
Show me what you want: Inverse reinforcement learning to
automatically design robot swarms by demonstration

Ilyes Gharbi1, Jonas Kuckling1, David Garzón Ramos1, and Mauro Birattari1

Abstract— Automatic design is a promising approach to
generating control software for robot swarms. So far, automatic
design has relied on mission-specific objective functions to
specify the desired collective behavior. In this paper, we explore
the possibility to specify the desired collective behavior via
demonstrations. We develop Demo-Cho, an automatic design
method that combines inverse reinforcement learning with
automatic modular design of control software for robot swarms.
We show that, only on the basis of demonstrations and without
the need to be provided with an explicit objective function,
Demo-Cho successfully generated control software to perform
four missions. We present results obtained in simulation and
with physical robots.

I. INTRODUCTION

Swarm robotics is an approach to control large groups of
autonomous robots [1]–[3]. It is considered a prominent
research direction [4] and has attained a notable position
in the literature [5]–[12]. A robot swarm is a decentralized
system and consists of relatively simple robots that can
perceive and interact with the environment only in their local
neighborhood. A swarm is a self-organizing system, that is,
its collective behavior emerges from the interactions of its
individual robots. The design challenge in swarm robotics is
to program the individual robots so that a desired collective
behavior emerges. Several methods have been proposed for
specific classes of missions [13]–[21]. Yet, due to the many
unpredictable interactions within the swarm, no generally-
applicable and principled method exists to design a desired
collective behavior [22]–[24].

Automatic off-line design has proven to be a viable
approach for the design of control software for robot swarms
[25]–[29]—other related approaches exist [30]–[32]. In auto-
matic off-line design, an optimization algorithm searches the
space of possible instances of control software to find one
that maximizes a given mission-specific objective function,
which measures the performance of the swarm. The objec-
tive function is typically assessed through simulations. The

1IG, JK, DGR, and MB are with IRIDIA, Université libre de Brux-
elles, Brussels, Belgium. {ilyes.gharbi, jonas.kuckling,
david.garzon.ramos, mauro.birattari}@ulb.be

The project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (Demiurge: grant agreement No 681872) and from Belgium’s
Wallonia-Brussels Federation through a ARC Advanced Project 2020 (Guar-
anteed by Optimization). JK and MB acknowledge support from the Belgian
Fonds de la Recherche Scientifique-FNRS. DGR acknowledges support
from the Colombian Ministry of Science, Technology and Innovation –
Minciencias.

The experiments were designed by IG, JK, and DGR and performed by
IG and JK. The paper was drafted by IG and JK and edited by IG, JK, DGR,
and MB; all authors read and commented the final version. The research
was directed by MB.

selected instance of control software is then uploaded to real
robots, which are then deployed in the target environment
to perform the mission. Notably, no human intervention
beyond the specification of the mission takes place [32].
The objective function is part of the formal specification
of the mission at hand. Defining an objective function is
challenging, and requires to be familiar with mathematical
modeling. This is a task that requires the attention of a skilled
professional and could not be performed by an end user.

The problem of defining an appropriate objective function
is similar to the problem that in the reinforcement learning
literature goes by the name of reward shaping: the defini-
tion of a reward function that facilitates learning a desired
policy [33]. Inverse reinforcement learning is an approach
to address this problem: instead of learning a policy that
maximizes a given reward function, inverse reinforcement
learning algorithms learn a reward function from demonstra-
tions of an optimal behavior. The learned reward function
can then be used to generate a policy that reproduces the
demonstrated behavior. Inverse reinforcement learning is
motivated by the fact that, for some classes of problems,
demonstrating an optimal behavior is easier than defining
a properly shaped reward function [34], [35]. One of the
earliest proposed approaches to inverse reinforcement learn-
ing is apprenticeship learning [35]. Given demonstrations of
the desired behavior, the apprenticeship learning algorithm
iterates between i) learning a policy based on an intermediate
reward function and ii) learning a new intermediate reward
function based on the behavior of the previously generated
policies. The algorithm stops if the behavior of the current
policy is sufficiently close to the provided demonstrations.

We contend that inverse reinforcement learning can be
adopted in the framework of the automatic design of control
software for robot swarms: instead of defining a mission-
specific objective function, we can provide demonstrations of
the desired swarm behavior and let an inverse reinforcement
learning algorithm infer an objective function to automati-
cally generate the control software that produces the desired
behavior itself. In this work, we focus on desired behaviors
that can be described through the final position of the robots.

II. RELATED WORK

Inverse reinforcement learning has already found application
in robotics: Krishnan et al. proposed SWIRL, an inverse
reinforcement learning algorithm to learn various robot tasks,
including parallel parking and surgical cutting along a line
[36]. The robot successfully learned the tasks from demon-

strations and the learned policies were robust to perturba-
tions, such as different initial positions.

Inverse reinforcement learning was also studied in the
scope of multi-agent systems. Natarajan et al. used inverse
reinforcement learning to develop a centralized controller
that coordinates multiple traffic lights [37]. Song et al. used
inverse reinforcement learning to design policies in general
Markov games [38].

In swarm robotics, Šošic et al. used inverse reinforcement
learning to learn swarm policies from trajectories obtained
from simulations of two particle models [39]. The results
show that the swarm was able to replicate the behavior of
both particle models. However, the design process required
the complete behavior to be already pre-implemented so as
to serve as a demonstration.

Besides inverse reinforcement learning, other approaches
have been adopted in swarm robotics to learn collective
behaviors from demonstrations. Li et al. proposed Turing
learning, a method that enables robots to imitate the behavior
of other pre-programmed robots, without the need to man-
ually specify the set of features that describe the desired
behavior [40]. However, the approach assumes that an im-
plementation of the desired behavior exists and can be used
to generate demonstrations. Alharthi et al. extracted swarm
behaviors from video demonstrations and used evolutionary
algorithms to synthesize control software in the form of
behavior trees [41]. Also in this case, the approach requires
that an implementation of the desired behavior exists.

III. APPRENTICESHIP LEARNING

Reinforcement learning problems are commonly modelled as
a Markov decision process M “ pS,A, T, γ,Rq [42]. A re-
inforcement learning algorithm learns a policy π : S Ñ A
that maximizes the expected sum of discounted rewards:
Es0rV π

M ps0qs “ Es0r
ř

t γ
tRpstq|πs, with s0, . . . , st P S.

In inverse reinforcement learning, the reward function R is
not provided. Instead, demonstrations of the desired behavior
are given in the form of sequences of states. It is assumed
that a “true” reward function R˚ exists and it is such that
the policy π˚ that maximizes the value function based on
R˚ would generate the given demonstrations.

In apprenticeship learning [35], it is furthermore assumed
that there exists some mapping ϕ : S Ñ r0, 1sk that maps the
states of the system to a k-dimensional vector of features.
The “true” reward function R˚ is assumed to be a linear com-
bination of the features: R˚psq “ w˚ ¨ϕpsq, where w˚ P Rk

and s P S. For every policy π, a feature expectation can be
defined as µpπq “ Es0r

ř

t γ
tϕpstq|πs P Rk. It follows that,

for R˚, Es0rV π
M ps0qs “ w˚ ¨ µpπq. When the expectation

cannot be computed formally, it can be replaced by an
empirical estimate µ̂pπq computed on the basis of sampled
trajectories. With µE , we indicate the feature expectation of
the provided demonstrations.

Algorithm 1 shows the pseudo-code of the apprenticeship
learning algorithm. Given the mapping ϕ and the feature ex-
pectation µE of the demonstrations, the algorithm iteratively
refines the vector of weights w, until the observed feature

Algorithm 1 Apprenticeship learning [35]

Given: ϕ, µE

Select a random initial policy π0

Compute µ0 :“ µpπ0q

repeat
Compute wi`1 by fitting a SVM on µE and all µi

Learn policy πi`1 on rewards Ri`1psq “ wi`1 ¨ ϕpsq

Compute µi`1 :“ µpπi`1q

until Stopping criterion met
return wi`1 as w˚

expectation µi approximates µE . At every iteration, a support
vector machine [43] is fitted on µE and all encountered µi.
Its coefficients are used as wi`1, the vector of weights that
defines the reward function. A new policy πi`1 is learned
on Ri`1psq “ wi`1 ¨ϕpsq and its feature expectation µi`1 is
added to the set of feature expectations used to fit the support
vector machine in the following iteration. The algorithm
stops when a stopping criterion is met—for example, after a
number of given iterations or when a criterion of similarity
between the demonstrated and generated behavior is met.

IV. DESIGNING ROBOT SWARMS BY
DEMONSTRATION

As shown in Section II, all demonstration-based methods
proposed in swarm robotics so far require that at least some
robots exist that can demonstrate the desired behavior. This
clearly prevents the existing approaches from being used to
generate new behaviors. It is our contention that this results
from the fact that, in the existing literature, demonstrations
have always been conceived as descriptions of how the robots
should behave. In this work, we consider demonstrations as
descriptions of what the swarm should accomplish. Specifi-
cally, we focus here on the class of missions in which what
the robots should accomplish is to position themselves in
the environment according to a desired distribution. In this
case, a demonstration is a desired final position. Although
this class of missions does not cover all possible missions
of interest in swarm robotics, it includes a large share of the
missions that have been studied in the literature [44], [45].

We propose Demo-Cho, an automatic design method
that combines apprenticeship learning (see Section III) with
Chocolate, a state-of-the-art automatic off-line design
method to generate control software for robot swarms [12],
[46]. Demo-Cho generates control software for the e-puck
robot, a two-wheeled robot [47], [48], extended by a Linux
extension board [49] and a range-and-bearing board [50]
(see Figure 1). Its sensors and actuators were formalized
through a reference model, namely RM1.1 [51]. According
to RM1.1, the robot is endowed with 8 proximity sensors
that can perceive obstacles and other robots, 8 light sensors
that can perceive a light source, 3 ground sensors that can
detect if the floor is white, black or gray, and a range-
and-bearing board that provides the number of neighbors
perceived and a vector pointing to their center of mass. The
robot is also endowed with two wheels whose velocity can be

Sensors
Promixity

Light
Ground

Range-and-bearing

Actuators
Wheels

Fig. 1: The e-puck robot and its reference model RM1.1.

independently controlled. We assume that the robots operate
in a bounded arena in which the floor is gray and some
regions might be white or black. Outside the arena, there is
a light source that is switched on in some missions and off
in others.

In Demo-Cho, the end user can provide demonstrations
of the desired final positions of the robots2. Demo-Cho
then uses the apprenticeship learning algorithm to compute
a candidate objective function and Chocolate to generate
control software based on a candidate objective function.
Demo-Cho stops after a fixed number of iterations.

Concerning the feature mapping ϕ, the features we adopted
to describe the final position of the robots are based on the
distance of each robot from relevant landmarks. Notably, we
consider two classes of landmarks: black or white regions
and the nearest peer of each robot. We scale distances to the
interval r0, 1s according to 10´2x{d where d is the arena’s
diameter and x is the distance to the landmark. Concerning
the distance from the regions, if the shortest straight path
between the robot and the region is obstructed by a wall,
the feature value is set to 0. It is worth noting that the set
of features is mission-dependent, as the number of black
and white regions possibly varies between missions. Yet, the
construction of this mapping is fully automatic and does not
require the intervention/analysis of a human expert. Because
all robots of the swarm are interchangeable, the features
form an unordered set. To cast them into a vector in a
meaningful way so that the apprenticeship learning algorithm
can operate on them, we sort them first by the landmark
and then in descending order. To give an example, in the
feature vector pϕl1,1, ϕl1,2, ..., ϕl1,n, ϕl2,1, ...q, ϕl1,1 is the
feature corresponding to the distance of the nearest robot to
landmark l1, ϕl1,2 is the one corresponding to the distance
of the second nearest robot to l1, etc.

2See the supplementary material at https://iridia.ulb.ac.be/
supp/IridiaSupp2022-003/

(a) HOMING (b) AAC

(c) SAC (d) CFA

Fig. 2: Missions and an example of a demonstration.

V. EXPERIMENTAL SETUP

A. Design methods

To appraise the performance of the control software gener-
ated by Demo-Cho, we present also the results obtained by
Chocolate and EvoStick. Chocolate designs control
software in the form of a probabilistic finite-state machine,
assembled from behavioral and conditional modules that are
hand-crafted once and for all in a mission-agnostic way [46].
EvoStick is an implementation of the classical neuro-
evolutionary approach and designs control software in the
form of a feed-forward artificial neural network [27]. No-
tably, both Chocolate and EvoStick require the actual
objective function, whereas Demo-Cho does not.

B. Missions

We assess Demo-Cho on four missions that were already
studied in the literature. For each of them, an objective
function is available because it was defined as part of their
specifications in the original works that introduced them. We
report the original objective functions here and we assume
that they are accurate representations of the desired collective
behaviors.

All mission take place in the same dodecagonal arena of
approximately 5m2. For all missions, the swarm size is fixed
to 20 robots.

In HOMING [12], the swarm must explore the arena and
aggregate in the home area represented by a circular black
region with radius of 30 cm (see Figure 2a). The original
objective function is FHoming “ NpT q, where Nptq is the
number of robots in the home area at time t and T “ 180 s
is the mission duration.

In AAC [46] (aggregation with ambient cues), the swarm
must aggregate as quickly as possible in a target area
represented by a circular black region with radius of 30 cm.
Additionally, the arena contains one white circular region

https://iridia.ulb.ac.be/supp/IridiaSupp2022-003/
https://iridia.ulb.ac.be/supp/IridiaSupp2022-003/

with radius of 30 cm and a light source is placed outside of
the arena (see Figure 2b). The original objective function is
FAAC “

řT
t“1 Nptq, where Nptq is the number of robots in

the target are at time t and T “ 180 s is the mission duration.
In SAC [52] (shelter with ambient cues), the swarm must

aggregate as quickly as possible in a shelter that can only
be accessed from one side. The shelter is indicated by a
white rectangular area of 25 cm by 15 cm and delimited by
three walls, leaving an opening only on one side. The floor
in the arena behind the opening of the shelter is black and
a light source is placed outside the arena, facing the open
side of the shelter (see Figure 2c). For technical reasons
regarding the encoding of the environment in the simulator,
the black region is composed by three contiguous rectangular
sub-regions, one behind the shelter and one on each of its
sides. The original objective function is FSAC “

řT
t“1 Nptq,

where Nptq is the number of robots in the shelter at time t
and T “ 180 s is the mission duration.

In CFA [46] (coverage with forbidden areas), the swarm
must spread through the arena while avoiding the forbidden
areas represented by three black circular regions with radii
of 30 cm (see Figure 2d). The original objective function is
ErdpT qs, the expected distance between a generic point in
the arena and the closest robot not on a forbidden area, at
the end of T, and T “ 180 s is the experiment duration. To
be consistent with the other missions in which the objective
function is to be maximized, we reformulate the objective
function as FCFA “ 250 ´ ErdpT qs where 250 is the
theoretical maximum value of ErdpT qs.

C. Protocol

For each mission, we provided five demonstrations of the
final position of the robot swarm to be used by Demo-Cho—
see the supplementary material2. We ran 10 independent
design processes for each of the three design methods under
analysis. All design methods adopt the same simulator:
ARGoS3 [53]. Demo-Cho was run for 50 iterations, each
iteration with a budget of 10 000 simulation runs per itera-
tion. Chocolate and EvoStick were run with a design
budget of 10 000 simulation runs and optimize the original
objective function. All in all, this grants Demo-Cho a budget
that is fifty times larger than the one of Chocolate and
EvoStick. The goal of this protocol is not to achieve a
fair comparison between the three design methods, which
could be a rather complex endeavour, see the discussion
in Section VII. Indeed, Chocolate and EvoStick have
the clear advantage of being fed with an objective function;
the larger budget allocated to Demo-Cho is intended to
compensate somehow for the fact that Demo-Cho has to
infer the objective function from the given demonstrations. In
this context, we felt that the primary concern was to provide
an appropriate budget to each automatic design process: the
one performed by Chocolate and EvoStick, and each of
the 50 ones performed within each execution of Demo-Cho.
Following our previous experience, we allocated to each
of these design processes a budget of 10 000 simulations.
Concerning the choice of the number of iterations to be

taken as a stopping criterion for Demo-Cho, as no previous
literature exist on this issue, we fixed this to a sufficiently
large number to make sure that the algorithm had time to
converge to a meaningful solution—see the discussion in
Section VI where we comment a posteriori on this choice,
in the light of the results obtained through the present study.

We assessed the resulting instances of control software
once in simulation and once in reality. In the experiments
with the robots, performance was measured automatically
using a tracking system [54]. We provide both a qualitative
and a quantitative assessment of the performance of the
swarms generated by the three methods under analysis. The
qualitative assessment is based on visual inspection of the
generated behaviors. The quantitative assessment is based
on the mission-specific objective function, the same one that
Chocolate and EvoStick optimize within the design
process. For a detailed discussion of this choice, we refer
the reader to Section VII.

We report the results in the form of notched boxplots.
In the boxplots, the upper and lower hinges correspond to
the first and third quartiles. The whiskers extend to the
largest value of the sample but no further than 1.5 times the
interquartile range from the hinge. Data beyond the whiskers
are outliers and are represented by points. We also report the
median of the sample, represented by a line in the box, and
a 95% confidence interval, represented by notches extending
from the median line. If the notches of two boxplots do not
overlap, we can conclude that the difference between the
medians of the two samples is statistically significant.

The source code, experiment files, and results of all
experiments are available as supplementary material2.

VI. EXPERIMENTAL RESULTS

Figure 3 shows the boxplots of the results obtained in
simulation and reality. The three design methods achieved
similar performance in simulation across the four missions,
despite the fact that Demo-Cho, contrary to Chocolate
and EvoStick, did not have access to the objective function
at design time. Visual inspection of the generated behaviors
in simulation shows that the behaviors generated by Demo-
Cho match the expectations that one might have on the
mission at hand: the robots behave in a meaningful way in
all four missions–see supplementary videos2. It has to be
noted that in the two missions AAC and SCA, the original
objective function does not evaluate only the final position—
i.e., the one illustrated by the demonstrations provided to
Demo-Cho—but is computed cumulatively over the whole
duration of an experimental run. Yet, the performance of
Demo-Cho was not worse than the one of Chocolate or
EvoStick.

The experiments allowed us to gain some insight on the
number of iterations need by Demo-Cho to converge to a
meaningful solution. All in all, the selected number of 50
iterations appears to be a reasonably appropriate choice—
see the supplementary material2. Typically, after the first 10
iterations, the behavior found already reproduces well the
given demonstrations. Further improvement can be observed

Ev
oS
ti
ck

Ch
oc
ol
at
e

Dem
o-C
ho

0

0.2

0.4

0.6

0.8

Homing

Ev
oS
ti
ck

Ch
oc
ol
at
e

Dem
o-C
ho

0

1

2

X104

sc
or

e
AAC

Ev
oS
ti
ck

Ch
oc
ol
at
e

Dem
o-C
ho

0

0.5

1

1.5

SAC

Ev
oS
ti
ck

Ch
oc
ol
at
e

Dem
o-C
ho

200

210

220

230
CFA

104
X

Fig. 3: Experimental results obtained in simulation (narrow white boxes) and reality (wide gray boxes).

(a) HOMING (b) AAC

(c) SAC (d) CFA

Fig. 4: The four missions in reality.

in the following iterations to then become rare after 40
iterations. Future work should be devoted to gain a deeper
insight in the issue by observing the development of the
improvement over an even larger number of iterations.

When assessed in reality, all three methods showed a drop
in performance—as it is often the case in the automatic
design of robot swarms [55]. In the missions HOMING, SAC,
and CFA the three design methods achieved similar per-
formance in reality. In AAC, Demo-Cho and Chocolate
achieved similar performance in reality and outperformed

H
om

in
g

0 5 10 15 20 25 30 35
Black region (0-19) Neighbor (20-39)

AA
C

0 5 10 15 20 25 30 35 40 45 50 55
White region (0-19) Black region (20-39) Neighbor (40-59)

SA
C

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
White region (0-19) Black regions (20-79) Neighbor (80-99)

C
FA

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
 Black regions (0-59) Neighbor (60-79)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−0.5 0.0 0.5 1.0 1.5

−0.5 0.0 0.5 1.0 1.5

Fig. 5: Heat maps of the average weight vectors learned by
Demo-Cho.

EvoStick. On the basis of these results, we can argue that
learning from demonstrations—as opposed to optimizing a
given objective function—does not appear to have any major
impact on the ability of a modular design method to cross
the reality gap.

Figure 5 shows the weights w learned by Demo-Cho,
averaged per mission. Some general observations can be
made for the four missions. For each group of features—
those relating to the same landmark—Demo-Cho tends to

put larger weights on the feature of lower value, that is those
corresponding to the robots that are the farthest from the
landmark. Indeed, minimizing the distance of the farthest
robots also guarantees that the distance of all robots is
minimized. When looking at the weights for the specific
missions, we can observe the following: In HOMING, the
distance to the black region was selected by Demo-Cho as
the most important feature. Albeit to a lesser extent, the
distance to the nearest neighbor was considered important
as well. Thus, the design process rewarded behaviors that
aggregate tightly in the home area. Also in AAC, Demo-
Cho selects the distance to the black region as the most
important feature. Unlike in HOMING, however, the distance
to the nearest neighbor was not considered important; neither
was the one to the white region. For this mission, the design
process rewarded behaviors that aggregate in the target area.
The tightness of the aggregation possibly resulted implicitly,
as all robots must fit in the target area. In SAC, the design
process selected two important features: the distance to the
white region and the one to the nearest peer. The selection
of these two features can be interpreted to describe an
aggregation behavior in the shelter. Curiously, unlike for
the other features, Demo-Cho assigned the highest weight
to the feature associated with the sixth farthest robot from
the white region, rather than the feature associated with the
farthest one. This might be explained by the fact that it is
unlikely that all the robots eventually reach the shelter and
five robots outside the shelter at the end of the experimental
run is a common outcome. Additionally, we observe three
features that Demo-Cho penalizes through the assignment of
a negative weight: the distance of the nearest robot to each
of the black regions. Maximizing the distance between the
nearest robot and a landmark guarantees that the distance
of all robots is maximized. In CFA, Demo-Cho selected
three groups of features as important: the distance to each of
the black regions. In this case, the weights were selected
to favor the presence of the robots nearby each of the
black regions: the highest weight is associated with the
feature corresponding to the distance of robot closest to
the landmark. Additionally, Demo-Cho slightly penalizes the
features corresponding to the distances from the landmark
of the fifth to eighth nearest robots. As a result, the design
process aimed to keep the robots close to the forbidden
areas without favoring an aggregation. Additionally, some
importance is placed on the features describing the inter-
robot distance: a slightly positive weight is associated to the
distance of nearest peers.

The interpretation for the weights is particularly straight-
forward for HOMING, AAC, and SAC, while it is less
intuitive for CFA. Indeed, in CFA, one could have expected
more emphasis on the inter-robot distance and the penal-
ization of the distance to the forbidden areas. Nonetheless,
excluding two outliers, the performance achieved by Demo-
Cho in this mission is satisfactory and the behavior of the
robots appears to be meaningful at visual inspection—see
supplementary videos2.

VII. CONCLUSIONS

In this work, we have presented Demo-Cho, an automatic
method for designing control software of robot swarms
that combines inverse reinforcement learning with auto-
matic modular design. Instead of optimizing an explicitly
defined objective function, Demo-Cho generates control
software based on provided demonstrations. In our experi-
ments, Demo-Cho was able to create satisfactory behaviors
to perform four missions that were previously studied in
the literature. Expressing a desired outcome in terms of
a mathematical function is unintuitive and requires the at-
tention of an expert. Specifying desired behaviors through
demonstrations is natural and intuitive and could allow even
end users without any technical expertise to specify their
desired behaviors.

In the experiments presented in this paper, we accept the
original assumption made by the proponents of the missions
that the objective function accurately specifies the desired
behavior. We therefore use this objective function for the
final assessment of the behaviors produced by Demo-Cho
on the basis of the given demonstrations. However, this way
of assessing performance is viable only for missions that
already have been specified via the definition of an objective
function. A general protocol to assess behaviors generated
from demonstrations could be defined on the basis of an
appropriate metric that measures the degree of similarity be-
tween the given demonstrations and the generated behavior.
Yet, the goal would not be to reproduce the demonstrations
but to generalize with respect to them. An appropriate
protocol could take take inspiration from the classical cross-
validation and leave-one-out procedures typically adopted in
machine learning.

A protocol should also be defined to compare in fair way
methods based on demonstrations with traditional ones that
optimize a given objective function. The latter clearly have
an advantage on the former, which have to infer an objective
function from the given examples. An appropriate protocol
should test also traditional methods on an objective function
other than the one they used at design time. For example,
two experts might define one objective function each. One
of these objective functions could be used by the traditional
methods in the design phase; and the other could be used to
test both traditional methods and demonstration-based ones.
This would put the two methods on the same foot for what
concerns the evaluation.

In the future, we will extend Demo-Cho to missions that
can be represented through the final position of elements
other than the robots—e.g., objects to be clustered, gathered,
spread in the environment. Additionally, we will investigate
the minimum number of demonstrations necessary to design
a desired behavior and more generally, the impact the number
of demonstrations and their diversity have on the quality of
the behaviors that can be obtained.

REFERENCES

[1] G. Beni, “From swarm intelligence to swarm robotics,” in SAB 2004,
ser. LNCS, E. Şahin and W. M. Spears, Eds., vol. 3342. Berlin,

Germany: Springer, 2005, pp. 1–9.
[2] E. Şahin, “Swarm robotics: from sources of inspiration to domains of

application,” in SAB 2004, ser. LNCS, E. Şahin and W. M. Spears,
Eds., vol. 3342. Berlin, Germany: Springer, 2005, pp. 10–20.

[3] M. Dorigo, M. Birattari, and M. Brambilla, “Swarm robotics,” Schol-
arpedia, vol. 9, no. 1, p. 1463, 2014.

[4] G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full,
N. Jacobstein, V. Kumar, M. McNutt, R. Merrifield, B. J. Nelson,
B. Scassellati, M. Taddeo, R. Taylor, M. Veloso, Z. L. Wang, and
R. Wood, “The grand challenges of Science Robotics,” Sci. Robot.,
vol. 3, no. 14, p. eaar7650, 2018.

[5] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-
assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198,
pp. 795–799, 2014.

[6] J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior
in a termite-inspired robot construction team,” Science, vol. 343, no.
6172, pp. 754–758, 2014.

[7] L. Garattoni and M. Birattari, “Autonomous task sequencing in a robot
swarm,” Sci. Robot., vol. 3, no. 20, p. eaat0430, 2018.

[8] I. Slavkov, D. Carrillo-Zapata, N. Carranza, X. Diego, F. Jansson,
J. Kaandorp, S. Hauert, and J. Sharpe, “Morphogenesis in robot
swarms,” Sci. Robot., vol. 3, no. 25, p. eaau9178, 2018.

[9] J. Yu, B. Wang, X. Du, Q. Wang, and L. Zhang, “Ultra-extensible
ribbon-like magnetic microswarm,” Nat. Commun., vol. 9, no. 1, p.
3260, 2018.

[10] S. Li, R. Batra, D. Brown, H.-D. Chang, N. Ranganathan, C. Hober-
man, D. Rus, and H. Lipson, “Particle robotics based on statistical
mechanics of loosely coupled components,” Nature, vol. 567, no. 7748,
pp. 361–365, 2019.

[11] H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen, L. Wang, L. Dong,
and Q. He, “Reconfigurable magnetic microrobot swarm: multimode
transformation, locomotion, and manipulation,” Sci. Robot., vol. 4,
no. 28, p. eaav8006, 2019.

[12] K. Hasselmann, A. Ligot, J. Ruddick, and M. Birattari, “Empirical
assessment and comparison of neuro-evolutionary methods for the
automatic off-line design of robot swarms,” Nat. Commun., vol. 12,
p. 4345, 2021.

[13] H. Hamann and H. Wörn, “A framework of space–time continuous
models for algorithm design in swarm robotics,” Swarm Intell., vol. 2,
no. 2–4, pp. 209–239, 2008.

[14] S. Kazadi, “Model independence in swarm robotics,” Int. J. Intell.
Comput. Cybern., vol. 2, no. 4, pp. 672–694, 2009.

[15] S. Berman, V. Kumar, and R. Nagpal, “Design of control policies for
spatially inhomogeneous robot swarms with application to commercial
pollination,” in ICRA 2011. Piscataway, NJ, USA: IEEE, 2011, pp.
378–385.

[16] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organizing
the aggregate: languages for spatial computing,” in Formal and Prac-
tical Aspects of Domain-Specific Languages: Recent Developments,
M. Marjan, Ed. Hershey, PA, USA: IGI Global, 2012, pp. 436–501.

[17] M. Brambilla, A. Brutschy, M. Dorigo, and M. Birattari, “Property-
driven design for swarm robotics: a design method based on prescrip-
tive modeling and model checking,” ACM Tran. Auton. Adap., vol. 9,
no. 4, pp. 17:1–17:28, 2014.

[18] A. Reina, G. Valentini, C. Fernández-Oto, M. Dorigo, and V. Trianni,
“A design pattern for decentralised decision making,” PLOS ONE,
vol. 10, no. 10, p. e0140950, 2015.

[19] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and R. Groß,
“Supervisory control theory applied to swarm robotics,” Swarm Intell.,
vol. 10, no. 1, pp. 65–97, 2016.

[20] C. Pinciroli and G. Beltrame, “Buzz: a programming language for
robot swarms,” IEEE Softw., vol. 33, no. 4, pp. 97–100, 2016.

[21] H. Hamann, Swarm robotics: a formal approach. Cham, Switzerland:
Springer, 2018.

[22] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intell., vol. 7, no. 1, pp. 1–41, 2013.

[23] M. Dorigo, G. Theraulaz, and V. Trianni, “Reflections on the future
of swarm robotics,” Sci. Robot., vol. 5, p. eabe4385, 2020.

[24] ——, “Swarm robotics: past, present, and future [point of view],” Proc.
IEEE, vol. 109, no. 7, pp. 1152–1165, 2021.

[25] G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and
S. Nolfi, “Self-organized coordinated motion in groups of physically
connected robots,” IEEE Trans. Syst. Man Cybern. B, vol. 37, no. 1,
pp. 224–239, 2007.

[26] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, “Self-organized
aggregation without computation,” Int. J. Robot. Res., vol. 33, no. 8,
pp. 1145–1161, 2014.

[27] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari,
“AutoMoDe: a novel approach to the automatic design of control
software for robot swarms,” Swarm Intell., vol. 8, no. 2, pp. 89–112,
2014.

[28] M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira,
and A. L. Christensen, “Evolution of collective behaviors for a real
swarm of aquatic surface robots,” PLOS ONE, vol. 11, no. 3, p.
e0151834, 2016.

[29] S. Jones, M. Studley, S. Hauert, and A. Winfield, “Evolving behaviour
trees for swarm robotics,” in DARS 13, ser. SPAR, R. Groß, A. Kolling,
S. Berman, E. Frazzoli, A. Martinoli, F. Matsuno, and M. Gauci, Eds.,
vol. 6. Cham, Switzerland: Springer, 2018, pp. 487–501.

[30] G. Francesca and M. Birattari, “Automatic design of robot swarms:
achievements and challenges,” Front. Robot. AI, vol. 3, no. 29, pp.
1–9, 2016.

[31] N. Bredeche, E. Haasdijk, and A. Prieto, “Embodied evolution in
collective robotics: a review,” Front. Robot. AI, vol. 5, p. 12, 2018.

[32] M. Birattari, A. Ligot, and K. Hasselmann, “Disentangling automatic
and semi-automatic approaches to the optimization-based design of
control software for robot swarms,” Nat. Mach. Intell., vol. 2, no. 9,
pp. 494–499, 2020.

[33] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: theory and application to reward shaping,” in ICML
1999, I. Bradko and S. Dzeroski, Eds. San Francisco, CA, USA:
Morgan Kaufmann Publishers, 1999, pp. 278–287.

[34] S. Russel, “Learning agents for uncertain environments (extended
abstract),” in COLT 1998, P. Bartlett and Y. Mansour, Eds. New
York, NY, USA: ACM, 1998, pp. 101–103.

[35] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in ICML 2004, C. Brodley, Ed. New York, NY,
USA: ACM, 2004, p. 1.

[36] S. Krishnan, A. Garg, R. Liaw, B. Thananjeyan, L. Miller, F. T.
Pokorny, and K. Goldberg, “SWIRL: a sequential windowed inverse
reinforcement learning algorithm for robot tasks with delayed re-
wards,” Int. J Robot. Res., vol. 38, no. 2–3, pp. 126–145, 2019.

[37] S. Natarajan, G. Kunapuli, K. Judah, P. Tadepalli, K. Kersting, and
J. Shavlik, “Multi-agent inverse reinforcement learning,” in Ninth Int.
Conf. Mach. Learn. Appl., S. Draghici, T. M. Khoshgoftaar, V. Palade,
W. Pedrycz, M. A. Wani, and X. Zhu, Eds. Los Alamitos, CA, USA:
IEEE Computer Society, 2010, pp. 395–400.

[38] J. Song, H. Ren, D. Sadigh, and S. Ermon, “Multi-agent generative
adversarial imitation learning,” in Adv. N.A. Inf. Process. Syst. 31: 32nd
Conf. N.A. Inf. Process. Syst. (NeurIPS 2018), S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.
Red Hook, NY, USA: Curran Associates, 2018, pp. 402–408.

[39] A. Šošić, W. R. Khuda Bukhsh, A. M. Zoubir, and H. Koeppl,
“Inverse reinforcement learning in swarm systems,” in AAMAS 2017.
Richland, SC, USA: International Foundation for Autonomous Agents
and Multiagent Systems (IFAAMAS), 2017, pp. 1413–1421.

[40] W. Li, M. Gauci, and R. Groß, “Turing learning: a metric-free
approach to inferring behavior and its application to swarms,” Swarm
Intell., vol. 10, pp. 211–243, 2016.

[41] K. Alharthi, Z. S. Abdallah, and S. Hauert, “Understandable controller
extraction from video observations of swarms,” https://arxiv.org/abs/
2209.01118, 2022.

[42] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: a survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[43] M. A. Hearst, S. T. Dumais, E. Osuna, J. C. Platt, and B. Schölkopf,
“Support vector machines,” IEEE Intell. Syst. App., vol. 13, no. 4, pp.
18–28, 1998.

[44] L. Garattoni and M. Birattari, “Swarm robotics,” in Wiley Encyclo-
pedia of Electrical and Electronics Engineering, J. G. Webster, Ed.
Hoboken, NJ, USA: John Wiley & Sons, 2016, pp. 1–19.

[45] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm
robotic behaviors and current applications,” Front. Robot. AI, vol. 7,
p. 36, 2020.

[46] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch,
G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F. Mas-
cia, V. Trianni, and M. Birattari, “AutoMoDe-Chocolate: automatic
design of control software for robot swarms,” Swarm Intell., vol. 9,
no. 2–3, pp. 125–152, 2015.

https://arxiv.org/abs/2209.01118
https://arxiv.org/abs/2209.01118

[47] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a robot designed for education in engineering,” in ROBOTICA
2009, P. Gonçalves, P. Torres, and C. Alves, Eds. Castelo Branco,
Portugal: Instituto Politécnico de Castelo Branco, 2009, pp. 59–65.

[48] L. Garattoni, G. Francesca, A. Brutschy, C. Pinciroli, and M. Birattari,
“Software infrastructure for e-puck (and TAM),” IRIDIA, Université
libre de Bruxelles, Brussels, Belgium, Tech. Rep. TR/IRIDIA/2015-
004, 2015.

[49] W. Liu and A. Winfield, “Open-hardware e-puck Linux extension
board for experimental swarm robotics research,” Microprocess. Mi-
crosyst. - Embed. Hardw. Des., vol. 35, pp. 60–67, 2011.

[50] Á. Gutiérrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-Huelin,
and L. Magdalena, “Open e-puck range & bearing miniaturized board
for local communication in swarm robotics,” in ICRA 2009, K. Kosuge,
Ed. Piscataway, NJ, USA: IEEE, 2009, pp. 3111–3116.

[51] K. Hasselmann, A. Ligot, G. Francesca, D. Garzón Ramos, M. Salman,
J. Kuckling, F. J. Mendiburu, and M. Birattari, “Reference models
for AutoMoDe,” IRIDIA, Université libre de Bruxelles, Brussels,
Belgium, Tech. Rep. TR/IRIDIA/2018-002, 2018.

[52] K. Hasselmann, A. Ligot, and M. Birattari, “Towards the automatic
design of automatic methods for the design of robot swarms,” IEEE
Trans. Evol. Comput., submitted for publication.

[53] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. A. Di Caro, F. Ducatelle, M. Birat-
tari, L. M. Gambardella, and M. Dorigo, “ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems,” Swarm Intell., vol. 6,
no. 4, pp. 271–295, 2012.

[54] G. Legarda Herranz, D. Garzón Ramos, J. Kuckling, M. Kegeleirs, and
M. Birattari, “Tycho: a robust, ROS-based tracking system for robot
swarms,” IRIDIA, Université libre de Bruxelles, Brussels, Belgium,
Tech. Rep. TR/IRIDIA/2022-009, 2022.

[55] A. Ligot and M. Birattari, “Simulation-only experiments to mimic the
effects of the reality gap in the automatic design of robot swarms,”
Swarm Intell., vol. 14, pp. 1–24, 2020.

	INTRODUCTION
	RELATED WORK
	APPRENTICESHIP LEARNING
	DESIGNING ROBOT SWARMS BY DEMONSTRATION
	EXPERIMENTAL SETUP
	Design methods
	Missions
	Protocol

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	References

