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Abstract
Automatic design is an appealing approach to realizing robot swarms. In this approach, a designer specifies
a mission that the swarm must perform, and an optimization algorithm searches for the control software
that enables the robots to perform the given mission. Traditionally, research in automatic design has focused
on missions specified by a single design criterion, adopting methods based on single-objective optimization
algorithms. In this study, we investigate whether existing methods can be adapted to address missions
specified by concurrent design criteria. We focus on the bi-criteria case. We conduct experiments with a
swarm of e-puck robots that must perform sequences of two missions: each mission in the sequence is an
independent design criterion that the automatic method must handle during the optimization process. We
consider modular and neuroevolutionary methods that aggregate concurrent criteria via the weighted sum,
hypervolume, or l2-norm. We compare their performance with that of Mandarina, an original automatic
modular design method. Mandarina integrates Iterated F-race as an optimization algorithm to conduct the
design process without aggregating the design criteria. Results from realistic simulations and demonstrations
with physical robots show that the best results are obtained with modular methods and when the design
criteria are not aggregated.

Keywords: Swarm robotics, automatic design, bi-criteria design, Iterated F-race, evolutionary robotics.

1 Introduction

A robot swarm [1, 2] is a self-organized group of robots that can collectively perform missions beyond the
capabilities of an individual robot. Researchers commonly design robot swarms by trial and error: the designer
manually produces and refines the control software of the individual robots until the desired collective behavior
emerges [3]. Although the manual approach has served to demonstrate the feasibility of a wide variety of
collective behaviors [4, 5], it is costly, time-consuming, and hardly guarantees that the swarm can accomplish
a given mission in a sufficiently satisfactory way [6, 7]. The problem is that no generally applicable method
exists to tell how to produce control software for individual robots so that a desired collective behavior is
obtained [4]. Optimization-based design is an alternative approach to address this design problem [8, 9]. In
this approach, the design problem is restated as an optimization problem: an optimization algorithm explores
a space of possible instances of control software for the individual robots, and selects the one that maximizes
the collective performance of the swarm—according to a mission-specific performance measure.

Common classifications of optimization-based design methods divide them into on-line and off-line methods,
and into semi-automatic and (fully) automatic methods [9]. In our research, we focus on the (fully) automatic
off-line design of robot swarms [10]. Automatic off-line methods produce the control software of the robots
before the swarm is deployed. Typically, the design process is conducted using simulations, and the control
software obtained is then ported to the robots. The main characteristic of automatic off-line methods is that
they produce control software without requiring human intervention during the design process. Recent advances
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in the automatic off-line design of robot swarms belong mainly to two approaches [8]: (i) neuroevolution [11–13];
and (ii) automatic modular design (AutoMoDe) [14, 15].

In optimization-based design, the performance measure is formally defined as part of the mission specifica-
tion. The literature provides various examples in which, given a particular mission, the performance measure
is formally defined as (i) a single function that measures the degree of success of the robots in the mission at
hand [14, 16–20] or (ii) multiple functions that indicate whether the robots attain a set of objectives and satisfy
a set of constraints [16–19, 21–32]. In the second case, the functions are ultimately concurrent design criteria
to be satisfied by the robot swarm. Researchers in optimization-based design rarely adopt multi-criteria opti-
mization methods to address problems with concurrent design criteria. The typical approach to address these
problems is to aggregate the criteria into a single performance measure and then apply single-criterion optimiza-
tion methods [30]. Previous studies in the automatic off-line design of robot swarms—both with neuroevolution
and AutoMoDe—have indirectly addressed missions with concurrent design criteria in this way [16–18]. We
believe that the current taxonomy of the possible approaches to optimization-based design [9] should be ex-
tended further to include the single/multi-criteria dichotomy. Indeed, on-line and off-line methods, as well as
semi-automatic and automatic ones, face the challenge of enabling the design of robot swarms that comply with
concurrent requirements specified by a designer.

The notion of multi-criteria design builds upon multi-criteria decision making—that is, the problem of
selecting an alternative on the basis of a preference relationship [33]. Multi-criteria decision making is relevant
to many different domains [34] and is commonly addressed from the perspective of single-objective and multi-
objective optimization. For a classical introduction to multi-criteria decision making, see Fishburn [33]; and
for a relatively recent survey on evolutionary algorithms for multi-objective optimization, see Emmerich and
Deutz [35]. In single-objective approaches, the decision criteria are aggregated (e.g., by means of scalarization)
into a single objective function and the space of the alternatives is totally ordered. On the other hand, multi-
objective approaches do not aggregate the decision criteria, and as a result, the space of the alternatives is only
partially ordered—the notion of optimal solution is replaced by the one of set of non-dominated solutions, the
Pareto set. The application of these notions to the automatic design of robot swarms is rare [30].

In this paper, we contribute to the automatic generation of control software for robot swarms by introducing
AutoMoDe-Mandarina: a modular method for the automatic design of collective behaviors for robot swarms.
Given a mission specification with concurrent design criteria and a space of possible instances of control software,
Mandarina searches for an instance that maximizes the performance of the swarm in the given mission. More
precisely, it aims at finding a neutral compromise solution where all design criteria are satisfied to their best.
We build Mandarina on the basis of TuttiFrutti [17], a single-criterion design method developed for the
e-puck robot. Like other AutoMoDe methods [14, 16–19, 36, 37], Mandarina integrates Iterated F-race—an
algorithm originally conceived in the framework of single-criterion optimization. Mandarina and TuttiFrutti

differ only in the configuration of Iterated F-race—other characteristics, such as the control software they can
produce and their target robot, are the same. Notably, they both produce probabilistic finite-state machines
for e-pucks that interact with each other and with the environment by displaying and reacting to color signals.
In the past, Iterated F-race [38–40] was successfully applied to the automatic off-line design of robot swarms in
single-criterion design problems [14, 16–20, 36, 37, 41]. With Mandarina, we show that Iterated F-race is also
suitable for designing robot swarms in problems with concurrent design criteria.

Mandarina exploits some originally unintended properties of Iterated F-race to handle more than one design
criterion at a time. More precisely, it exploits its non-parametric nature and the fact that it operates on
ranks. These properties were originally intended for handling problems with large scale variations and complex
distributions of the objective functions. We noticed that they turn out to be appropriate and natural for
handling concurrent design criteria in a multi-criteria optimization setup. Thanks to these properties, Manda-

rina allows for an automatic design process that does not require aggregating the design criteria into a single
objective function. We limit the current study to demonstrating these properties in a bi-criteria problem, but
we expect the methodology to be applicable to design problems with additional criteria. We contend that this
is a design process that aligns better with the tenets of the automatic off-line design of robot swarms [10]: (i) an
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automatic method can address a whole class of missions without undergoing any modification; and, (ii) once
a mission is specified, no human intervention is allowed for in any phase of the design process. On the other
hand, manually aggregating criteria unavoidably prevents practicing these tenets. Aggregating criteria requires
mission-specific human intervention and the injection of domain knowledge. In the typical case, the designer
is required to estimate/measure the range of scores spanned by each design criterion. Under this condition,
mission-specific experimentation is necessary to understand the nature of the design criteria and to produce
and refine an appropriate objective function. A method that requires aggregating design criteria via prior
experimentation or expert knowledge belongs mostly to the semi-automatic approach [9]. Conversely, the fact
that Mandarina operates without aggregating criteria makes the method a fully automatic one.

2 Related Work

Trianni and López-Ibáñez [30] described how designers often encode concurrent mission-specific and mission-
generic design criteria into single objective functions—see also Doncieux and Mouret [42]. Mission-specific
criteria are meant to express preferences on the desired outcome of the mission and/or on the behavior of
the robots—for example, the number of objects collected in foraging [14, 21, 22] or the time needed by the
robots to aggregate [16, 32]. On the other hand, mission-generic criteria are independent of the mission and
are meant to express preferences on the design process itself—for example, the diversity and/or complexity of
the control software that is produced [21, 22, 31] or the financial cost of realizing a certain robot swarm [36].
Many studies [16–18, 21–32, 43–45] indirectly consider the optimization-based design of robot swarms under
concurrent design criteria. However, although these studies frame multi-criteria design problems, their focus
is not on investigating multi-objective optimization approaches to address them. The formulation of a multi-
criteria problem is often only a convenient tool that favors the materialization of a desired collective behavior.

Little research has been devoted to formally studying the advantages and limitations of addressing multi-
criteria design with multi-objective optimization methods [30, 46]. Trianni and López-Ibáñez [30] made a
significant contribution to these ideas. They used simulations and neuroevolution to produce the control soft-
ware for robot swarms on two missions: collective motion and an abstraction of the collaborative stick-pulling
experiment [47]. In each mission, the performance was measured with respect to two objective functions—i.e.,
the design criteria. The study compared a weighted sum approach [48] with a multi-objective approach based
on the estimation of the Pareto set. In the weighted sum approach, the design criteria were mapped into terms
that were subsequently aggregated into a single objective function. The authors explored various combinations
of the weights associated with each term. In the multi-objective approach, the design criteria were mapped into
terms that were used independently to compute the hypervolume [49]—i.e, the size of the design space that is
dominated by the solutions obtained. In the two cases, the result of the design process was a set of solutions
from which to manually select a desired one with respect to a performance preference.

Trianni and López-Ibáñez concluded that a weighted sum is appropriate when the designer is able to properly
set the weights. Indeed, setting properly the weights could be possible in some cases due to the existence of
prior knowledge or as a result of a trial-and-error process—for example, by testing various combinations of
weights. The authors also concluded that a multi-objective method is more suitable when prior knowledge is
not available or when it is not even possible to find a suitable combination of weights. For example, this is
the case of criteria that vary in different proportion to each other and result in non-comparable or non-linearly
related scales. The literature shows that the common approach to multi-criteria design remains the mapping
of mission-specific and mission-generic design preferences into components of a single objective function—i.e.,
linear scalarization or weighted sum. That is, the common design methods require casting the multi-criteria
design problem into a single-objective optimization one. This is the approach adopted in a large share of studies
that belong in semi-automatic design and/or neuroevolution [21–30] and, more recently, those that belong in
automatic modular design [16–19].

In most studies that focus on neuroevolution [21–23, 25–29], the authors do not describe the steps they
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followed to conceive the objective function of the multi-criteria design problem that is considered. An example
of this is the recurrent use of functions that combine a mission-specific objective with a second term that
penalizes collisions [26–28]. Authors rarely state whether the objective function is (i) the formal specification
of the mission in mathematical terms or it is rather (ii) a function engineered on the basis of prior/domain
knowledge to guide the optimization process towards a desired solution. In studies focusing on modular design,
recent work considered missions that were specified as multi-criteria problems more explicitly by defining a set
of sub-missions to be achieved [16–19]. In these missions, the overall performance of the swarm is measured
by a weighted sum of its performance in two sub-missions—which are executed either simultaneously [16] or
sequentially [17–19]. For example, Hasselmann and Birattari [18] studied the design of a robot swarm that must
change its behavior after finding a given marker in its environment. Initially, the robots must keep a steady
motion; after a robot finds the marker, all robots must stop in place. In this mission, the two sub-missions
must be performed sequentially and the overall performance of the swarm is measured by a weighted sum of its
performance on the two.

In recent years, the family of modular methods AutoMoDe have been used to investigate various aspects of
the automatic design of robot swarms [15]: optimization algorithms [14, 16, 50], software architectures [19, 37],
robot capabilities [17–19, 36, 51], the robustness of the methods to the reality gap [16, 41, 52], and the efficiency
of the design process itself [53]. Iterated F-race is the main optimization algorithm adopted in these studies.
In this paper, we use Iterated F-race to automatically design robot swarms without aggregating concurrent
design criteria into a single performance measure. In our study, we extend the experimental setup devised by
Trianni and López-Ibáñez: (i) we compare various design approaches—Mandarina, and methods that rely on
aggregating design criteria via a weighted sum, hypervolume, or l2-norm,; (ii) we evaluate the design methods on
a larger set of missions, whose specifications define varied design criteria; (iii) we consider design methods based
on the modular and the neuroevolutionary approaches; (iv) we provide demonstrations with physical robots.

3 AutoMoDe-Mandarina

Mandarina generates control software by fine-tuning and assembling predefined software modules into probabilis-
tic finite-state machines. In the following, we describe the robot platform for which Mandarina designs control
software, the software modules it can combine, and how it integrates Iterated F-race to address concurrent
design criteria.

3.1 Robot platform

Mandarina produces control software for an extended version of the e-puck robot [54, 55]—see Figure 1. The
e-puck is a two-wheel differential-drive robot largely used in swarm robotics research [56]. In Mandarina,
we consider a version of the e-puck whose functional capabilities are formally defined by the reference model
RM 3 [57]. A reference model [14] is a formal specification of the robot platform for which a design method
can produce control software. In practice, the reference model defines the inputs and outputs of the control
architecture and associates them with the hardware of the robot. The reference model RM 3 was originally
introduced with TuttiFrutti [17], and we adopted it in Mandarina without any modification.

RM 3 describes an e-puck endowed with: 8 proximity sensors (proxi) that can detect nearby obstacles; 3
ground sensors (gndj) that differentiate between gray, black, and white floor; a range-and-bearing board [58]
that estimates the number of neighboring peers (n) and their relative aggregate position (Vn); an omnidirectional
vision turret that can perceive color signals emitted by neighboring objects and/or robots (camc), and estimates
their relative aggregate direction (Vc); RGB LEDs to emit color signals; and left and right wheels (vk), whose
velocity can be set independently. Table 1 defines the possible input and output values of the reference model
RM 3. For a further description of the reference model RM 3, see [17, 57].
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Figure 1: The e-puck robot. The picture shows an e-puck robot and the set of sensors and actuators we consider
in our experiments. The picture also shows the modular RGB blocks we use to build the experimental arena
for the robots.

Table 1: Reference model RM 3 [17, 57]. Robots can perceive: red (R), green (G), blue (B), cyan (C),
magenta (M), and yellow (Y ). Robots can display no color (∅), cyan (C), magenta (M), and yellow (Y ).

Input Value Description
proxi∈{1,...,8} [0, 1] reading of proximity sensor i

gndj∈{1,...,3} {black, gray, white} reading of ground sensor j

n {0, . . . , 20} number of neighboring robots detected
Vn ([0.5, 20]; [0, 2] π rad) their relative aggregate position
camc∈{R,G,B,C,M,Y } {yes, no} colors perceived
Vc∈{R,G,B,C,M,Y } (1.0; [0, 2] π rad) their relative aggregate direction
Output Value Description
vk∈{l,r} [−0.12, 0.12] m/s target linear wheel velocity
LEDs {∅, C, M, Y } color displayed by the LEDs
Period of the control cycle: 0.1 s.

3.2 Set of pre-defined software modules

Mandarina operates on a set of 13 parametric software modules that were originally conceived for TuttiFru-

tti [17]. These modules allow a robot to interact with its peers and with objects in the environment by
perceiving and displaying color signals—according to the reference model RM 3. The set of modules comprises
6 low-level behaviors—the actions that a robot can execute, and 7 transition conditions—the events that trigger
the transition between low-level behaviors. Mandarina combines low-level behaviors and transition conditions
to generate the control software of the robots. Table 2 lists the set of modules on which Mandarina operates.

The six low-level behaviors are exploration, stop, attraction, repulsion, color-detection, and
color-elusion. In exploration, the robot moves according to a ballistic motion and avoids obstacles by
rotating on itself for a number of control cycles that is defined by the parameter τ . stop sets the robot to a
standstill behavior. attraction and repulsion are physics-based behaviors that drive the robot according to
artificial forces that originate at the position of neighboring peers. In both cases, the magnitude of the force is
determined by the parameter α. If no other robot is perceived, the robot moves ballistically. color-detection
and color-elusion steadily drive the robot respectivelly toward or away from peers and objects that display
a color δ ∈ {R, G, B, C, M, Y }. If no color is perceived—that is, if δ = ∅—the robot moves ballistically.
exploration, attraction, repulsion, color-detection, and color-elusion embed a physics-based [59]
obstacle avoidance behavior. In all low-level behaviors, the robot can set its LEDs to display γ ∈ {∅, C, M, Y }.
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Table 2: Set of Mandarina’s modules. Mandarina operates on the same modules that were originally conceived
for TuttiFrutti [17]. The modules are defined on the basis of reference model RM 3, see Table 1.

Low-level behavior * Parameters Description
exploration {τ, γ} movement by random walk
stop {γ} standstill state
attraction {α, γ} physics-based attraction to neighboring robots
repulsion {α, γ} physics-based repulsion from neighboring robots
color-following {δ, γ} steady movement towards robots/objects of color δ
color-elusion {δ, γ} steady movement away from robots/objects of color δ

Transition condition Parameters Description
black-floor {β} black floor beneath the robot
gray-floor {β} gray floor beneath the robot
white-floor {β} white floor beneath the robot
neighbor-count {ξ, η} number of neighboring robots greater than ξ
inverted-neighbor-count {ξ, η} number of neighboring robots less than ξ
fixed-probability {β} transition with a fixed probability
color-detection {δ, β} robots/objects of color δ perceived
* All low-level behaviors display a color γ ∈ {∅, C, M, Y } alongside the action described.

The seven transition conditions are black-floor, gray-floor, white-floor, neighbor-count, in-
verted-neighbor-count, fixed-probability, and color-detection. In black-floor, gray-floor,
white-floor, the robot transitions between low-level behaviors with a probability β if it steps into regions with
black, gray, and white floor, respectively. neighbor-count and inverted-neighbor-count are transitions
that are respectively triggered when the robot perceives a number of neighboring peers that is greater or
less than η. fixed-probability is triggered with probability β. In color-detection, the robot switches
between low-level behaviors with probability β if it perceives another robot or an object that displays a color
δ ∈ {R, G, B, C, M, Y }.

The parameters of the software modules are automatically tuned during the design process. For a detailed
description of the implementation of the software modules, we refer the reader to the original work in which
TuttiFrutti was introduced [17]. Figure 2 shows a simplified illustration of Mandarina’s software modules
assembled into a probabilistic finite-state machine and the resulting behavior on an e-puck.

3.3 Bi-criteria design process

In Mandarina, the bi-criteria design process is cast into an optimization problem that is addressed with Iterated
F-race [38, 39]. We use the implementation of Iterated F-race provided by the irace package [60] version 2.2.
Iterated F-race maximizes the performance of the robot swarm with respect to a set of mission-specific metrics:
the objective functions associated to the design criteria. Starting from the specifications of a mission, Iterated
F-race selects software modules, fine-tunes its parameters, and combines them into probabilistic finite-state
machines—the control software of the robots. The finite-state machines that Mandarina produces can have
up to four states—i.e., low-level behaviors, and up to four outgoing transitions for each state—i.e., transition
conditions. A transition condition will always originate and end in different states.

During the design process, Iterated F-race searches the design space looking for probabilistic finite-state
machines that perform well in the mission at hand. Each finite-state machine is assessed with simulations
executed in ARGoS3 [61], a multi-robot simulator specialized in robot swarms. We use ARGoS3 version beta
48, together with the argos3-epuck plugin [55]. Before starting the optimization process, Iterated F-race is
given a maximum number of simulations to find a candidate solution (i.e., a finite-state machine to address the
mission). The maximum number of simulations determines the duration of the optimization process. When
Iterated F-race exhausts the maximum number of simulations, the optimization process ends and Mandarina

returns the best candidate solution found so far. The control software produced by Mandarina is then deployed
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Figure 2: Simplified illustration of Mandarina’s software modules assembled into a probabilistic finite-state
machine (PFSM) and the resulting behavior on an e-puck. 1.) The finite-state machine starts with the behavior
exploration (Exp), which in this case sets the e-puck’s LEDs to display yellow while the robot moves randomly
in the arena. 2.) The e-puck detects a robot on its left and turns right to avoid a collision. 3.) When the e-puck
detects a region with a black floor, the transition black-floor (BF) is activated, and the e-puck switches to
the behavior color-elusion (CE). 4.) The e-puck executes color-elusion (CE), driving the robot away from
the blue walls and changing its LEDs to display magenta. 5.) The e-puck detects that other robots are displaying
cyan with their LEDs, activating the transition color-detection (CD) and switching to the behavior color-
following (CF). 6.) The e-puck executes color-following (CF), moving toward other robots displaying
cyan and changing its own LEDs to cyan as well. 7.) The e-puck detects two neighboring robots within its
perception range, activating the transition neighbor-count (NC) and switching back to exploration (CE).
8.) The finite-state machine continues to operate until the mission ends. For more information on the modules
and their parameters, see Table 2.
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to the robots without further modification.
Mandarina operates with a design process similar to that conceived by Francesca et al. [16] for Chocolate,

which is also used in TuttiFrutti. The main difference is that, as mentioned in the introduction, Mandarina

uses Iterated F-race to address missions whose specifications define multiple objective functions to be optimized.
In this paper, we focus on the bi-objective case: missions are characterized by two objective functions. To
achieve this, we did not need to modify Iterated F-race. We simply set it up in a way that differs from previous
implementations of AutoMoDe. In Chocolate and TuttiFrutti, as in the other existing implementations of
AutoMoDe, Iterated F-race evaluates candidate solutions with respect to the single objective function that
characterizes the mission at hand. In Mandarina, we set up Iterated F-race so as to evaluate each candidate
solution on the two objective functions defined in the mission specification.

Figure 3 illustrates the operation of Iterated F-race, the original optimization algorithm as used in Choc-

olate and TuttiFrutti, and the optimization algorithm as used in Mandarina. Iterated F-race operates in
three main steps [40]: (i) sampling candidate instances of control software according to a particular distribution;
(ii) selecting the best instance(s) from the newly sampled ones by racing; and (iii) updating and refining the
sampling distribution in order to bias the sampling towards the best instance(s) found. In each race, Iterated
F-race iteratively evaluates candidate finite-state machines on a number of problem instances. Each problem
instance is a specific realization of the mission at hand—for example, a specific realization of initial conditions
such as position/heading of the robots. While in Chocolate and TuttiFrutti, which address single-objective
problems, the evaluation of a candidate solution on a problem instance produces a single number (the score in
the mission); in Mandarina, it produces two numbers: the corresponding scores of the two objective functions.

Iterated F-race uses statistical tests—i.e., Friedman tests [62]—to discard candidate solutions that signif-
icantly perform worse than at least one other candidate solution. The candidate solutions are selected with
respect to the average rank of their observed performance and not with respect to the numerical values. In
Mandarina, Iterated F-race conducts the statistical tests on the two scores that are returned, and discards can-
didate solutions that significantly perform worse than at least one other candidate solution in the two of them.
Eliminating candidate instances of control software under concurrent design criteria is only possible because
Iterated F-race operates on the ranks, and not on the score obtained from the objective functions. It is not
always possible to directly compare the score of an instance of control software across two objective functions.
However, it is indeed possible to compare the average rank of its observed performance across them.

A popular approach to tackle multi-objective optimization problems is to first identify a set of solutions that
represent various performance compromises across the objectives—an approximation of the Pareto set. From
this set, an a posteriori decision-making process is applied to select a preferred solution with respect to the
observed performance—as in Trianni and Lopez-Ibañez [30]. Conversely, Mandarina returns a single solution:
the one that statistically does not perform worst than any other solution in the two design criteria. In other
words, it returns a solution that consistently proved to be a good performing neutral compromise among the
criteria considered.

From a practical point of view, the modifications we made to the design process originally conceived for
AutoMoDe methods are minor. Indeed, we made only very few technical adjustments in the way in which
Iterated F-race is typically used to evaluate each candidate control software with respect to two objective
functions. However, the conceptual implications of making these modifications in Mandarina are important.
Iterated F-race can address bi-criteria design problems if the objective functions to be optimized concurrently
are presented as independent problem instances to be considered during the optimization process. This property
was originally unintended in the conception of Iterated F-race. In this paper, we do not explore the extent to
which this property generalizes and/or whether Iterated F-race could address design problems that consider
more than two objective functions. However, we find reasonable to think that Iterated F-race could turn viable
to tackle the design of robot swarms with respect to more than two criteria—provided that they can be presented
as independent problem instances as well.
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Iterated F-Race Race algorithm
original version

Race algorithm
in Mandarina

Figure 3: Illustration of Iterated F-race, the original race algorithm, and of how it is used in Mandarina.
Iterated F-race conducts iterative races (Ri) in which candidate solutions (θj)—i.e., instances of the control
software being developed—are evaluated with respect to a number of problem instances (Ik). Each box is
the evaluation of one candidate solution on one problem instance. Dots (•) in a box represent the number
of objective functions evaluated. In the first race (R1), Iterated F-race uniformly samples the parameter
space to generate candidate solutions (θ{1,..,6}). In the subsequent races (R{2,..,n}), Iterated F-race refines and
updates the sampling distribution to bias the sampling towards the best instance(s) found so far. For example,
in R2, θ{7,..,8} and θ{9,..,10} result from biased sampling towards θ1 and θ2, respectively. The refinement of the
sampling process is illustrated by the color gradient of the boxes. The original race algorithm evaluates one
single objective function. In Mandarina, Iterated F-race evaluates two objective functions. In a race, candidate
solutions are discarded after conducting statistical tests: ’×’ indicates that no statistical test is performed; ’−’
indicates that the test discarded at least one candidate solution; and ’=’ indicates that the test did not discard
any candidate solution. Statistical tests are conducted only after sufficient statistical evidence is gathered on
the performance of the candidate solutions in an initial set of problem instances (I1,..,5). Mandarina requires
evaluating both objective functions on an instance Ik before conducting statistical tests to discard configurations.
As no configuration can be discarded based on just one of the two objective functions, no statistical test is needed
after evaluating only the first objective function of instance Ik.
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Figure 4: The experimental arena. The picture shows examples of the two possible states of the arena. On the
left, the RGB blocks of the walls display blue and all RGB blocks adjacent to a black patch are switched on,
displaying green. On the right, the RGB blocks of the walls display red and some RGB blocks adjacent to a
black patch have switched off, displaying no color. The robots are randomly positioned.

4 Experimental setup

We assess Mandarina on bi-criteria missions that are specified as bi-objective optimization problems. In the
absence of well-defined benchmarks, we devise a framework in which we combine instances of aggregation,
foraging, and coverage to create missions. The missions included in this framework draw inspiration from
missions used in previous automatic design studies [14, 16, 17, 30, 51, 52, 63]. Alongside Mandarina, we also
conduct experiments with baseline modular and neuroevolutionary design methods.

4.1 Mission framework

We experiment with a swarm of twenty e-puck robots that must perform missions composed of two sequential
parts. Each part is a sub-mission to be accomplished and is evaluated by an independent objective function, a
design criterion. The mission framework comprises a set of fifteen missions, which result from combining the
six sub-missions into sets of two:

(6
2
)

= 15. In these missions, the swarm must perform one sub-mission for a
given amount of time, then switch its behavior to perform the second one for the same amount of time.

The robots operate in an octagonal arena of 2.75 m2 surrounded by RGB blocks [64]—see Figure 4. The
robots are randomly positioned at the beginning of each experimental run. The RGB blocks are arranged in
walls and each of them can possibly display a different color. The floor of the arena is gray with nine square
patches, each measuring 25 cm on each side. One of the patches is white, and the other eight are black. In
every mission, RGB blocks adjacent to black patches initially turn green, and afterward, they will randomly
switch off with uniform probability. The remaining RGB blocks turn red or blue to inform the robots about the
sub-mission to be executed. Typically, in automatic design studies, the arena is modified on a per-mission basis
to allow for varying mission specifications [14, 16, 17, 51, 52, 63]. Here, we specify a diverse set of bi-criteria
missions (and their sub-missions) in a single experimental arena by changing the color of the RGB blocks at
run-time.

4.1.1 Sub-missions

We consider a set of six sub-missions (S{1, · · · , 6}), which can be performed by e-pucks that comply with the
reference model RM 3. These sub-missions are a sample of the class of missions that can be addressed with Man-

darina and other methods that adopt the same reference model. Each sub-mission is specified by a description
of a task to be executed and a corresponding objective function.

Sub-mission 1 (S1): the robots must occupy the black patches whose adjacent RGB blocks display green.
The swarm is given 1 point for every 100 cumulative timesteps that the robots spend on each suitable patch.
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For example, a single robot in a patch will be given one point after 100 timesteps, but 10 robots in a patch will
be given 1 point after 10 timesteps. The score of the swarm is the number of points it obtains in the allotted
time:

fS1 =
T ′∑

t=1

H∑
i=1

Ii(t), (1)

which must be maximized. H is the number of patches and T ′ the time available to the robots to perform the
sub-mission. The indicator Ii(t) is defined as:

Ii(t) =
{

1, if at time t the robots accumulate 100 timesteps in the patch i;
0, otherwise.

Sub-mission S1 is inspired by aggregation missions in which the robots must gather at an indicated place [14,
16, 51].

Sub-mission 2 (S2): the robots must iteratively travel from any black patch to the white one. The swarm
is given 1 point every time a robot completes a trip. The score of the swarm is the number of points it obtains
in the allotted time:

fS2 = IT ′ , (2)

which must be maximized. IT ′ is the number of trips executed in the time T ′ available to the robots to perform
the sub-mission. Sub-mission S2 is inspired by foraging missions in which the robots must travel between two
locations: a food source and a nest [14, 17].

Sub-mission 3 (S3): the robots must occupy the black patches adjacent to RGB blocks that are switched
off. The swarm is given one point if at least two robots spend 50 timesteps in the corresponding black patch.
The count of timesteps starts as soon as the two robots step into the patch, and it will continue as long as they
both remain on it. The count is not affected if more than two robots occupy the patch. The score of the swarm
is the number of points it obtains in the allotted time:

fS3 =
T ′∑

t=1

H∑
i=1

Ii(t), (3)

which must be maximized. H represents the number of patches and T ′ the time available to the robots to
perform the sub-mission. The indicator Ii(t) is defined as:

Ii(t) =
{

1, if at time t two robots accumulate 50 timesteps in the patch i; ;
0, otherwise.

Sub-mission S3 is inspired by strictly cooperative missions in which the robots must jointly perform a single
task [30, 47].

Sub-mission 4 (S4): the robots must iteratively enter and leave the white patch. The swarm is awarded 1
point every time a robot performs these two actions. The score of the swarm is the number of points it obtains
in the allotted time:

fS4 = IT ′ , (4)

which must be maximized. IT ′ is the number of times a robot entered and left the white patch in the time T ′

that is available to the robots to perform the sub-mission. Also sub-mission S4 is inspired by foraging missions,
as sub-mission S2, but here, the robots start and end at a single location.

Sub-mission 5 (S5): the robots must disperse and cover the arena. We consider the coverage to be the
most effective when the minimum distance between any two pair of robots is maximized. The score of the
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swarm is the cumulative sum of the minimum inter-robot distance, over time:

fS5 =
T ′∑

t=1
min

(
dij(t)

)
, (5)

which must be maximized. Here, dij is the minimum distance between any pair of robots (i, j) at time t, and
T ′ is the time available to the robots to perform the sub-mission. Sub-mission S5 is inspired by dispersion and
coverage missions in which the robots must maintain a fixed inter-robot distance to achieve a specific spatial
distribution [16, 52, 63].

Sub-mission 6 (S6): the robots must remain within a 25 cm distance from the walls of the arena, without
entering the black patches. The score of the swarm is the aggregate time that the robots spend in the suitable
areas:

fS6 =
T ′∑

t=1

N∑
i=1

Ii(t) , (6)

which must be maximized. N is the number of robots and T ′ is the time available to the robots to perform the
sub-mission. The indicator Ii(t) is defined as:

Ii(t) =
{

1, if the robot i is in gray floor and in a 25 cm distance from a wall at time t;
0, otherwise.

Sub-mission S6 is inspired by missions in which the robots must display a specific spatial distribution, like
sub-mission S5 [16, 51, 63]. However, the robots here must maintain a specific distance from an element in their
environment, irrespective of the distance to their peers.

We selected the sub-missions S{1, · · · , 6} because they pose specific challenges to a multi-objective optimization
process. First, the performance of candidate solutions is stochastic and depends on the robots’ initial positions
(e.g., in S5 and S6) and on the way the RGB blocks turn off (e.g., in S1 and S3). Second, estimating realistic
bounds for the objective functions is not straightforward without conducting preliminary experiments (e.g., in
S2 and S4). Indeed, it is challenging to anticipate to what degree the interactions between the robots will hinder
a candidate solution from reaching a theoretical upper performance bound. Third, the objective functions can
take discrete or continuous variables (e.g., in S4 and S5), and their range can span over different orders of
magnitude (e.g., in S3 and S6). Finally, the objective functions can represent conflicting goals (e.g., in S1 and
S3).

4.1.2 Specification of bi-criteria missions

We define the set M of bi-criteria missions (mSp.Sq) by pairing sub-missions (Sp, Sq) in fifteen combinations—see
Table 3. In all cases, the robots must execute the two sub-missions, one after the other. The time T available to
the robots to execute a mission is 120 s. The time T ′ available to execute each sub-mission is 60 s. Accordingly,
the swarm’s performance in a mission is assessed for the initial 60 s with regard to one sub-mission and for the
remaining 60 s with regard to the other. The two scores are returned after each experimental run.

We expect the swarm to be able to perform a mission mSp.Sq regardless of the order of Sp and Sq. Therefore,
in our experiments, the order in which the sub-missions must be executed is randomly defined at the beginning
of the evaluation of the mission (i.e., for each problem instance). For example, the execution of mSp.Sq can result
uniformly in the sequence Sp→ Sq or Sq→ Sp. We anticipate that using a fixed predefined order of sub-missions
could lead to control software instances specialized for that specific order, making it likely to fail when the order
of Sp and Sq changes. On the contrary, our stochastic approach helps minimize the risk of biasing the design
process toward a specific order.

In every mission, we use a fixed color coding (blue and red) to characterize the associated sub-missions—see
Table 3. At every moment in time, the walls of the arena display blue or red to indicate the sub-mission to be
executed. For example, in a sequence Sq→ Sp, the walls will initially display the color blue, indicating that the
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Table 3: Set of missions (M). The missions are paired combinations (mSp.Sq) of the six sub-missions
(S{1, · · · , 6}). In each combination, the colors blue and red characterize the sub-missions Sp ( ) and Sq ( ).
In a mission (mSp.Sq), the sub-missions Sp and Sq must be executed in sequence, but the order of the sequence
(Sp ⇄ Sq) is randomly defined in every experimental run. Sp and Sq are executed during an equivalent
period of time. The execution of a mission mSp.Sq returns the score of the swarm with respect to Sp and Sq,
regardless the order of the sequence.

No. Mission Combination of sub-missions
1 mS1.S2 S1 ⇄ S2
2 mS1.S3 S1 ⇄ S3
3 mS1.S4 S1 ⇄ S4
4 mS1.S5 S1 ⇄ S5
5 mS1.S6 S1 ⇄ S6
6 mS2.S3 S2 ⇄ S3
7 mS2.S4 S2 ⇄ S4
8 mS2.S5 S2 ⇄ S5
9 mS2.S6 S2 ⇄ S6
10 mS3.S4 S3 ⇄ S4
11 mS3.S5 S3 ⇄ S5
12 mS3.S6 S3 ⇄ S6
13 mS4.S5 S4 ⇄ S5
14 mS4.S6 S4 ⇄ S6
15 mS5.S6 S5 ⇄ S6

swarm must execute the sub-mission Sq. After 60 seconds, the walls switch to red, indicating the end of Sq and
the start of the sub-mission Sp. The color of the walls is an environmental cue that the robots can perceive.
We anticipate that the design methods will design robot swarms that, although not pre-programmed to do so,
will rely on the color of the walls to transition between behaviors and accomplish the two sub-missions—as in
previous studies [17].

4.2 Baseline methods

We conduct experiments with three automatic design methods other than Mandarina: TuttiFrutti [17], which
belong in the modular approach, and EvoColor [17] and NEAT-Color, which belong in the neuroevolution-
ary one. Like Mandarina, these three methods produce control software for e-pucks defined by the reference
model RM 3, and are specialized in the design of collective behaviors for robots that can perceive and react to
color signals. However, unlike Mandarina, they do not naturally work with concurrent design criteria. Tutti-

Frutti, EvoColor, and NEAT-Color are limited to using a single score as an evaluation criterion during the
design process. We consider these methods as our baseline because, to address a bi-criteria design problem, they
need to aggregate the concurrent design criteria into a single performance measure—the standard approach in
the literature, see Section 2.

TuttiFrutti is identical to Mandarina in all aspects but in the way in which Iterated F-race is configured to
conduct the optimization process. In TuttiFrutti, Iterated F-race is used with its default configuration [60].
EvoColor is a straightforward neuroevolutionary method that produces control software in the form of a fully-
connected feed-forward artificial neural network. The input and output nodes are defined according to the
inputs and outputs defined by the reference model RM 3–see Table 1. EvoColor fine-tunes the synaptic weights
of the neural network via an evolutionary optimization process based on elitism and mutation. NEAT-Color

is a neuroevolutionary method in which the evolutionary process selects both the network topology and the
synaptic weights of the artificial neural network. NEAT-Color is based on NEAT—an algorithm introduced by
Stanley and Miikkulainen [65] and tested in the context of the automatic design of robot swarms by Hasselman
et al. [20]. We include NEAT-Color as a more sophisticated alternative method to EvoColor. The input and
output nodes in NEAT-Color are the same as for EvoColor. In NEAT-Color, the topology of the network is
initialized with a disconnected network. We conduct the design process using TuttiFrutti and EvoColor as
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originally introduced [17]. The parameters for conducting the design process with NEAT-Color are the ones
defined by Hasselmann et al. [20] for NEAT.

4.2.1 Aggregating design criteria into a single performance measure

We use TuttiFrutti, EvoColor, and NEAT-Color alongside unary metrics that aggregate the two scores into a
single measure. We consider the weighted sum (WS), the hypervolume (HV), and the l2-norm (L2). These unary
metrics provide the single performance value that TuttiFrutti, EvoColor, and NEAT-Color require to conduct
the design process.

Weighted sum (WS): we scalarize the two objective functions (fSp and fSq) of a mission (mSp.Sq) through
a weighted sum (fmSp.Sq

= (α).fSp + (1 − α).fSq) regulated by a parameter α ∈ [0, 1]. This metric can be used
alongside TuttiFrutti, EvoColor, and NEAT-Color, but it requires defining a suitable α value for the mission
before the design process begins. Given that we consider the absence of a performance range for fSp and fSq,
it is hardly possible to predefine such suitable α values in our experiments. Therefore, we conduct experiments
with a set of five α values in every mission (α ∈ {0.2, 0.4, 0.5, 0.6, 0.8})—likewise Trianni and Lopez Ibáñez [30].
These experiments yield a large set of instances of control software for each baseline method and mission, and
a subsequent decision-making process is necessary to select solutions from this set. We conduct this decision-
making process manually. After all experiments are completed, we evaluate the instances produced with the
five α values and we rank them according to their score. For each method, we identify the best, median, and
worst combination of α values for every mission. We then use this α values to assemble three sets of instances
of control software for each method: the best (B), median (M ), and worst (W ) instances produced. It should
be noted that this a posteriori manual selection process does not align with the tenets of a fully automatic
design process [10]. However, we include it in our study to provide an estimate of the best, median, and worst
performance one can expect when using a weighted sum in these missions.

Hypervolume (HV): the hypervolume quantifies the area in the objective space that a candidate solution
dominates. In our experiments, the sub-missions and their associated objective functions define the objective
space for each mission. To calculate the hypervolume, the objective space must be normalized using a reference
point, indicating the upper performance bounds of the two objective functions under consideration. However, in
our experiments, we cannot pre-establish this normalization due to the absence of a score range for fSp and fSq.
Iterated F-race has a way to address this problem: it dynamically computes these bounds for every problem
instance based on the observed scores of all candidate solutions on that specific instance. Therefore, in the
case of TuttiFrutti, the hypervolume can be computed using the implementation provided by the maintainers
of the irace software package [60], originally proposed by Fonseca et al. [66]. In the case of EvoColor and
NEAT-Color, there is no straightforward way to dynamically compute the performance bounds during the
evolutionary optimization process. Consequently, we do not apply the hypervolume to the neuroevolutionary
methods.

In our experiments, we use the hypervolume in a way that differs from the typical approach found in the
multi-objective optimization literature [67]. The hypervolume is often utilized to identify a set of solutions
with different performance trade-offs—i.e., an aproximation of the Pareto front—and then select a preferred
solution through an informed decision-making process. This was the approach followed by Trianni and Lopez
Ibáñez [30]. Conversely, we use the hypervolume in TuttiFrutti to find a single no-preference solution to the
design problem. TuttiFrutti will look for a solution that, on an individual basis, covers the largest area in
the objective space across all tested problem instances. We expect that an instance that maximizes its coverage
of the objective space will yield a neutral compromise solution, where the two sub-missions are performed at
their best. We consider this application of the hypervolume a fully automatic design method because it does
not require prior experimentation, or manual intervention and decision making after the design process.

l2-norm (L2): we compute the Euclidean distance in the objective space between a reference point and the
point defined by the two scores of a candidate solution. Like the hypervolume, TuttiFrutti utilizes Iterated
F-race to dynamically compute performance bounds for each problem instance, normalizing the objective space
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Table 4: Design methods under evaluation. We consider three versions of NEAT-Color, EvoColor and Tu-
ttiFrutti that adopt the weighted sum. Each of these versions comprises a set of control software instances
produced using the best, median, and worst combinations of α values identified for each mission. We also
consider two additional versions of TuttiFrutti, one that adopts the hypervolume and other that adopts the
l2-norm. The last method method under evaluation is Mandarina.

No. Label Method Unary metric Set of instances Approach
1 NC-WS-W NEAT-Color weighted sum worst neuroevolution
2 NC-WS-M NEAT-Color weighted sum median neuroevolution
3 NC-WS-B NEAT-Color weighted sum best neuroevolution
4 EC-WS-W EvoColor weighted sum worst neuroevolution
5 EC-WS-M EvoColor weighted sum median neuroevolution
6 EC-WS-B EvoColor weighted sum best neuroevolution
7 TF-WS-W TuttiFrutti weighted sum worst AutoMoDe
8 TF-WS-M TuttiFrutti weighted sum median AutoMoDe
9 TF-WS-B TuttiFrutti weighted sum best AutoMoDe
10 TF-HV TuttiFrutti hypervolume n.a. AutoMoDe
11 TF-L2 TuttiFrutti l2-norm n.a. AutoMoDe
12 Mandarina Mandarina n.a. n.a. AutoMoDe

and establishing an appropriate reference point. Then it aggregates the two scores of the candidate solution
using the l2-norm. In this case, we also do not apply the l2-norm to EvoColor and NEAT-Color as they do not
provide a straightforward way to dynamically compute the performance bounds.

The l2-norm is a metric used in no-preference multi-objective optimization methods [68]. These methods
aim at finding a single solution that satisfies a decision maker who has no special expectations or preference on
performance trade-offs. In essence, all objective functions are treated as equally important, and the decision
maker is satisfied with finding a single solution that optimizes them. This reasoning aligns well with our bi-
criteria design problem: our goal is to find instances of control software that enable the swarm to perform its
mission (mSp.Sq) by doing well in the two sub-missions comprised (Sp, Sq)—no other information is provided to
the design process. We expect that TuttiFrutti will produce neutral compromise solutions by incorporating
the l2-norm. We consider this application of the l2-norm also a fully automatic design method.

4.3 Protocol

Table 4 lists the design methods considered in our experiments. We use Mandarina and the baseline methods
to produce control software for the fifteen missions. We generate 150 instances of control software with Man-

darina—10 per mission. In the experiments involving the weighted sum, we produce a total of 2250 instances
of control software using NEAT-Color, EvoColor, and TuttiFrutti—10 per method, mission, and α value. For
each method, we then select sets of the best, median, and worst instances, each comprising 150 instances—10
per mission. We also produce 150 instances of control software using TuttiFrutti and the hypervolume, and
other 150 using TuttiFrutti and the l2-norm—10 per mission in each case. All design methods are given a
budget of 100 000 simulation runs to produce each instance of control software.

The instances of control software produced by a design method are evaluated twice—once for each possible
order of the sub-missions. We do this to assess the swarm’s capability to perform the mission regardless of the
order of the sub-missions. In all cases, the design process and the evaluation of the control software is conducted
using the ARGoS3 simulator [61].

We also provide 180 demonstration videos of the behavior of the robots when the control software produced
in simulation is ported to physical robots. We present 30 videos for each method among NC-WS-B, EC-WS-B,
TF-WS-B, TF-HV, TF-L2, and Mandarina. They demonstrate the behavior of instances of control software for
every mission and for each possible order of the sub-missions.
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4.3.1 Statistics

We use a Friedman rank sum test [62] to compare the relative performance of the methods across all 15 missions,
taking into account the evaluations conducted in each sub-mission. Specifically, we conduct a Friedman two-way
analysis of variance with repeated measures. This rank-based non-parametric test uses a block design. In our
protocol, the treatment factor is the method under analysis and the blocking factor is the sub-missions. We
present the results of the Friedman test with the average rank of the methods along with its 95% confidence
interval. The average rank indicates the relative performance of a method with respect to the others across the
complete set of experimental results. We selected the Friedman test to compare methods because it is invariant
to the magnitude of the objective functions of the sub-missions and can be applied with no assumptions about
the distribution of the performance data. The Friedman test has proven to be a useful tool for assessing the
relative expected performance of automatic design methods [16, 20, 51, 52].

In our experiments, we use different performance measures to conduct the optimization process (scores,
hypervolume, and the l2-norm). A priori, focusing solely on the aggregated results based on one of these measures
could unfairly favor the design methods that use that same measure. Therefore, to make fair comparisons, we
report the relative aggregate performance of the methods when evaluated according to the three: the scores,
hypervolume, and the l2-norm. We presents results of three Friedman tests computed according to the scores,
hypervolume, and the l2-norm. By considering and presenting them all, we compensate for possible bias.

A method is considered significantly better than another if it has a lower average rank, and there is no
overlap in the confidence intervals of the two methods.

The per-mission results are presented through scatter plots that show the performance of control software
instances in the objective space—the scores. These scatter plots are provided for each mission. For the weighted
sum approach, we only include the best sets from NEAT-Color, EvoColor, and TuttiFrutti as they illustrate
the best performance one could expect.

5 Results

We present results on a per-method basis. Figure 5 shows three statistical comparisons between the methods.
Figure 5.A shows the results of a Friedman test that is applied directly to the scores obtained from the evaluation
of the generated control software. Figure 5.B also shows the results of a Friedman test, but in this case the test is
applied after aggregating the scores using the hypervolume. Figure 5.C shows the results of a Friedman test that
is applied after aggregating the scores using the l2-norm. Figure 6 shows scatter plots with the scores obtained
for each mission. The code, the control software produced, the experimental results, and the demonstration
videos are available as supplementary material [69].

Mandarina. In all three Friedman tests (Figure 5), the average rank of Mandarina is significantly lower
than the average rank of the baseline methods. Mandarina outperformed the baselines, whether the comparison
is conducted directly using scores, the hypervolume, or the l2-norm. This indicates that Mandarina was more
effective than the other methods in producing neutral compromise instances of control software that satisfied the
design criteria. In the per-mission results (Figure 6), the score of Mandarina’s instances is mostly concentrated
in the top-right region of the scatter plots. This shows that, in most cases, the collective behaviors designed by
Mandarina aim at maximizing the performance of the swarm in the two sub-missions.

TF-WS-B, TF-WS-M , TF-WS-W . By exploring a wide range of weight combinations, we generated a repertoire
of control software instances that satisfy the design criteria in varying degrees. From this repertoire, we identified
the best (TF-WS-B), median (TF-WS-M ), and worst (TF-WS-W ) sets using the post hoc decision-making process
described in Section 4. In the three Friedman tests (Figure 5), the average rank of the best, median, and
worst sets of instances of TuttiFrutti is significantly lower than the average rank of the sets of EvoColor and
NEAT-Color. TuttiFrutti generated sets of instances that generally outperform those produced by EvoColor

and NEAT-Color when using the weighted sum approach. On the other hand, the relative performance between
the selected sets (TF-WS-B, TF-WS-M , TF-WS-W ) and the other variants of TuttiFrutti (TF-HV and TF-L2) differs
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A. Friedman test:
scores
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B. Friedman test:
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C. Friedman test:
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Figure 5: Friedman tests. A. The test is directly applied to the scores. B. The test is applied after aggregating
the scores using the hypervolume. C. The test is applied after aggregating the scores using the l2-norm. In all
cases, the test considers the results obtained across all missions and provides a relative ranking between the
methods. The plot shows the average rank of each method and its 95 % confidence interval. The lower the rank,
the better.
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Figure 6: Per-mission results. The scatter plots show the performance (scores) of control software instances
in the objective space for the 15 missions, and for the methods NC-WS-B ( ), EC-WS-B ( ), TF-WS-B ( ), TF-
HV ( ), TF-L2 ( ), and Mandarina ( ). The results are displayed using a logarithmic scale to accommodate the
performance ranges of the sub-missions, which span varying orders of magnitude. In all plots, the higher, the
better.
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depending on the metrics used to conduct the test. TF-WS-B has a significantly lower rank than TF-HV and TF-L2

when the instances are directly evaluated with respect to the scores (Figure 5.A). However, the rank difference
fades if the instances are evaluated with respect to the hypervolume and the l2-norm—see Figure 5.B and 5.C,
respectively. In the per-mission results (Figure 6), the score of TF-WS-B’s instances is spread in the top-right
region of the scatter plots. This indicates that the collective behaviors designed by TF-WS-B aim at maximizing
the performance of the swarm in the two sub-missions, in most cases.

TF-HV. In all Friedman tests (Figure 5), TF-HV has a significantly lower rank than the methods based on
EvoColor and NEAT-Color. However, compared to other methods based on TuttiFrutti, the average rank of
TF-HV also varied depending on the metrics used to conduct the tests. If the instances are evaluated with respect
to the hypervolume, TF-HV ranks similarly to TF-WS-B (the best set)—see Figure 5.B. However, if the instances
are directly evaluated using the scores, the average rank of TF-HV is similar to that observed in TF-WS-M (the
median set)—see Figure 5.A. A similar phenomenon appears when comparing TF-HV and TF-L2. If the instances
are evaluated with respect to the hypervolume, the rank of TF-HV is significantly lower than that of TF-L2—see
Figure 5.B. However, when the instances are evaluated based on the l2-norm, which is the measure used in
the optimization process of TF-L2, our experimental setup was unable to detect significant differences between
TF-HV and TF-L2—see Figure 5.C. In the per-mission results (Figure 6), the score of TF-HV’s instances is spread
near the top-right region of the scatter plots. This shows that most of the designed collective behaviors also
aim at maximizing the performance of the swarm in the two sub-missions.

TF-L2. The average rank of TF-L2 is significantly lower than that of the methods based on EvoColor and
NEAT-Color in the three Friedman tests (Figure 5). However, as discussed previously, the relative average rank
of TF-L2 compared to other methods based on TuttiFrutti varies depending on the metric used to conduct the
tests. If the instances are directly evaluated with respect to the scores, the average rank of TF-L2 is between TF-
WS-M and TF-WS-W —see Figure 5.A. This rank shows a sub-par performance for the method. If the instances
are evaluated with respect to the hypervolume, the average rank of TF-L2 is situated between TF-WS-B and
TF-WS-M—see Figure 5.B. Unlike the previous case, this second rank shows that the method has moderate
performance. TF-L2 ranks the best if the instances are evaluated with respect to the l2-norm—see Figure 5.C.
In this third case, we did not observe a significant difference between the average rank of TF-L2 and that of
TF-WS-B and TF-HV, and the average rank of TF-L2 is significantly lower than that of TF-WS-M . In the per-mission
results (Figure 6), TF-L2 instances scored with mixed performance. In a minor share of missions, the instances
are distributed close to the top-right region of the scatter plots. However, in a larger share, they concentrate
near the axes of the scatter plots. This shows that, in most cases, TF-L2 failed to consistently design collective
behaviors that aim at maximizing the performance of the swarm in the two sub-missions.

EC-WS-B, EC-WS-M , EC-WS-W . Likewise with TuttiFrutti, we also used EvoColor to generate a repertoire
of behaviors and we identified the best (EC-WS-B), median (EC-WS-M ), and worst (EC-WS-W ) sets. In the three
Friedman tests (Figure 5), the average rank of the sets of EvoColor is only significantly lower than that
of the sets of NEAT-Color. All other alternative methods outperformed EvoColor, except for NEAT-Color.
The per-mission results (Figure 6) show that the score of EC-WS-B’s instances is concentrated near the axes
of the scatter plots, attaining high values in a single sub-mission but not in the other. Instead of generating
neutral compromise solutions that maximize the performance in both sub-missions, EvoColor primarily designed
collective behaviors that prioritize maximizing the performance of one of them. By only addressing a single
design criterion, EvoColor instances are able to achieve the highest performance values in single sub-missions—
compared to the neutral compromise solutions produced by the modular methods. However, doing so, EvoColor

did not produce instances of control software that fully satisfy all the design criteria.
NC-WS-B, NC-WS-M , NC-WS-W . The experiments with NEAT-Color showed results that are qualitatively

similar to those obtained with EvoColor. Also in this case, we generated a repertoire of behaviors and we
identified the best (NC-WS-B), median (NC-WS-M ), and worst (NC-WS-W ) sets. In the three Friedman tests, all
alternative methods outperformed the sets of NEAT-Color—see Figure 5. The per-mission results (Figure 6)
show that, like EC-WS-B, the score of NC-WS-B’s instances concentrates near the axes of the scatter plots. However,
in general, NEAT-Color’s instances often achieve lower scores compared to EvoColor’s instances. The collective
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behaviors designed by NEAT-Color also prioritize maximizing the performance of a single design criterion. In
this sense, NEAT-Color also failed to produce instances of control software that fully satisfy the design criteria.

We assessed the control software produced by NC-WS-B, EC-WS-B, TF-WS-B, TF-HV, TF-L2, and Mandarina in
physical e-pucks. Video demonstrations are provided as supplementary material [69]. The demonstrations show
that modular methods—TF-WS-B, TF-HV, TF-L2, and Mandarina—transfer better from simulation to reality than
those based on neuroevolution—NC-WS-B, EC-WS-B. In the case of modular methods, the behavior observed in
physical e-pucks qualitatively resembles that observed in simulation. Conversely, in the case of neuroevolutionary
methods, the e-pucks do not show any meaningful behavior that resembles the one observed in simulation. This
is a phenomenon that has been observed in previous automatic design studies [17, 20, 51]. Neuroevolutionary
methods are known to overfit the simulation environment, which prevents their control software from porting
well to physical robots. Our results show that this phenomenon also seems to occur in the design problem we
consider.

6 Discussion

The optimization-based design of robot swarms (fully or semi-automatic) has been traditionally studied on
missions specified as single-criterion design problems, whether they are inherently single-criterion or adapted
from multi-criteria ones. Consequently, there is currently no established experimental framework for specifying
multi-criteria missions and studying how automatic design methods perform when addressing them. We focused
on studying a bi-criteria design problem. To conduct our experiments, we specified bi-criteria missions by com-
bining instances of well-known swarm robotics problems—foraging, aggregation, and coverage—into missions
consisting of sequential parts. More precisely, (i) we specified a diverse set of sub-missions to be combined
in a set of missions, (ii) we systematically performed experiments on the resultant combinations, and (ii) we
compared the methods on their aggregated performance across all missions in the set. These sequential missions
allowed us to estimate the expected performance of the methods under consideration and demonstrated to be an
appropriate experimental framework for bi-criteria design studies. The missions we devised here are intended
to be performed by e-puck robots that comply with the reference model RM 3. However, we contend that the
experimental protocol in this paper can be used to develop new experimental setups for other robot platforms
or environments.

The missions we devised are distinctive from the related literature in that they consist of a combination of
sub-missions that must be executed sequentially. In this class of missions, the modular methods (Mandarina and
TuttiFrutti) outperformed the neuroevolutionary ones (EvoColor and NEAT-Color). Mandarina and Tutti-

Frutti designed robot swarms that, as anticipated, use the color cues (red and blue lights) to switch between
behaviors and execute each sub-mission with a tailored action. On the contrary, EvoColor and NEAT-Color

designed robot swarms that do not seem to react to color cues. Instead, they typically stick to a single behavior
that either addresses the two sub-missions to a very limited extent, or that is only tailored to address one of them.
By observing the results of the two approaches, we argue that the modular methods performed better because
they succeeded in designing robot swarms that can switch behaviors at runtime, which we consider necessary for
executing the sequential missions. Switching between behaviors is a rather complex action inherently enabled
on Mandarina and TuttiFrutti due to their modular control architecture—i.e., the probabilistic finite-state
machine. The neuroevolutionary methods, on the contrary, must evolve the switching behavior from scratch
within the artificial neural network. Neither EvoColor nor the more sophisticated NEAT-Color achieved this
task successfully.

We introduced Mandarina to leverage Iterated F-race’s non-parametric, rank-based nature and address
challenges that arise in multi-criteria design problems. On the one hand, due to its non-parametric nature,
we could use Mandarina in all missions without requiring information about the behavior/distribution of the
objective functions. The objective functions of the sub-missions were ultimately treated as black-boxes during
the optimization process. On the other hand, due to its rank-based nature, Mandarina could effectively handle
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pairs of objective functions with different score ranges, discrete and continuous, and across various orders
of magnitude. We compared Mandarina with other alternative methods that also use Iterated F-race—i.e.,
the baselines derived from TuttiFrutti. The aggregated results show that Mandarina achieved significantly
better performance. Mandarina differs from the bi-criteria methods based on TuttiFrutti in that Iterated
F-race directly operates on the scores obtained in each sub-mission. Indeed, Mandarina operates without
normalization or estimation of the performance bounds of the objective functions. On the contrary, in the
bi-criteria methods based on TuttiFrutti, Iterated F-race operates on performance estimations that result
from aggregating the scores into single performance measures—the weighted sum, the hypervolume, or the l2-
norm. We conjecture that in Mandarina, Iterated F-race could perform more accurate statistical comparisons
of the performance of the candidate solutions by directly comparing the scores of each sub-mission. This could
possibly have contributed to the search for better performing control software instances. In the methods based
on TuttiFrutti, aggregating the scores into a single measure may have hindered the ability of Iterated F-race
to statistically distinguish between the performance of candidate solutions. We will devote future work to
deepening our understanding of this issue.

We dedicated a substantial part of our research to estimating the expected performance of weighted sum
methods with respect to the other approaches under evaluation. To do so, we conducted a systematic search to
find suitable weight combinations for each method and mission individually. TF-WS-B, EC-WS-B, and NC-WS-B are
sets of control software instances generated using the best weight combinations found in the search. In a sense,
these three sets represent the expected outcome of a design process in which a designer is able to set appropriate
weights to scalarize the objective functions across all missions. The results of our experiments showed that,
even in this best-case scenario, the most effective weighted sum method (TF-WS-B) did not outperform other
bi-criteria approaches (e.g., TF-HV and TF-L2). On the contrary, it was outperformed by one of them: Man-

darina. The weighted sum is currently the common approach for framing/addressing multi-criteria problems
in the optimization-based design of robot swarms. Here, we provide empirical evidence to support the idea
that exploring multi-criteria design methods beyond the conventional weighted sum is worthwhile. Firstly, a
designer can avoid the time-consuming and costly process of manually searching for suitable weights. Secondly,
methods like Mandarina can produce solutions that perform better than those obtained with the weighted sum.
We expect these results to motivate future research on approaches for addressing multiple design criteria in the
fully and semi-automatic design of robot swarms.

7 Conclusions

In this paper, we investigated the automatic design of control software for robot swarms under concurrent design
criteria. To conduct our study, we introduced Mandarina, an automatic design method that generates control
software for robot swarms in the form of probabilistic finite-state machines. We used Mandarina to address
design problems in which the mission the swarm must perform is specified as a set of independent objective
functions to be optimized concurrently.

Mandarina utilizes Iterated F-race to perform a multi-objective optimization process that searches for control
software instances that maximize the performance of the swarm in the mission at hand. That is, the instances
that allow the swarm to satisfy all the design criteria to their best. The traditional approach to using Iterated
F-race in multi-objective optimization problems is to aggregate the design criteria into a single performance
measure. In Mandarina, on the contrary, we use Iterated F-race to conduct the optimization process without
aggregating the design criteria. Our experiments show that this approach outperforms the traditional approach,
including methods that use the weighted sum, the hypervolume, and the l2-norm.

The related literature shows that multi-criteria design problems are common and interesting to the scien-
tific community. In fact, researchers often unintentionally specify missions that simultaneously express varied
preferences and design criteria related to mission outcomes, robot behavior, or the design process itself. How-
ever, in the related studies, the researchers neglect the multi-criteria nature of the design problem and the
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possible benefit of using multi-objective optimization methods to address it. Our study on bi-criteria design
presents elements that can bootstrap further research into the broader multi-criteria design of robot swarms us-
ing optimization-based techniques. More precisely, we provide here (i) an experimental framework for specifying
bi-criteria missions, which can be extended to consider additional criteria; (ii) a set of baseline approaches—-
the weighted sum, the hypervolume, and the l2-norm; (iii) empirical results regarding popular automatic design
approaches—modular design and neuroevolution; and (iii) we demonstrate the feasibility of these automatic
design processes with both simulations and physical robots.

We identified two key questions to be addressed in upcoming research. What is the most suitable way to
compare design methods effectively? Our study considered design methods that rely on optimization processes
driven by different performance measures. We noticed that the expected performance of a method compared
to others can vary depending on the metric used to assess the generated control software instances. For this
reason, here we decided to analyze and compare the methods with respect to all performance measures used
in the optimization processes. However, a better protocol should be defined to compare the methods in a fair
way. To which extent Mandarina’s capability to address multi-criteria design problems generalize beyond the
bi-objective case? In this paper, we focused on missions specified by two concurrent design criteria. However,
in practice, Mandarina could handle additional criteria as long as each is provided to Iterated F-race as an
independent problem instance to be considered in the optimization process. Considering more concurrent
criteria during the design process can lead to a greater number of performance trade-offs and potentially make
Iterated F-race’s statistical comparison of control software less effective. Future research should expand the
experimental setup to investigate this issue.
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