulation and once in pseudo-reality—explanation follows1. For Chocolate,
Gianduja, and EvoCom, the control software produced is run once also on real robots. The
order of the experimental runs is randomized to avoid any bias. The performance of the
real robots is automatically computed by a tracking system based on an overhead camera
(Stranieri et al., 2013). The simulation model used as a pseudo-reality for the evaluations
of the control software produced is available as Supplemental Information (Hasselmann &
Birattari, 2019).

Statistics. For each mission, we use boxplots for reporting the performance recorded
in simulation using the same model adopted in the design process, in pseudo-reality,
and on real robots—when relevant. Simulation results (either on the design model or in
pseudo-reality) are represented by gray boxes: thin boxes for the results obtained on the
design model and thick ones for those obtained in pseudo-reality. Real-robot results are
represented by thick white boxes. Statements on the relative performance of two methods,
are supported by a Wilcoxon rank-sum test, at 95% confidence (Conover, 1999): any
statement like ‘‘A performs significantly better/worse than B’’ implies that a Wilcoxon
rank-sum test was employed and detected significance with confidence of at least 95%.

We eventually perform a Friedman test (Conover, 1999), which aggregates all results
by ranking the performance of all methods across all missions. We report the results in
a plot that represents the average rank of each method and its 95% confidence interval.
The performance of two methods is significantly different if the corresponding intervals
do not overlap. In the context of an aggregate analysis, any statements like ‘‘A performs
significantly better/worse than B’’ will be based on the observation that the corresponding
intervals do not overlap and will be therefore valid with confidence of at least 95%.

In the whole paper, the adjective significant and the adverb significantly are used only to
refer to statistical significance. Whenever we use these terms, we imply that an appropriate
statistical test (either Wilcoxon or Friedman) has been performed.

Results
Numerical results, videos, code, and probabilistic finite-state machines generated by
Chocolate and Gianduja{ø,E} are available as Supplemental Information (Hasselmann
& Birattari, 2019). In the following, with the notation Gianduja{ø,E}, we will collectively
refer to Gianduja, and GiandujaE.

AGGREGATION. Results are reported in Fig. 2A. Both Gianduja and Chocolate

perform significantly better than EvoCom. Although Gianduja is significantly better than
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Chocolate on the simulation model used for the design, the two perform similarly in
reality. In this particular mission, there is no evidence that GiandujaE improves over
Gianduja. EvoCom suffers more from the (pseudo-) reality gap than the other methods.
Gianduja suffers more from the reality gap than Chocolate: this could be due to the
uncertainty of Vb. Although the ability to detect where a message originates is a potential
advantage, it becomes a burden due to uncertainty.

At visual inspection, in Chocolate robots navigate randomly in the arena and stop
whenever they enter the white spot. In Gianduja{ø,E}, when this happens, robots start
broadcasting themessage to attract neighboring robots. In EvoCom robots randomly explore
the arena until they enter the white spot. When this happens, they spin in place. Videos are
available in Hasselmann & Birattari (2019).

In this mission, pseudo-reality gives a reasonably good indication on the performance
in reality of EvoCom and Chocolate but overestimates the performance of Gianduja.

An example of probabilistic finite-state machine produced by Gianduja is reported
as Supplemental Information (Hasselmann & Birattari, 2019). The robots start in the
exploration state. If they step on white ground, they can transition to stop and start
broadcasting the message. Robots that are still in the exploration state and receive a
sufficiently large number of messages to trigger the message-count condition transition to
the attraction to message behavior. As a result, they will approach the robots that broadcast
the message, eventually reaching the white spot. Seen from the point of view of the sender,
the semantics given to the message is: I am on the white spot ; while, seen from the point of
view of the receiving robots, it is: Go there.

STOP. Results are reported in Fig. 2B. Gianduja performs significantly better than
EvoCom and Chocolate on the simulation model used for the design and in reality. In this
mission, Gianduja performs significantly better than GiandujaE in pseudo-reality.

At visual inspection, EvoCom appears to be unable to use communication effectively
whereas Gianduja{ø,E} do. In EvoCom robots move randomly until their motion is stopped
by the walls of the arena. This behavior is qualitatively similar to the one of Chocolate,
which cannot leverage communication. In Gianduja{ø,E}, robots move randomly until
one of them enters the white spot, when this happens the robot stops and starts sending the
message. Other robots then stop and relay the message. Videos are available inHasselmann
& Birattari (2019).

Chocolate and EvoCom suffer the reality gap more than Gianduja. The performance
in pseudo-reality gives a good indication on the relative drop in performance of the three
methods but, in this case, fails to predict the high variance that we observe in reality.

An example of probabilistic finite-state machine produced by Gianduja is reported as
Supplemental Information (Hasselmann & Birattari, 2019): the robots start by performing
exploration; they transition to stop either if they step on white floor or if they receive the
message from their peers; while in stop, they broadcast the message. Seen from the point
of view of the sender, the semantics given to the message is: I found the white spot ; while,
seen from the point of view of the receiving robots, it is: Stop.

DECISION. Results are reported in Fig. 2C. Gianduja performs significantly better than
EvoCom and Chocolate on the simulationmodel used for the design, in pseudo-reality, and
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Figure 2 AGGREGATION (A), STOP (B), and DECISION (C). Thick white boxes represent the results
of robot experiments; thick gray boxes those of pseudo-reality; thin gray ones, those of simulations per-
formed on the basis of the same simulation model adopted in the design process. The higher the better.

Full-size DOI: 10.7717/peerjcs.291/fig-2

in reality. In pseudo-reality, GiandujaE is slightly but significantly better than Gianduja.
Also, the inter-quartile range observed in this experiment is smaller for GiandujaE
than for the other two methods. Both GiandujaE and Gianduja are significantly better
than Chocolate in pseudo-reality. This indicates that, in this mission, communication
contributes to performances and Gianduja{ø,E} leverage it effectively.
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Figure 3 Friedman test on the aggregate results of the three missions. The plot represents the average
ranks of the three methods and their 95% confidence interval in robot experiments; the lower the better.

Full-size DOI: 10.7717/peerjcs.291/fig-3

At visual inspection, it appears that Gianduja{ø,E} use communication meaningfully.
In all these methods, every realization of the design process selects a default behavior: by
default, at the beginning of a run, the robots either go towards the light or away from
it. While doing so, some robots by chance enter the central spot: if the color does not
correspond to the default behavior, they start broadcasting the message and revert their
direction of motion. Robots that receive the message relay it and revert their direction of
motion as well. In Chocolate, to make an informed decision, each individual robot needs
to enter the central spot. In EvoCom, robots randomly select one side or the other of the
arena. As a result, performance is very inconsistent. Videos are available in Hasselmann &
Birattari (2019).

Gianduja{ø,E} cross the (pseudo-) reality gap in a satisfactory way. In this mission,
pseudo-reality gives a good indication of the performance in reality.

An example of probabilistic finite-state machine produced by Gianduja is reported
as Supplemental Information (Hasselmann & Birattari, 2019): the robots start in the
anti-phototaxis behavior; they transition to phototaxis either if they step on white floor
or if they receive the message from their peers; while in phototaxis, they broadcast the
message. Seen from the point of view of the sender, the semantics given to the message is:
I stepped on the white spot ; while, seen from the point of view of the receiving robots, it is:
Go towards the light.

Aggregate results
The aggregate results obtained in real-robot experiments are presented in Fig. 3; those
obtained in pseudo-reality are presented in Fig. 4. Across all missions, the Friedman
test indicates that, on the robots, the control software generated by Gianduja performs
significantly better than the one of Chocolate and EvoCom. In pseudo-reality, Gianduja
performs significantly better than EvoCom and Chocolate. All in all, on the aggregate
data, pseudo-reality provides a correct prediction of the relative performance in robot
experiments.

The aggregate results over the three missions confirm that communication improves
performance and that Gianduja leverages it effectively yielding significantly better results
than EvoCom. At least in the setting considered in our experiments, EvoCom was unable to
evolve effective behaviors. The performance of the behavior produced by EvoCom is worse
than the one produced by Chocolate, which by construction does not use communication.
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Figure 4 Friedman test on the aggregate results of the three missions. The plot represents the average
ranks of the four methods and their 95% confidence interval in pseudo-reality experiments; the lower the
better.

Full-size DOI: 10.7717/peerjcs.291/fig-4

Table 2 Reference model RM 2.1-`. Novelties with respect to RM 2 are highlighted. RM 2.1-` is a para-
metric family of models that differ one from the other in the amount of information that robots can ex-
change. The parameter ` identifies a specific model within the family by defining the number of bits of in-
formation that robots can exchange: in RM 2.1-2, robots can exchange two bits of information; in RM 2.1-
3, three. RM 2.1-` is a proper extension of RM 2: for `= 1, RM 2.1-1≡ RM 2.

Input Value Description

proxi∈{1,...,8} [0,1] reading of proximity sensor i
lighti∈{1,...,8} [0,1] reading of light sensor i
gndj∈{1,2,3} {black, gray, white} reading of ground sensor j
n [0,19] number of neighboring robots perceived
V

(
[0.5,20],[0,2π ]

)
their relative aggregate position

bh∈{1,...,2`−1} [0,19] number of neighbors broadcasting message h
Vh∈{1,...,2`−1}

(
[0.5,20],[0,2π ]

)
their relative aggregate position

Output Value Description

vk∈{l,r} [−0.12,0.12] target linear wheel velocity
sh∈{1,...,2`−1} {on,off } broadcast state for message h

Notes.
Period of the control cycle: 100 ms.

This can be considered as a major failure. The results on the three missions considered fail
to provide any evidence that GiandujaE is better than Gianduja.

STUDY B: COMMUNICATION WITH TWO OR THREE BITS OF
INFORMATION.
In this section, we study the automatic design of communicationwhen robots can broadcast
and react to multiple messages. We introduce a number of automatic design methods
that extend those we described in Study A by enabling the possibility of exchanging more
information. Specifically, we introduce Gianduja{2,2E} and Gianduja{3,3E}, which extend
Gianduja{ø,E} with the ability to broadcast and react to two or three bits of information,
respectively. Gianduja{2,2E} are based on reference model RM2.1-2; Gianduja{3,3E}, on
RM2.1-3—see Table 2.
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We evaluate these methods on new missions that we think require the use of at least
two different messages. The goal of the experiments is to assess whether Gianduja, and
more generally the ideas presented in the paper, can possibly scale up to more complex
missions that require more information to be exchanged by the robots. We also wish to see
if the way in which messages are handled by GiandujaE increases the performance with
respect to Gianduja when missions are more complex than those considered in Study A.
Finally, we wish to understand whether the design methods proposed in the paper are able
to handle the larger search space that results from increasing the number of messages that
robots can broadcast and to which they can react.

Design methods
In this section, we introduce six new design methods based on Gianduja, GiandujaE, and
EvoCom.

Gianduja2
Gianduja2 extends Gianduja by allowing the communication of two bits of information,
which amounts to the ability to broadcast and react to 22−1= 3 different messages. The
term −1 accounts for the possibility of not sending any message. Gianduja2 operates
on the same low-level behaviors of Gianduja, with only a minor modification. Here, the
parameter m can take four integer values: {0,...,3}. If m= 0, the robot does not broadcast
any message—or, more precisely, it broadcasts via its range-and-bearing module the null
message that only allows its neighboring peers to detect its presence, without conveying
any extra signification. If m= {1,2,3}, the robot broadcasts the corresponding message,
to convey the meaning that the optimization process will have automatically associated
with the message itself, for the specific mission at hand. Moreover, in Gianduja2, the
two behaviors attraction-to-message and repulsion-from-message take one additional
parameterm∈ {1,2,3}, which specifies the message to whose senders the robot is attracted,
or from whose senders it is repelled. Finally, the two conditions message-count and
inverted-message-count take one additional parameter m ∈ {1,2,3}, which specifies the
message to which the condition should be sensitive. The transition probability is computed
via z(·), as defined in Gianduja.

Gianduja2E
Gianduja2E derives from Gianduja2, in the same sense in which GiandujaE derives from
Gianduja. Like GiandujaE, Gianduja2E does not use the conditions message-count, and
inverted-message-count. Also in Gianduja2E, the conditions black-floor, white-floor,
gray-floor, neighbor-count, inverted-neighbor-count, and fixed-probability are extended
with two parameters: message ID ν and threshold τ . Parameter ν can take four different
values: if ν = 0, the condition behaves as in Gianduja2; if ν = {1,2,3}, the condition is
enabled and behaves as in Gianduja2 if the number of neighbors sending message 1,2,3,
respectively, is greater than τ .

EvoCom2
EvoCom2 extends EvoCom by allowing the communication of two bits of information.
With respect to EvoCom, EvoCom2 has five additional inputs and one additional output:
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Table 3 Binary encoding of messages adopted in EvoCom2—white background: 2 bits for the 4 mes-
sages, including the null one. Encoding adopted in EvoCom3—white and gray background: 3 bits for the 8
messages, including the null one.

h bit2(h) bit1(h) bit0(h)

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

the network totalizes 35 inputs and 4 output nodes. The five additional inputs are used to
encode information concerning themessages received. In EvoCom, five inputs are devoted to
this; in EvoCom2, they are ten. Two are computed on the basis of the number of neighboring
peers that broadcast the various messages available, and the remaining eight on the basis
of the direction from which messages arrive. The additional output is used to encode the
broadcast state. In EvoCom, one output is devoted to this; in EvoCom2, they are two.

Before we can formally describe how these inputs and outputs are computed, we need
to define some notation. In EvoCom2, messages are identified via a binary representation.
Table 3 provides a mapping between a message ID h and its binary representation. Let us
define the function bitp(h) that returns TRUE/1, if the p-th bit of the binary representation
of h is set; and FALSE/0, otherwise. In EvoCom2, p∈ {0,...,`−1}, with `= 2. Bit p= 0 is the
less significant one. For p∈ {0,...,`−1}: let γp=

∑
h:phb(h) be the number of neighboring

peers broadcasting any message h whose binary representation has the p-th bit set; and let
0p=

∑
h:phV(h), be the composition of vectors Vh concerning any message h whose binary

representation has the p-th bit set.
With this notation, we can represent the ten inputs devoted to encoding information

concerning the messages received: two are z(γp)= 1− 2
1+eγp , with p∈ {0,...,`−1}; eight

are the projections of 0p, with p∈ {0,...,`−1}, onto the unit vectors pointing at 45◦, 135◦,
225◦, and 315◦ with respect to the front of the robot. The two outputs determine which
message should be broadcast according to the binary representation given in Table 3.

Gianduja3
Gianduja3 extends Gianduja2, and eventually Gianduja, by allowing the communication
of three bits of information, which amounts to the ability to broadcast and react to 23−1= 7
different messages. The term −1 accounts for the possibility of not sending any message.
Gianduja3 is defined as Gianduja2, with the difference that the parameter m can take
eight integer values, {0,...,7}; and the parameter m can take seven: {1,...,7}.

Gianduja3E
Gianduja3E derives from Gianduja3, in the same sense in which GiandujaE and
Gianduja2E derive from Gianduja and Gianduja2, respectively. Gianduja3E is defined
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as Gianduja2E, with the difference that the parameter ν can take eight integer values,
{0,...,7}.

EvoCom3
EvoCom3 extends EvoCom2, and eventually EvoCom, by allowing the communication of
three bits of information. It is defined as EvoCom2, with `= 3. Here, the total number of
inputs is 40 and the total number of output is 5. The number of inputs used to encode the
number of neighboring peers that broadcast the various messages available is `= 3. The
number of inputs used to encode the direction from which messages arrive is 4`= 12. The
number of outputs used to encode the broadcast state is `= 3.

Experimental setting
We test and compare Gianduja{2,2E,3,3E} and EvoCom{2,3} on 3 different missions.

Missions
In all three missions, N = 20 robots operate in the same dodecagonal arena described
in Study A. As in Study A, the amount of time available to the robots for performing
each mission is T = 120 second. The three missions are AGGREGATION, STOP, and
DECISION. They were selected because we thought that, to be successfully performed,
they require the use of multiple messages with different semantics. In all three missions,
there is a beacon that can broadcast a message to which robots must react. The role of the
beacon is played by an e-puck robot that does not move throughout the experiment. It is
not considered to be part of the swarm.

BEACONAGGREGATION. Two circular spots of diameter 0.6 m mark the floor of
the arena: one is white and the other black. They are positioned on the left-hand half
of the arena, separated by 0.25 m—see Fig. 5A. A beacon positioned between the two
spots broadcasts either message 1 or 2 for the whole duration of a run. The message to be
broadcast is selected randomly with equal probability at the beginning of each run. At the
beginning of each run, the robots are randomly positioned in the right-hand half of the
arena so that no robot is on either spot. Robots must aggregate on the black spot, if the
beacon broadcasts 1; on the white one, if it broadcasts 2.

Performance is measured by the following objective function—the higher the better:

CBA= 24000−
T∑
t=1

N∑
i=1

Ii(t );

Ii(t )=

{
0, if robot i is on the correct spot;
1, otherwise.

Performance is non-negative and its theoretical maximum is 24000.
BEACON STOP. The arena’s floor is gray and a beacon is positioned in the middle of the

arena—see Fig. 5B. The beacon broadcasts message 1 or 2 after a time uniformly sampled
in [40 s; 60 s]—the message to be broadcast is selected randomly with equal probability at
every run. At the beginning of each run, the robots are randomly positioned in the arena.
Robots must stop as soon as the beacon starts broadcasting either one of the two messages.
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Figure 5 Arenas for the three missions: BEACONAGGREGATION (A), BEACON STOP (B), and BEA-
CONDECISION (C); simulation setup. The beacon is circled in red.

Full-size DOI: 10.7717/peerjcs.291/fig-5

Performance is measured by the following objective function—the higher the better:

CBS= 24000−

 t̄∑
t=1

N∑
i=1

Īi(t )+
T∑

t=t̄+1

N∑
i=1

Ii(t )

;
Ii(t )=

{
1, if robot i is moving;
0, otherwise;

Īi(t )= 1− Ii(t ).

In this equation, t̄ is the time at which the beacon starts broadcasting a message. In the
definition of Ii (and Īi), a robot is considered moving if it traveled more than 5 mm in the
last 100 ms. This accounts for the inability of EvoCom to generate behaviors in which robots
can stop still. Performance is non-negative and its theoretical maximum is 24000.

BEACONDECISION. The floor of the right-hand quarter of the arena is black; the rest
is gray. A light source is positioned outside the arena on its right-hand side—see Fig. 5C.
A beacon is positioned at the middle of the interface between the black and the gray parts
and acts as a timed trigger. At the beginning of a run, the beacon starts broadcasting either
message 1 or 2—randomly selected with equal probability. After 60 S, the beacon switches
to the other message. At the beginning of each run, the robots are randomly positioned in
the arena.

Robots must position themselves either on the black or on the gray part of the arena,
depending on the message broadcast by the beacon: on the black, if the message is 1; on
the gray, if it is 2. The performance of the robots is measured by the following objective
function—the higher, the better:

CBD= 24000−
T∑
t=1

N∑
i=1

Ii(t );

Ii(t )=

{
0, if robot i is in the correct side of the arena;
1, otherwise.

Performance is non-negative and its theoretical maximum is 24000.
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Protocol
The protocol is similar to the one of Study A. We compare six design methods on three
missions. All experiments involve a swarm of 20 e-puck robots. For each mission, each
method is executed 14 times so as to obtain 14 instances of control software. Each execution
is allowed a budget of 200000 simulation runs. We evaluate each method by running the
14 instances of control software it produced once in simulation and once in pseudo-reality
(Ligot & Birattari, 2019).

Statistics. Results are analyzed and reported as described in Study A.

Results
We present the results on a per-mission basis and then we aggregate them across the
three missions. Numerical results, videos, code, and probabilistic finite-state machines
generated by Gianduja{2,2E,3,3E} are available as Supplemental Information (Hasselmann
& Birattari, 2019).

Results are reported in Fig. 6A. Gianduja and all its variants perform significantly
better than EvoCom in pseudo-reality. All methods derived from Gianduja are also less
affected by the pseudo-reality gap than EvoCom. At visual inspection, all methods derived
from Gianduja perform similarly in simulation and pseudo-reality. Although the robots
aggregate on the spots, they do not comply with the instructions provided by the beacon
and split evenly between the two spots. Videos are available in Hasselmann & Birattari
(2019). The poor performance on this missions may be due to the complexity of the task
and the absence of any memory component in all the control architectures considered.

An example of probabilistic finite-state machine produced by Gianduja2E is reported
as Supplemental Information (Hasselmann & Birattari, 2019): as the robots start on gray
floor, they immediately transition from stop to exploration. They then transition back to
stop whenever they find either the white or the black spot, no matter the message broadcast
by the beacon. In this mission, the semantics assigned to the message by the optimization
algorithm is unclear. The robots fail to use their messaging capabilities effectively. Our
conjecture is that the probabilistic finite-state machines adopted by Gianduja{2,2E,3,3E}
are not sufficiently expressive: the maximum number of states and transitions allowed in
the design process is too small. We also conjecture that the duration of the experiment
is too short for the robots to be able to accomplish the mission. We elaborate on these
conjectures in the section further analysis of the Supplemental Information (Hasselmann
& Birattari, 2019).

BEACON STOP. Results are reported in Fig. 6B. Gianduja{2E,3E} outperform all other
methods both in simulation and pseudo-reality. Gianduja{2,3} perform significantly
better than EvoCom in pseudo-reality. EvoCom suffer greatly from the pseudo-reality gap,
Gianduja{2,3} are less affected, and Gianduja{2E,3E} are almost not affected at all. At
visual inspection, all methods derived from Gianduja appear to correctly associate the
messages broadcast by the beacon to stop. The structure of the state machines produced by
Gianduja{2E,3E} are simpler, more robust, and produce better results than those produced
by Gianduja{2,3}. In Gianduja{2,2E,3,3E}, the robots randomly explore the arena until
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boxes represent the results in pseudo-reality; thin ones, those of simulations performed on the same simu-
lation model adopted in the design process; the higher, the better.
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they receive a message from the beacon.When this happens, they stop and start relaying the
message. All in all, the robots use their communication capabilities effectively. Videos are
available in Hasselmann & Birattari (2019). As in STOP of Study A, EvoCom{2,3} produce
behaviors in which robots move randomly until their motion is stopped by the walls of
the arena. Although trivial, this behavior performs reasonably well because, due to the size
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of the arena, the typical time needed by the robots to reach the walls is close to t̄ . Based
on this observation, we conjecture that the performance of the behaviors generated by
EvoCommight not be robust to variations in the arena size. We elaborate on this conjecture
in the section further analysis of the Supplemental Information (Hasselmann & Birattari,
2019), where we compare the behaviors generated by EvoCom2 and Gianduja2E in arenas
of different sizes.

For all methods considered, the performance of the three-bit versions is relatively close
to the one of their two-bit counterparts. We can therefore conclude that, in this mission,
the respective optimization algorithms can effectively search the larger solution space that
results from extending the amount of information exchanged to three bits.

An example of probabilistic finite-state machine produced by Gianduja2E is reported as
Supplemental Information (Hasselmann & Birattari, 2019): the robots start in phototaxis—
which, in the absence of a light source, reduces to exploration. They transition to stop
whenever they receive message 1 from the beacon and the floor is gray (which is always
true) or when they receive message 2 and sufficiently few robots are in the neighborhood
(which is easily achieved considering the parameters of the behavior). While in the stop
state, robots broadcast message 2 to trigger the transition on other robots. Seen from the
point of view of the sender, the semantics given to the message is: I received a message (I
am relaying it); while, seen from the point of view of the receiving robots, it is: Stop.

BEACONDECISION. Results are reported in Fig. 6C. At visual inspection,
Gianduja{2E,3E}, and EvoCom appears to make an effective use of communication.
Depending on the message broadcast by the beacon, the robots are either attracted or
repulsed by the light and thus go towards or away from the black area. At time T = t̄ ,
when the beacon switches message, the robots invert their behavior. Videos are available
in Hasselmann & Birattari (2019).

Contrary to Gianduja{2E,3E}, Gianduja{2,3} were to be unable to generate swarms
that can switch their behavior and leave the black area when requested to do so by
the beacon. At least in this mission, Gianduja{2,3} are unable to produce behaviors as
rich and expressive as those produced by Gianduja{2E,3E}. EvoCom suffer greatly from
the pseudo-reality gap. Also in this mission, the increase of the number of bits is not
detrimental to the performance: the performance of Gianduja3(Gianduja3E) is close to
the one of Gianduja2(Gianduja2E).

An example of probabilistic finite-state machine produced by Gianduja2E is reported as
Supplemental Information (Hasselmann & Birattari, 2019): the robots start in phototaxis.
If the beacon broadcasts message 1, the robots directly transition to anti-phototaxis,
relay message 1, and oscillate back and forth—they do so by cycling through phototaxis,
anti-phototaxis, and exploration. Otherwise, if the beacon broadcasts message 2, the robots
cycle through phototaxis and exploration, depending on the number of neighbors and the
color of the floor. By doing so they leave the black area. In this case, the state machine
produced by Gianduja2E is hardly readable due to the high number of transitions. It is
however possible to infer a semantics for messages 1 and 2: Seen from the point of view of
the sender, the semantics is: I received message 1 (or 2); while, seen from the point of view
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of the receiving robots, it is: Go away from the light for message 1 and Go towards the light
for message 2.

Aggregate results
Figure 7 reports the aggregate results in pseudo-reality. They confirm that
Gianduja{2,2E,3,3E} perform significantly better than EvoCom. The results also show that
the addition of a third bit of data is not needed to perform the three missions considered:
indeed, Gianduja{2,2E} perform better than Gianduja{3,3E}. Nonetheless, it is interesting
to observe that Gianduja could handle nicely the increased search space resulting from the
addition of the third bit. Although the performance of Gianduja3(Gianduja3E) is lower
than the one of Gianduja2(Gianduja2E), the drop is relatively small: in Table 4, we report
the relative median performance of Gianduja{3,3E} with respect to Gianduja{2,2E} and
we compare it with the one of EvoCom2.

CONCLUSIONS
In the paper, we studied the automatic design of control software for a swarm of robots
capable of local communication. Specifically, we studied the emergence of a semantics
for an a priori meaningless message: the automatic design process is expected to assign
an appropriate semantics to a message—intended here as a pure signifier—based on the
specific mission to be performed. We introduced Gianduja and its variants, a family of
automatic design methods that produce control software in the form of a probabilistic
finite-state machine, by assembling predefined behavioral modules that have been a priori
defined in a mission-agnostic way. In the experiments presented in the paper, Gianduja
and its variants were able to find solutions that revealed, at visual inspection, to properly
leverage the communication capabilities of the robots by assigning a meaningful semantics
to the messages. With a single exception, this holds true for all the missions we considered.
When aggregated, the results we obtained show that Gianduja is the best method for one
bit of information and Gianduja2E is the best one for missions requiring more bits of
information to be exchanged. Our results do not provide any conclusive evidence on which
variant of Gianduja is the best one: further investigation is needed to understand the impact
of their underlying design choices. Nonetheless, the results obtained in this article show
that it is possible to automatically find solutions that leverage the use of communication
in a swarm of robots controlled by probabilistic finite-state machines. Our contention is
that by constraining the design space, it is easier for the optimization algorithm to find
solutions where the listener’s and speaker’s behaviors emerge simultaneously. That being a
requirement allowing communication to emerge. Future work will focus on studying the
relationship between the complexity of a mission and the number of bits of information
required to solve it. Our observations also corroborate the hypothesis that, introducing
bias into the design phase of the control software in the form of pre-designed behavioral
modules allows one to have better control on the design space and results in an increased
robustness to the (pseudo-) reality gap.
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Table 4 Relative median performances of Gianduja{3,3E} and EvoCom2 with respect to Gianduja2 and
Gianduja2E.

with respect to Gianduja2 with respect to Gianduja2E
Gianduja3 EvoCom2 Gianduja3E EvoCom2

BEACON AGGREGATION −11.7% −83.7% −18.9% −83.0%
BEACON STOP −12.9% −25.7% −1.06% −35.5%
BEACON DECISION +7.44% −2.89% −3.10% −5.23%

Finally, although the results of the study we performed using a pseudo-reality indicate
that Gianduja and its variants are relatively robust to the reality gap, further robots
experiments should be performed to reliably characterize the performance of thesemethods.
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