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We sketch some recent advances in the automatic off-line design [1] of robot
swarms and we discuss our perspective. Our vision is that automatic off-line
design will play a major role in the development of swarm robotics and in its
applications. Recent discussions have foreseen the milestones that would drive
the advance of swarm robotics in the next decade [2, 3]: (i) the appearance of
novel robot platforms that can operate in unstructured and dynamic environ-
ments [4]; (ii) the development of new methodologies for the design of collective
behaviors [5]; (iii) new opportunities to exploit emergence [6]; and (iv) the shift
of focus towards applications suited for large groups of coordinated robots [7]—
e.g., precision agriculture, ecological monitoring, and city cleaning. Although
the future is promising, at present most achievements in swarm robotics research
still occur under controlled laboratory conditions [8].

There is a need for robust design methodologies that will enable the transi-
tion from laboratory experiments to real-world applications [7, 9]. Today, many
researchers promote the adoption of engineering principles in the realization of
robot swarms [10]. Yet, no general methodology exists to design the behavior of
an individual robot so that a desired collective behavior is obtained. Tradition-
ally, the design process has an iterative nature and is based on trial and error:
a human designer manually refines the control software of the individual robots
until the desired collective behavior emerges [11]. This procedure is costly,
time-consuming, and does not guarantee that the results are reproducible.

Optimization-based design is an alternative approach to the design of col-
lective behaviors for robot swarms [12]. In this approach, an optimization algo-
rithm explores possible instances of control software for the robots and selects
the one that maximizes performance on the specific mission at hand—according
to a given performance metric. Optimization-based methods can be categorized
with respect to different criteria. Common classifications divide them into (i)
on-line and off-line methods, and into (ii) semi-automatic and (fully) automatic
ones. Although, these classifications are not to be considered as strict—indeed,
hybrids exist—they are convenient to appreciate the relative merits of different
methods and to properly define expectations on their performance [12]. On-line
methods produce control software directly on the robots, while the latter exe-
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cute the mission; conversely, off-line methods produce control software before
the robots are deployed, typically using simulation. In semi-automatic meth-
ods, a human designer operates an optimization algorithm that serves as their
primary design tool; contrarily, automatic methods do not require any human
intervention during the design process.

On-line (both automatic and semi-automatic) and off-line semi-automatic
methods will definitely contribute to the advancement and application of swarm
robotics. Still, it is our contention that automatic off-line methods will play the
most central role. Indeed, they are of general applicability and have the potential
to realize robot swarms quickly, with reduced effort, while ensuring sufficiently
good performance. On-line methods appear ideal to refine existing solutions—
limitations exists that restrict their general applicability. For example, they
can explore a relatively small search space, could produce sub-optimal control
software that could damage robots and environment (notably in the early phases
of the design process), and are applicable only when the robots can assess their
own collective performance. Similarly, semi-automatic methods are a useful
and promising tool but are labor-intensive. They require the attention of a
skilled operator that analyzes the outcome of an optimization process, adjusts
parameters and amends the so-called fitness function by adding/removing terms
to penalize/promote the emergence of behavioral features, before iterating the
process. The need for a human operator is a limitation when one is called
to design/refine control software for robot swarms under tight time and cost
constraints. Although we believe that automatic off-line design addresses the
more general design problem, in the long term, we expect that on-line, off-line,
semi-automatic and automatic methods could coexists [12]—hybrid methods
could be particularly appealing and appropriate in many applications.

Whereas we deem it the most promising approach, automatic off-line de-
sign is not itself free from presenting challenges and open issues. The main
problem faced in automatic off-line design (and also in semi-automatic off-line
design) is the so-called reality gap [13], that is, the differences between reality
and simulation models on which the off-line optimization is based. Due to the
reality gap, control software designed off-line typically experiences an impor-
tant performance drop when ported to the real robots. Even worse, the drop
is method-dependent with some design method being more intrinsically robust
than others. This has implications on how instances of control software should
be assessed and eventually selected before being deployed in reality [14].

Automatic off-line design is currently an early-stage technology that has been
mostly demonstrated with laboratory experiments [15]. Important scientific and
engineering questions need to be addressed before reaching mature methods that
are ready for real-world application. Can we design effective and reliable robot
swarms via automatic off-line design? What are the components that influence
the effectiveness of a method? How can we conceive a method that is effective?
Given a class of missions, which is the most appropriate design method? Which
features of a mission make it more or less hard to be tackled? To what extent
a design method is robust to the reality gap? What can we do to improve the
robustness of a method? How can we characterize and specify a mission or a
class of missions that a swarm must perform? To what extent an automatic
design method can be ported to other design problems, and vice versa?

Recent advances in automatic off-line design belong mostly in two main
approaches: (i) neuro-evolution [16, 17]; and (ii) automatic modular design
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(AutoMoDe) [18]. Neuro-evolution is the traditional approach to the automatic
design of collective behaviors for robot swarms: each robot is controlled by
an artificial neural network whose parameters (and possibly the architecture)
are obtained via artificial evolution. As an alternative to neuro-evolution, a
few methods have been recently proposed within the AutoMoDe approach [18,
19]. In these methods, the control software of the robots is produced via an
optimization-based process that fine-tunes pre-existing software modules and
combines them into a modular architecture such as a probabilistic finite-state
machine or a behavior tree. The software modules can be produced manually
or with the assistance of optimization processes—for example, via evolutionary
computation [20]. A number of studies have shown that AutoMoDe is less
prone than neuro-evolution to the effects of the reality gap and tend to produce
control software that eventually performs better once ported from simulation to
reality [18, 19]. For a review of automatic off-line design methods, see [1].
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