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The thesis

Using neuroevolution to generate the modules of automatic modular methods
reduces the amount of expert knowledge needed to implement them, without
impacting negatively their robustness to the reality gap.

ii



Summary

In swarm robotics, the design problem is one of the most pressing issues of today’s
research. Robots in a swarm must be autonomous and are usually individually
programmed. However, the collective behavior of the swarm, which is expected to
emerge from the interactions between the robots and between the robots and their
environment, is best described at the level of the swarm. A great deal of effort has
been devoted in an attempt to find suitable solutions to create control software
for individual robots so that they achieve a particular collective behavior. One
solution is automatic design, in which control software is generated automatically
by an optimization process that configures a certain control software architecture.
Traditionally, automatic design is accomplished through neuroevolution, that
is, training a neural network in a simulated environment using an evolutionary
algorithm, directly on the mission to tackle. Neuroevolutionary approaches have
shown to be very effective, and work quite well when control software is designed
and assessed in a simulated environment. However, they have been shown to be
susceptible to the reality gap, the intrinsic and unavoidable difference between
reality and the simulation environment used to generate the control software.

In recent years, another approach has been proposed: modular design. In
modular design, the control software is composed of modules that can be created
once and for all and re-used for multiple missions. Restricting the space of possible
behaviors, by limiting the control software to a combination of existing modules,
effectively increases the robustness to the reality gap of modular methods in
comparison to neuroevolutionary ones (Francesca et al. 2014b). However, modular
methods require human expertise in swarm robotics in order to create the modules,
making them more challenging to implement than neuroevolutionary methods.

The objective of this thesis is to combine the advantages of neuroevolution and
modular methods: the ease of implementation of neuroevolution, which requires
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SUMMARY iv

minimal human expertise and domain knowledge, and the robustness to the reality
gap of modular methods. Is it possible to create an automatic design method that
is both as robust as a hand-crafted modular method, and as versatile as a purely
neuroevolutionary method ?

In this thesis, we present our experimental work on the robustness of automatic
design methods to the reality gap, in a thorough comparison of the most classical
neuroevolutionary methods and the most classical modular ones. We show that
the presented neuroevolutionary approaches are all greatly affected by the reality
gap and outperformed by the modular method. Then, in the form of two methods,
Arlequin and Nata, we present our advances in modular automatic design. These
methods use neural networks as modules of the control software architecture and
require less human expertise than their predecessors. We show that they outperform
the neuroevolutionary method, and are able to generate control software that crosses
the reality gap relatively better than neuroevolutionary methods.



Contributions

The following is a summary of the contributions presented in this thesis:

Critical review of the state of the art in swarm robotics: We provide a
critical review of the state of the art in automatic design of robot swarms focusing
on offline methods and with a special attention to modular methods.

Novel categorization of automatic design methods: We propose a novel
categorization of automatic design methods, to disambiguate between semi- and
fully-automatic design methods.

Comparison of automatic design methods: We present the most extensive
comparative analysis of offline automatic design methods currently available in the
literature, supported by simulations and experiments with physical robots.

Arlequin: We introduce Arlequin, a novel modular automatic design method
that uses pre-trained neural networks as modules of a probabilistic finite-state
machine.

Nata: We introduce Nata, a novel modular automatic design method that uses
repertoires of behaviors and principled design to automatically generate the mod-
ules, with the aim to reduce expert knowledge required in the implementation of
automatic design methods for robot swarms.

Robot experiments: We present empirical analyses with experiments conducted
on physical robots. The results discussed in this thesis are based on more than 550
runs for Chapter 4, 60 for Chapter 5, and 120 for Chapter 6, for a total of more
than 730 experimental runs.
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CONTRIBUTIONS vi

Hardware and software implementations: We implemented and maintain
the software for the methods presented in the thesis, notably Arlequin, Nata,
EvoStick, NEAT, xNES, and CMA-ES for the ARGoS3 simulator and on the e-puck
robots. The software is available as open source software on the public repository
of the DEMIURGE project.
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1. Introduction

Robots and automatons are part of our daily lives. They may appear to be a recent
development, yet the concepts of robots and artificial life date back to antiquity.
The ancient Greek myth of Talos contains the earliest known reference to artificial
life. This giant bronze warrior, created by the Greek god Hephaestus, was tasked
to patrol and defend the island of Crete from invaders (Mayor 2018). This myth,
rather than having to do with technology, tells the tale of human’s desire to engineer
artificial life, to augment, surpass or simply imitate nature in order to free themself
from the most tedious tasks.

In history, the earliest signs of automatons start from mechanical devices
designed to animate statues in ancient times, and Leonardo da Vinci’s descriptions
and rudimentary builds of mechanical humanoid machines in the 1500s. It was only
in 1961 that the first industrial robot was introduced. The company Unimation
designed the PUMA (Programmable Universal Manipulator Arm) robot arm. As
of today, scientific and technological advancements feed science-fiction stories and
science-fiction stories, in turn, nourish our collective imagination. In science fiction,
robots are frequently depicted as sentient humanoids, whether it is C-3PO in Star
Wars, the Terminator, or Bender from Futurama, they behave and make decisions
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similarly to humans. Nevertheless, as demonstrated by the PUMA robot, the first
robots were industrial robots, primarily robotic arms, mostly remotely operated or
with pre-programmed kinematics. In our collective imagination, however, robots
are often characterized by their cognitive abilities such as how they interact with
humans, or their ability to make decisions. They are not merely remote-operated
machines, but are endowed with some sort of artificial intelligence. The fields of
robotics and artificial intelligence are tightly connected, as we want both intelligent
and physically capable machines to help us. The challenge is not only to create
clever mechanical structures, but also to give them the ability to achieve their
intended purpose. Advances in artificial intelligence and robotics are leading to
new applications, with different levels of automation and autonomy: from the Mars
rover Curiosity, wandering the red planet, to your own personal dust cleaning or
lawnmower robot.

However, some tasks are difficult for a single robot to accomplish, as it can
become lost, or damaged. A single and complex robot might not be the ultimate
solution for complex missions requiring, for instance, the parallel execution of multi-
ple tasks over a relatively extended area. Certain missions are best accomplished by
teams or groups of robots. This is how, inspired by ants and other social animals,
the first robot swarms were imagined (Dorigo et al. 2014).

Swarm robotics is the study of the design and deployment of large, cooperative,
self-organized groups of robots. It began as an application of swarm intelligence, the
study of self-organized systems and the modeling of collective behaviors, but rapidly
developed into an engineering discipline on its own (Brambilla et al. 2013). Swarm
robotics systems should produce complex emergent behaviors from simple robot-
level rules. A well-designed swarm must be adaptive, robust, and scalable (Dorigo
et al. 2021). Adaptability is the capability of the swarm to adapt to changes in its
environment or mission; robustness is the capability of the swarm to be robust to
robot failures; scalability is the capability of the swarm to accommodate to changes
in terms of number of robots and size of problems.

Recent research has demonstrated promising results in a variety of applica-
tions including task sequencing (Garattoni and Birattari 2018), re-configurable
swarms (Xie et al. 2019), collective locomotion (Li et al. 2019), underwater swarm
coordination (Berlinger et al. 2021), robot self-construction (Boudet et al. 2021),
and aerial swarm navigation (Xin et al. 2022). Notwithstanding these promising
results and all the research conducted over the past two decades, swarm robotics
is a field that is still in its infancy; it has yet to find its way out of labs and into
real-world applications.
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Swarms robotic systems are advantageous with respect to centralized multi- or
single-robot systems in adaptability, robustness, and scalability. The main challenge
resides in their design (Dorigo et al. 2021; Schranz et al. 2021). Typically, the
missions to be tackled by the swarm are defined at the swarm level; they describe
the emergent swarm behavior—what the entire swarm should achieve. As the
system should not have a central authority, and as interactions in the swarm should
be local, the designer of the swarm usually operates at the individual-robot level.
The design problem stems from the fact that it is hard to predict the emergent
swarm behavior from the individual behavior of the robots in the swarm. Some
principled design methods have been proposed to address this issue (Berman et al.
2011; Brambilla et al. 2014; Kazadi 2009; Lopes et al. 2014; Pinciroli and Beltrame
2016; Reina et al. 2015a; Spears et al. 2004). However, they are constrained to
specific classes of missions: for the moment, no general engineering framework is
available and manual trial-and-error continues to be the most prevalent design
method.

Optimization-based design, or automatic design, is one of the promising so-
lutions to this problem (Dorigo et al. 2021; Francesca and Birattari 2016). In
automatic design, the design problem is cast into an optimization problem. The
design parameters of the swarm, that is, the control software of the robots, and
possibly some hardware characteristics, define the search space to be explored
by an optimization algorithm. The optimization algorithm then maximises a
mission-specific objective function, defined at the collective level, which measures
the performance of the swarm. Automatic design methods can be categorized using
two (orthogonal) categorization systems (Birattari et al. 2020). A method can be
classified as online or offline, and as semi-automatic or (fully-)automatic.

The first categorization is defined as follows: in online methods, the optimization
of the control software happens while the robots operate in the target environment.
The swarm is directly used and designed in its final production environment,
without any prior design phase. In offline methods, the optimization of the control
software happens before the deployment of the robots, usually using computer
simulations. This categorization is, of course, not strict and rigid; hybrid methods
exist.

The second categorization classifies design methods as either semi-automatic
or (fully-)automatic. In semi-automatic design, a human designer operates the
optimization and iterates in a "human-in-the-loop" approach. Typically, in an
offline semi-automatic design method, the designer would use their experience and
knowledge to guide the optimization software by adjusting design parameters to



CHAPTER 1. INTRODUCTION 4

achieve the best possible final design. In automatic design, the design parameters
are predetermined, iterations are not permitted—there should be no human inter-
vention in the design process. Typically, an automatic design method is expected to
work on a class of missions—characterized by constraints, mission-types, operation
environment—without requiring any manually applied mission-specific modifica-
tions. One can imagine any combination of these categories, the offline/online
and semi-automatic/(fully-)automatic categorizations are orthogonal and describe
different characteristics of a design method. Offline semi-automatic design is cur-
rently the most researched category in the scientific literature, followed by online
semi-automatic and offline automatic design.

In this thesis, we focus on offline (fully-)automatic design, not because we
believe that this category is superior to the others, but because we feel that it is a
promising design approach that deserves to get more attention than it currently
has.

Indeed, the core challenges faced by the semi- and fully-automatic approaches
differ: in semi-automatic design, the focus is on the complexity of the specific
mission and the role of the human; whereas in automatic design, the focus is on the
complexity of the class of mission, the diversity of missions that can be tackled.

A standard approach to the offline automatic design of robot swarms is neu-
roevolution (Trianni 2008). In this approach, one uses neural networks as the
control software of the robots, and one designs their parameters, and possibly
their topology, using an evolutionary algorithm. It is the most adopted approach
in offline automatic and semi-automatic design of robot swarms. Its advantages
include: the ease of implementation and utilization, and its high portability. Once
the robotic platform is selected, one only has to map the robot’s sensors and
actuators to inputs and outputs of the neural network. The main drawback of the
neuroevolutionary approach is its sensitivity to the reality gap. The reality gap is
the intrinsic and unavoidable difference between the training and deployment envi-
ronments, typically, simulation and reality (Jakobi 1997). Since neuroevolutionary
methods are known to be quite sensitive to the reality gap (Francesca et al. 2014b),
they perform poorly when control software generated in simulation is deployed
to physical robots. Efforts have been made to mitigate the effects of the reality
gap (Bongard and Lipson 2004; Jakobi 1997; Koos et al. 2013; Miglino et al. 1995),
but no definitive solution has emerged, yet (Ligot and Birattari 2020; Silva et al.
2016).

Francesca et al. (2014b) conjectured that the reality gap problem resembles the
generalization problem of machine learning. During simulation, the control software
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overfits the characteristics of the simulated environment, leading to a performance
drop once it is ported to real robots. In accordance with the bias-variance trade-
off, it is possible to decompose the generalization error of a learning algorithm
into two terms: bias and variance (Geman et al. 1992; Wolpert 1997). Bias and
variance are known to be correlated with the complexity of learning algorithms:
typically, high-complexity algorithms have high variance and low bias, whereas
low-complexity ones have low variance and high bias. The high representational
power of neuroevolutionary approach, and their high complexity, is conjectured
to be responsible for the overfitting of such algorithms and, consequently, their
sensitivity to the reality gap (Floreano et al. 2008) (details on the use of overfitting
in this context can be found in Section 2.3.4). With the intention of reducing
the impact of the reality gap, Francesca et al. (2014b) created AutoMoDe. In
AutoMoDe, injecting bias, in the form of expert knowledge in hand-crafted and
pre-defined software modules, lowers the complexity of the control software.

The disadvantage of this approach it that designing such methods requires
specialized knowledge. The modules must be created and tested by an expert in
swarm robotics after selecting the hardware platform.

Keeping this in mind, we highlight some current issues in the literature. Ac-
cording to Birattari et al. (2020), the first issue we identified is the lack of emphasis
on the empirical analysis and comparison of methods: in the field of automatic
design, few studies were devoted to assessing solutions with physical robots. We
acknowledge that this can be costly and time consuming but we are convinced
that the state of the art will not be defined until systematic rigorous tests and
comparisons are conducted as part of the methodology for creating new design
methods.

It is our contention that, as the reality gap problem is central to assessing the
quality of a design method, the scarcity of empirical studies hinders the development
of the field.

As a first contribution of this thesis, we propose a comparison of existing
design methods with extensive experimental work. This comparison highlights
the significant effect of the reality gap on various design methods. All subsequent
presentations and analyses of design methods proposed in this thesis include em-
pirical assessments with physical robots. As a second contribution, we corroborate
the conjecture on the bias/variance tradeoff and the principles of modularity. For
this, we propose two design methods whose modules are not hand-crafted but
automatically generated. We compare them to other existing design methods. As
a last issue, we believe that popular modular design methods could benefit from
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reducing the amount of expert knowledge required to implement them. We propose
two methods that aim to combine the portability of neuroevolutionary methods
with the robustness of modular ones, in an effort to reduce the need for expert
knowledge in swarm robotics in the design of modular methods.

Both methods use neural networks as modules. In the first one, we train
behavioral modules in the form of neural networks to desired behaviors by defining
specific objective functions, once and for all, before combining those modules into
probabilistic finite-state machines.

In the second one, we use a quality-diversity algorithm (Cully and Demiris
2018) to create a repertoire of behaviors, and rule-based design to create the linking
conditions before combining them, also, into probabilistic finite-state machines. By
rule-based, we mean that we defined rules which are derived, based on the reference
model of the robot in use, into conditional modules.

This thesis has the following structure: in Chapter 2, we propose an overview of
the current swarm robotics literature, beginning with general considerations before
delving deeper into automatic design of robot swarms and the specific previous
research that is relevant to this thesis. We first discuss the different categorization
systems we have presented, namely offline, online, semi-automatic and automatic
design, and propose a description and a classification of the most relevant research
papers of the field. We present the challenges faced by these methods and introduce
modular automatic design methods and the relevant literature.

In Chapter 3, we present the materials and methods that are common to all
experiments and analyses presented in this thesis.

In Chapter 4, we present our work of assessing the most popular automatic
design methods in the literature. On five distinct classical swarm robotics missions,
we assess nine automatic design methods, and a random walk as a yardstick. We test
the designed control software both in a simulation environment and in reality. The
results show that neuroevolutionary methods all suffer greatly from the reality gap
and therefore that real-robot experiments are essential to assess the performance
and quality of design methods. The modular method suffered the least from the
reality gap, thus leading us to explore the possibility to combine the ease of use of
neuroevolutionary methods and the robustness of modular ones.

In Chapter 5, we present our first attempt to reduce the need for human
intervention in the implementation of a modular design method. We propose an
automatic design method that combines neural networks (as behavior modules) into
probabilistic finite-state machines. In Arlequin, the neural network modules are
generated once and for all, for a specific behavior, defined by an explicit objective
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function, in a mission-agnostic way. The results show that Arlequin is capable of
outperforming the classical neuroevolutionary approach. This suggests that using
neural networks as modules is a promising approach to the automatic design of
robot swarms.

In Chapter 6, we present our second attempt to reduce even further the human
intervention needed in the implementation of a design method by proposing Nata.
Nata uses a quality-diversity algorithm (Cully and Demiris 2018) to automatically
generate behavior modules in the form of neural networks, and rule-based design
to automatically generate conditional modules to be combined in probabilistic
finite-state machines. The results show that Nata outperforms both Arlequin and
the classical neuroevolutionary approach, while being the method that requires the
least human knowledge and intervention to be implemented.

In Chapter 7, we reflect and conclude on the topic of this thesis. We also,
present potential follow-up research directions.



2. State of the art

This chapter provides an overview of the literature on swarm robotics, focusing
on automatic design methods for robot swarms. As described in the previous
chapter, one of the main challenges in swarm robotics is the design problem. This
problem stems from our inability to predict the collective behavior of a swarm
based on the behaviors of individual robots. This makes designing robot swarms
a challenging problem. When designing robot swarms, one must operate at the
individual-robot level, that is, defining the behavior of each independent robot.
However, the behavior of the swarm is best described at the collective level, that
is, as seen as a single compound entity.

One possible and promising approach to the design of robot swarms is automatic
design, where the design problem is cast into an optimization problem. Under
this approach, the characteristics of the swarm, the control software of the robots,
and possibly the specification of their hardware components, are generated by
maximizing a given objective function, which describes the quality of the solution at
the collective level. This approach, classified as machine learning for robot swarms
by Dorigo et al. (2021), is deemed to be a promising research direction to overcome
the unpredictable contingencies that characterize swarm robotics systems (Dorigo

8
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et al. 2021).
In this thesis, we explore new methods for the automatic design of robot swarms;

therefore, for the purpose of the state of the art presented in this chapter, we will
focus on automatic design methods.

For an in-depth introduction to the field of swarm robotics, we refer the reader
to Hamann (2018) and Garattoni and Birattari (2016); for a structured presentation
of the engineering approach to designing robot swarms, we refer to Brambilla et al.
(2013); for a description of current applications of robot swarms, we refer to Schranz
et al. (2020); for a reflection on the present and future of swarm robotics, we refer
to Dorigo et al. (2020, 2021).

2.1 Swarm robotics
Swarm robotics is the study of swarm intelligence applied to groups of robots, as
well as of how to operate and design them (Dorigo et al. 2014). Individually, robots
in a swarm have limited capabilities, but their cooperation results in the emergence
of complex behaviors. Collectively, the swarm can perform missions that no single
robot could perform on its own. Swarm robotics was historically seen as a way to
model biological systems, such as social animals (Beni 2005). The field has since
evolved into an engineering discipline whose objective is to create swarm robotics
systems that can solve real-world problems (Brambilla et al. 2013).

The main properties of a robot swarm are: (i) fault tolerance, (ii) scalability,
and (iii) flexibility (Dorigo et al. 2014). Fault tolerance is achieved by introducing
redundancy and decentralization in the swarm. This implies that the loss of an
individual robot should not harm the whole swarm. In other words, there should be
no single point of failure. In addition, the system must also be scalable: it should
be able to adapt to changing problem dimensions without jeopardizing performance.
This is achieved by relying solely on local sensing and communication between
robots; robots in the system rely only on their neighboring environment. Finally,
the system must be flexible; it should adapt to different environments and working
conditions. This property is also enabled by the decentralized nature of the swarm
and the limited local sensing.

Over the past two decades, swarm robotics has allowed significant advancements
in our understanding of natural and artificial swarms. Due to these characteristics
and despite the fact that real-world applications are still limited, a vast number of
future potential engineering applications are anticipated (Dorigo et al. 2020). For
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instance, a robot swarm could be particularly effective in a situation that requires
rapid exploration of a large geographical area. In agriculture, swarms of aerial
robots could be utilized to apply fertilizer or eliminate weeds, enabling precision
agriculture and potentially reducing the amount of chemicals required (Schranz
et al. 2020). Robot swarms could also be utilized for planetary exploration, search-
and-rescue, cleaning dangerous waste, and generally in large hostile environments.
For a comprehensive look at current applications of robot swarms, we refer the
reader to Schranz et al. (2020).

Even though the field of swarm robotics has risen to a prominent position
in the scientific literature (Berlinger et al. 2021; Boudet et al. 2021; Garattoni
and Birattari 2018; Li et al. 2019; Rubenstein et al. 2014; Slavkov et al. 2018;
Werfel et al. 2014; Xie et al. 2019; Xin et al. 2022; Yu et al. 2018), it still suffers
from the lack of methodological and engineering principles for designing collective
behaviors (Brambilla et al. 2013). The design of these systems remains a challenging
endeavor.

2.2 The design of robot swarms
The properties and characteristics of swarms, such as decentralization, and limited
sensing, make robot swarms loosely coupled systems. There is no global centralized
system that controls or monitors the whole swarm, the collective behavior of the
swarm emerges from the local interactions between the robots, and between the
robots and their environment. These interactions between the large numbers of
robots and environmental features make robot swarms complex systems. The
behavior of these systems is best described at the collective level, but their decen-
tralized nature forces the behaviors of the robots to be defined at the individual
level. This makes the design of swarm robotics system particularly challenging.

The most prevalent method for designing swarm robotics systems is manual
design. In manual design, an expert designs the behavior of the individual robots.
For this, no general engineering framework is available, yet, although a few principled
design methods have been proposed (Beal et al. 2012; Berman et al. 2011; Brambilla
et al. 2014; Hamann 2018; Kazadi 2009; Lopes et al. 2014, 2016; Pinciroli and
Beltrame 2016; Reina et al. 2015a,b; Spears et al. 2004). These methods, however,
are constrained to specific classes of missions. Therefore, trial-and-error is still
the most common way of designing robot swarms today. In this method, the
designer works by iteratively testing its design on the swarm of robots, either in
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a simulated environment or with real robots, until the desired swarm behavior is
achieved (Garattoni and Birattari 2016).

A promising approach to the design of robot swarms is automatic design
(Francesca and Birattari 2016). In automatic design, the design problem is cast
into an optimization problem. The optimization algorithm searches the space of
possible instances of control software for the robots, with the aim to maximize
or minimize a given metric. This metric is usually referred to as the objective
function—a metric indicating the performance of the swarm in a given mission.

2.3 Automatic design
In this section, we discuss automatic design methods and disambiguate between
offline, online, semi-automatic and fully-automatic design methods. It is important
to note that the distinction we make between automatic design and manual design
is not to be taken as a rigid categorization, but rather as a general way of thinking
about different methods; hybrid methods are possible.

In automatic design, as described in the previous section, the design problem
is cast into an optimization problem. The optimization algorithm searches in the
space of possible solutions to maximize (or minimize) an objective function. The
objective function is an indicator of the quality (or cost) of a given instance of
control software at the swarm level; a measure of the performance (or inability)
of the swarm to perform a mission. The objective function thus contains expert
knowledge on how to measure the success of a mission.

The most prevalent method for automatically designing robot swarms is neu-
roevolution (Nolfi and Floreano 2000), in which the actuators and sensors of each
robot are mapped to the input and output neurons of a neural network (Trianni
2008). In neuroevolution, the parameters of the neural network, such as the synap-
tic weights, and the topology of the network are optimized using an evolutionary
algorithm that maximizes the objective function. Automatic design can be analysed
based on two distinct categorizations: online or offline design, and semi-automatic
or automatic design.

2.3.1 Online and offline design

In online design, the control software is designed while the swarm operates in the
target environment. The optimization of the parameters of the control software is
distributed among the robots and occurs in real time. This approach allows the
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swarm to adapt to changing features in the environment by updating its behavior
in real-time.

Nonetheless, this approach also has some drawbacks. First, the limited time
available for the robot to adapt makes it impossible to explore large search spaces.
In this regard, online adaptation generally works best with fewer parameters than
other approaches on relatively small search spaces (Bredeche et al. 2018). Second,
the capabilities of the swarm and the class of missions it can perform is limited by
the objective function that can be computed locally by the robot. Indeed, in online
design, robots must be able to individually compute the value of the objective
function to optimize the parameters of the control software. Finally, when executed
on real robots, control software with sub-optimal parameters, especially during the
early stages of the design phase, may contain behaviors that could be dangerous
for the robots, and damage them (Francesca and Birattari 2016).

By contrast, in offline design, the control software is designed before it is
deployed in the target environment. The optimization of the parameters of the
control software can be done in a simulated environment or on real robots, using a
replica of the final target system. In most cases, however, the design phase takes
place in a simulated environment. This allows for a broader class of missions to
be performed as the simulation offers a global perspective over the entire swarm
system. Objective functions whose computation requires a holistic view over the
swarm can be used, and are not restricted to what an individual robot can compute.
Simulations are also usually less expensive and faster than real-robot experiments,
allowing more computing time to be allocated to the design phase. Instances
of control software with sub-optimal parameters do not put the robots and the
environment at risk as they are usually eliminated in simulation during the design
phase.

However, offline design methods are known to suffer from the reality gap, that is,
the unavoidable difference between simulation and reality. Indeed, offline methods
tend to overfit the characteristics of the simulated environment used to design them
and might transfer poorly to the real world (see Section 2.3.3 for more details on
the reality gap).

2.3.2 Semi-automatic and fully-automatic design

Another way to classify automatic design methods is to categorize them as semi-
automatic or (fully-)automatic design. This categorization is orthogonal to the
online and offline categorization, which means that any automatic design method
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Figure 2.1: Flowcharts of typical workflows for different approaches of
automatic design. a, offline semi-automatic design. b, online semi-automatic
design. c, offline automatic design. d, online automatic design. In the flowcharts,
the design process is contained in the red box. Outside the red box are represented
other parts of the life-cycle of an automatic method, like specifications or deployment.
In semi-automatic design, the human is inside the loop (the red box), whereas in
automatic design the human does not intervene.
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can be classified as either online or offline design (or any hybrid) as well as automatic
or semi-automatic, at the same time.

Consequently, four cross-categories can be identified, online semi-automatic,
online automatic, offline semi-automatic, and offline automatic design. In this
section, we analyze the distinction between automatic and semi-automatic methods.

In semi-automatic design, a human designer operates the optimization algorithm.
Therefore, human intervention is part of the design process. This process is iterative
and the optimization algorithm is used as a tool. In other words, the search for
a suitable solution—a control software instance—is guided by the experience and
knowledge of the designer. Typically, the designer would make an initial attempt to
find an instance of control software, evaluate it in the target environment, observe
the results, and adjust the design method’s parameters to steer the process and
achieve better results.

The designer can modify any parameter of the design method, such as the
sensor filtering, the control software architecture, the neural network topology, the
simulation model, the optimization algorithm, and the objective function used to
measure the performance of the swarm. Once updated, the designer can observe
the impact of their modifications in the target environment by reevaluating the
performance of the swarm, and iterating, if needed, at will. Iterations are repeated
until the swarm demonstrates a satisfactory behavior.

Both online and offline semi-automatic design involve a human in the loop. The
difference is that in the online case, the performance of the swarm is evaluated
directly in the target environment, whereas in the offline case, the performance is
evaluated, first in a simulation environment, and once the desired performance is
achieved, in the target environment by using real robots. A flowchart depicting the
two cases is presented in Figure 2.1. The degree of human intervention can vary
from method to method, from fine-tuning the optimization algorithm to maximize
performance on a mission, to hand-crafting robotic behaviors used as high-level
functions tailored to a specific mission. Despite that, we draw a clear line of
separation between categories: whenever humans are in the design loop, regardless
on how much they intervene, we categorize it as semi-automatic design.

As a particular example, one of the most classical ways of designing robot
swarms is neuroevolution. In fact, a large part of neuroevolutionary design methods
belong to offline semi-automatic design. In the literature, few studies explain the
extent of the required human intervention. It is out of contention that, in order
to improve the reproducibility of studies on design methods for robot swarms, it
should be clear how much intervention and how many iterations were needed to
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obtain specific results.
In contrast to the semi-automatic approach, in (fully-)automatic design, no

human intervention is allowed in the design process. The mission to be performed
by the swarm is formally specified by defining an objective function. Then, the
(fully-)automatic design process uses this mission specification to explore the space
of solutions for a suitable instance of control software. Finally, the selected instance
is deployed in the target environment.

The automatic design method is predetermined for a whole class of missions.
In this regard, a class of missions is defined by the capabilities of the robots, the
environmental cues and the type of mission. After that, the method does not
require any modification to be used with different missions within this class. There
is no human intervention after the constraints for the automatic design method
have been set, neither per-mission nor during the design phase for a given mission.
This is true for both offline and online (fully-)automatic design. The difference
between the two cases is that, in offline design, the design phase is carried out using
simulations, whereas, in online design the design phase is carried out directly in the
target environment. A flowchart depicting the two cases is presented in Figure 2.1.

In the literature, few studies fall into the category of automatic design methods;
the lack of details regarding the nature of the optimization process makes it difficult
to categorize them definitively as either semi- or (fully-)automatic. Still, the
challenges faced by semi-automatic and automatic methods are different.

On the one hand, semi-automatic design is employed when designing control
software for a single, complex mission, that would be too difficult or too time-
consuming for a human to design. In this case, it would be counterproductive to
develop a fully-automatic design method, since they are more complex to develop
and tend to work on relatively simpler missions. The semi-automatic design
approach is used, here, as a tool to assist the designer in completing a single
design task for a single mission, not a class of missions. The designer includes their
expert knowledge to bias the creation of the automatic design method towards
the specific mission at hand. On the other hand, (fully-)automatic design is used
when designing control software for a class of missions. It is especially useful when
it would be unfeasible for economical or practical reasons that a human designer
supervises a design process that has to be executed repeatedly. Within the class
of mission, in fully-automatic design, there is no need for any modification in the
method before design and deployment. The challenge in semi-automatic design
resides in the complexity of the single mission for which control software must be
generated. In fully-automatic design, the challenge resides in the complexity of the
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class of missions; the diversity of missions within the class. These two categories
serve different purposes and ultimately solve different problems. In Figure 2.2 we
illustrate, using two examples of potential applications, the different purposes that
the two categories serve.

Still, there is a substantial overlap between the fields of semi-automatic and fully-
automatic design. Developments in optimization algorithms, software architectures,
and simulation models are examples of matters whose development would benefit
both fields. However, research questions that are specific to each field remain: in
semi-automatic design, they are primarily concerned with the role of the human
designer. This role is difficult to measure but important to quantify if we want to
make valid comparisons between design methods. By contrast, in fully-automatic
design, the primary research question is to characterize the class of missions that
can be addressed by a given design method. Both fields are promising areas of
research; it is our contention that a crucial step for their development is to establish
a proper state of the art, tailored research protocols, and sound evaluation criteria
so future research can be built upon. A first step in this direction is presented
in Ligot et al. (2022), where the authors present directives for better empirical
practice in offline automatic design.

In Section 2.4, we present and classify some of the notable research in the field.

2.3.3 The reality gap

The concept of reality gap is central to the discussion on the design of robot swarms.
Crossing the reality gap is one of the main issues faced by any designer when
generating robot swarms by relying on simulation (Brooks 1992; Jakobi et al. 1995).
The reality gap is the intrinsic and unavoidable difference between simulation and
reality. A consequence of the reality gap is an inevitable difference between the
behavior of a swarm in the simulated environment and in reality.

Several techniques have been proposed to mitigate this issue at the level of
the simulator such as: increasing the realism of the simulator by using actual
sampled data from the robot’s actuators and sensors (Miglino et al. 1995), adding
noise to the simulation model of the robots (Jakobi 1997), or alternating between
simulations and real-robots tests while designing control software (Nolfi et al. 1994;
Zagal and Ruiz-del-Solar 2007).

As presented, in offline design, the control software is designed in a simulated
environment. In Francesca et al. (2014a), the authors argue that the simulated
environment can be seen as a training environment and the reality as a test



CHAPTER 2. STATE OF THE ART 17

b

a

Design created by Mauro Birattari to illustrate the content of Birattari et al. (2020)

Figure 2.2: Potential applications of semi-automatic and automatic design.
First, imagine a large international organization deciding to build a swarm based
outpost on Mars. The mission to perform is complex and requires a fully-functional
fine-tuned swarm, that will fulfill a single mission. Fortunately, a lot of money is
devoted to the project and simulations, and exhaustive testing can be done, as
well as building an actual mock-up outpost. This situation would perfectly fit the
conditions for applying the semi-automatic approach.
For the other situation, imagine a small gardening business owned by a single
entrepreneur. The mission to perform is less complex but requires fine-tuning to
the specificities of the garden to take care on. For maximum efficiency and under
time and money constraints the owner reconfigures its robot swarm before each
intervention, and deploys it immediately after, without further tests. This situation
fits the conditions for applying the fully-automatic approach.
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environment. Therefore, they conjectured that the reality gap problem could be
seen, from a machine learning perspective, as a generalization problem.

The generalization error of a learning algorithm can be decomposed into two
terms: bias and variance (Geman et al. 1992; Wolpert 1997). Bias and variance are
known to be correlated with the complexity of learning algorithms: high-complexity
algorithms typically have high variance and low bias, whereas low-complexity ones
have low variance and high bias. In other words, high complexity algorithms
can learn more complex functions but are more susceptible to overfitting the
idiosyncrasies of the training set, whereas low complexity algorithms can learn
less complex functions but are less susceptible to overfitting. This is know as the
bias-variance trade-off.

In the case of offline design, the idiosyncrasies of the training set represent
the differences between the simulated environment and the target environment.
It follows that, according to the conjecture of Francesca et al. (2014b), high-
complexity automatic design methods tend to suffer more from the reality gap than
low-complexity ones because they are more likely to overfit the simulator employed
during the design phase. The AutoMoDe approach they proposed has a lower
complexity with respect to neuroevolution in the sense that the control software it
can produce is restricted to what can be obtained by selecting and combining a set
of pre-defined modules into a given architecture, and by fine-tuning a small set of
parameters—these restrictions are effectively a form of bias introduced to lower
the variance.

In Birattari et al. (2016), the authors showed that during design, when overfitting
occurs, the difference between the performance of the swarm in simulation and
reality increases with the training effort. The authors suggested early stopping as
a potential solution to this problem. Following on this idea, in Ligot and Birattari
(2018), the authors showed that any environment used to design control software,
regardless how realistic, will cause the control software to overfit.

In Garattoni and Birattari (2018), the authors actually observed some kind
of “simulation gap”, in which the performance of control software that was hand-
crafted using real robots performed worse after being ported back to the simulation
environment. In Ligot and Birattari (2018, 2020, 2022), the authors leverage the
concept of “pseudo-reality”: the use of two different simulation environments with
different characteristics, to be used during the design phase of control software. One
to design the control software, and the other acting as a mock-up target environment
to test the robustness of the control software to a different environment.
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2.3.4 On the use of the term “overfitting”

In machine learning, a learning algorithm is said to “overfit” when it is overly
adapted to the training dataset and generalizes poorly to unseen data (Russell and
Norvig 2020). Throughout the thesis, we use the term “overfit” when the control
software generated by an automatic design method performs well in simulation
but does not generalize to reality. In our case, training is performed in simulation,
while the generated control software is eventually executed on real robots. What
we expect is that control software generated in simulation generalizes to reality in
a similar way as we expect that a learning method generalizes to unseen data.

In automatic design of control software for robot swarms, overfitting is illustrated
in Birattari et al. (2016), where the authors present empirical results and show
that when the design effort increases after a certain point, the performance of
control software will continue increasing in simulation, while decreasing in reality
(Figure 2.3a). The authors qualify this specific type of overfitting as overdesign.
Similarly, in Birattari (2009), the author presents and shows results in algorithm
configuration, and specifically metaheuristics tuning, and show that as the tuning
effort increases after a certain point, the performance of the tuned algorithm on
the tuning instance continues increasing while the performance on a test instance
decreases (Figure 2.3b). The author qualifies this specific type of overfitting as
overtuning.

Throughout this thesis, we can observe performance drops in the results of
assessments of automatic design methods. Different factors can contribute to these
performance drops, however, we focus on the issue of overfitting because other
factors, like discrepancies between simulation and reality, affect all design methods
in the same way, while overfitting is a method-specific factor; to the best of our
understanding, the only method-specific one. We are particularly interested in
understanding why some design methods are misled by the simulator while others
are not, which translates to why some methods overfit the simulation more than
others.

2.4 Notable research in automatic design
We have presented four different cross categories: offline semi-automatic, online
semi-automatic, offline automatic, and online automatic design. These categories
did not benefit from the same attention in the literature: the most studied category
is offline semi-automatic, followed by online semi-automatic, then offline automatic,
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b

Figure published in Birattari (2009)

Figure published in Birattari et al. (2016)

Figure 2.3: Overdesign and overtuning. a, overdesign (Birattari et al. 2016):
when the design effort increases after a certain point, the performance of the
automatic design method continues increasing in simulation, while the one in
reality decreases; b, overtuning (Birattari 2009): when the tuning effort increases
after a certain point, the performance of the tuned algorithm on the tuning instance
continues increasing, while the one on a test instance decreases.
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Table 2.1: Overview of automatic design methods. In the real robot experiments an
indication of limited experiments indicates that they are limited to a proof of concept. An
indication of semi* in the semi/fully automatic column indicates that we lack information to
definitely classify the study as belonging to fully-automatic design.

on/off-
line

semi/fully
automatic

number
of robots

missions real robot
experi-
ments

Watson et al. 1999, 2002 online semi* 8 phototaxis yes
Quinn et al. 2003 offline semi 3 coordinated navigation limited
Usui and Arita 2003 online semi* 6 collision avoidance yes
Bianco and Nolfi 2004 online semi 64 self-assembly no
Dorigo et al. 2003 offline semi 4-8 aggregation and coordinated naviga-

tion
no

Pugh et al. 2005 offline semi 2 obstacle avoidance no
Christensen and Dorigo 2006 offline semi 3 hole-avoidance and phototaxis limited
Trianni and Dorigo 2006 offline semi 4 hole-avoidance yes
Trianni and Nolfi 2009 offline semi* 96 (2-3 in

reality)
synchronization limited

Hauert et al. 2009 offline semi* 20 network connectivity no
Ampatzis et al. 2009 offline semi 2 self-assembly yes
Pugh and Martinoli 2009 online semi 10 obstacle avoidance yes
König et al. 2009 online semi* 26 collision avoidance and gate passing no
Waibel et al. 2009 offline fully 10 foraging yes
Hettiarachchi and Spears 2009 hybrid semi* 40-100 obstacle avoidance no
Hecker et al. 2012 offline semi 100

(1-3 in
reality)

foraging limited

Bredeche et al. 2012 online semi 20 survival and consensus yes
Gomes et al. 2013 offline semi 5 aggregation and resource sharing no
Gauci et al. 2014a offline semi* 10-1000 object clustering no
Gauci et al. 2014b offline semi* 10-1000

(40 in
reality)

aggregation limited

Duarte et al. 2014b offline semi 1000 patrolling no
Haasdijk et al. 2014 online semi* 100 objects foraging no
Francesca et al. 2014a,b offline fully 20 aggregation and foraging yes
Francesca et al. 2015 offline fully 20 shelter w/ constrained access,

largest covering network, cover-
age w/ forbidden areas, surface &
perimeter coverage, and aggregation
w/ cues

yes

Ferrante et al. 2015 offline semi 5-20 foraging no
Silva et al. 2015 online semi 5 aggregation, navigation, and photo-

taxis
no

Duarte et al. 2016a offline semi 10 homing, dispersion, clustering, and
area monitoring

yes

Montanier et al. 2016 online semi 100-500 foraging no
Fernández Pérez et al. 2017 online semi 200 foraging no
Jones et al. 2018 offline semi 25 foraging yes
Hasselmann and Birattari 2020; Has-
selmann et al. 2018b

offline fully 20 aggregation, stop, and decision yes

Kuckling et al. 2018; Ligot et al.
2020b

offline fully 20 foraging and aggregation yes

Jones et al. 2019 online semi 20 collective foraging yes
Garzón Ramos and Birattari 2020 offline fully 20 aggregation, stop, and foraging yes
Spaey et al. 2020 offline fully 20 aggregation, grid exploration, and

foraging
yes

Kuckling et al. 2020b offline fully 20 aggregation and foraging no
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and online automatic design. To the best of our knowledge, no study on online
fully-automatic design has been published, yet. In this section, we present a review
of notable research in the automatic design of robot swarms. We classify studies
according to the framework of categorization that we introduced previously. A
summary of the presented works, including fundamental characteristics, is available
in Table 2.1. Some of the works presented in this section could not be classified
with absolute certainty as belonging to either semi-automatic or fully-automatic
design. Indeed, despite the fact that some of these works do not mention any human
intervention in the design process, we cannot classify them as fully-automatic design
when: (i) it is not clearly explained how the values of some parameters were fixed
and whether this required the intervention of a human at design time, (ii) the
design method is tackling only one specific mission and its performance is assessed
only on this mission.

2.4.1 Offline semi-automatic design

Offline semi-automatic design is the most studied category of the four. The majority
of the notable works in semi-automatic design use neuroevolution to evolve control
software for robot swarms. In neuroevolution (Trianni 2008), typically, each robot
is controlled by a neural network whose inputs are mapped to the robot’s sensory
inputs and whose outputs are mapped to the robot’s actuators. The neural networks
are typically trained using an evolutionary algorithm.

The majority of the studies dealing with semi-automatic design share common
characteristics. Typically, the robot swarm is homogeneous, meaning that all robots
within the swarm execute an instance of the same control software. The objective
function used to optimize the control software and assess the performance of the
swarm is computed off-board the robots and from a global perspective—that is,
the performance metrics are defined at the swarm level.

Quinn et al. (2003) were the first to use neuroevolution to design control software
for robot swarms. They evolved three robots to perform a coordinated navigation
mission. The robots were only equipped with infrared sensors and started from
a random position. The authors presented results of 10 evolutionary runs, with
3000 to 5000 generations per run. Out of the 10 evolutionary runs, four of them
were stopped early due to unsatisfactory behavior. The best control software
was assessed for 100 trials in simulation and demonstrated in reality, however no
quantitative results obtained in reality were reported.

Dorigo et al. (2003) presented a swarm system called swarm-bot, composed of
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four to eight s-bots robots. They explored the design of control software using neural
networks for two tasks, aggregation and coordinated motion. For each mission, the
neural networks’ structure is different and the evolved controllers are validated
using simulation. The authors planned to test the best ones on real robots, however
their performance was assessed using simulation only. They reported satisfactory
results and simple and generally robust behaviors.

Pugh et al. (2005) designed control software for a swarm of 2 Khepera robots
for an obstacle avoidance mission using particle swarm optimization. The authors
explored how particle swarm optimization can be used to train a neural network.
They compared two genetic algorithms with 3 variants of the particle swarm opti-
mization algorithm. The parameters of the optimization algorithm were adjusted
during the design phase based on empirical results. They ran the design once per
scenario and compared the performance of the best instances of control software
they obtained. Results were reported in simulation only. They showed that particle
swarm optimization is a viable alternative to genetic algorithms to design robot
swarms.

Christensen and Dorigo (2006) designed control software simultaneously for
hole-avoidance and phototaxis using a group of s-bots robots using neuroevolution.
They used three different evolutionary algorithms to train four different neural
networks using simulations; 20 designs of 1000 generations were run for each of
them. The fitness function, neural network structure, and algorithm parameters
were specifically tailored to the missions at hand. The best instances of control
software obtained were then ported to a swarm of three real robots. Adjustments
in the speed of robots, sensor noise and environment were made to mitigate the
reality gap. The control software allegedly successfully transferred to the real
robots, however no quantitative results were provided.

Trianni and Dorigo (2006) designed control software for navigation with hole-
avoidance using neuroevolution for a swarm of physically connected s-bots that
exploit direct communication. They compared three neural network structures,
representing three different communication strategies. The design process was run
10 times for each communication strategy, the best control software obtained for
each strategy was tested 30 times on a swarm of 4 robots. They showed that direct
communication can be trained without explicit reward using neuroevolution. After
selection based on a carefully crafted performance metric, adjustments were made
to run the bests possible control software on real robots. The authors report small
differences between simulation and reality.

Trianni and Nolfi (2009) designed control software for different robot synchro-
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nization strategies for a swarm of s-bots using neuroevolution. The authors studied
synchronization strategies in simulation with up to 96 robots. Results show that
all strategies scale effectively. They tested the best control software they obtained
on real robots; they ran 20 trials with two robots, and 20 trials with three robots.
These experiments showed that the behavior is limited by the collision avoidance
system of the swarm. The authors applied dynamical system analysis to explain
the evolution mechanism and predict the swarm behavior. The authors claimed
that their analysis can be used to bring insight on how to design robots swarm,
using automatic or manual design, for self-organised synchronization.

Hauert et al. (2009) designed control software for a swarm or UAVs for a network
connectivity mission using neuroevolution. The mission consisted in establishing
and maintaining a multi-hop wireless network between users on the ground using
UAVs. The UAVs only rely on heading measurements and local communication.
They evolved a neural network with four inputs, one output and 4 hidden nodes
using an evolutionary algorithm. The design was ran 15 times. The analysis was
focused on the performance of the best control software they obtained. Results
were reported in simulation using 20 UAVs. Results showed that the system was
able to find user stations and maintain an active network.

Ampatzis et al. (2009) designed control software for a self-assembly task between
two s-bots robots using neuroevolution. The objective functions that were used
were crafted not only to encourage self-assembly, but also to encourage aggregation,
minimize collisions, and encourage straight movement when robots are close, the
latter being reported as been added to ease transferability to real hardware. The
design process was run 20 times and the best control software obtained were then
tested on real robots. The authors reported good experimental results both in
simulation and reality.

Hecker et al. (2012) designed control software for a swarm of iAnt robots for a
foraging mission using evolutionary algorithms. They fine-tuned the parameters of
mission-specific modules used in finite-state machines in order to obtain the desired
behavior. Experiments were conducted using 1 and 3 robots both in simulation
and reality. The authors reported satisfactory behaviors both in simulation and
reality. The system was able to scale in the simulation setup to up to 100 robots.

Gomes et al. (2013) designed control software for a swarm of 5 robots for one
aggregation and one resource sharing mission using novelty search. The algorithm
they used is NEAT (Stanley and Miikkulainen 2002), combined with a special
objective function that favors novelty instead of a mission specific fitness, to train
a simple neural network. They compared this method with a classical neuroevo-
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lutionary approach and a hybrid approach. They showed that novelty search is
a promising approach, as it achieved similar results for the aggregation mission
and better results in the resource sharing mission than the other methods. Some
parameters of the algorithm were chosen per-mission. The number of generations
was 100 for the first mission and 400 for the second mission, also the behaviour
characterization differs in the two missions. The experiments were conducted in
simulation only.

Gauci et al. (2014a) designed control software for a swarm of e-puck robots
for an object clustering mission using an evolutionary algorithm. The robots
sensing capabilities were limited to a minimum, with only one line-of-sight sensor.
The control software architecture consisted of an array directly associating the
states of the line-of-sight sensor to motor speeds. The robot did not require any
computation. Three cases were compared, where the line-of-sight sensor could:
(i) detect and distinguish between objects and robots (ii) only detect objects (iii)
detect objects and robots but not distinguish them. The control software was
designed in simulation using the CMA-ES (Hansen and Ostermeier 2001) algorithm,
three designs per case were done, of 1000 generations. The control software they
obtained were then tested in simulation on various swarm sizes and number of
objects. The best control software they obtained were then ported and tested 10
times on a swarm of 5 real robots. Results showed that, even with such a minimal
setup, robots were able to cluster most of the objects.

Gauci et al. (2014b) developed the same idea presented in the previous article:
they designed a swarm of e-puck robots with only one binary sensor for an aggre-
gation mission. In this study the line-of-sight sensor can detect whether there is a
robot in front, or not. Here, the adopted optimization algorithm is a simple grid
search as the search space of candidate control software is small. It only consists of
an array of four parameters, associating states of the sensor to motor speeds. The
entire search space of parameters was searched with floating points numbers with a
0.1 resolution on each parameter, with 100 simulations per candidate. They tested
the optimal solution with 10 to 1000 robots in simulation and in reality with 40
robots.

Duarte et al. (2014b) designed control software for a swarm of up to 1000 aquatic
drones for a patrolling mission using hierarchical decomposition and neuroevolution.
The authors first used manual hierarchical decomposition to define sub-tasks and
then evolved low-level behaviors using neuroevolution on these sub-tasks. They
combined these mission-specific low-level modules into a neural network arbitrator.
The authors reported experimental results in simulation only. The same method is
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also described in Duarte et al. (2014a)
Ferrante et al. (2015) designed control software for a swarm of foot-bot robots for

a foraging mission with task specialization using Grammatical Evolution (Ferrante
et al. 2013). Two different methods were used, the first using pre-defined high-level
behavioral modules and a second one using simpler behavioral modules. The
modules differ in their complexity but are tailored to the specific mission at hand.
Results showed the emergence of task-allocation in both scenarios with success. The
experiments were conducted in simulation only using a swarm of 5 to 20 foot-bot
robots.

Duarte et al. (2016a) designed control software for a swarm of 10 aquatic
robots across four different missions using neuroevolution. The authors added
noise to the simulation and tested multiple initial positions, number of robots, and
environmental features to bootstrap the evolution. The design process was run
10 times per mission, the NEAT algorithm was used with its default parameters.
The best control software of each generation was assessed in 100 simulations; 3 out
of these 10 controllers were tested on real aquatic robots. Results reported good
performance in all missions. The second part of this study introduced a proof of
concept on a more complex mission. The mission was achieved by combining the
instances of control software obtained in the first part of the study.

Jones et al. (2018) designed control software for a swarm of 25 kilobots on a
foraging mission using behavior trees as the control architecture and an evolutionary
algorithm. The authors defined high-level behaviors that were mission-specific.
These behaviors were used as modules in the interface between the robot and the
behavior trees. The results showed that a behavior tree was successfully evolved
for the foraging task. The authors reported a significant difference between the
performance in simulation and in reality, due to the reality gap. The robots were
still able to effectively forage.

2.4.2 Online semi-automatic design

In this section, we present the state of the art in online semi-automatic design. As
this thesis focuses primarily on offline methods, we selected only the most relevant
studies in online automatic design. For a more comprehensive overview of the state
of the art we refer the reader to Bredeche et al. (2018).

In the literature, online automatic design is also referred to as embodied evolution.
It is the study of distributed learning methods for the online automatic design of
robot swarms. A majority of studies use embodied neuroevolution, in which the
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control software of the robots, possibly a neural network, is expressed in the form
of a genome. This genome evolves while the swarm operates by mutation and/or
recombination and by sharing genetic information with neighboring robots.

Watson et al. (1999, 2002) were the first to use embodied evolution for evolution-
ary robotics. They designed software for a swarm of eight robots for a phototaxis
mission. The control software architecture was a fully connected neural network
whose topology was tailored to the mission at hand. The robots sent their genome
and a performance score to other neighboring robots to share genetic information.
The experiments were run on real robots, the results showed that an effective
phototaxis strategy emerged that outperformed the manually designed strategy.

Usui and Arita (2003) designed control software for a swarm of six Khepera
robots for collision avoidance using embodied neuroevolution. They used a simple
two-layer neural network as control architecture. They compared four cases by
varying gene pool sizes. The gene pool size is the number of instances of genomes
stored in each robot and that they can memorize and share. The experiments
were run on real robots. Results showed that sharing well-performing instances of
control software between robots is beneficial for swarm performance.

Bianco and Nolfi (2004) proposed a framework for robot self-assembly. The
authors chose a set of simple rules and let the swarm evolve freely, without any
explicit objective function. The robots are controlled using a feed-forward neural
network with no hidden layer. Three scenarios were imagined leveraging different
robot capabilities to let different behaviors emerge. The design was run five
times for each scenario. Results were reported in simulation only using 64 robots.
Behaviors spontaneously emerged, leading to coordinated motion and assembled
robot structures.

Pugh and Martinoli (2009) designed control software for a swarm of Khepera
robots using particle swarm optimization for an obstacle avoidance mission. The
authors explored how particle swarm optimization can be adapted for distributed
design. The algorithm was compared to a distributed evolutionary algorithm. The
optimization algorithms are used to train a fully-connected feed-forward neural
network. The authors studied the effect of varying sizes of robot swarm and varying
communication ranges. The best instances of control software were tested on 10 real
robots. The experiments were adapted to better fit the simulation setup. Results
showed that particle swarm optimization is a viable alternative to evolutionary
algorithms for the online design of robot swarms.

König et al. (2009) designed control software for a swarm of 26 Jasmine IIIp
robots for collision avoidance and gate passing using embodied neuroevolution
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and finite-state machines. Using different fitness functions, genome recombination
strategies, number of parents for genome reproduction, and genome memory, the
authors defined 8 different distributed experiments to evolve finite-state machines
online. The experiments were run for 80000 cycles using simulation only. Results
showed that increasing the number of parents associated with specific recombination
strategies lead to improved performances.

Hettiarachchi and Spears (2009) designed control software for a swarm of 40 to
100 robots for obstacle avoidance using force laws and evolutionary algorithms. The
parameters of the force laws determined how robots behaved and travelled through
contingencies in the environment. The control software was defined directly by
the force law parameters. It is first trained offline using an evolutionary algorithm
in a simple environment. Then, the control software is ported on the robots to
the target, more complex, environment. The control software adapts online to this
environment. This method can be considered as a hybrid method with a focus on
the DAEDALUS framework, introduced by the authors, for the online adaptation
of the swarm. The control software architecture was heavily biased towards solving
the specific mission at hand. Results were reported using simulation only. They
compared two different force laws and showed that, in their experiments, the
Lennard-Jones force law outperformed the Newtonian force law.

Bredeche et al. (2012) presented mEDEA, a distributed embodied neuroevolu-
tionary algorithm using neural networks. Using this algorithm, robots could adapt
to changes in their environment. The authors designed software for a swarm of
20 e-puck robots for two missions: a survival mission and a consensus mission.
21 experiments were run on real robots. Adjustments were made to the neural
network topologies, and to the number of control software instance saved per robot,
in order to port control software to real robots. The communication radius and
the swarm size were key factors to the success of the mission. Eight supplementary
experiments were run on the basis on the observation of the initial ones, to explore,
in details, the performance of mEDEA. Results showed that mEDEA was efficient
at providing adaptation in unknown environments and robust to changes in the
environment.

Haasdijk et al. (2014) presented MONEE, a variant of the mEDEA algorithm.
MONEE is a multi-objective and distributed neuroevolutionary algorithm that
allowed robots to adapt to changes in their environment but also to adapt to a given
mission. The mission that was considered was concurrent foraging with two types
of objects. The robots executed a single-layer feed-forward neural network. This
architecture was chosen based on trials with different architectures. The design
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process was run 64 times. Experiments were reported using simulation only on a
swarm of 100 e-puck robots. They compared two variants of MONEE with mEDEA,
results showed that is is possible to combine environmental and mission driven
evolution, and that MONEE outperformed mEDEA on the considered mission.

Silva et al. (2015) presented a distributed neuroevolution algorithm called
odNEAT, based on the NEAT algorithm (Stanley and Miikkulainen 2002). They
compared it with rtNEAT, a previously presented offline method, on three missions:
aggregation, obstacle avoidance, and phototaxis. The neural network topologies
were adjusted for each mission. Results were reported using simulation only with a
swarm of 5 robots. The results showed that odNEAT performed as well as rtNEAT
on the considered missions. The robots exhibited better sensor fault tolerance when
running odNEAT. Before deployment, tests across all missions were conducted to
determine suitable parameters for the odNEAT algorithm.

Montanier et al. (2016) studied the emergence of behavioral specialization of
robots in a swarm for a foraging mission, with multiple resources. Two variations
of the algorithm were assessed using simulation with a population of 100, 200, and
500 robots. Results showed that robots must be isolated, or that the swarm must
have a large population size, in order to exhibit behavioral specialization in the
presented mission. The article only presented one task and did not provide any
information about potential mission-specific adjustments.

Fernández Pérez et al. (2017) presented a modified version of the mEDEA
algorithm, with task-driven selection pressure. It was tested on a swarm of 200
robots using simulation, for a cooperative food foraging mission. The robots
successfully evolved control software that was able to forage food cooperatively.
The parameters of the algorithm for the mission were determined using preliminary
experiments.

Jones et al. (2019) designed control software for a swarm of 20 eXtended e-
puck robots for a collective foraging mission using behavior trees evolved by an
embedded simulation-based evolutionary algorithm. The robots designed candidate
control software using simulations on their on-board computers while simultaneously
executing the best control software instance so far. They exchanged information
about the best candidate control software instance with their neighboring peers. The
objective function was adjusted to bootstrap the evolution. Real-robot experiments
were run before deployment to adjust the friction and collisions model of the
simulation to the reality. An obstacle avoidance mechanism was also added.
Twenty experiments were run using real robots. The authors reported that robots
could find efficient solutions in less than 15 real-time minutes.
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2.4.3 Offline automatic design

In this section, we present offline fully-automatic design methods. This category
contains works that do not involve any human intervention in the design process
nor any per-mission modification of the method during the design process. However,
human expertise is still required when implementing the method, for example by
creating modules in modular methods (see Section 2.5 for details). Human expertise
is also needed when defining the specifications of a mission, including the definition
of the objective function and target environment.

Waibel et al. (2009) designed control software for a swarm of 10 robots for
multiple variants of a foraging mission using neuroevolution. They studied different
evolutionary conditions to create both homogeneous and heterogeneous swarms
using team-level and individual-level selection. The robots are controlled by
a feed-forward neural network with one hidden layer. The design process was
run 20 times for each of the four evolutionary conditions and three tasks, for
300 generations. Each instance of control software was then evaluated 10 times
using real robots. Results showed that, although significant differences between
evolutionary conditions were observed and that all evolutionary conditions evolved
the foraging behavior, none of them was optimal in all missions.

Francesca et al. (2014b) designed control software for a swarm of 20 e-puck
robots for an aggregation and a foraging mission using modular design. This study
is the first that presented a method of the AutoMoDe family. The idea of AutoMoDe
is to leverage the bias-variance trade-off by injecting bias into the design process by
using pre-existing modules. The authors presented AutoMoDe-Vanilla, a method
that uses pre-existing hand-crafted modules to assemble and fine-tune probabilistic
finite state machines. The method is compared to a classical neuroevolutionary
method called EvoStick. The design process was run 20 times with 3 different
simulation budgets for each mission and each method. The optimization algorithm
is the F-race algorithm (Birattari et al. 2002). The results were reported using
both simulation and real robots. The authors reported good results on all missions,
Vanilla outperformed the classical neuroevolutionary approach and was also more
robust to the reality gap. This study laid the foundation of many other automatic
design methods introduced in the following years and presented hereafter.

In a subsequent study, Francesca et al. (2014a), added a comparison with human
experts. The two methods of the previous study were compared to control software
produced by five different human experts under the same experimental setting.
Humans conceived control software using two manual methods: U-Human where
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they were unconstrained, meaning they designed the control software from scratch,
and C-Human where they were constrained, meaning they designed the control
software by assembling the same modules of Vanilla, effectively creating and fine-
tuning probabilistic finite-state machines. In this second case, they took the same
role as the optimization algorithm of Vanilla. The results were reported using
simulations and real robots. The constrained humans (C-Human), outperformed
all other methods, followed by Vanilla, itself outperforming EvoStick and the
unconstrained humans (U-Human).

These results were the starting point for the creation of AutoMoDe-Chocolate
(Francesca et al. 2015). As C-Human used the same modules as Vanilla did, the
authors had the intuition that adopting a more powerful optimization algorithm
could yield better performance for Vanilla. The authors tested this hypothesis by
adopting the irace (López-Ibáñez et al. 2016) optimization algorithm to replace F-
race. The methods were tested for five different missions and Chocolate, Vanilla,
and C-Human were compared using simulations and real robots. The results showed
that Chocolate outperformed C-Human and Vanilla. Making Chocolate the
first automatic design method to outperform human designers.

Following the success and good results of Chocolate, other methods of the
AutoMoDe family were published. These novel methods all leverage the idea of
modular design to increase their robustness to the reality gap. They explored
different aspects of automatic modular design, by introducing new modules (Garzón
Ramos and Birattari 2020; Hasselmann and Birattari 2020; Hasselmann et al. 2018c;
Spaey et al. 2020), trying different control architectures (Kuckling et al. 2018; Ligot
et al. 2020b), or different optimization algorithms (Kuckling et al. 2020b). These
studies, presented hereafter, all use a swarm of 20 e-puck robots. All results
are supported by simulations and real-robot experiments and all methods were
compared them other design methods, often neuroevolutionary ones, on several
missions.

In Hasselmann et al. (2018b), and the subsequent work, Hasselmann and Birat-
tari (2020), we presented AutoMoDe-Gianduja. This method extended Chocolate
by introducing modules that allowed explicit communication between robots. The
results showed that it is possible to automatically design a swarm of communicating
robots, without any explicit reward for communication. The modular method
outperformed the neuroevolutionary one, EvoCom, a communication-enabled variant
of EvoStick.

In Kuckling et al. (2018), and the subsequent work, Ligot et al. (2020b), the
authors introduced AutoMoDe-Maple. They explored the effect of using behavior
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trees (Champandard 2007) as the control architecture on the performance of the
design method, instead of probabilistic finite-state machines. The results showed
that Maple performed similarly to Chocolate; using behavior trees did not degrade
the results in any sensible way. The two modular methods presented in this study
outperformed the neuroevolutionary one, EvoStick.

Garzón Ramos and Birattari (2020) presented AutoMoDe-TuttiFrutti, an
extension of Chocolate allowing robots to display and perceive colors using RGB
LEDs and cameras. This method enhanced the capabilities of Chocolate: it gave
the ability to a swarm of e-puck robots to use color information for communication
and navigation.

Spaey et al. (2020) presented AutoMoDe-Coconut, an extension of Chocolate
with configurable exploration schemes. They compared multiple random-walk and
exploration schemes and explored how these affect the performance of the design
method. Results indicated that the exploration scheme already implemented in
Chocolate is a suitable choice as Coconut and Chocolate performed similarly in
the missions considered.

Kuckling et al. (2020b) presented AutoMoDe-IcePop. In this study, the au-
thors explored how the optimization algorithm used in Chocolate influenced the
performance of the design method. They replaced the irace algorithm used in
Chocolate, by a stochastic local search metaheuristic, the simulated annealing
algorithm (Nikolaev and Jacobson 2010). IcePop outperformed Chocolate in
simulation on one of the two missions, but not in the pseudo-reality (Ligot and
Birattari 2018). Results indicated that simulated annealing is a viable replacement
for irace for automatic design.

The works presented in Chapters 4, 5, and 6 of this thesis introduce an empirical
comparison of automatic design methods and two novel design methods that belong
to this category.

2.5 Modular methods for fully-automatic design
In the previous section, we presented notable research in automatic design. A
subset of the presented automatic design methods belong to modular design. In
modular design, the optimization algorithm operates on modules. During the design
process the algorithm combines modules into a high-level arbitrator architecture.
For example, behavioral modules that execute low-level actions on the robots, like
going to a light, or avoiding an obstacle, could be assembled into a probabilistic
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finite-state machine. Modules are software components, that can be executed by
the robots. Their creation may be manual or automatic. They may be hand-
crafted modules, neural networks, or any other type of software architecture. The
implementation of these modules, depends of the robotic platform selected to use
with the method.

In fully-automatic design, modules have additional constraints: In order to
qualify as fully-automatic, a method must not undergo any per-mission modification,
that is why the modules must be defined once-and-for-all and be subsequently
used for all designs runs of the method. They are thus part of the definition
of the method. Modules may be created manually or automatically, provided
that, once defined, they are not modified on a per-mission basis. Modular design
methods are widespread in fully-automatic design, especially since the development
of AutoMoDe (Francesca et al. 2014b). One major advantage of modular methods
is that research suggests that they are more robust to the reality gap than the
classical neuroevolutionary ones (Francesca et al. 2015; Hasselmann and Birattari
2020; Kuckling et al. 2020a). The main challenge in modular design lies in the
creation of the modules. For instance, the level of abstraction of modules (high-level
or low-level modules) and the number of modules, are factors that define the class
of missions that the swarm could perform. The way the modules are designed, and
the way they are combined, are factors that define the performance of the swarm
and the robustness of the method to the reality gap.

We present here a review of modular methods, the ones already mentioned in
Section 2.4 are briefly summarized:

Ferrante et al. (2013) and Ferrante et al. (2015) used modules in the form of hand-
crafted low-level behaviors. These are then assembled offline using grammatical
evolution (O’Neill and Ryan 2003). The evolved high-level arbitrator corresponds
to a set of rules that controls how the control software switches from one low-level
behavior to another. These rules are based on the internal or sensory state of the
robot.

Francesca et al. (2014b) presented AutoMoDe, a family of methods, and
AutoMoDe-Vanilla a modular method that used hand-crafted and pre-defined
modules, then assembled into probabilistic finite-state machines. Modular methods
belonging to the AutoMoDe family have shown to be more robust to the reality gap
than traditional neuroevolutionary methods. Several methods from the AutoMoDe
family were presented in the recent years (Francesca et al. 2015; Hasselmann and
Birattari 2020; Kuckling et al. 2020a,b; Mendiburu et al. 2022; Spaey et al. 2020).

Duarte et al. (2014a) and Duarte et al. (2014b) used low-level behaviors in
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the form of neural networks trained using neuroevolution, and manually designed
modules. The authors first decomposed missions manually using hierarchical
decomposition and then created low-level modules for these sub-missions. They
either: designed the module manually when the mission had no immediate objective
function, or trained a neural network using neuroevolution if an objective function
could be easily defined.These modules were then combined offline in a high-level
arbitrator using neuroevolution.

Duarte et al. (2016a) started with simple missions with control software in
the form of neural networks evolved via neuroevolution in the first part of the
study. Then, for a more complex mission, they assembled, offline and manually,
the modules created in the first part of the study.

Jones et al. (2018) used behavior trees as the arbitrator architecture and
assembled high-level behavioral modules that were mission-specific. The modules
are created manually, and assembled offline using an evolutionary algorithm.

Gomes and Christensen (2018b) presented an offline method to generate a
repertoire of diverse swarm behaviors. They used a quality-diversity (Pugh et al.
2016) algorithm relying on a quality metric and a behavior characterization to
create a mission-agnostic set of neural network modules (the repertoire). They
tested the modules by assessing them on eight missions. Results showed that
control software suitable for all missions was present in the repertoire. Experiments
were done in simulation only and modules were not assembled.

Jones et al. (2019) used behavior trees evolved online using an embedded
simulation-based evolutionary algorithm. The robots executed the best candidate
control software, while simulations were running on their on-board computer.

Neupane and Goodrich (2019) used behavior trees evolved using using grammat-
ical evolution (O’Neill and Ryan 2003). The authors defined actions and conditions
nodes, used as modules. These were hand-crafted. The behavior tree was then
generated by combining these low-level modules.

Cambier and Ferrante (2022) used several evolutionary algorithms to assemble
hand-crafted modules. The authors used the same behavior and condition modules
as the ones of Chocolate (Francesca and Birattari 2016) and generated proba-
bilistic finite-state machines using three different algorithms: a genetic algorithm,
grammatical evolution, and differential evolution. Experiments were presented
using simulation only.
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2.6 Discussion
In this chapter, we presented a general introduction to swarm robotics as an
appealing approach for a wide variety of robotic applications. The properties of
swarm robotic systems—fault tolerance, scalability, and flexibility—make them
particularly suitable for complex applications that benefit from the distributed
nature of these systems. The design of these systems is one of the main challenges
of the field. Deriving individual behavior from the collective behavior of robots is
a difficult engineering problem.

Automatic design for robot swarms is a promising approach to tackle the
design problem. We proposed a novel classification of automatic design methods,
separating semi-automatic methods from fully-automatic design methods. The
main difference between these approaches is whether or not a human designer was
involved in the design phase of a method. Semi-automatic methods being described
as "human-in-the-loop" methods, while fully-automatic design methods prohibit it.

We reviewed the most notable research in the automatic design of robot swarms.
We focused on the description of methods and we determined if these methods
could be classified as either semi- or (fully-)automatic design. It is our contention
that the advancement of the field of automatic design would benefit from systematic
real-robot experiments, as we have seen that the reality gap problem is a significant
issue when assessing the performance of control software designed using simulation
only. Therefore, we gave details on experimental protocols, and specifically on the
adoption of real-robot experiments to validate simulation results.

The last part of the chapter focuses on modular automatic design methods;
we believe that modular design is a promising approach to the creation of robust
automatic design methods. However, as of today, the implementation of popular
modular automatic design methods still requires expert knowledge. The following
chapters of this thesis aim to shed light on the issues that we highlighted. We
present the most extensive comparative analysis of offline automatic design methods
currently available in the literature. This study follows an experimental protocol
that emphasizes the importance of real-robot experiments for the mitigation of the
effects of the reality gap. The two automatic modular design methods introduced
afterwards were created as an attempt to bridge the gap between neuroevolution-
ary methods and modular methods, to reduce expert knowledge needed in the
implementation of modular methods while maintaining sufficient robustness to the
reality gap.



3. Methods

This chapter presents the materials and methods that are common to all experiments
in this thesis. We describe the robotic platform we use, its reference model, the
simulator, the arena setup, the statistical tools and two automatic design methods
that are present in all our experiments as comparison points: EvoStick and
Chocolate.

3.1 The e-puck robot
The robot used in the research is the e-puck (Mondada et al. 2009), a small
differential-drive robot that measures 50 mm of height and 70 mm of diameter.
The e-puck is equipped with several sensors and actuators: It has eight infrared
transceivers positioned all around its body to detect the presence of surrounding
obstacles and/or measure the intensity of the ambient light. It has three ground
sensors to read the gray-scale color of the ground beneath. For the purposes of
the research presented in this thesis, the e-puck was enhanced with two extension
boards: (i) the range-and-bearing (Gutiérrez et al. 2009), which enables a robot

36
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Input Value Description

proxi∈{1,...,8} [0, 1] reading of proximity sensor i
lighti∈{1,...,8} [0, 1] reading of light sensor i
gndj∈{1,2,3} {black, gray, white} reading of ground sensor j

n [0, 19] number of neighbouring peers perceived
V

(
[0.5, 20], [0, 2π] rad

)
range-and-bearing vector

Output Value Description

vk∈{l,r} [−0.12, 0.12]ms−1 target linear wheel velocity

Period of the control cycle: 100 ms50 mm

a b

Figure 3.1: The robot and its reference model. a, the e-puck robot in
the configuration used for the experiments presented in this thesis. Details are
provided in Section 3.1. b, the reference model RM1.1, which formally describes
the programming interface through which the control software interacts with the
robot’s hardware.

to sense the presence of neighboring peers and estimate their relative position;
and (ii) the Overo Gumstix, a Linux board that increases the computing power
and flexibility of the robot. The robot is also equipped with two batteries and its
autonomy is around 35 min. A picture of the e-puck in the configuration adopted
in the experiments is given in Fig. 3.1a.

3.2 Reference model
This section describes the reference model used for the e-puck robot in this thesis.
A reference model formally describes the programming interface through which,
in the experiments presented in the thesis, the control software interacts with the
underlying hardware.

In this thesis, the e-puck is formally described by the reference model RM1.1
given in Figure 3.1b. All design methods comprised in this thesis generate control
software that interacts with the e-puck exclusively through the variables defined in
RM1.1.

According to RM1.1, the reading of a proximity sensor i is stored in the variable
prox i, which ranges between 0 and 1. When sensor i does not perceive any obstacle
in a 0.03 m range, prox i = 0; while when sensor i perceives an obstacle closer than
0.01 m, prox i = 1. Similarly, the reading of a light sensor i is stored in the variable
lighti, which ranges between 0, when no light source is perceived, and 1, when
the sensor i saturates. The readings of the three ground sensors are stored in the
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variables gnd1, gnd2 and gnd3. These variables can take three different values:
black, gray and white. The e-puck robot uses the range-and-bearing board to
perceive other e-pucks in its neighborhood. The variable n stores the number of
the neighboring e-pucks. The e-puck detects the relative position of its neighbors
by the mean of a range-and-bearing vector. The range-and-bearing vector points to
the aggregate position of the neighboring peers perceived; its magnitude increases
with the number of neighboring peers perceived and decreases with their distance.
Formally, this vector is computed as follows:

Vb =


∑n
m=1( 1

1+rm ,∠bm), if robots are perceived;

(1,∠0), otherwise.

where rm and ∠bm are range and bearing of neighbor m, respectively (see Fig-
ure 3.1b). If no neighboring peer is perceived, the vector points to the front of the
robot and has unitary magnitude; formally, V = (1,∠0).

The wheel actuators are operated by the control software through the variables
vl and vr, in which it writes the target linear velocity for the left and right wheel,
respectively. The linear wheel velocity ranges between −0.12 m/s and 0.12 m/s.

Although all automatic design methods presented in this thesis use RM1.1,
different reference models, used by other methods of the AutoMoDe family, can be
found in Hasselmann et al. (2018a).

3.3 Simulator
Within an automatic design method, we use computer simulations to optimize con-
trol software models. For this, all simulations are performed using ARGoS (Pinciroli
et al. 2012), a simulator specifically conceived to simulate robot swarms. We used
version 48 of ARGoS, along with the ARGoS-Epuck library (Garattoni et al. 2015),
which provides software support for all extension boards. The library also enables
the cross-compilation of the control software for the e-puck platform so that it can
be ported to the robots without any modification (Ligot et al. 2017). The models
of the e-puck’s components have been conceived on the basis of real-world data
sampled from the robot’s sensors and actuators, according to best practices (Jakobi
et al. 1995; Miglino et al. 1995).

The modular design of ARGoS allows control software generated by automatic
design methods to be directly used in the simulator and with real robots. All
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Image extracted from Supplementary Video C7

Figure 3.2: Close shot of robots in the arena. Five robots can be seen in the
foreground; on the floor a black patch is placed, identical to the ones used during
our experiments; in the background the wooden walls of the arena are placed.

automatic design methods presented in this thesis use the ARGoS simulator and
their implementations were released as open-source software.

3.4 Arena

The robots operate in a dodecagonal arena of 4.91 m2 surrounded by walls and
possibly containing obstacles. The floor is gray, with some regions that are white
or black, depending on the mission to be performed. The gray floor is part of the
vinyl flooring that covers the entire experimental room. Black and white areas are
made out of high density paper and are glued to the floor. They are placed with
special care in order to minimize friction in boundary areas between black or white
areas, and the vinyl floor.

In some missions, a single light source, placed next to the arena, is on for the
whole duration of an experimental run. This light source is filtered with a red gel to
avoid overexposure of the overhead camera of the tracking system (see Section 3.4.1),
but still be detectable by the robots’ light sensors, which are particularly sensitive
to the infra-red and the lower range of the visible spectrum.
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Upperwhisker
(3rd quartile + 1.5 IQR)

Lowerwhisker
(1st quartile− 1.5 IQR)

Possible outlier

Median

1st quartile

3rd quartile

Interquartile
range (IQR)The notch (95% confidence

interval of themedian).
Median±1.58 IQR/

√
n

Figure 3.3: Example of box-and-whiskers plot. The thick horizontal line
represents the median; the box extends to the upper and lower quartile; the up-
per/lower whiskers extends to the maximal/minimal observation that falls between
the upper/lower quartile and 1.5 times the interquartile range; circles represent
outliers, that is observations that fall beyond the whiskers. Notches on the box
represent a 95% confidence interval on the median, and extend to ±1.58 IQR/

√
n,

where IQR is the interquartile range and n is the number of observations. Circles
outside of the whiskers represent outliers.

3.4.1 Tracking system

For all experiments presented in this thesis, the performance of the swarm was
computed automatically using data provided by a tracking system (Stranieri et al.
2013) that registered the position of the robots throughout the duration of each
experimental run. The position of the robots was not communicated to the robots
themselves, which had only a local perception of the environment, coherently with
the tenets of swarm robotics. The tracking system is based on an overhead camera
and recognizes custom tags mounted on the robots—see Figure 3.1a.
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3.5 Statistics
In this section, we summarize the statistical tools that we will use to analyze all the
experiments in the thesis. Special statistical analyses realized for some experiments
are detailed in the specific chapters where they are used.

In all experiments presented in this thesis, we test automatic design methods
using real robots. Real robot experiments are costly and time consuming; it is
therefore very important to determine the most efficient strategy for testing methods
in order to minimize the variance in the estimation of the performance of automatic
design methods on a given mission. If the design process is automatic and can run
efficiently on a high-performance computing cluster, we can assume that the cost
of running the design process is negligible compared to the one of performing real
robot experiments. To assess the performance of a given method, we generate d
control software instances, and we test each of these instances n times. Given a
maximum of N experimental runs, we thus have N = d · n. The theorem presented
in Birattari (2020) states that given this maximum of N experimental runs, the
experimental design that minimizes the variance of the estimate is the one where
d = N , and n = 1 (for details and a formal proof, we refer the reader to Birattari
(2004, 2020) and Cotorruelo et al. (2021)). This is why, in all experiments presented
in this thesis, when generating d instances of control software for a given method,
we assess its performance by testing each control software instance once in reality
and once in simulation.

To represent the performances of the different automatic design methods that
we study, we use notched box-and-whiskers plots. An example of box-and-whiskers
plot is presented in Figure 3.3. In these plots, the thick horizontal line represents the
median; the box extends to the upper and lower quartile; the upper/lower whiskers
extend to the maximal/minimal observation that falls between the upper/lower
quartile and 1.5 times the interquartile range; circles represent outliers, that is
observations that fall beyond the whiskers. Notches on the box represent a 95%
confidence interval on the median, and extend to ±1.58 IQR/

√
n, where IQR is the

interquartile range and n is the number of observations. The difference between
the medians of two boxes is significant with a confidence of at least 95% if the
notches of the respective boxes do not overlap (Chambers et al. 1983).

We also execute Friedman tests (Conover 1999), which aggregates all results
by ranking the performance of all methods across all missions. We present the
results in a plot that represents an estimate of the expected rank of each method
and the relative 95% confidence interval. The performance of two methods is
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significantly different with confidence of at least 95% if the corresponding intervals
do not overlap.

3.6 AutoMoDe
The original methods presented in this thesis belong to the AutoMoDe family of
methods. As introduced in Section 2.3.3, the reality gap is a central concept in
automatic design and one of the main motivations for the creation of AutoMoDe.
The inability for neuroevolution-based automatic design methods to satisfactorily
cross the reality gap is conjectured to be the result of a too high representational
power of neural networks.

The creation of AutoMoDe in Francesca et al. (2014b) is based on this conjecture.
In AutoMoDe, robots are controlled by a modular control software architecture (e.g.,
a probabilistic finite-state machine) that is generated by assembling pre-defined
software modules. The control software created by AutoMoDe features a lower
representational power than neuroevolutionary methods because bias is injected
in the design process by restricting the design space using modules. AutoMoDe
is a framework, it needs to be specialized for a specific robotic platform. To
implement a specialization of AutoMoDe, an expert needs to: (i) provide a set
of modules and implement them for the specific robotic platform, (ii) define a
control software architecture, and (iii) select an optimization algorithm to assemble
modules in the target control software architecture. The optimization algorithm
searches the space of possible instances of the control architecture by assembling
the pre-defined modules. The modules are created in a mission-agnostic way, they
are not created to solve a specific problem or tackle a specific mission. Rather,
they are created based on the capabilities of the considered robotic platform and
are used to tackle a wide range of missions within a class. The modules cannot be
manually modified or adapted to a specific mission during the design process. All
specializations of AutoMoDe thus belong to fully-automatic design methods, as
defined in Section 2.3.2.

The definition and implementation of the modules are based on the reference
model of the robotic platform that is considered. A reference model, as defined in
Section 3.2, is a description of the capabilities of a robotic platform. It describes the
interface between the software and the hardware of the robot. Since the creation of
the modules is dependent on the reference model, the reference model also implicitly
defines the class of missions that a robot swarm can tackle. For instance, a mission
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that requires robots to aggregate on a floor of a specific color cannot be completed
by robots that cannot detect the floor’s color.

There are multiple specializations of AutoMoDe; in the following sections, we
will focus on Vanilla and Chocolate. Vanilla (Francesca et al. 2014b) is the first
specialization to have been defined and a proof of concept. Chocolate (Francesca
et al. 2015), an enhanced specialization based on Vanilla, is the most classical
and the most studied AutoMoDe method (Francesca et al. 2015; Hasselmann and
Birattari 2020; Hasselmann et al. 2021, 2018b; Kuckling et al. 2018, 2020a, 2019;
Ligot and Birattari 2018, 2020; Ligot et al. 2020a,b; Mendiburu et al. 2022).

3.6.1 Vanilla

Vanilla demonstrates the core idea behind AutoMoDe. This method selects,
combines, and fine-tunes pre-defined modules into control software in the form
of probabilistic finite-state machines. Vanilla generates control software for the
e-puck robot (see Section 3.1). In Vanilla the states of the probabilistic finite-state
machines are low-level behavior modules and edges are condition modules. A low-
level behavior module is an action that a robot performs and a condition module
is a criterion for transitioning from the current low-level behavior to another one.
The period of the control cycle in Vanilla is 100 ms. At every step, the low level
behavior associated with the current state is executed, and the outgoing conditions
of the current state are evaluated. If any of the conditions is evaluated as true, the
current state is replaced by the one associated to the edge of the condition. The
modules adopted in Vanilla are pre-defined based on the reference model of the
e-puck robot (defined in Section 3.2). They are hand-crafted by a human expert
and were tested both in simulation and using real robots.

There are six behavior modules in Vanilla:

i) exploration: the robot performs a random walk, while avoiding obstacles;

ii) stop: the robot stands still;

iii) phototaxis: the robot goes towards the light source, if perceived;

iv) anti-phototaxis: the robot goes in the opposite direction;

v) attraction: the robot goes towards its neighboring peers;

vi) repulsion: the robot goes in the opposite direction.

And six condition modules:
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i) black-floor: transition state if the floor is black;

ii) white-floor: transition state if it is white;

iii) gray-floor: transition state if it is gray;

iv) neighbor-count: transition state if sufficiently many neighboring peers are
perceived;

v) inverted-neighbor-count: transition state if they are sufficiently few;

vi) fixed-probability: transition state with a fixed probability.

These modules might have free parameters that can be tuned by the optimization
algorithm during the design process.

The optimization algorithm adopted in Vanilla is the F-race algorithm (Birat-
tari et al. 2002). During the design process it explores the control software instance
search space and evaluates potential candidate probabilistic finite-state machines.
To limit the size of the search space, the size of probabilistic finite-state machines
is limited to four states, with a maximum of four outgoing transitions per state.

In Francesca et al. (2014a), the authors compared Vanilla to human experts.
In this experiment, Vanilla and human experts designed software for a swarm of
e-puck robots. Human experts outperformed Vanilla when constrained to using
the same software modules as Vanilla, but Vanilla outperformed human experts
when they were given complete freedom over the control software. The modules
used by the constrained human experts and Vanilla are the same, and therefore
the search space of solutions that they explore is also the same. Since, the only
difference between the constrained humans and Vanilla is the way the search
space of possible solutions is explored, the authors conjectured that adopting a
better optimization algorithm could improve Vanilla. This conjecture lead to the
creation of Chocolate.

3.6.2 Chocolate

Chocolate (Francesca et al. 2015) uses an improved version of the F-race algorithm,
iterated F-race (or irace (López-Ibáñez et al. 2016)) as its optimization algorithm.
In all other respects, Chocolate is identical to Vanilla: it selects, combines and
fine-tunes the same behavior and condition modules into control software in the
form of probabilistic finite-state machines.
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The promising results of Chocolate in Francesca et al. (2015) motivated the
creation and study of the many subsequent variants of Chocolate (see Section 2.4.3
for a full list).

3.7 EvoStick

EvoStick is defined as a typical neuroevolutionary automatic design method.
It was first introduced by Francesca et al. (2012) and defined as a "standard"
neuroevolutionary method in Francesca et al. (2014a).

EvoStick generates control software in the form of neural networks based on
reference model RM1.1, defined in Section 3.2. Each robot is controlled by a
fully-connected feed-forward neural network with no hidden layers.

The neural network has 24 input nodes, one bias node, and 2 output nodes.
The 24 inputs are defined based on the reference model: 8 inputs for the proximity
sensors, 8 inputs for the light sensors, 3 inputs for the ground sensors, 1 input
encodes the number of neighboring robots perceived, and 4 inputs encode the
projections of the range-and-bearing vector V on the four unit vectors that point
at 45°, 135°, 225°, and 315° with respect to the head of the robot. The 2 output
nodes are mapped to the velocities of the wheels. The activation function used
on the output neurons is the sigmoid function. The neural network comprises a
total of 50 parameters and the values of the synaptic weights range in [−5; 5]. The
outputs of the neural network are evaluated at each period of the control cycle
(100 ms).

EvoStick uses an evolutionary algorithm based on elitism and mutation. At the
beginning of the process, a random population of 100 individuals is sampled, which
are evaluated 10 times per generation. At each generation, the best 20 individuals
are selected and passed unchanged to the following generation; random mutations
are applied to these same 20 individuals to form the remaining 80 individuals of
the new population.

EvoStick as been widely used as a yardstick to evaluate other design meth-
ods (Francesca et al. 2015, 2014b; Kuckling et al. 2018; Ligot and Birattari 2018,
2020; Ligot et al. 2020b). It is also used to this end in the various experiments
presented in this thesis.



4. A comparison of automatic design methods

Neuroevolutionary robotics is an appealing approach to realizing collective behaviors
for robot swarms (Brambilla et al. 2013; Nolfi 2021; Trianni 2008). In its typical
application of offline automatic design, as seen in Chapter 2, each individual
robot is controlled by a neural network that maps sensor readings to actuator
commands. The parameters of the network, and possibly its topology, are obtained
by optimizing a mission-specific performance measure via artificial evolution.

The neuroevolutionary approach appears to be appropriate in swarm robotics
(Dorigo et al. 2014) because it bypasses the design problem: defining what the
individual robots should do so that the desired collective behavior emerges from
their interactions. This problem is particularly hard because of the complexity of
the interactions between robots and the loosely-coupled nature of a robot swarm.
More details about the design problem and automatic design methods can be found
in Section 2.2.

In the literature on neuroevolutionary swarm robotics, empirical assessments
and comparative analyses are rare (Francesca and Birattari 2016). In particular,
to the best of our knowledge, no study has been published that compares any
neuroevolutionary method on multiple missions and reports results obtained in

46
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experiments performed with real robots. Yet, there is a general understanding that,
due to the reality gap, results obtained in simulation cannot be considered as a
valid assessment of a neuroevolutionary method for the automatic offline design
of robot swarms. Some recent results indicate that the reality gap is a relative
problem with some design methods that are affected to a great extent, while others
appear to be intrinsically more robust (Ligot and Birattari 2020), see Section 2.3.3
for details on the reality gap.

In this chapter, we present the results of an empirical study in which we assessed
and compared some of the most advanced neuroevolutionary methods for the offline
design of robot swarms.

The results indicate that all the neuroevolutionary methods under analysis
are affected by the reality gap. This was possibly to be expected because of the
aforementioned performance drop that has been often observed when moving from
simulation to reality. What was not necessarily to be expected, because it had not
emerged in any previous research, is that the extent to which the neuroevolutionary
methods under analysis are affected by the reality gap is so conspicuous that all
differences we observed in simulation disappeared in the real-robot experiments.
Eventually, the control software they produced performed at most only marginally
better than a trivial random walk behavior that we included in the study as a
control.

We find compelling evidence that real-robot experiments are needed to reliably
assess the performance of neuroevolutionary methods and that the robustness to
the reality gap is the main issue to be addressed to advance the application of
neuroevolution to robot swarms.

4.1 Experimental setup
We present here the different automatic design methods that are included in this
study; details on the protocol and on the implementation of each method are given
in Section 4.2.2. In this study we include:

i) Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) (Hansen and
Ostermeier 2001), for generating both single- and multi-layer perceptrons.
CMA-ES is widely considered as one of the most effective evolutionary algorithms
available and is especially valued for its advanced search capabilities.

ii) Exponential Natural Evolution Strategies (xNES) (Glasmachers et al. 2010), for
generating, also in this case, both single- and multi-layer perceptrons. xNES is
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closely related to CMA-ES and is sometimes preferred to the latter because it is
considered to be more principled, as all the update rules needed for covariance
matrix adaptation are derived from a single mechanism.

iii) Neuro-Evolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen
2002), initialized with either a fully-connected single-layer perceptron or a
network in which input and output nodes are disconnected; in both cases,
we studied two sets of hyper-parameters, one that allows the generation of
recurrent networks and one that does not. NEAT is particularly valued for its
capability to shape the network topology automatically.

iv) EvoStick (Francesca et al. 2014b), a straightforward implementation of the
most basic ideas of the neuroevolutionary approach, this method is described
in Section 3.7.

EvoStick is without any doubt less sophisticated and advanced than its competitors
CMA-ES, xNES, and NEAT.

As baselines, we included in the study also:

i) Chocolate (Francesca et al. 2015), a design method that belongs to the
AutoMoDe family (Francesca et al. 2014b). A full description of Chocolate is
presented in Section 3.6. As already explained before, Chocolate is a method
that generates probabilistic finite-state machine by assembling modules. Choc-
olate was explicitly conceived to be robust to the reality gap.

ii) RandomWalk, a trivial behavior in which robots move randomly in the envi-
ronment. Contrary to all the other aforementioned methods comprised in the
study, RandomWalk is not an optimization-based design method: no parame-
ter/feature of the behavior is optimized. For a design method, being unable to
improve over RandomWalk is to be considered as a major failure.

We tested the methods under analysis for their ability to generate control software
for five missions, in a fully automatic way. The missions were formally specified
via a performance measure to be maximized, and the methods under analysis
were tested on them without undergoing any manually-applied mission-specific
modification. The control software generated by the methods was automatically
cross-compiled for the target platform and was deployed without undergoing any
modification. All the methods designed software for the same target platform, used
the same realistic physics-based simulator with the same simulation models, and
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were provided the same resources—notably, the same number of simulation runs
to be performed within the design process. Also, all the methods adopted the
same devices that are widely considered as the standard practice for reducing the
impact of the reality gap and for increasing the robustness of the control software
generated: the injection of noise in simulation models and the randomization of
the initial conditions (Jakobi et al. 1995).

The five missions considered (Figure 4.1) are rather typical collective missions.
Their level of complexity is comparable with the one of those that, at the moment
of writing, are customarily studied in the automatic offline design of robot swarms.
Admittedly, relatively more complex missions have been considered in the semi-
automatic design literature—e.g., see Ferrante et al. (2015). This is understandable:
semi-automatic design provides for human intervention within the design process
and allows the designer to tailor the optimization process to the single specific
mission considered. This eventually enables one to tackle relatively more complex
missions that are out of reach for fully automatic design, at least at the current
state of development of the field. As we have previously observed in Section 2.3.2,
in (fully) automatic design, the challenge does not lie much in the complexity
of each single mission, but rather in the fact that the design method must be
able to produce control software for different missions without undergoing any
modification.

We ran each method under analysis ten times on each of the five missions and
we tested the control software they generated in real-robot experiments and also in
simulation, so as to assess the impact of the reality gap on the different methods.
A detailed description of all the methods, the robotic platform, the simulator, the
five missions, the experimental design, and the statistics adopted is given in the
following section.

4.2 Methods
In this section, we present the experimental setup and provide technical details on
the different automatic design methods we compared in the study.

4.2.1 Protocol

We considered a swarm of 20 e-puck robots that operate in a dodecagonal arena of
4.91 m2 delimited by walls, as described in Section 3.4. The robotic platform used
in this study is the e-puck robot. It is formally described, along with its reference
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model in Sections 3.1 and 3.2. A picture of the e-puck in the configuration adopted
in the experiments is given in Figure 3.1a. We adopt the ARGoS simulator for
all simulations in this study; details about the simulation setup are presented in
Section 3.3. For each mission, each method was executed 10 times so as to obtain
10 instances of control software. Each design process was allowed the same budget
of 200 000 simulation runs. The 10 instances of control software obtained were
then tested once in simulation and once using robots. To avoid introducing any
bias, robot experiments were randomized and no experimental run performed was
discarded. The performance of the swarm was computed automatically using data
provided by a tracking system; details about the tracking system are presented
in Section 3.4.1. Videos of all the experimental runs were recorded using the
camera of the tracking system and are available as Supplementary Videos C1 to
C5 (Hasselmann and Birattari 2022).

Statistics

We used notched box-and-whiskers plots to represent the performance of the different
methods. We refer to Section 3.5 for details on box-and-whiskers plots. To aggregate
the performances of the different methods across all missions, we used the min-max
normalization technique: for each mission, we normalized the performances obtained
in reality and in simulation with the minimal and maximal performance obtained
in reality across all design methods. As a result, the normalized performance in
reality ranges between 0 and 1, but the normalized performance in simulation
might exceed 1 if instances of control software performed better in simulation than
the maximal performance value obtained in reality. We also executed a Friedman
test (Conover 1999); details on this analysis are presented in Section 3.5.

4.2.2 Design methods under analysis

All neuroevolutionary methods under analysis generate neural networks with 2
output and 25 input nodes. The 2 outputs define the velocity of the wheels.
Concerning the inputs, 1 is a bias node, 8 encode the readings of the proximity
sensors, 8 those of the light sensors, 3 those of the ground sensors, 1 encodes the
number of neighbors perceived, and 4 the projections of the range-and-bearing
vector V on the four unit vectors that point at 45°, 135°, 225°, and 315° with
respect to the head of the robot. Inputs and outputs are described by RM1.1—see
Section 3.1 and Figure 3.1b. The values of the synaptic weights range in [−5; 5].
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CMA-ES-slp is based on CMA-ES (Hansen and Ostermeier 2001), an evolutionary
algorithm in which the population is described in statistical terms via the covariance
matrix of its distribution—slp is the mnemonic for single-layer perceptron: the net-
work generated has a fully-connected feed-forward topology without hidden layers.
The population size λ and the initial step-size σ0 are hyper-parameters of the opti-
mization algorithm. We set λ = 100, a common choice in the literature (Francesca
and Birattari 2016); and σ0 = 5, that is, half the width of the parameter range, the
initial population will therefore cover the entire search space—the same choice was
made also in several other studies (Auger and Hansen 2005; Lunacek and Whitley
2006; Pagliuca and Nolfi 2019).

CMA-ES-mlp is derived from CMA-ES-slp and differs from it only in the topology
of the network, which is here a fully-connected feed-forward neural network with
one hidden layer composed of 14 nodes, including a bias node. The size of the
hidden layer is the average of the number of nodes in the input and output layers, as
recommended by Heaton (2008)—mlp is the mnemonic for multi-layer perceptron:
the input nodes are initially all connected to the hidden nodes, which are in turn
all connected to the output.

xNES-slp is based on xNES (Glasmachers et al. 2010), an evolutionary algorithm
similar to CMA-ES, but in which the updates rules are defined in a principled
way—that is, they are all derived from the principle of natural gradient ascent.
The hyper-parameters and their values are the same as in CMA-ES-slp. Also the
network topology is the same one adopted in CMA-ES-slp.

xNES-mlp is derived from xNES-slp and differs from it only in the network
topology, which is here a fully-connected feed-forward neural network with one
hidden layer of 14 nodes, including 1 bias node—the same topology adopted in
CMA-ES-mlp.

NEAT-A-slp is based on NEAT (Stanley and Miikkulainen 2002), a neuroevolu-
tionary algorithm that optimizes both the weights and the topology of the neural
network. The design process is initialized with a fully connected feed-forward neural
network with no hidden layers—slp is the mnemonic for single layer perceptron:
the input nodes are initially all connected to the output. The hyper-parameters of
NEAT-A-slp are those originally published in Stanley and Miikkulainen (2002) and
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recommended by the authors. They are labelled as pole2_markov in the original
software package released by the authors.

NEAT-A-nl is derived from NEAT-A-slp and differs from it only in the initialization
of the design process, which is here a disconnected network—nl is the mnemonic
for no link: the input nodes are initially disconnected from the output.

NEAT-B-slp is similar to NEAT-A-slp and differs from it only in the value of a
few hyper-parameters. The hyper-parameters of NEAT-B-slp are those labelled as
params256 in the original software package published in Stanley and Miikkulainen
(2002). The differences between set A (presented above) and B are that set B has
a higher compatibility coefficient (leading to less species creation), set A penalizes
old species whereas set B does not, and most importantly that set B can generate
recurrent networks.

NEAT-B-nl is derived from NEAT-B-slp and differs from it only in the initialization
of the design process, which is here a disconnected network: the input nodes are
initially disconnected from the output.

EvoStick is a rather standard neuroevolutionary robotics method. A full descrip-
tion of EvoStick is presented in Section 3.7.

Chocolate belongs to the AutoMoDe (Francesca et al. 2014b) family of design
methods. A full description of Chocolate is presented in Section 3.6.

RandomWalk is a ballistic-motion random walk: the robot moves straight until it
encounters an obstacle. When this happens, the robot rotates on itself for a random
number of timesteps and resumes it straight motion, if the path is clear; otherwise,
it rotates for another random number of timesteps. This sequence is repeated
indefinitely. RandomWalk is not an automatic design method as no parameter is
tuned. It is included in the study as an expected lower bound on the performance.

4.2.3 Missions

XOR-Aggregation: the robots must choose one of two black areas and aggregate
on it. The size of the black areas and their positions are given in Figure 4.1. The
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Figure 4.1: Arenas for the five missions. a, XOR-Aggregation, simulation;
b, real robots. c, Homing, simulation; d, real robots. e, Foraging, simulation;
f, real robots. g, Shelter, simulation; h, real robots. i, Directional-Gate,
simulation; j, real robots. The 20 robots operate in a dodecagonal arena of 4.91 m2,
the red glow in e, f, g, h, i, and j indicates the presence of a light source at the
bottom side of the arena. Dimensions (in meters) of the elements present in the
arenas are given in a, c, e, g, and i. Details on the experimental setup are provided
in Section 4.2 and videos of the robot experiments are available as Supplementary
Videos C1 to C5.
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performance of the swarm is measured by the following objective function:

Fa =
T∑
t=1

N∑
i=1

Ii(t); Ii(t) =

1, if robot i is in the area with the most robots;
0, otherwise.

(4.1)
T = 180 s is the duration of the experimental run and N = 20 is the size of the
swarm.

Homing: the robots start in the upper part of the arena and must aggregate on
the black area situated at the bottom. The size of the black area and its position
are given in Figure 4.1. The performance of the swarm is measured by the following
objective function:

Fh =
N∑
i=1

Ii(T ); Ii(T ) =

1, if robot i is in the black area at time T ;
0, otherwise.

(4.2)

T = 120 s is the duration of the experimental run and N = 20 is the size of the
swarm.

Foraging: the robots must find one of the black areas, which represent food
sources, and go back to the white one, which represents the nest. A light source is
positioned behind the nest. The size of the areas of interest and their positions are
given in Figure 4.1. The performance of the swarm is measured by the following
objective function:

Ff = K, (4.3)

where K is the total number of round trips performed. The duration of an
experimental run is T = 180 s and the swarm size is N = 20.

Shelter: the robots must aggregate in the shelter, a rectangular white area
positioned in the center of the arena and surrounded by walls on three sides. A
light source is positioned outside the arena, in front of the open side of the shelter.
The arena also features two black circular areas, next to the shelter. These areas
do not have any predefined purpose/role in the definition of the mission: they are
noise-features of the environment. The size of the shelter, the one of the black
areas, and their positions are given in Figure 4.1. The performance of the swarm is
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measured by the following objective function:

Fs =
T∑
t=1

N∑
i=1

Ii(t); Ii(t) =

1, if robot i is in the shelter;
0, otherwise.

(4.4)

T = 180 s is the duration of the experimental run and N = 20 is the size of the
swarm.

Directional-Gate: the robots must traverse the gate, which is positioned in the
center of the arena. They must do so from North to South. The gate is identified
by white ground and the robots can follow a black corridor to reach it. The size of
the gate, the one of the corridor, and their positions are given in Figure 4.1. The
performance of the swarm is measured by the following objective function:

Fg = K −K ′, (4.5)

where K is the number of times robots traverse the gate in the correct sense and
K ′ is the number of times they traverse it in the wrong one. The duration of an
experimental run is T = 120 s and the swarm size is N = 20.

4.3 Results
The results (Figure 4.2 and 4.3) show that, on the missions considered in the study,
all the neuroevolutionary methods under analysis experienced a major drop in
performance because of the reality gap. For each mission and method, the empirical
distributions of all the data gathered in simulation and real-robot experiments are
given in Figure 4.4.

When evaluated in simulation, the control software produced by the neuroevolu-
tionary methods under analysis generally performed well, and comparably with the
one of Chocolate; in some cases, even better. All methods under analysis performed
significantly better than RandomWalk (Figure 4.2a). Results were different when
the control software was evaluated in real-robot experiments. The performance of
all design methods dropped due to the reality gap, as it is often the case. Only
the performance of RandomWalk remained substantially stable—this is because, as
observed above, RandomWalk is not a design method: no optimization process is
involved and therefore no overfitting can occur. All the neuroevolutionary methods
experienced a large drop, whereas the one of Chocolate is relatively smaller. Also
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Figure 4.2: Aggregated results. a, aggregate performance in simulation (white
narrow boxes) and in reality (gray wide boxes) across the five missions considered,
represented by notched box-and-whisker plots, where the notches represent the 95%
confidence interval on the median. If notches on different boxes do not overlap, the
medians of the corresponding methods differ significantly, with a confidence of at
least 95%. Graphical conventions adopted in box-and-whisker plots are described
in Section 3.5. Prior to the aggregation and for each missions, the results are
normalized between the lowest and highest performance observed in reality by
any of the design methods. As a result, the normalized performance in reality
ranges between 0 and 1, but the one in simulation might exceed 1 (shadowed area).
Indeed, in many cases, the performance observed in simulation exceeded the best
one observed in the real-robot experiments. The performance of Chocolate and
RandomWalk, the two methods included in the study as yardsticks, is grayed out
so as to focus the attention of the reader to the neuroevolutionary methods under
analysis. b, Friedman rank-sum test on the performance in reality: expected rank
and 95% confidence interval. If two segments do not overlap, the rank of the
corresponding methods differ significantly, with a confidence of at least 95%. Also
here, the performance of Chocolate and RandomWalk is grayed out to focus the
attention to the neuroevolutionary methods. The videos of all robot experiments
are available as Supplementary Videos C1 to C5.
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Figure 4.3: Results per missions. Performance obtained in simulation (white
narrow boxes) and in reality (gray wide boxes) in all five missions, represented by
notched box-and-whiskers plots, where the notches represent the 95% confidence
interval on the median. If notches on different boxes do not overlap, the medians
of the corresponding methods differ significantly, with a confidence of at least
95%. Graphical conventions adopted in box-and-whisker plots are described in
Section 3.5. The performance of Chocolate and RandomWalk is grayed out so as to
focus the attention of the reader to the neuroevolutionary methods under analysis.
The videos of all robot experiments are available as Supplementary Video C1 to C5.
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Figure 4.4: Distributions. Empirical distribution of the performance of the
control software generated by each method under analysis on each of the five
mission considered. The last column displays the normalized performance of each
method, aggregated across the five missions. Aggregation is performed using
the min-max normalization technique described in Section 4.2.1. The black line
represents the empirical distribution of the performance observed in real-robot
experiments; the gray one, the one obtained in simulation.
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from a qualitative point of view, the control software produced by the neuroevolu-
tionary methods displayed different behaviors in simulation and reality, whereas the
one produced by Chocolate behaved similarly in simulation and reality, and even
more so RandomWalk—see Figure 4.5 and Supplementary Video C6. Eventually,
all neuroevolutionary methods performed significantly worse than Chocolate and
their results were only marginally better than those of RandomWalk (Figure 4.2a).

It is important to notice that the reality gap faced by the methods under
analysis is the same: they all adopt the same simulator and design control software
for the same platform. Yet, the extent to which the methods were affected is
different. As it has been already observed (Ligot and Birattari 2020), the reality
gap problem is a relative problem, with some methods being more heavily affected
and others being intrinsically more robust.

A further observation is that the five missions can be accomplished to a satis-
factory extent under the experimental conditions considered. Specifically, they can
be accomplished by the platform adopted and by a robot swarm of the given size.
Moreover, control software to accomplish these missions can be produced automat-
ically using the available resources: the simulator provides a reasonably faithful
representation of reality (albeit not perfect, as no simulation does) and the number
of simulation runs allotted to each design process was appropriate. This is shown
by the satisfactory results obtained in the robot experiments by Chocolate—see
Supplementary Videos C1 to C5. Concerning the neuroevolutionary methods, the
fact that the number of simulation runs allotted was sufficiently large is confirmed
by the satisfactory performance obtained in simulation by the control software they
produced.

The performance of the different neuroevolutionary methods under analysis is
similar. The few differences that can be observed between the results obtained
in simulation disappeared when the control software generated was tested in
real-robot experiments. A remarkable fact is that, on the missions considered,
the more advanced methods—that is, CMA-ES, xNES, and NEAT—did not yield
any relevant improvement over EvoStick, the straightforward implementation of
the neuroevolutionary approach. This holds true both for simulation and robot
experiments. The data indicate that, at least on the missions considered, neither
the effective search of CMA-ES and xNES, nor the advanced abilities of NEAT to
shape the topology of networks have the potential to improve the performance of
the neuroevolutionary approach. The real issue to be addressed is the robustness
to the reality gap.

In the missions considered, the main discrepancies between the behaviors
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Figure 4.5: Trajectories of the robots throughout the entire median runs.
For each method on each mission, we report the execution in simulation (top row
for each mission) and reality (bottom row for each mission) of the instance of
control software that obtained a median performance in reality, out of the instances
produced by that method for that mission. The color of a spot represents the
amount of time a robot spent on that spot during the execution. If a robot were
to stay on a spot for more than a quarter of the entire execution, the color of
that spot would be dark blue (value 0.25 in the color scale). The figure indicates
that the control software produced by the evolutionary approaches cover the space
differently in simulation and reality: in reality, the robots tend to form clusters,
mostly against the walls. Differences between simulation and reality are less
pronounced for Chocolate and barely noticeable for RandomWalk. For each mission
and each method, a direct comparison of the behavior in simulation and reality is
available in Supplementary Video C6.
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observed in simulation and reality concern the way in which robots cover the space.
Robots tend to cluster (mostly against the walls) in reality more than they do in
simulation. This is likely due to the fact that friction between robots and between
robots and walls is not modeled in a sufficiently accurate way: in simulation,
robots slip against each other and against the walls; while in reality, they remain
more easily stuck. Another discrepancy we observed concerns the shape of the
trajectories. In simulation, all robots can be observed to move orderly, following
circular trajectories; in reality, some robots display similar trajectories while those
of others tend to be squashed and irregular. This is likely due to the fact that,
although the swarm is in principle homogeneous and it is simulated as such, the real
robots tend to differ slightly one from the other in their sensors and actuators. As a
result, the real robots fail to display the ordered and cohesive collective motion that
can be observed in simulation. The issue is particularly noticeable in Foraging
and Directional-Gate. Both discrepancies (clustering and irregular trajectories)
are accrued by density: the more the robots converge to a same restricted area, the
more the behavior observed in reality differs from the simulated one. Although the
discrepancies observed can be used to improve the simulator for future applications,
we do not think that they provide information that can contribute to address the
reality gap problem in a universally valid way. It should be noted that reducing the
differences between simulation and reality on the basis of the observation of control
software produced by specific methods on specific missions could lead to ad hoc
solutions that do not necessarily generalize to other methods, missions, platforms,
environment, and scenarios (Bongard 2013; Silva et al. 2016; Watson et al. 2002).
Also, reducing the differences between simulation and reality a posteriori—that is,
after observing that the control software produced in simulation does not behave
satisfactorily in reality—is not compatible with the spirit and purpose of automatic
offline design as it requires human intervention and assessments on real robots.

The satisfactory results obtained in the real-robot experiments by Chocolate—
both in absolute terms and relatively to those obtained by the neuroevolutionary
methods under analysis—corroborate the validity of the original idea that motivated
the definition of AutoMoDe and the development of Chocolate itself. Indeed, the
results corroborate the original conjecture of Francesca et al. (2014b) that injecting
bias, and therefore restricting the design space, might be an effective way to increase
the robustness to the reality gap. It is our contention that, in the experiment
presented above, Chocolate crossed the reality gap successfully, compared to
neuroevolutionary methods, because of its relatively small design space. By the
same token, we contend that, compared to Chocolate, the neuroevolutionary
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methods under analysis failed to cross the reality gap successfully because, in their
definition, no explicit attention was made to restrict the size of the design space.

4.4 Ideas for future research
Supported by the results presented above, we contend that, to advance the appli-
cation of neuroevolution to the automatic offline design of collective behaviours
for robot swarms, the research community should focus on addressing the reality
gap problem. A number of ideas have already been proposed in the literature
and belong into two distinct approaches (Ligot and Birattari 2020): 1) increase
the accuracy of simulators as much as possible; 2) conceive design methods that
are intrinsically robust to the reality gap. The two approaches are not mutually
exclusive and can profitably coexist within the same design method. We definitely
agree that simulation accuracy must be pursued. Yet, as simulation models will
never be perfect and the risk of overfitting cannot be eliminated altogether, the
quest for accurate simulators does not eliminate the need for robust methods. It is
therefore our contention that future research should aim at increasing the intrinsic
robustness of design methods. Making the optimization algorithms more effective
or enhancing their ability to automatically shape the topology of the networks
appears to be a secondary concern, at least in this phase of the development of the
field.

Although most of the ideas proposed to address the reality gap problem do not
fit the framework of the automatic offline design considered here and, to the best of
our knowledge, have never been applied in swarm robotics, they could be possibly
adapted or could be the starting point to develop original methods for enhancing
the robustness of neuroevolutionary robotics. For example, in Koos et al. (2013),
the authors proposed a method that builds and updates a model of the differences
between the performance in simulation and reality. The model is used to constrain
the design process to generate only control software whose real-world performance is
expected to be correctly predicted by the simulator. The method requires periodic
runs with the robots during the design process, which cannot therefore rely on
simulation only. In Floreano and Mondada (1996), the authors proposed a method
that originally blends ideas from offline and online design: the update rules of the
neurons and their parameters are defined offline in simulation; the synaptic weights
are subsequently adapted online. Also the idea underlying the development of
Chocolate—that is, restricting the design space to reduce the risk of overfitting—
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could be possibly applied in the context of neuroevolutionary robotics. Indeed,
restricting the design space is effectively a form of regularization and a variety of
regularization techniques that could be ported to neuroevolutionary robotics have
already been described in the neural network literature (Goodfellow et al. 2016;
Hastie et al. 2009). For example, although further research is needed to develop
a reliable method, previous results (Birattari et al. 2016) indicate that a popular
regularization technique known as early stopping (Caruana et al. 2000; Morgan and
Bourlard 1989; Prechelt 2012; Raskutti et al. 2014) has the potential to increase
the robustness to the reality gap of neuroevolutionary methods for the automatic
design of robot swarms. In the light of the results of our experiments, we are
convinced that the adoption of an appropriate regularization technique is the most
promising direction to be explored in the development of the neuroevolutionary
approach to the automatic offline design of robot swarms.

4.5 Discussion
In this chapter, we presented the most extensive comparative analysis of offline
automatic design methods currently available in the literature. We compared ten
different design methods and one random walk, on five different swarm robotics
missions. Nine design methods are neuroevolutionary ones, and one method is
Chocolate, a modular method.

Our main conclusions are:

i) Experiments with real robots are of paramount importance to have a correct
picture: simulation gives a falsely overoptimistic assessment of the methods
under analysis.

ii) The advanced features of CMA-ES, xNES, and NEAT do not appear to provide any
practical advantage over the straightforward EvoStick. In any case, possible
(minor) differences observed between the methods in simulation disappear
when the control software is ported to the robots.

iii) The real issue is the lack of robustness to the reality gap of the currently
available neuroevolutionary methods for the automatic offline design of robot
swarms. This is the issue on which, in our opinion, future research should
focus.

iv) Chocolate experienced a much smaller performance drop than the neuroevo-
lutionary methods under analysis. This confirms the validity of the idea that
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restricting the control software to be a combination of low-level, simple be-
haviors yields better results in reality than the traditional neuroevolutionary
approach. Our conjecture is that this smaller performance drop can be as-
cribed to a reduced risk of overfitting that derives from restricting the design
space, which is effectively a regularization technique. It is our contention that
this technique—or another of the several regularization techniques previously
described in the neural network literature—can be ported to neuroevolutionary
robotics and is a promising avenue to address the reality gap problem in the
application of neuroevolution to the automatic offline design of control software
for robot swarms.

Neuroevolution is an appealing approach due to the simplicity of its implementation,
but is not designed to be robust to the reality gap. At least not in the way it
is implemented in the methods we have presented. Modular methods, and in
particular Chocolate, require human expertise in the creation of its modules. The
automatic design methods presented in Chapters 5 and 6 attempt to conjugate
neuroevolution and modular design to enhance the robustness to the reality gap of
methods using neuroevolution.



5. AutoMoDe-Arlequin

In this chapter, we make a first attempt to reduce the amount of expert knowledge
required for the implementation or use of offline automatic design methods.

As discussed above, AutoMoDe is a family of modular automatic design methods
that combines hand-crafted behavior and condition modules. Chocolate, the most
studied instance of AutoMoDe, combines modules into probabilistic finite-state
machines. In Chapter 4, we observed that neuroevolutionary methods outperform
AutoMoDe when evaluated in simulation, but AutoMoDe outperforms them in
reality. In popular instances of AutoMoDe, the modules and conditions are hand-
coded a priori. During the design phase, the optimization algorithm combines these
modules while maximizing a given objective function representing the performance
of the swarm in a given mission. The optimization algorithm also fine-tunes the
parameters of the modules. The downside of such method is that creating modules
requires expert knowledge at the level of the robotic platform. The method is
fully-automatic, as defined in Section 2.3.2, but the implementation of the instance
of AutoMoDe requires expertise. This expertise is required for the creation of
new modules in order to implement and test them. In Chocolate, modules were
tested in simulation and in reality before attempting any design, in order to reduce
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the effects of the reality gap on the generated control software. In this chapter,
we present Arlequin, a novel automatic design method of the AutoMoDe family.
This method automatically combines behavior modules in the form of neural
networks that were generated using neuroevolution. The objective behind the
creation of Arlequin is to create a method that requires less human expertise
during implementation and possibly when ported to a different robotic platform.

The possible shortcoming of generating the modules using neuroevolution is
the introduction of a source of overfitting in the creation of the modules. This
could cancel the benefits of modularity. Indeed, overfitting can occur at different
levels: (i) during the implementation of the modules, (ii) during the fine tuning of
the modules, or (iii) during the combination of the modules. The overfitting that
occurs during the implementation of the modules is mission-agnostic: it does not
depend on any specific mission, as modules are created during the implementation
of the method and for a class of missions. Therefore, at the module level, a given
behavior that overfits the simulation exhibits poor performances when transferred
to the real robots. The overfitting that, on the other hand, occurs during the fine
tuning and the combination of the modules, is mission-specific: it depends on the
specific mission at hand; the combination and the fine tuning is carried out by the
optimization algorithm that optimizes for an objective function that is specific to
a mission. These sources of overfitting contribute to the effect of the reality gap
experienced by the control software generated by the automatic design method. It
is challenging to isolate these sources. It is also difficult to say which of the two
contributes the most to the effect of the reality gap. So far, studies on AutoMoDe
methods show that manually designing modules in simulation and validating them
on real robots limits the performance drop due to the reality gap caused at the
module level. With Arlequin, we investigate whether the principles of modularity
still apply when the behavior modules are created using neuroevolution. We explore
whether injecting bias by merely constraining the control software to use pre-defined
modules is sufficient to cross the reality gap satisfactorily.

The results suggest that Arlequin suffers less from the reality gap than Evo-
Stick. The results also suggest that there is room for improvement, as Arlequin
suffers from a larger drop than Chocolate. Finally, even though Arlequin requires
less human expertise to operate and to be ported from one robotic platform to
another than existing modular methods, we did not completely exclude human
intervention from its implementation. In fact, the generation of the behavioral
modules required the elaboration of objective functions, which can be difficult (Flo-
reano and Urzelai 2000). To completely eliminate the need of human expertise, it
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is necessary to investigate various design methodologies for the method and the
generation of the modules. One possible methodology is presented in Chapter 6.

5.1 Modular design using neural networks
In this section, we present details about Arlequin. Arlequin generates control
software for the e-puck robot, equipped with the same sensors and extensions board
as described in Section 3.1. We consider the reference model RM1.1 presented in
Figure 3.1 and Section 3.2. For the convenience of the reader, we list below the
fundamental capabilities supported by RM1.1. RM1.1 gives the generated control
software the ability to: detect the color of the ground under the robot (black, grey,
or white) using the ground sensor; detect the presence of nearby obstacles and
robots using the proximity sensor; detect the intensity of the ambient light using
the light sensor; detect the direction of neighboring robots in a range of 0.7 m using
the range-and-bearing module; and steer the robot using the wheels.

Similarly to Chocolate, Arlequin generates control software from a set of six
conditions and six behaviors. Behaviors are software modules that describe actions
performed by the robot. Conditions are software modules that describe events
based on sensors of the robot that trigger a change of behavior. The modules are
used to create probabilistic finite-state machines; behaviors are used as states of
the probabilistic finite-state machines, whereas conditions are used as transitions
between states. Thus, when executing the control software, a given behavior is
run as long as a no condition is triggered. Once a condition is triggered, the state
switches from the current state to the next state corresponding to the edge of the
transition that has been triggered.

Arlequin is similar to Chocolate on various aspects (details about Chocolate
can be found in Section 3.6). The two methods adopt irace as their optimization
algorithm and generate probabilistic finite-state machines. The same constraints
are imposed to the structure of the probabilistic finite-state machines: they are
composed of a maximum of four states and each state can have a maximum of
four outgoing transitions. The condition modules used in Arlequin are the same
hand-crafted conditions as the ones of Chocolate (see Section 5.1.1 for details
about condition modules).

The main difference between Arlequin and Chocolate lies in the definition of
the behavior modules. Chocolate uses pre-defined hand-crafted behavior modules,
whereas Arlequin uses automatically generated behavior modules. The behavior



CHAPTER 5. AUTOMODE-ARLEQUIN 68

a b

Figure 5.1: Illustration of Chocolate and Arlequin probabilistic finite state
machine structures. The hand icon represents a hand-crafted module, the neural
network icon represents an automatically generated module in the form of a neural
network. a, In Chocolate both the behaviors and conditions are hand-crafted; b,
In Arlequin, the conditions are hand-crafted but the behaviors are automatically
generated neural networks.

modules of Arlequin are created using EvoStick, a classical neuroevolutionary
design method. An illustration of the difference in the structure of probabilistic
finite-state machines between Chocolate and Arlequin is presented in Figure 5.1.
EvoStick is the rather simple neuroevolutionary design method that was already
used in Chapter 4, and that is described in Section 3.7. The behavior modules
that were created for Arlequin are based on the ones of Chocolate. Six objective
functions were created based on the six different behavior modules of Chocolate.
These objective functions are designed to yield high scores if a satisfactory behavior
is obtained. They are used as performance metrics to optimize the control software
for each module in EvoStick. It is important to understand that we are describing,
here, the method that was used to generate the behavior modules, not the final
control software.

EvoStick is used here in a mission-agnostic way, that is, the objective functions
that are created describe the behaviors that were previously manually designed
in Chocolate (details on the behavior modules and objective functions can be
found is Section 5.1.2). EvoStick is also used as an automatic design method
that directly generates software for the specific mission at hand. This automatic
design method is used in this experiment and we compare the results of the two
approaches (see Section 5.2.2 for details about EvoStick).



CHAPTER 5. AUTOMODE-ARLEQUIN 69

For the creation of the modules, we generated control software for a swarm of 20
e-puck robots during runs of 120 s. The allocated designed budget is 20 000: starting
from a population of 100 individuals each evaluated 10 times per generation, we
run 20 generations. For every objective function, or behavior module, we generate
10 instances of control software. Each of these 10 instances of control software is
evaluated 20 times in simulation under various initial conditions. The instance
with the highest average performance among the 10 is then selected. The selected
instances are used as behavior modules in Arlequin. The objective functions used
to generate the behaviors, the descriptions of the behaviors and the conditions are
given in Sections 5.1.2 and 5.1.1. The behavior modules are generated once and for
all, and once selected, they are used "as-is", in the automatic design process. The
method thus qualifies as (fully-)automatic, the modules are created in a mission-
agnostic way and used in the automatic design process without any per-mission
modification.

5.1.1 Conditions

The condition modules are identical to the ones of Chocolate, for the convenience
of the reader, we repeat their descriptions hereafter.

Black-floor. Evaluates to true if the floor situated below the robot is black with
probability ρ, where ρ ∈ [0, 1] is a module parameter that is intended to be tuned
during the design process by the optimization algorithm on a per-mission basis.

Gray-floor. Evaluates to true if the floor situated bellow the robot is gray with
probability ρ, where ρ ∈ [0, 1] is a module parameter that is intended to be tuned
during the design process by the optimization algorithm on a per-mission basis.

White-floor. Evaluates to true if the floor situated bellow the robot is white
with probability ρ, where ρ ∈ [0, 1] is a module parameter that is intended to be
tuned during the design process by the optimization algorithm on a per-mission
basis.

Neighbor-count. Evaluates to true with probability z(n) = 1
1+eη(ξ−n) , where n if

the number of robots detected by the range-and-bearing module, and η ∈ [0, 20]
and ξ ∈ {0, 1, ..., 10} are parameters of the module that are intended to be tuned
during the design process by the optimization algorithm on a per-mission basis.
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Inverted-neighbor-count. Evaluates to true with probability 1− z(n).

Fixed-probability. Evaluates to true with probability ρ, where ρ ∈ [0, 1] is a
module parameter that is intended to be tuned during the design process by the
optimization algorithm on a per-mission basis.

5.1.2 Low-level behaviors

We describe here the behaviors of the modules of Chocolate and Arlequin, and
the objective functions that were created in order to generate them for Arlequin.

Exploration. In Chocolate, the robot performs a random walk. It moves in a
straight line until its front proximity sensors perceive an obstacle. It then rotates
for a random number of timesteps in {0, 1, ..., π}. The parameter π ∈ {0, 1, ..., 100}
is a module parameter that is intended to be tuned during the design process by
the optimization algorithm on a per-mission basis.

In Arlequin, we discretize the environment into a two dimensional grid G. The
objective function, to be maximized, computes the total number of individual cells
visited. It is expressed as follows:

N∑
r=1

X∑
i=1

Y∑
j=1

Gr(i, j), with Gr(i, j) =

1 robot r visited cell (i, j),
0 otherwise;

(5.1)

where N is the number of robots in the swarm; and X = 20 and Y = 20 are the
numbers of rows and columns in grid G, respectively.

Stop. In Chocolate, the robot stands still.
In Arlequin, the objective function, to be minimized, computes the number of

individual robots that move. It is expressed as follows:

T∑
t=1

N∑
r

||Pr(t)− Pr(t− 1)||; (5.2)

where Pr(t) is the position of robot r at time t, and T is the total time of the
experimental run.

Phototaxis. In Chocolate, the robot goes towards the light source, if perceived;
otherwise, the robot moves straight.
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In Arlequin, the objective function, to be minimized, computes the distance
from individual robots to the light. It is expressed as follows:

T∑
t=1

N∑
r=1
||Pr(t)− Plight||; (5.3)

where Pr(t) and Plight are the positions of robot r at time t and of the light,
respectively.

Anti-phototaxis. In Chocolate, the robot goes in the opposite direction of the
light source, if perceived; otherwise, the robot moves straight.

In Arlequin, the objective function, to be maximized, computes the distance
of individual robots to the light. It is expressed as follows:

T∑
t=1

N∑
r=1
||Pr(t)− Plight||; (5.4)

where Pr(t) and Plight are the positions of robot r at time t and of the light,
respectively. It is the same as the one of phototaxis except is it maximized.

Attraction. In Chocolate, the robot goes in the direction of its neighboring
peers (Vd), if perceived; otherwise, it moves straight. A parameter α ∈ [1, 5]
controls the convergence speed towards the neighboring detected peers. It is a
module parameter that is intended to be tuned during the design process by the
optimization algorithm on a per-mission basis.

In Arlequin, the objective function, to be minimized, computes the distance
between each pair of robots within the swarm. It is expressed as follows:

T∑
t=1

N−1∑
i=1

N∑
j=i+1

||Pi(t)− Pj(t)||; (5.5)

where Pi(t) and Pj(t) are the positions of robot i and j, respectively.

Repulsion. In Chocolate, the robot goes away from its neighboring peers, if
perceived; otherwise, it moves straight. A parameter α ∈ [1, 5] controls the
divergence speed away from neighboring detected peers. It is a module parameter
that is intended to be tuned during the design process by the optimization algorithm
on a per-mission basis.
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In Arlequin, the objective function, to be minimized, computes, for each
individual robot, the distance to its closest peer. It is expressed as follows:

T∑
t=1

N∑
r=1
||Pr(t)− Prmin(t)||; (5.6)

where Pr(t) is the position of robot r and Prmin(t) is the one of the closest robot to
robot r at time t.

5.2 Methods
In this experiment, we generated control software with three design methods. We
tested these methods on two classical swarm robotics missions, an aggregation
with decision and a foraging mission. The following section presents details on the
material and methods, experimental protocol, and missions under analysis in this
experiment.

5.2.1 Protocol

We considered a swarm of 20 e-puck robots that operate in a dodecagonal arena
of 4.91 m2 delimited by walls, as described in Section 3.4. The robotic platform
used in this experiment is the e-puck robot. It is formally described, along with its
reference model in Sections 3.1 and 3.2. A picture of the e-puck in the configuration
adopted in the experiments is given in Figure 3.1a. All simulations in this study
were performed using ARGoS; details about the simulation setup are found in
Section 3.3. Each design method is run 10 times, producing 10 instances of control
software for each mission. These instances of control software are then tested once
in simulation and once on a swarm of 20 e-puck robots. Each design process was
allowed the same budget of 200 000 simulation runs. In the real robots setup, the
performance of the swarm was computed automatically using data provided by a
tracking system; details about the tracking system are presented in Section 3.4.1.
We present the results in the form of notched box-and-whiskers plots. We also
present aggregated results using the Friedman (Conover 1999) test. We refer to
Section 3.5 for details about statistical analyses.
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Figure 5.2: Arenas for the two missions. a, Aggregation-Xor, simulation;
b, real robots. c, Foraging, simulation; d, real robots. The red glow in c and d
indicates the presence of a light source at the bottom side of the arena. Dimensions
(in meters) of the elements present in the arena are given in a and c.

5.2.2 Automatic design methods

In this experiment, we compare three automatic design methods: Arlequin, Evo-
Stick, and Chocolate. Arlequin is our novel method; it is described in Section 5.1.
EvoStick is the classical neuroevolutionary method that was tested among the
ones in Chapter 4, and that is described in Section 3.7. Chocolate is the classical
modular method with hand-crafted modules, that was also among the ones tested
in Chapter 4 and is described in Section 3.6.

5.2.3 Missions under analysis

We conduct our experiments on two missions: Aggregation-Xor and Foraging.
The Foraging mission is identical to the one described in Section 4.2.3; for the
convenience of the reader, its description is repeated here.

Aggregation-Xor

The robots must aggregate on one of the two black areas in the arena. The size and
positions of the different elements present in the arena are given in Figure 5.2. The
performance of the swarm is computed based on the following objective function:
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FA = max(Nl, Nr)/N ; (5.7)

where Nl and Nr are the number of robots located on the left and right black area,
respectively; and N is the total number of robots. The duration of the experimental
run is T = 180 s and N = 20 is the size of the swarm.

This mission differs slightly from the one described in Chapter 4, as it only
considers the number of robots in each area at the end of the experimental run.

Foraging

The robots must find one of two food sources, represented by black areas, and
return to the nest, represented by a white area. The size and positions of the
different elements present in the arena are given in Figure 5.2. The performance of
the swarm is computed based on the following objective function:

FF = K; (5.8)

where K is the total number of round trips performed by the swarm. The duration
of the experimental run is T = 180 s and N = 20 is the swarm size.

5.3 Results
We present the results in Figure 5.3, the videos of the experimental runs are
available as Supplementary Videos A1 and A2 (Hasselmann and Birattari 2022).

5.3.1 Aggregation-Xor

The results for the Aggregation-Xor mission are presented in Figure 5.3a. Sim-
ulation results show that the control software generated using Arlequin performs
similarly to the one of Chocolate. However, the performance of EvoStick is sig-
nificantly better than the ones of both Arlequin and Chocolate. This is typically
the case in EvoStick, the performance in simulation tend to be significantly better
than the one of modular methods. The performance of the control software that
was generated by Arlequin and EvoStick drops significantly when it is evaluated
on the physical robots. EvoStick is the method that suffers the most from the
reality gap. The performance drop experienced by Arlequin is at most 0.475,
whereas the one experienced by EvoStick is at least 0.55. The drop experienced
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Figure 5.3: Results. a, Aggregation-Xor, performance obtained in simulation
(narrow grey boxes) and in reality (thick white boxes) for all three methods (the
higher the better); b, Foraging, performance obtained in simulation (narrow
grey boxes) and in reality (thick white boxes) for all three methods (the higher
the better); c, Friedman test results; Friedman test on the aggregate results in
reality of the two missions, the plot shows the average rank and the 95% confidence
interval (the lower the better).
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by Arlequin is significantly lower than the one experienced by EvoStick (95%
confidence computed with a paired Wilcoxon test).

The performance of the control software produced by Chocolate is similar in
simulation and reality. The performance drop due to the reality gap in the three
design methods is such that, in reality, Arlequin outperforms EvoStick, but is, in
turn, outperformed by Chocolate.

5.3.2 Foraging

The results for the Foraging mission are presented in Figure 5.3b. Simulation
results show that Arlequin is outperformed by both EvoStick and Chocolate.
When tested in reality, the three methods suffer from the reality gap, with EvoStick
suffering the most, followed by Arlequin and Chocolate. The performance drop
experience by Arlequin is at most 25.5, the one of EvoStick is at least 42. The
performance drop experience by Arlequin is significantly lower than the one of
EvoStick (95% confidence computed with a paired Wilcoxon test). Similarly to
the results obtained in the Aggregation-Xor mission, the performance drop in
the three methods is such that, in reality, Arlequin outperforms EvoStick, but is
outperformed by Chocolate.

5.4 Discussion
We presented Arlequin, a novel instance of AutoMoDe that differs from the
previously presented ones by the nature of the predefined behavioral modules to be
combined: Arlequin uses neural network modules generated via neuroevolution,
whereas the others use hand-crafted ones. The behavioral modules of Arlequin
were generated via EvoStick. We compared the performance of the control software
generated by Arlequin with the one generated by EvoStick and Chocolate on two
missions. In both missions, Arlequin is outperformed by EvoStick in simulation.
This was expected and is explained by the fact that the representational power
of Arlequin is reduced in comparison with the one of EvoStick. In one of the
two missions considered, Arlequin is outperformed by Chocolate in simulation.
This can be explained by the fact that the behavioral modules of Chocolate are
parametric, which allows the optimization algorithm to fine-tune the modules to
the problem at hand, whereas the behavioral modules of Arlequin are fixed. In
both missions, the control software produced by Arlequin suffered from significant
performance drops. However, the control software generated by EvoStick suffered
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from a significantly larger drop than the one produced by Arlequin, and as a result,
Arlequin outperformed EvoStick in reality. This corroborates the conjecture of
Francesca et al. (2014b): restricting the control software to be a combination
of low-level, simple behaviors yields better results in reality than the traditional
neuroevolutionary approach, despite being the other way around in simulation.
Our results show that this also applies when the simple behaviors are controlled by
neural networks.

We conjecture that the performance drop experienced by Arlequin in the two
missions is to be ascribed to an overfitting that occurred at the module level, that
is, during the implementation of the modules. This conjecture is based on the
observation that, compared to Chocolate, the representational power of Arlequin
is reduced as its behavioral modules are non parametric, which implies that the
optimization algorithm cannot fine-tune their behavior to the problem at hand.
We expect therefore that Arlequin is less likely to suffer from the overfitting that
occurs at the combination level, that is, when the modules are combined to solve a
specific mission. For the moment, this is just a conjecture that requires further
investigation to be confirmed.

These results indicate that the idea behind Arlequin is a promising one. How-
ever, Arlequin still requires human expertise at the implementation level. As a
next step, we wish to further reduce this required human expertise. Currently,
despite being parametric and therefore fine-tuned by the optimization algorithm,
the conditional modules of Arlequin are hand-crafted. Also, to obtain the neural-
network modules of Arlequin, we devised objective functions that describe the
hand-coded behaviors of Chocolate. Conceiving the appropriate objective func-
tions to obtain the desired behaviors can be difficult and requires a reasonable
knowledge of the platform at hand (Floreano and Urzelai 2000).

Gomes and Christensen (2018b) proposed an approach to conceive low-level
behaviors in a completely automated fashion. Their approach is based on reper-
toires of behaviors obtained in a mission-agnostic fashion using a quality-diversity
algorithm. The authors have shown that the repertoires they generated contain a
wide variety of behaviors, and that some of these behaviors obtained performance
that was close to one achieved by classical mission-specific automatic design. The
authors state that such repertoires can be the cornerstone of a completely auto-
mated method to conceive complex swarm behaviors. The results we present in
this chapter indicate that such method is indeed viable.

In the following chapter, we investigate the creation of such repertoires and
how to automatically produce control software for robot swarms by combining
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behavioral modules selected from these repertoires.



6. AutoMoDe-Nata

In this chapter, we address the problem of automatically designing a modular
method for the automatic design of robot swarms, which involves defining the
modules that will be then automatically selected and assembled into an appropriate
architecture (e.g., a finite-state machine or a behavior tree).

The definition and implementation of the modules that are to be combined
automatically is critical to the success of a modular method. By success, we mean
the ability of the method to exploit the capabilities of the robotic platform for
which control software is conceived so that behaviors that are of interest to swarm
robotics are produced (Birattari et al. 2021). A fully-automatic modular method
is typically conceived to produce control software for a specific robotic platform,
and cannot easily be ported to other ones. One can indeed imagine that robotic
platforms of different nature (e.g., air-based, ground-based, water-based), or robotic
platforms of the same nature but with different capabilities (e.g., communication,
vision, actuation) would require specific modules to appropriately utilize their
capabilities. One can also imagine that, if these modules were to be conceived
manually, this should be done by an expert in (swarm) robotics to obtain the best
possible results.

79
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In this chapter, our goal is to conceive a new instance of AutoMoDe that
requires less human expertise to be implemented or to be ported to different
robotics platforms than the current instances, and to define a methodology to do
so. In the previous chapter, we investigated the viability of replacing the hand-
crafted low-level behavior modules of Chocolate, the state-of-the-art AutoMoDe
method (Francesca et al. 2015), with automatically generated neural networks
(see Chapter 5). We defined Arlequin, which produced control software that
outperformed the one generated by a classical neuroevolutionary design method.
Although these results were promising and opened the door to the exploration of
novel design methods, we did not completely free ourselves from human expertise
in the conception of Arlequin. Indeed, expert knowledge was involved in (i) the
hand-coding of the condition modules and (ii) the definition of the performance
measures that were used to generate the neural networks by artificial evolution—
which is known to be particularly challenging (Doncieux and Mouret 2014; Floreano
and Urzelai 2000).

To further dispense from human expertise in the definition of a modular method,
we address here the two aforementioned points by (i) proposing a set of rules defined
on the sensory capabilities of the robotic platform to automatically generate
condition modules, and (ii) adopting an approach to generate repertoires of low-
level behaviors in a mission-agnostic way, without the need to define an objective
or a performance measure for each of the behaviors. Repertoires are large sets
of low-level behaviors that are as diverse as possible. They are created using
a quality-diversity algorithm that uses behavioral novelty of candidate behavior
as the objective function of an optimization algorithm (Pugh et al. 2016). The
approach presented in this chapter is based on Gomes and Christensen (2018b)
for the creation of the repertoire of behaviors using novelty search with local
competition (Lehman and Stanley 2011b) along with a set of hyperparameters
that were selected to produce a repertoire with similar characteristics to the one
presented in Gomes and Christensen (2018b).

We present Nata1, a design method that automatically generates control software
by selecting modules from a repertoire of mission-agnostic behaviors and assembling
them into probabilistic finite state machines. We test Nata with physical robots on
well-studied swarm robotics missions. Nata is, to the best of our knowledge, the

1The methods belonging to the AutoMoDe family all have food-related names: Vanilla,
Chocolate, Gianduja, TuttiFrutti...The method presented in this chapter is based on the work
of Gomes and Christensen (2018b) of the University of Lisbon. To acknowledge the source of
inspiration and to celebrate the original and inspiring work of our colleagues, we named our
method Nata, as in “pastéis de nata”, the popular custard tarts from Belém, Lisbon.
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first repertoire-based method to generate and assemble probabilistic finite-state
machines for robot swarms, the first swarm robotics repertoire-based method to
be tested on real robots, and the first modular method that has been generated
automatically—that is, the behaviors and transition rules on which the automatic
design method operates are themselves generated automatically.

As introduced in Chapter 3, AutoMoDe is a modular approach to the automatic
design of control software for robot swarms that was introduced to address the issue
of the reality gap. The creation of AutoMoDe was motivated by the observation
that the reality gap problem resembles the one of overfitting encountered in machine
learning (Francesca et al. 2014b). For details on the reality gap problem and the bias-
variance trade-off, we refer the reader to Section 2.3.3. Arlequin (see Chapter 5)
was introduced to test the conjecture that the robustness to the reality gap of
AutoMoDe results from the restriction of the space of the control software that it
can generate, rather than by the fact that the modules are skilfully hand-crafted.
To this end, Arlequin assembles modules obtained via neuroevolution—also in this
case, the modules are generated a priori and once and for all, in a mission-agnostic
way. The modules of Arlequin were generated using performance measures defined
to obtain behaviors that are qualitatively similar to the hand-crafted modules
of Chocolate. Conceiving the appropriate performance measure so that the
neuroevolutionary process produces the desired swarm behavior is challenging and
is typically done via trial-and-error (Doncieux and Mouret 2014; Floreano and
Urzelai 2000).

Repertoire-based methods using quality-diversity algorithms appear to be an
interesting step forward in order to free ourselves from the burden of creating such
performance measures.

Quality-diversity algorithms, such as MAP-elites (Mouret and Clune 2015) or
novelty search with local competition (Lehman and Stanley 2011b), are algorithms
that explore a given search space in order to find high-quality solutions to a
problem while maximizing their spatial diversity. These algorithms have been
already used to create repertoires of behaviors for legged robots (Cully and Mouret
2016; Duarte et al. 2018; Lehman and Stanley 2011b; Mouret and Clune 2015;
Vassiliades et al. 2018), wheeled robots (Bossens and Tarapore 2021; Duarte et al.
2016b; Gomes and Christensen 2018a,b), robotic arms (Cully and Demiris 2018;
Kim and Doncieux 2017; Mouret and Clune 2015), and UAV’s (Engebråten et al.
2021). Most of the works considered open-loop controllers (Cully and Demiris
2018; Cully and Mouret 2016; Duarte et al. 2016b, 2018; Engebråten et al. 2021;
Kim and Doncieux 2017; Mouret and Clune 2015; Vassiliades et al. 2018), that
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is, the control software modules in the repertoire do not use sensory information
and only describe locomotor behaviors. The use of closed-loop controllers—that is,
control software modules that make use of sensory information—was presented in
subsequent works (Bossens and Tarapore 2021; Gomes and Christensen 2018a,b).
In our research, we search the space of possible behaviors—in the form of neural
networks—to build a repertoire of high-quality behavioral modules to be used as
building blocks of the robots’ control software.

Gomes and Christensen (2018b) were the first to use a quality-diversity algorithm
to generate a repertoire of swarm behaviors. The authors evaluated all behaviors
of the repertoire on eight missions to assess their quality. Results showed that the
repertoire contained suitable solutions for all missions. In that work, behaviors of
the repertoire were not assembled, the model of the robot was rather simple and
no real-robot experiments were conducted. Subsequently, Gomes and Christensen
(2018a) presented EvoRBC-II, a method to evolve repertoires and assemble the
modules using a supervisor decision tree as an arbitrator that selects the low-level
behavior to be executed. The method was assessed on nine single-robot missions
but no real-robot experiment was conducted.

6.1 Modular repertoire-based automatic design
Nata belongs to the AutoMoDe family of modular methods. It combines two types
of modules—behaviors and conditions—into probabilistic finite-state machines
using the irace (López-Ibáñez et al. 2016) optimization algorithm (see Section 3.6
for details on AutoMoDe). A behavior is an action executed by a robot. A condition
is a provision for switching from one behavior to another. The control software of
each individual robot is a probabilistic finite-state machine in which each state is a
behavior and each edge is associated with a condition that enables it depending
on whether it is satisfied. Behaviors and conditions were generated automatically
through procedures that will be detailed in the following of the section.

In this section, we describe the procedure we followed to create the repertoire
of neural networks, we propose a methodology to generate condition modules, and
we explain how Nata uses its repertoire and the generated conditions to produce
control software for robot swarms.
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6.1.1 Generation of a repertoire of behaviors using novelty
search with local competition

In this section, we present the idea behind the use of novelty search with local
competition and the creation of the repertoire of behaviors of Nata.

We created the repertoire of Nata following the idea introduced in Gomes and
Christensen (2018b) for building a repertoire of behaviors for robot swarms. Each
behavior in the repertoire is a neural network that can be used as control software
on a robot.

We generated this repertoire of behaviors using an evolutionary process driven
by novelty search with local competition (Lehman and Stanley 2011a,b). This
process follows the framework introduced by Cully and Demiris (2018) and used
by Gomes and Christensen (2018b), in which the selection of novel solutions and
the construction of the repertoire are two independent steps; the algorithm is
summarized in Algorithm 1. We first create an empty repertoire that will hold
the set of best candidate neural networks and will eventually become the final
repertoire. After generating the initial population, we evaluate all neural networks
of the population in a set of randomly generated environments and compute the
median behavior characterization and the mean quality score of each neural network.
The randomly generated environments all share the same size, shape, and ground
color but can have a floor patch of a random color (white, grey, or black) at a
random position chosen between three possible ones, up to one obstacle box at
the center of the arena, and up to one light source. We evaluate each neural
network of the population on 10 random environments for 100 seconds. The
behavior characterization is a vector that represents the behavior of the robots
in the swarm when evaluated in different environments (Gomes et al. 2014). To
characterize the behavior of the swarm, we compute for each individual robot the 7
following features: the linear and angular speed; the distance to walls/obstacles,
to other robots, and to the closest robot; the ambient light and the ground color
perceived. The behavior characterization vector is composed of 14 real values: the
mean and the standard deviation for each of the features described above. These
values are computed based on the evaluations of the swarm on the 10 random
environments. The quality score represents the number of collisions that occurred
during an evaluation of a neural network and is computed using the following
function: Q = 1−C/(T ·N), where C is the number of collisions, T is the duration
of the evaluation and N is the size of the swarm. After these steps, we update
the repertoire with the newly evaluated neural networks based on their novelty
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score and local competition score. The novelty score is the mean distance of the
current neural network to its k nearest neighbors. This distance is computed
using the l2-norm of the characterization vectors of the neural networks. The local
competition score is the number of neural networks in the k nearest neighbors that
are outperformed by the current neural network. In our case, we considered k = 25.
The given neural network is then added to the repertoire if its nearest neighbor
is sufficiently different from it (the distance between is greater than parameter l).
The given neural network may also replace its nearest neighbors in the repertoire,
if it is not sufficiently different (the distance between is less than l) but its quality
score is strictly greater and the second nearest neighbor is sufficiently different
from it. The following generation of neural networks is created by crossover and
mutation on the genomes of the current generation. The evolutionary process is a
modified version of the NEAT (Stanley and Miikkulainen 2002) algorithm to allow
Pareto-based bi-objective optimization, where the two objectives are the novelty
score and the local competition score.

The repertoire is thus built in a mission-agnostic way, and has to be built only
once to be subsequently used in a great variety of swarm robotics missions.

6.1.2 Generation of rules for condition modules

Condition modules are generated automatically via a set of rules that operate on
the reference model of the robot (see Section 3.2 for details about the reference
model). More precisely, the input variables of the reference model, which represent
sensory information, are used to define triggers for the condition modules. We
separate input variables in three classes: categorical, continuous, or vector inputs.
For each input variable, depending on the class to which it belongs, a specific
ruleset is automatically applied to generate one transition module.

A condition module based on a categorical input triggers a transition with
probability p when the input is detected to be C with C ∈ {c1, c2, ..., cn}. If multiple
sensors form the input, all the values must be detected to be C. A condition module
based on a continuous input triggers a transition with probability p when the input
is detected to be above (d = 1) or below (d = 0) the threshold θ with θ ∈ R.
If multiple sensors form the input, the sum of the values need to be above or
below the threshold θ. A condition module based on a vector input triggers a
transition with probability p when the input is detected with angle in quadrant Q
with Q ∈

{
[0, π2 [, [π2 , π[, [−π, −π2 [, [−π2 , 0[

}
. In fact, for vector inputs, the magnitude

of the vector is disregarded and the angle is used as a categorical input with four
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Algorithm 1 Repertoire evolution with novelty search with local competition. In
our case, l = 1.5 is the repertoire distance threshold, s = 50 is the repertoire growth
per generation, S = 2000 is the archive capacity. The archive A is filled during
the execution of the algorithm with randomly selected neural networks from the
population to encourage uniform behavior exploration (Cully and Demiris 2018).
It is used to compute the novelty and local competition scores.
1: A← ∅, R← ∅ . Create empty archive A and repertoire R
2: P ← RandomInitialPopulation() . Initialise population P
3: for g ∈ generation do
4: for i ∈ P do
5: for e ∈ E do . Evaluate individual i in all environnements
6: qe, be ← Evaluate(i, e)
7: B(i)← GeometricMedian({be : e ∈ E}) . Store median behavior

characterization
8: Q(i)← ∑

e∈E
1
|E|qe . Store quality score

9: for i ∈ P do . Update repertoire with new individuals
10: χ← NearestNeighbors(i, A ∪ P, k) . k = 25 nearest neighbors in

archive and population
11: N(i)← ∑

x∈χ
1
|χ|dist(B(i), B(x)) . Compute novelty score

12: LC(i)← ∑
x∈χ [Q(i) > Q(x)] . Compute Local competition score

13: χ1, χ2 ← NearestNeighbors(i, R, 2) . 2 nearest neighbors in
repertoire

14: if |R| = 0 or |R| > 0 and dist(B(i), B(χ1))> l then . Individual
different from nearest

15: R← R ∪ {i}
16: else if |R| > 1 and Q(i) > Q(χ1) and dist(B(i), B(χ2)) > l ·0.1 then
17: R← (R \ {χ1}) ∪ {i}
18: if |A| > S − s then . Update archive with new individuals, remove some if

full
19: A← A \ SelectRandom(A, |A|+ s− S)
20: A← A ∪ SelectRandom(P, s)
21: P ← Breed(P) based on N(i) and LC(i) . Create next generation
22: return R
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Table 6.1: Condition modules: Five condition modules were generated based on
the five inputs of reference model RM1.1 presented in Table 6.2: proximity, light,
ground, number of neighboring robots perceived, and attraction vector.

Input Input class parameters

proximity sensor continuous p ∈ [0, 1]: probability
θ ∈ [0, 8]: threshold
d ∈ {0, 1}: trigger above or below θ

light sensor continuous p ∈ [0, 1]: probability
θ ∈ [0, 8]: threshold
b ∈ {0, 1}: trigger above or below θ

ground sensor categorical p ∈ [0, 1]: probability
C ∈ {black, gray, white}

number of neighboring continuous p ∈ [0, 1]: probability
robots perceived θ ∈ [0, 20]: threshold

d ∈ {0, 1}: trigger above or below θ

attraction vector vector p ∈ [0, 1]: probability
Q ∈ {[0, π2 [, [π2 , π[, [−π, −π2 [, [−π2 , 0[}: quadrant

distinct values representing four equal quadrants of π/2 rad. The parameters p, C,
d, θ, and Q are fine-tuned by the optimization algorithm, when they apply. The
details specific to the robotic platform in use, including the classes of the inputs
considered here are given in Section 6.2.2 and Table 6.2.

The choices made to define the different rules that were applied to generate the
transitions do have implications on the whole design of the system. These rules
have their limitations, but it is our contention that, simpler, easier rules to apply,
allow for a more straightforward implementation. More fine-grained rules could
lead to better design in transitions but we do not expect they would make any
significant difference to the overall conclusions of this study.

The specific condition modules generated for the e-puck robot for Nata using
reference model RM1.1 are presented in Table 6.1.

6.1.3 Assembly of condition and behavior modules

As customary in most methods belonging to the AutoMoDe family, Nata generates
control software by assembling behavior and condition modules into probabilistic
finite-state machines. Nata uses the optimization algorithm irace (López-Ibáñez
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et al. 2016) to generate probabilistic finite-state machines that are limited in size:
they can comprise up to 4 states and up to 4 outgoing transitions per state; this
constraint was set in other AutoMoDe methods such as Vanilla, and Chocolate.
For each state of the probabilistic finite-state machine, irace selects one of the
neural networks of the repertoire. For each transition, irace configures one condition
module.

6.2 Methods
In this experiment, we generated control software using four design methods. We
tested these methods on three classical swarm robotics missions. Their complexity
aligns with previous work in the fully automatic design of robot swarms (see
Chapter 4). The following sections present details about the material and methods,
experimental protocol, and missions under analysis in this experiment.

6.2.1 Protocol

We considered a swarm of 20 e-puck robots that operate in a dodecagonal arena
of 4.91 m2 delimited by walls, as described in Section 3.4. The robotic platform
used in this experiment is the e-puck robot. It is formally described, along with
its reference model, in Section 6.2.2. A picture of the e-puck in the configuration
adopted in the experiments is given in Figure 3.1a. All simulations in this study
were performed using ARGoS; details about the simulation setup are found in
Section 3.3. Each design method is run 10 times, producing 10 instances of control
software for each mission. These instances of control software are then tested once
in simulation and once on a swarm of 20 e-puck robots. Each design process was
allowed the same budget of 200 000 simulation runs. In the real robots setup, the
performance of the swarm was computed automatically using data provided by a
tracking system; details about the tracking system are presented in Section 3.4.1.
We present the results in the form of notched box-and-whiskers plots. We present
normalized aggregated results, aggregated results using the Friedman (Conover
1999) test, and normalized aggregated performance drop results. We refer to
Section 3.5 for details about statistical analyses.
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Table 6.2: Reference model RM1.1: capabilities of the e-puck robotic platform
used in this study. For sensors, the category—that defines the derived condition
modules—, is indicated in the last column.

Input Value Description Input class
proxi∈{1,...,8} [0,1] reading of proximity sensor i continuous
lighti∈{1,...,8} [0,1] reading of light sensor i continuous
gndj∈{1,2,3} {black, gray, white} reading of ground sensor j categorical
n [0,20] number of neighboring continuous

robots perceived
V

(
[0.5, 20], [0, 2π]rad

)
attraction vector vector

Output Value Description
vk∈{l,r} [−0.12, 0.12] m s−1 target linear wheel velocity

Period of the control cycle: 100 ms

6.2.2 Reference model

The specific configuration of the e-puck robot used in this study is formally described
by reference model RM1.1. This reference model is identical to the one used in
previous chapters of this thesis. Details about the reference model are given in
Section 3.2. For the convenience of the reader, RM1.1 is repeated in Table 6.2, with
the added mention of the different classes of the sensors as defined in Section 6.1.2.
All methods in this study use the variables defined in this reference model to
generate control software.

6.2.3 Automatic design methods

In this experiment, we compare four automatic design methods: Nata, Arlequin,
EvoStick, and Chocolate.

Nata is our novel modular method that generates control software by assembling
modules from a repertoire. It is described in detail in Section 6.1. Arlequin is
the modular method introduced in Chapter 5, that generates control software by
assembling modules from a set of behavior-specific pre-trained neural networks. It is
described in detail in Section 5.1. EvoStick is a classical neuroevolutionary method
that generates control software in the form of neural networks. It is described in
detail in Section 3.7. Chocolate is the classical modular method that generates
control software by assembling hand-crafted modules. It is described in detail
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Figure 6.1: Illustration of the modular design methods. a, Chocolate, the
behavior modules (black circles) and the condition modules (black diamonds) are
hand-crafted, then, the modules are automatically assembled into probabilistic finite-
state machines; b, Arlequin, the behavior modules (black circles) are pre-trained
neural networks that are generated using behavior-specific objective functions;
the condition modules (black diamonds) are hand-crafted, then, the modules
are automatically assembled into probabilistic finite-state machines; c, Nata, a
repertoire of behavior modules (black folder) in the form of neural networks
is generated using a quality-diversity algorithm; the condition modules (black
diamonds) are generated automatically via a set of rules, then, the modules are
automatically assembled into probabilistic finite-state machines.

in Section 3.6. The differences between the three modular methods Chocolate,
Arlequin, and Nata are illustrated in Figure 6.1.

6.2.4 Missions under analysis

The three missions (Figure 6.2) considered are classical swarm robotics mis-
sions; here we present their characteristics and objective functions. The XOR-
Aggregation and the Foraging missions are identical to the ones with the
same names presented in Chapter 4. For the convenience of the reader, we repeat
their characteristics and objective functions hereafter.

XOR-Aggregation

The robots must aggregate on one of the two black areas in the arena. The
performance of the swarm is computed based on the following objective function:

Fa =
T∑
t=1

N∑
i=1

Ii(t); (6.1)
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Figure 6.2: Arenas for the three missions. a, XOR-Aggregation, simulation;
b, real robots. c, Foraging, simulation; d, real robots. e, Shelter w/Cues,
simulation; f, real robots. The 20 robots operate in a dodecagonal arena of 4.91 m2,
the red glow in c, d, e, and f indicates the presence of a light source at the bottom
side of the arena. Dimensions (in meters) of the elements present in the arenas are
given in a, c, and e.
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Ii(t) =

1, if robot i is in the area with a majority of robots;
0, otherwise.

(6.2)

The duration of the experimental run is T = 180 s and N = 20 is the size of the
swarm.

Foraging

The robots must find one of the two black areas, which represent food sources and
return to the white area, which represents the nest. The performance of the swarm
is computed based on the following objective function:

Ff = K; (6.3)

where K is the total number of round trips performed. The duration of an
experimental run is T = 180 s and the swarm size is N = 20.

Shelter with cues from the environment

The robots must aggregate in a shelter: a white area open on one side and
surrounded by walls on the three other ones. A light source is positioned outside
of the arena and is directed towards the open side of the shelter. The floor of the
arena on the side of the walls of the shelter is black. The performance of the swarm
is computed based on the following objective function:

Fs =
T∑
t=1

N∑
i=1

Ii(t); (6.4)

Ii(t) =

1, if robot i is in the shelter;
0, otherwise.

(6.5)

The duration of the experimental run is T = 180 s and N = 20 is the size of the
swarm.

6.3 Repertoire analysis
Once the repertoire is generated, we analyze it to get some insight on the behavior
modules that were selected by the algorithm. It is important to note that this
analysis should not be considered as part of the procedure of the creation of the
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Figure 6.3: Repertoire analysis. Performance of the behaviors of the repertoire
on the objective functions of Arlequin. We used principal component analysis
(PCA) on behavior vectors space to reduce it to 2d (the 2 principal components
account for 69.4% of the variance). For all behaviors in the repertoire we created,
we evaluate them 10 times of each of the objective functions that were used to
created the behaviors of Arlequin (see Section 5.1.2). For each behavior of the
repertoire, the average performance is normalized, using min-max normalization,
based on the performance of the behaviors of Arlequin. The 2d plane is discretised
and the average performance of each region is mapped to the color of the heatmap.
The Red dots represent the modules of the repertoire that are actually used in a
probabilistic finite-state machine of the control software that were generated in this
study. Performance of the repertoire on the objective function of Arlequin for: a.
exploration; b. stop; c. attraction ; d. repulsion e. antiphototaxis; f. phototaxis.

repertoire. Indeed, the work involved in this analysis requires domain knowledge
and expertise, which goes against our philosophy of reducing the expert knowledge
needed for the implementation of the automatic design method. This analysis
was performed post factum, after the automatic design phase and after the robot
experiments, and was thus not used to fine-tune or steer the creation of the
repertoire.
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6.3.1 Analysis method

The repertoire of Nata is comprised of 672 behavior modules. We evaluate the
performance of these modules on the six objective functions that we created for the
design of the modules of Arlequin (see Section 5.1.2 for details on these objective
functions). The six objective functions were created in Arlequin to train neural
networks that would learn each of the six behaviors already present in Chocolate.
In the case of this analysis, we only use these objective functions as performance
metrics to evaluate the repertoire that was generated using the quality-diversity
method described in Section 6.1. Each module of the repertoire is evaluated 10
times using each objective function and we record the performance over these 10
runs for each objective function. The average performance is then normalized
using min-max normalization based on the performance for each objective function
of the respective modules of Arlequin. We normalize using the performance of
the modules of Arlequin to be able to assess whether satisfactory behaviors are
present in the repertoire of Nata, compared to the modules of Arlequin.

In order to visualise the repertoire, we apply a principal component analysis
(PCA), in order to reduce the dimensionality of the behavior characterization
vector (described in Section 6.1.1) from 14 to 2 (here, the 2 principal components
account for 69.4% of the variance). Each module is thus associated with a 2d
space coordinate and a performance value. The 2d space is then discretised and an
average in performed on the performance of the modules in the same spatial zone.

The resulting heatmap visualization is presented in Figure 6.3. A light yellow
color indicates low performance; a dark blue color indicates high performance
(close to the average one of Arlequin the corresponding module in Arlequin).
Completely white areas represents areas in the behavior space that do not contain
any module. The red dots printed on top of the heatmap represent the localization
of the behavior modules that were actually selected during the automatic design
phase in our study. They are included in the different probabilistic finite-state
machines generated by Nata that we evaluated to report the results in Section 6.4.

6.3.2 Observations

We analyse the characteristics of the repertoire of Nata reported in Figure 6.3. For
the exploration, stop, antiphototaxis, and phototaxis behaviors, modules with high
performance are found in the repertoire, as indicated by the dark blue zones present
in Figure 6.3a,b,e,f. In attraction and repulsion, the modules in the repertoire do
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not perform as well as the ones of Arlequin. The median quality of the repertoire
is 0.99883, which indicates that, in simulation, the collisions between the robots
are limited (see Section 6.1.1 for details on the quality score).

We observe that, as expected, pairs of modules that are dual behaviors (i.e.
exploration/stop, attraction/repulsion and antiphototaxis/phototaxis) do indeed
cover different zones in the behavior space. One module that perform well in
exploration is expected to perform badly in stop, same goes for attraction/repulsion
and antiphototaxis/phototaxis respectively. We also observe that compound be-
haviors, showing good performance in multiple objective functions, are found in
the repertoire.

The positions of the red dots, over the heatmap, represent behaviors that are
selected by the optimization algorithm in the design phase that we executed to
obtain the results presented in Section 6.4. We observe that the modules in use
are spread in the behavior space. We also observe that some high performing
zones do not contain any used modules. This can be explained by the compound
nature of the behaviors; some modules could be better suited to a specific mission,
in conjunction with others. The view offered by this analysis is limited to the
behaviors that were created for Arlequin, and their respective objective functions,
which may not be the best possible ones to be assembled to tackle a given mission.

The spatial diversity of used modules, the high median quality score, and
the satisfactory performance on the different objective functions suggest that the
repertoire is mostly composed of potentially useful modules.

6.4 Results
Figure 6.4a shows the performance obtained by the four methods on the three mis-
sions, both in simulation and on physical robots. In simulation, for the Foraging
mission, EvoStick outperforms the other three modular methods, which perform
similarly (the notches representing the 95% confidence interval on the boxplots
overlap). For XOR-Aggregation, all methods perform similarly, whereas for
Shelter w/Cues, differences between methods are all significant: EvoStick
performed best, followed by Arlequin, then Chocolate and finally Nata. Overall,
when aggregating all results (see Figure 6.4b), EvoStick produced control software
that performed best in simulation. Among the modular methods, Arlequin and
Chocolate produced control software that perform similarly, and the one produced
by Nata is outperformed by the one of Chocolate.
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Figure 6.4: Results. a. Results per mission. Performance obtained in simulation
(narrow white boxes) and in reality (thick grey boxes) in all three missions (the
higher the better). b. Aggregated normalized results. Aggregated performance
in simulation (narrow white boxes) and in reality (think grey boxes) across the
three missions (the higher the better). Prior to aggregation, results are normalized
between the lowest and the highest performance observed in reality by any method
in a given mission. As a result, aggregated reality results range from 0 to 1, whereas
aggregated simulation results might exceed 1 (shadowed area). This is observed
because, in many cases, the performance in simulation exceeded the one in reality.
c. Normalized performance drop experienced by the methods, aggregated across all
missions, and 95% confidence interval. For a given instance of control software, the
performance drop is computed as the difference between the performance assessed
in simulation and the one observed in reality, and is normalized with the one
assessed in simulation. d. Friedman test results. Friedman test on the aggregate
results in reality of the three missions, the plot shows the average rank and the
95% confidence interval (the lower the better).
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In reality, things are different. In fact, we observed several rank inversions
between the methods. For Foraging, Nata and Chocolate perform similarly, and
outperform both Arlequin and EvoStick. For XOR-Aggregation, Chocolate
is the best performing method. Nata and Arlequin perform similarly and slightly
worse than Chocolate, but considerably better than EvoStick. For Shelter
w/Cues, the median performance of Chocolate is twice better than those of the
other three methods, which perform similarly. Overall, when executed on a swarm
of e-puck robots, the control software produced by Chocolate is the best performing
one, followed by the one produced by Nata, then Arlequin and EvoStick (see
Figure 6.4b). According to the Friedman rank sum test, the differences between
these four methods are all significant with a confidence level of at least 95% (see
Figure 6.4d).

Figure 6.4c shows the performance drop from simulation to reality, which
gives an estimation of how much the methods are affected by the reality gap.
EvoStick suffers from the largest overall performance drop and shows very poor
performance in reality in all three missions, whereas Chocolate suffered from the
lowest overall performance drop and is the method that is the best at crossing the
reality gap. Nata suffers from a significantly lower performance drop than EvoStick
and Arlequin, but larger than the one Chocolate, although not significantly.

Both in simulation and with physical robots, the results that we obtained
using already existing methods, namely Chocolate, EvoStick and Arlequin, are
consistent with previous studies (see Francesca and Birattari (2016), Ligot and
Birattari (2020), and previous results presented in Chapters 4 and 5).

It is also worth mentioning that, as it can be observed in the Supplementary
Videos N1 to N3 (Hasselmann and Birattari 2022), and as shown by the results in
simulation, the different missions considered in the study can be accomplished by
the design methods, and the allocated computing resources are sufficient to reach a
satisfactory level of performance. All results obtained in simulation and real-robot
experiments are available as supplementary data (Hasselmann and Birattari 2022).

6.5 Discussion
By introducing Nata, we addressed the drawbacks of both the neuroevolutionary
robotics approach and the modular one: neuroevolutionary methods suffer from
important performance drops due to the reality gap, whereas modular methods
require human designers to meticulously implement behavior and condition mod-
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ules. We presented Nata, a modular method that produces control software by
automatically selecting and combining task-agnostic behaviors that were themselves
automatically generated, via novelty search. Nata produced control software that
is more robust to the reality gap than the one produced by the classical neuroevo-
lutionary approach, whereas the process adopted to generate the modules to be
combined requires less human expertise than the ones previously adopted by other
modular methods. The results presented are to be considered as a proof of concept;
future work should address the issue of further assessing the capabilities of Nata
and extending them. In particular, one should focus on identifying the class of
missions that Nata can tackle and on further improving its robustness to the reality
gap.

The performance of Nata is satisfactory as it exceeds the one of EvoStick and
Arlequin. Admittedly, Nata did not reach the performance level of Chocolate.
Yet, it is worth noting that in contrast to Chocolate—which was conceived by a
human expert who identified and implemented the relevant low-level behaviors and
transition conditions—Nata was defined automatically: low-level behaviors and
transition conditions were generated automatically. To the best of our knowledge,
Nata is therefore the first modular automatic design method that has been generated
automatically. In this sense, in Nata, the principles of automatic design have been
applied at a meta level: the automatic design of collective behaviors for robot
swarms is achieved by a method that was itself generated automatically.

One possible drawback of modular methods and specifically to automatically
generating the behavioral modules to be combined into probabilistic finite-state
machines—or any other control architecture—is the risk of introducing a source
of overfitting within the method, and thus nullify the benefits of modularity. In
modular approaches overfitting can occur at two levels: during the implementation
of the modules, and during their combination and their (possible) fine-tuning.
The overfitting that occurs during the implementation of the modules is mission
independent, and is caused by a mismatch between how the robots behave in
simulation and in reality when executing a given module. The overfitting that
occurs during the combination and fine-tuning of the modules is mission specific,
and could be caused by unforeseen interactions between the robots and/or between
the robots and the environment. It is hard to identify which level contributes
the most and, therefore, on which level one should work to reduce the overall
performance drop.

The combination process (i.e., optimization algorithm, control architecture, and
constraints) is identical in Nata, Arlequin, and Chocolate. It is therefore reason-
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able to assume that the overfitting that occurs at the level of the implementation
of the modules is the most important factor that explains the discrepancies we
observed between the three methods.

As Nata produced control software that is more robust to the reality gap than
the one produced by Arlequin, it appears that generating behaviors in the form
of neural networks using novelty search with the aim of minimizing collisions is
more effective than using direct evolution.

In this chapter, we reached the closest point we have ever been to automatically
creating automatic design methods.

With Nata, we have gathered more evidence that the cornerstone of the creation
of automatic design methods is the creation of the modules. The modules of
Chocolate were crafted by hand and evaluations on physical robots during their
implementation ensured that they crossed the reality gap satisfactorily. Evaluating
the modules of the repertoire of Nata on robots with the objective of potentially
pruning the repertoire to only keep modules that cross the reality gap satisfactorily
would be extremely costly and time consuming. Indeed, a repertoire typically con-
tains several hundreds of behavioral modules and each module should be evaluated
in multiple environments so as to correctly assess its behavior characterization
vector.

We foresee that the pruning of the repertoire could be done by leveraging the
concept of pseudo-reality (Ligot and Birattari 2018). A pseudo-reality is a simulation
model, different from the one used during the design, that is used to mimic the
reality gap experienced when going from simulation to reality. Evaluations of
behavioral modules in pseudo-reality, which are fast and inexpensive, could give an
idea on their robustness to the reality gap and could subsequently be used to filter
and select modules with the best potential to perform seamlessly in reality.



7. Conclusions

This thesis contributes to the progress of automatic modular design of robot swarms.
Designing robot swarms is a hard problem; the relationship between the macroscopic
behavior of the swarm, and the microscopic behavior of the individual robots is
difficult to identify. This design problem is one of the major issues in swarm robotics;
to this day, no general engineering methodology is available. Automatic design is
foreseen as a promising way to create behaviors for robot swarms (Dorigo et al.
2020). However, the lack of proper benchmarking of automatic design methods is
impeding the development of this research field.

As a first contribution, we provided a critical review of the state of the art,
in order to establish the current practices in automatic design. We reviewed the
most influential publications in the domain and especially focused our attention on
offline automatic design and automatic modular design.

As a second contribution, we proposed a novel categorization of automatic
design methods. Our categorization adds a new dimension to the already existing
categorization between online and offline design methods. Online design brings the
optimization process onboard the robots in the production environment, whereas,
in offline design, the optimization is done before-hand, in a simulated environment,
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before deployment. In our orthogonal categorization, we disambiguate between
semi- and fully-automatic design. In semi-automatic design, human intervention is
allowed during the design process, whereas in (fully-)automatic design, once the
design method has been defined, it operates without any intervention. This novel
categorization helps to better understand the purpose and possible application of
different automatic design methods. By establishing a clear difference between
methods that operate on a class of missions compared to ones that are tailored to
one specific mission, we believe this categorization will also allow fairer comparisons
between design methods.

One of the objectives of this field is also to bring robot swarms into the physical
world. Comparisons between automatic design methods should, therefore, also
include analyses that indicate how robust to the reality gap one method is. This
difference between the simulated environment (or more generally the environment
used during the design phase), and the real world (the production environment)
can induce significant differences in the behavior of the robot swarm. The reality
gap is a major problem in offline design of robot swarms and the robustness to
the reality gap, of a given method, is an important criterion of the success of an
automatic design method. As our third contribution, we re-implemented, tested, and
analysed the most popular automatic design methods using standard optimization
algorithms. This analysis is the most extensive comparison of automatic design
methods currently available in the literature that is supported by simulation and
real robot experiments. This study shows the importance of the reality gap problem
faced by many automatic design methods and specifically by neuroevolutionary
design methods.

This study also further stressed the relevance of modular methods as methods
that are robust to the reality gap. The conjecture, made by Francesca et al.
(2014b), is that the reality gap problem is tightly linked to the bias-variance
tradeoff. Control software architectures with high variance and low bias, such as
neural networks, showcase high representational power. This can be a source of
overfitting to the design environment and lead to decreased performance in the
production environment. By introducing modules, we inject bias in the control
software architecture with the goal of reducing the variance and therefore increasing
its overall robustness to the reality gap. This work registers itself within the
framework of the DEMIURGE project, whose aim is to create an end-to-end
system to define and create swarm robotic systems by leveraging modular methods.
Modular methods, such as most of the ones of the AutoMoDe family, require expert
knowledge to be implemented, especially for the creation of the modules that
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are assembled and tuned. In contrast, neuroevolutionary methods require little
knowledge and are easier to implement. Our fourth contribution is the creation
of a modular automatic design method that joins the best of the two worlds: the
ease of implementation of neural networks and the robustness to the reality gap
of modular ones. We presented Arlequin, a method that uses pre-trained neural
networks as modules. The creation and study of Arlequin showed that overfitting
was reduced by the use of neural networks as modules and suggested that using
neuroevolution in conjunction with modular methods is a promising approach. We
have shown that the reality gap experienced by AutoMoDe methods comes mainly
from the design of modules.

Our fifth contribution comes in line with the previous one. We created another
modular automatic design method with the objective of further reducing the expert
knowledge in swarm robotics needed to implement it, while also using neural net-
works as modules. Leveraging the idea of using novelty search to create a repertoire
of behaviors, we presented Nata, a modular method that uses an automatically
generated repertoire of behavioral modules and rule-based automatically designed
conditional modules. We showed that meaningful behaviors where successfully
obtained using this technique. The control software that we obtained still remained
more robust to the reality gap than traditional neuroevolutionary methods. Our
results suggest that neuroevolution is a viable approach to the creation of modules.
We stressed that the cornerstone of the creation of automatic modular design
methods is the definition and implementation of the modules.

We supported all studies presented in this thesis with real robot experiments
using hardware and software that were partially or entirely developed in the
framework of the DEMIURGE project. The extensive experimental work and
implementation represent our last two contributions in this thesis. These are
transversal contributions that supported the realization of the studies presented
above. We believe that open research, concerning results as well as both software
and hardware implementations also contributes to the development of the field
of automatic design as a whole. Our implementations are available online as
open-source software.

Future work should be dedicated to addressing the overfitting occurring at
the module level. One should explore different ways of generating and selecting
the behavioral modules that will then be part of the repertoire of modules to be
combined into probabilistic finite state machines.

As a first step, one could explore different parameters of the neuroevolutionary
process used to generate the modules, and select them on the basis of their perfor-
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mance assessed on physical robots. Since repertoires of behaviors can potentially
be large, and to reduce the costs and time associated with performing tests in
reality, one could also explore the use of pseudo-reality (Ligot and Birattari 2018,
2020, 2022)—that is, another simulation model, different from the one used during
the design—to assess and select the modules. A different approach to generate the
behavioral modules we wish to explore is the transferability approach of Koos et al.
(2013). This approach is based on the occasional evaluation of the performance of
instances of control software found during the design process, and based on these
evaluations, steering the optimization algorithm to solutions that cross the reality
gap satisfactorily, compared to direct neuroevolutionary methods. Also in this case,
pseudo-reality could replace reality to reduce the costs and time of evaluations
required during the design process.

One could also explore different control software architectures, such as trees
or fixed sized small neural networks. Different architectures may lead to different
constraints and potentially different types of modules.

For now, all experiments were done using the e-puck robots. Another important
step in validating our approach should be to assess our automatic design methods on
different robotic platforms. Diversity of robotic platforms, simulation environments
and models, will also help validate the approach in a more systematic way.

It will also be important to refine and clarify the class of missions that a given
robotic platform can tackle given its reference model. One could also study if and
how the definition and implementation of the modules and the control software
architecture affect this class of missions.
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