
Autonomous task sequencing in a robot swarm

Lorenzo Garattoni, Mauro Birattari∗

IRIDIA, Université libre de Bruxelles, Belgium
∗E-mail: mbiro@ulb.ac.be

Abstract: Robot swarms mimic natural systems in which col-
lective abilities emerge from the interaction of individuals. So
far, the swarm robotics literature has focused on the emergence
of mechanical abilities (e.g., push a heavy object) and simple
cognitive abilities (e.g., select a path between two alternatives).
In this article, we present a robot swarm in which a complex
cognitive ability emerges. This swarm is able to collectively se-
quence tasks whose order of execution is a priori unknown. As
sequencing tasks is an albeit simple form of planning, the robot
swarm we present provides a new perspective on one of the most
pivotal debates in the history of artificial intelligence: the debate
on planning in robotics. Indeed, in the proposed swarm, the two
robotics paradigms—deliberative (sense-model-plan-act) and re-
active (sense-act)—which are traditionally considered antitheti-
cal, coexist in a particular way: the ability to plan emerges at
the collective level from the interaction of reactive individuals.

Introduction

Swarm robotics (1–4) takes inspiration from collective behaviors of social animals to
develop multi-robot systems that, as their natural counterparts, are flexible, robust,
and autonomous (5). A robot swarm comprises a large number of robots with limited
capabilities. The interaction of the robots with each other and with the environ-
ment engenders emergent properties: collectively, the swarm displays abilities that a
single robot does not possess. So far, research has focused on the emergence of ge-
ometrical/spatial properties and mechanical abilities: e.g., aggregating (6), covering
space (7, 8), forming shapes (9, 10), moving coordinately (11), overcoming obsta-
cles (12), transporting objects (13), clustering objects (14), or assembling struc-
tures (15). Research has been also devoted to the emergence of simple cognitive
abilities: e.g., selecting an aggregation area (16–18), a behavior (19, 20), a forag-
ing source (21, 22), or a path (23–26) between (typically two) alternatives. Here,
we study the emergence of a more complex cognitive ability: sequencing tasks. We
present TS-Swarm, a robot swarm that sequences tasks autonomously. Several stud-
ies have been already devoted to swarms that, inspired by mechanisms of division of

1

This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution.
The definitive version was published in Science Robotics 3(20):eaat0430 on 18 July 2018. DOI: 10.1126/scirobotics.aat0430

D

C

y s y o s o

s y o y o s

o s y

y

o

s

s
y

o orchard:
shed:
yard:

�ll crate
get crate

load truck

legend:

a priori unknown
correct sequence

B

go to shed

go to
 yard

go to orchard

shed: get crate

orchard: �ll crate

yard: load truck

A

Fig. 1. From an example of task sequencing to TS-Swarm. (A) Task sequenc-
ing: an example. Three tasks must be performed in a specific order by an individual
robot: get a crate at the shed; fill the crate at the orchard; load the crate onto the
truck at the yard. The robots initially ignore the correct order of execution. They
learn it collectively from successes and failures: for example, a robot faces a failure if
it reaches the orchard without a crate to fill, or the truck with an empty one. The
correct sequence must be repeated multiple times to fully load the truck. (B) Formal
representation of the solution space. (C) An e-puck and a TAM. (D) TS-Swarm: the
swarm in its arena, with three TAMs.

labor observed in insect societies (27–29), perform multiple tasks transitioning from
one to another (8, 30–32). Nonetheless, in all previous studies, the correct order of
execution and/or the transition conditions were known at design time. The design-
ers could thus devise and hard-code in the robots the rules that trigger the transition
from task to task. Contrary to previously demonstrated swarms, TS-Swarm sequences
tasks autonomously and at run time: it can therefore operate even if the correct order
of execution is unknown at design time. In TS-Swarm, the two robotics paradigms—
deliberative (33) (sense-model-plan-act) and reactive (34) (sense-act)—which are tra-
ditionally considered antithetical (35), coexist in a novel way: the ability to sequence
tasks and therefore to plan a course of action emerges at the collective level from the
interaction of reactive individuals.

We address the case in which m tasks must be performed in a specific order
(and without repetitions) by an individual robot of the swarm. Each task must be
performed in a certain area and the correct order is a priori unknown. The sequence
of tasks must be repeated multiple times by the same or by other robots. For an
illustrative example, see Fig. 1A-B.

The characterizing feature of TS-Swarm is that some of the robots position them-
selves to form a chain that fulfills two functions: (i) assist the navigation between the
relevant areas; and (ii) identify/encode the order in which tasks must be performed.
The chain enables robots with limited capabilities to accomplish a complex mission.
Individually, the robots of TS-Swarm would be unable to navigate reliably from area
to area or perform the tasks in the correct order. Indeed, they have a limited range of
perception, are unaware of the position of the areas, and are unable to localize them-

2

selves in the environment. Moreover, the robots are not programmed to individually
sequence tasks by reasoning symbolically on their order of execution.

Chaining has previously been adopted in swarm robotics to search the environment
and assist navigation (31, 36–43): by forming a chain, robots act as waypoints to
route other robots. In TS-Swarm, we generalize this scenario. The chain is both
a routing mechanism and a means to identify/encode a task sequence. Indeed, the
robots in the chain act also as “logical waypoints” in the task space: by following
them, other robots perform the tasks in the order encoded.

Results

We implemented TS-Swarm on e-puck robots and we use TAMs (task abstraction
modules) to abstract tasks (Fig. 1C; see Materials and Methods). A TAM is a booth
which an e-puck can enter. For an e-puck, entering a TAM amounts to performing
the task it abstracts. A TAM is equipped with RGB LEDs and can display different
colors. In the experiments, each task is identified by a unique color.

We developed four variants of TS-Swarm: Mark I3, Mark I4, Mark II3, and Mark II4.
Mark I3 assumes that (i) the tasks to be performed arem = 3; and (ii) a robot receives
negative feedback as soon as it performs a task in an incorrect order, and positive feed-
back otherwise. A robot receives feedback in the sense that, after performing a task,
it becomes immediately aware of whether the task was performed in the correct order
or not—see example in Fig. 1A. In practice, as we consider abstract tasks emulated
by TAMs, a failure or a success in performing a task amounts to a message that a
robot receives from a TAM via an infrared signal—see Materials and Methods.

After studying Mark I3, we modified the aforementioned assumptions to make
the sequencing problem harder. Mark I4 assumes that the tasks are m = 4 and
indicates how a larger number of tasks can be handled. Mark II3 assumes that a
robot must perform a complete sequence before receiving any feedback on whether
the sequence is correct or not. Mark II4 assumes that the tasks are m = 4 and a
complete sequence must be performed before receiving any feedback. Due to the
lack of an immediate feedback, the problem faced by Mark IIm is combinatorial. Its
computational complexity is O(m!). In all four variants, the swarm operates in a
bounded, convex arena surrounded by walls. The TAMs are located at the boundaries
of the arena (Fig. 1D; see Materials and Methods). We opted for such a simple scenario
to simplify the construction of the chain so that we could focus our attention on the
collective and distributed solution of the task-sequencing problem. Thanks to the
adoption of this scenario, we were able to implement the chain-based search in a way
that presents only minor differences from what already described in the literature
(31, 39, 43). In the following, we outline Mark I3. We then sketch Mark I4, Mark II3,
and Mark II4 by highlighting their differences with respect to Mark I3. Details are
provided in the Supplementary Materials, together with an extensive discussion of
the empirical analysis.

3

Mark I3 and Mark I4
In Mark I3, all robots execute the same control software but autonomously assume
different roles depending on the contingencies they encounter. A robot can be a
runner, guardian, tail, or link. Initially, all robots are runners and move randomly in
the arena. Upon encountering a task—more precisely the TAM that abstracts it—a
runner performs it and then positions itself in its proximity, becoming its guardian.
From then on, no other runner will perform the task, unless directed to do so by
its guardian. Eventually, three robots are the guardians of the three tasks. Two of
them received negative feedback, as their task is not the first of the sequence. The
other guardian received positive feedback: its task is the first one. This guardian
initiates the construction of the chain. Runners that encounter the chain being built
can contribute to its extension by positioning themselves at its end, one after the
other. We refer to the last robot in the chain as the tail and to the others as the
links. Tail and links align and keep a target distance between themselves so that the
chain is stretched and straight. If the chain reaches a wall, it turns, sweeping the
environment. By extending and turning repeatedly, the chain eventually encounters
another guardian. When this happens, the tail transfers its role to the guardian
and becomes a link. The guardian initiates the construction of a new branch of the
chain to ultimately include all the guardians. Robots that have not become chain
members remain runners and navigate the environment following the chain. When
a runner reaches a guardian, it performs the guarded task if so directed. Guardians
learn to direct runners via trial and error. As mentioned, a guardian received positive
or negative feedback, depending on whether its task is the first to be performed or
not, respectively. The guardian that received positive feedback will direct to its task
the runners that have not yet performed any task. The other two guardians learn
the correct policy with the help of the runners. The first time they are reached by
a runner that has performed exactly one task, they ask it to perform their task and
wait to be informed of the outcome. If the feedback is positive, from then on they
will direct to their task the runners that have performed one task. If the feedback is
negative, they will direct to their task the runners that have performed two tasks. We
empirically studied Mark I3 with hardware and simulated experiments (Fig. 2A-E,F).
Moreover, in simulated experiments, we assessed its scalability and robustness (Table 1
and Fig. 3). The results (Fig. 4A,B and Fig. 5A) show that Mark I3 sequences three
tasks reliably and that it operates correctly over a large range of conditions, without
requiring any modification.

In Mark I4, four tasks are sequenced thanks to a minor difference relative to
Mark I3: a single counter that counts to four rather than three. We studied Mark I4
in simulation (Fig. 2G, Table 1, and Fig. 3). The results show that the first assump-
tions of Mark I3 can be overcome (Fig. 4C, Fig. 5B): more than three tasks can be
sequenced.

Mark II3 and Mark II4
In Mark II3, runners must perform an entire sequence before receiving any feedback.
Due to the lack of immediate feedback, which in Mark I3 breaks the initial symmetry,
all guardians initiate the construction of a branch of the chain immediately after

4

00:05:52

I

00:07:53

H

00:10:40

G

00:06:56

F
00:10:25

E

00:04:15

D

00:01:27

C

00:00:50

B

00:00:00

A

Fig. 2. Overhead snapshots. (A-E) Mark I3, robot experiments (movie S1). (F)
Mark I3, simulation (movie S2, side-by-side with a run on the robots). (G) Mark I4,
simulation (movie S4). (H) Mark II3, simulation (movie S5). (I) Mark II4, simulation
(movie S6).

Table 1. Parameters of the scalability and robustness studies. We report
the parameters that characterize each experimental setting in which each variant of
TS-Swarm is studied. The scalability study is performed using the default number
of robots in each setting. Between one setting and the following one, we double the
surface of the arena in which the robots operate (see Materials and Methods). The
robustness study is performed varying the number of robots between -20% and +100%
with respect to the default number of each setting.

number of robots
setting

arena’s
side (m)

arena’s
area (m2) -20% -10% default +20% +40% +60% +80% +100%

time
cap (s)

M
ar

k
I 3

0 0.90 2.10 16 18 20 24 28 32 36 40 2400

1 1.27 4.21 23 25 28 34 39 45 50 56 3400

2 1.80 8.42 32 36 40 48 56 64 72 80 4800

3 2.55 16.84 45 51 57 68 80 91 103 114 6800

4 3.60 33.67 64 72 80 96 112 128 144 160 9600

M
ar

k
I 4

0 0.66 2.10 18 20 22 26 31 35 40 44 100000

1 0.93 4.21 25 28 31 37 43 50 56 62 100000

2 1.32 8.42 35 40 44 53 62 70 79 88 100000

3 1.87 16.84 50 56 62 74 87 99 112 124 100000

4 2.64 33.67 70 79 88 106 123 141 158 176 100000

M
ar

k
II 3

0 0.90 2.10 20 22 25 30 35 40 45 50 100000

1 1.27 4.21 28 31 35 42 49 56 63 70 100000

2 1.80 8.42 40 45 50 60 70 80 90 100 100000

3 2.55 16.84 56 63 70 84 98 112 126 140 100000

4 3.60 33.67 80 90 100 120 140 160 180 200 100000

M
ar

k
II 4

0 0.66 2.10 22 24 27 32 38 43 49 54 100000

1 0.93 4.21 30 34 38 46 53 61 68 76 100000

2 1.32 8.42 43 49 54 65 76 86 97 108 100000

3 1.87 16.84 61 68 76 91 106 122 137 152 100000

4 2.64 33.67 86 97 108 130 151 173 194 216 100000

5

2.10 m2

4.21 m2

8.42 m2

16.84 m2

33.67 m2

2.10 m2

4.21 m2

8.42 m2

16.84 m2

33.67 m2A B

Fig. 3. Scalability and robustness analysis, the arenas. Shape and size of the
arenas considered for the scalability and robustness study of (A) Mark I3 and Mark II3
and (B) Mark I4 and Mark II4.

pr
ob

. o
f s

uc
ce

ss

time (s)
102 103 104 105

0
0.

5
1

TC
 =

 1
E5

time (s)
102 103 104 105

0
0.

5
1

TC
 =

 1
E5

time (s)
102 103 104 105

0
0.

5
1

TC
 =

 1
E5

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

time (s)
102 103 104

0
0.

25
0.

5
0.

75
1

TC
 =

 2
,4

00

time (s)
102 103 104

0
0.

25
0.

5
0.

75
1

TC
 =

 2
,4

00

A B

C D E

Fig. 4. Empirical assessment.Empirical run-time distribution for the execution
of one (dotted), five (dot-dash), and ten (solid) sequences. (A) Mark I3, robot exper-
iments. (B) Mark I3, simulation. (C) Mark I4, simulation. (D) Mark II3, simulation.
(E) Mark II4, simulation.

6

pr
ob

. o
f s

uc
ce

ss

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

pr
ob

. o
f s

uc
ce

ss

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

fr
ac

tio
n

of
 ru

ns

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

a b c d e

f g h i j

k l m n o

B

pr
ob

. o
f s

uc
ce

ss

time (s)
1E2 1E3 1E4

0
0.

5
1

TC
 =

 2
,4

00
time (s)

1E2 1E3 1E4

0
0.

5
1

TC
 =

 3
,4

00

time (s)
1E2 1E3 1E4

0
0.

5
1

TC
 =

 4
,8

00

time (s)
1E2 1E3 1E4

0
0.

5
1

TC
 =

 6
,8

00

time (s)
1E2 1E3 1E4

0
0.

5
1

TC
 =

 9
,6

00

pr
ob

. o
f s

uc
ce

ss

time (s)
102 103 104

0
0.

5
1

time (s)
102 103 104

0
0.

5
1

time (s)
102 103 104

0
0.

5
1

time (s)
102 103 104

0
0.

5
1

time (s)
102 103 104

0
0.

5
1

fr
ac

tio
n

of
 ru

ns

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

b c d e

f g h i j

k l

a

m n o

A

Number of robots
-20% +80%+40%+20%default-10% +60% +100%

Fig. 5. Scalability and robustness of Mark I3 and Mark I4. (A) Mark I3.
(B) Mark I4. (a-e) Scalability study using the default number of robots in five
arenas of different size (see Table 1 and Materials and Methods). Empirical run-
time distribution for the execution of one (dotted), five (dot-dash), and ten (solid)
sequences. (f-j) Robustness to the variation of the number of robots between -
20% and +100% of the default number (see Table 1 and Materials and Methods).
Empirical run-time distribution for the execution of ten sequences. (k-o) Empirical
distribution of the number of robots in the chain as a function of the total number of
robots. Arena’s area: (a, f, k) 2.10 m2; (b, g, l) 4.21 m2; (c, h, m) 8.42 m2; (d, i, n)
16.84 m2; (e, j, o) 33.67 m2.

7

sequence
0:

1:

2:

3:

4:

5:

?

?

?

?

?

?

?

?

?

?

?

?

(b)

(c)

(a)

(b)

(a)

(c)

(c)

(a)

(c)

(a)

(b)

(b)

(a)

(b)

(b)

(c)

(c)

(a)

B

?

?

?

?

?

? ? ?

? ?

A

(a)

(b)

(c)

(c) (a) (c) (a) (b)

(b) (c) (a) (b) (a)

(b) (c)

Fig. 6. Exploration of the sequence space in Mark II3, as seen by the
guardian of the green task. In this example, the green task is the second of the
initial sequence. Its guardian ignores the colors of the first and last tasks; it only knows
that its label is b and therefore its task is the second. More precisely, this guardian is
in the state in which it directs to its task the runners that have performed exactly one
task. This guardian (as the others) directs the runners throughout the search process
without knowing what is the sequence that is tested at each step. At the first step its
task is the second—it directs to its task runners that have performed exactly one task.
At the following step, its task is the third—it directs to its task runners that have
performed exactly two tasks. Then, its task is the first—it directs to its task runners
that have not yet performed any task; and so on. (A) Permutation tree generated
by the guardian of the green task on the basis of its partial knowledge of the initial
sequence. (B) Sequences explored through depth-first search of the permutation tree.

assuming their role. Upon completion, the chain is a closed loop that, besides routing
runners as Mark I3’s chain, has the additional function of relaying information. By
exchanging messages via the chain, the guardians (i) establish an initial sequence,
out of which they generate a permutation tree spanning all possible sequences; and
(ii) direct the runners to collectively explore such tree via depth-first search. The
guardians establish an initial sequence by ordering themselves via a leader-election
algorithm (44). Each guardian communicates its unique ID that is relayed by the
chain. The guardian with the largest ID takes the label c and sends a message that
is relayed clockwise along the closed-loop chain. The message contains the label b.
The first guardian that receives the message takes the label b and propagates label
a which is eventually taken by the last guardian. Each guardian generates the tree
of the permutations of 〈a, b, c〉. The tree is then collectively explored by the swarm
via depth-first search. As a first step, the guardians address the runners to the tasks
guarded by a, b, and c, in this order; as a second step, to the tasks guarded by a, c,
and b; as a third step to the tasks guarded by b, a, and c, and so on. A failure reported
by a runner after completing a sequence triggers the transition to the following one.
On the other hand, a success indicates that the correct sequence has been identified.
The exploration of the permutation tree is distributed. Throughout the process, all
robots act reactively (sense-act) and each guardian has only partial knowledge about
the sequence being tested (see Fig. 6 and Supplementary Materials).

In Mark II4, four tasks are sequenced under the assumption that no immediate
feedback is received after task execution; the only difference relative to Mark II3 is a
counter that counts to four rather than three.

We studied Mark II3 and Mark II4 in simulation (Fig. 2H-I, Table 1, and Fig. 3).
The results show that the two assumptions of Mark I3 can be overcome (Fig. 4D-E

8

and Fig. 7): the task sequencing problem can be solved even if no immediate feedback
is received by the robots and the tasks are more than three.

Discussion

As sequencing tasks is an albeit simple form of planning, TS-Swarm provides a new
perspective on one of the most pivotal debates in the history of artificial intelligence:
the debate on planning in robotics. This debate opposes two competing, antithetical
paradigms: the deliberative and reactive (35). According to the former, an intelligent
robot should necessarily plan a course of action by reasoning on a model (33). Accord-
ing to the latter, a robot is more effective in dealing with reality by simply reacting
to contingencies, without relying on reasoning and representation (34). Although
hybrid systems have been proposed, they conceptually juxtapose the two paradigms:
deliberative and reactive instances—operating sequentially or in parallel—interact
but remain logically distinct (45, 46). By contrast, TS-Swarm associates the two
paradigms in a novel way: the ability to plan a sequence of tasks emerges at the
collective level from the interaction of robots that, at the individual level, behave
reactively without relying on reasoning and representation.

Relations with multi-robot/agent learning

The learning process performed by TS-Swarm bears some resemblance to others de-
scribed in the multi-robot and multi-agent literature (47–49). TS-Swarm learns the
correct sequence based on binary rewards: failures and successes experienced after
performing tasks. No example of correct behavior is provided to the robots. The
learning process performed by TS-Swarm can be therefore classified as reinforcement
learning (50, 51). More precisely, as no value function (52, 53) is explicitly learned,
the learning process of TS-Swarm could be seen as a form of direct policy search
(54–57). In Mark Im, feedback is received immediately after the execution of each
single task. On the other hand, in Mark IIm feedback is delayed and is received only
after the execution of a complete sequence. As a result, the sequencing problem
presents a combinatorial nature: the resulting learning process is much more chal-
lenging. The robots learn collectively the correct sequence and the path to reach the
areas where the task must be performed. A single learning process takes place, as
opposed to collective systems in which each agent/robot individually learns a behav-
ior. In this sense, we can qualify the learning process of TS-Swarm as team learning
(58, 59). More precisely, as the behavior that is collectively learned is the same for
all robots—the behavior that each robot (runner) must execute to perform the same
correct sequence—the learning process can be qualified as a form of homogeneous
team learning (47–49). Nonetheless, TS-Swarm differs from typical team learning
systems (60–62) in the fact that the single learning entity is indeed the swarm as
a whole, which has an immaterial and distributed nature: the robots operate in an
independent manner and no central entity exists that performs the learning process
having a global view of the state of the system. Learning takes place at the collective
level of the swarm: it is the swarm as a whole that searches the space of possible
solutions. Moreover, once the correct solution is identified, the policy to produce is

9

pr
ob

. o
f s

uc
ce

ss

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

pr
ob

. o
f s

uc
ce

ss

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

fr
ac

tio
n

of
 ru

ns

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

a b c d e

f g h i j

k l m n o

B

pr
ob

. o
f s

uc
ce

ss

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

pr
ob

. o
f s

uc
ce

ss

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

time (s)
102 103 104 105

0
0.

5
1

fr
ac

tio
n

of
 ru

ns

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

robots in chain
0 50 100 150

0
0.

5
1

b c d e

f g h i j

k l

a

m n o

A

Number of robots
-20% +80%+40%+20%default-10% +60% +100%

Fig. 7. Scalability and robustness of Mark II3 and Mark II4. (A) Mark II3.
(B) Mark II4. See caption of Fig. 5.

10

eventually encoded by the chain in a collective and distributed way: each guardian
stores the part of policy that concerns the execution of its guarded task. Each runner
implements the policy encoded by the chain on the basis of its own state, which is
defined by the number of tasks performed and by which guardian is in its proximity,
if any.

Limitations and possible improvements

Transmission of robot IDs limits scalability. The scalability of TS-Swarm
is limited by the fact that robots include their identifier in the range-and-bearing
messages they broadcast (see Materials and Methods and Supplementary Materials).
Also, in Mark IIm, guardians use their identifier in the leader-election process.

Possible improvement: we could adopt locally-unique identifiers, which have been
successfully demonstrated with a swarm of one thousand robots (9).

The number of tasks must be known at design time. All variants of TS-
Swarm, assume that the number of tasks to be sequenced is known at design time.

Possible improvement: we could let the swarm determine the number of tasks
autonomously at run time. This would be straightforward in Mark IIm: when the
closed-loop chain is established and the guardians order themselves using a leader-
election algorithm, the information on the number of tasks discovered by the swarm
in the environment is readily available to all the guardians.

Chains might overstep guardians. In some cases, the branch of chain being built
fails to locate the guardian it is supposed to reach. This may be due to several factors,
including (i) the lack of a sufficient number of robots to extend the branch up to the
guardian; (ii) a temporary fault in the omnivision module of the tail. These factors
cause the branch to overstep the guardian and eventually reach another branch of
chain or the guardian from which the branch itself originates. As a result, the branch
being built merges with another branch or collapses on itself. In both cases, the
system fails.

Possible improvement: the tail could implement a mechanism to detect whether
it is approaching another branch of chain, or the originating guardian of its own
branch. Should this happen, the tail could invert the sense in which the branch
sweeps around its originating guardian. By alternating clockwise and anticlockwise
sweeps, the branch being built would explore the environment more effectively and
increase the chance to spot the guardian it is supposed to reach.

Robots’ movement is unsophisticated. Chain members and runners move in a
simple and unsophisticated way. For simplicity, we implemented the links so that they
stop moving upon being notified that the branch they form is established. If a runner
bumps into a link pushing and it away from the correct position, the continuity of
the chain is broken and the functionality of the whole system is compromised. This
is more likely to occur when the swarm is comprised by a large number of robots, the
arena is large, and no immediate feedback is received by the robots (Mark IIm). In
these cases, the branches are long and need to be functional for a long time in order
to support the exploration of a large solution space.

11

Possible improvement: More refined movement mechanisms could be implemented
in order to make the motion of chain members and runners more precise and reliable.
Links could keep adjusting alignment and spacing even after their branch is estab-
lished. In particular, they could benefit from a mechanism to regain their original
position, should they detect that the functionality of their branch is compromised.

Chaining rests on restrictive assumptions. The chaining behavior works under
the assumptions that (i) the arena is convex, (ii) the tasks are located along its
perimeter, and (iii) there are no obstacles.

Possible improvement: we could relax these assumptions if the path between
guardians were obtained by first covering the space with a lattice-like formation, and
then selecting the shortest path on this lattice. Robots that are not on the shortest
path could leave; those that are on the shortest path would remain to act as way-
points. An approach to select the shortest path on a lattice has been demonstrated
with a swarm of e-pucks (63). This approach is based on artificial pheromone.

The search strategy in Mark IIm is sub-optimal. The transition from a can-
didate sequence to the following one in the permutation tree (Fig. 6) causes all the
runners to abort the execution of the sequence being tested and start the execution
of the following one from scratch. However, if the sequence being performed and the
following one share an identical initial sub-sequence, this solution is not optimal.

Possible improvement: we could implement a sort of backtracking for a more
efficient exploration of the permutation tree. Indeed, the runners that have performed
only tasks contained in the identical initial sub-sequence could continue the execution
of the remaining tasks of the following sequence, without starting from scratch.

Materials and Methods

The e-puck

The e-puck is a mobile two-wheeled differential-drive robot designed for education
and research (64). It is cylindrical in shape, with a diameter of 70 mm and a height of
50 mm. Its basic version is equipped with a PIC microcontroller and several sensors
and actuators. The sensors are: 8 infra-red transceivers, which can be used to sense
the presence of obstacles or measure the intensity of ambient light; a color camera
at the front of the robot; a microphone; and a 3-axis accelerometer. The actuators
are: two stepper motors, which control the motion of the robot by differential steering
(one motor for the left wheel and one for the right wheel); a ring of 8 red LEDs; and
a speaker.

The e-puck can be enhanced by the addition of various extension boards. For the
research presented here, we extended the basic version of the e-puck with a range-
and-bearing board (65); an omnivision module; and a Gumstix Overo board (Fig. 1C,
left). The range-and-bearing board enables local communication between e-pucks via
infra-red signals. It comprises 12 emitters and 12 receivers placed all around the
body of the e-puck. The range-and-bearing board allows e-pucks to send and receive
four-byte messages at a rate of about 30 messages per second. Upon reception of a

12

message, the board computes the distance (range) and angle (bearing) of the peer
e-puck that sent the message. The omnivision module comprises an omni-directional
camera and 3 RGB LEDs and enhances the perception and local communication
capabilities of the e-puck. Through the camera, an e-puck can see its neighboring
peers and the TAMs. Moreover, it can perceive the color coded status that the
neighboring peers might display using their RGB LEDs. The Gumstix Overo board
increases the computational capabilities of the e-puck and provides the flexibility and
potential of a computer running Linux. It allows running C++ code, which is not
possible on the PIC micro-controller of the basic version of the e-puck.

The basic version of the e-puck is powered by a rechargeable lithium-ion battery
with 5 W h capacity. The omnivision module houses a second battery with the same
capacity to cope with the higher energy requirements of the extended e-puck. In a
typical experiment, the full battery charge of an extended e-puck lasts about 40 min-
utes. Indeed, we have observed that after about 45 minutes of continuous operation,
the charge of the batteries is low. This negatively affects the behavior of the robots
and in particular their ability to successfully transmit and receive messages through
the range-and-bearing board.

The TAM

The TAM (66), task abstraction module, is a device conceived for facilitating lab-
oratory experiments with e-puck robots. A TAM represents an abstract task to be
performed by an e-puck. The goal of the TAM is to abstract from task-specific de-
tails that are irrelevant to the objectives of an experiment. The TAM is particularly
useful in experiments that focus on group dynamics rather than on the specific tasks
performed by the individuals.

The TAM is a booth which an e-puck can enter. For an e-puck, being into a TAM
for a given time span amounts to performing the task abstracted by the TAM itself.
The TAM has a cubical shape with sides of 120 mm (Fig. 1C, right). The TAM is
controlled by a microcontroller (ATmega-1284p, 16 MHz), and is equipped with two
light barriers, three RGB LEDs, and an IR transceiver for short-range communication.
Each TAM is powered by a rechargeable lithium-ion battery with 5 W h capacity, the
same battery used by the e-puck. In a typical experiment, a full battery charge lasts
for over 10 hours. The TAM is equipped also with an XBee mesh networking module
that allows the synchronization of multiple TAMs. A group of TAMs can be therefore
programmed to represent complex relationships between tasks. For example, a task
could become activated only upon completion of another one or a group of tasks could
be performed successfully only in a specific order. The experimenter implements the
logic that defines the relationship between tasks on a central computer. The computer
dispatches commands to the TAMs to realize the relationships programmed by the
experimenter. The TAMs and the central computer communicate wirelessly via the
XBee mesh networking module.

An e-puck perceives the colored LEDs of the TAM using its omni-directional cam-
era. Different tasks are signaled by using different LED colors. An e-puck can decide
to perform the task represented by a TAM by moving into it. The TAM detects
the presence of the e-puck by means of its light barriers and reacts according to a
logic defined by the experimenter. For example, upon the detection of an e-puck,

13

the TAM could change the color of its LEDs or start communicating with the e-puck
itself. The TAM and the e-puck communicate with each other through their infra-
red transceivers. Communication between e-pucks and TAMs enables experiments in
which e-pucks receive individual feedback for the tasks they perform.

ARGoS

ARGoS (67) is a modular multi-robot simulator and development environment con-
ceived for being flexible and efficient. ARGoS provides a straightforward way to port
control software developed in simulation to the robots, without requiring any modi-
fication. To achieve this result, each sensor and actuator presents an interface with
two back-end implementations: one for simulation and one for the robot. The control
software of the robot directly interacts with this interface without having knowledge
of which back-end implementation is being used. At link time, ARGoS takes care
that the appropriate back-end implementation is executed, depending on whether the
execution is to take place in simulation or on the robot. ARGoS provides a number
of physics engines. Some of them are kinematic engines that favor performance over
realism, others are dynamics engines, in two or three dimensions, that require more
computation but that produce more realistic simulations. As realism plays an impor-
tant role in our simulations and the system we propose comprises only robots that
move on the ground, we use a dynamics engine in two dimensions in all the simulated
experiments.

We used ARGoS to develop control software for, and to simulate e-pucks and
TAMs. We extended the basic model of the e-puck that was originally provided
in ARGoS by implementing models of the range-and-bearing board, the omnivision
module, and the Linux board (68). We also created the model of the TAM, which
was not originally provided by ARGoS (68).

Experimental design

The goal of the experiments we present here is to demonstrate TS-Swarm and provide
evidence that it is able to successfully sequence tasks in an autonomous and distributed
way. First, we demonstrate Mark I3 both in reality with a swarm of 20 e-puck robots
and in simulation. Besides showing the effectiveness of Mark I3, this first experiment
also provides an assessment of the simulator. After having shown that the simulator
satisfactorily predicts the behavior of TS-Swarm on the e-puck robots, we adopt the
simulator to perform a number of studies that we would be unable to perform with real
robots. These studies either involve a large number of robots (more than those that
we have available) or last longer than the battery life of the robots. In particular, we
perform a study in which we assess the scalability of Mark I3 by running experiments
in which the number of robots ranges from 20 to 80 and the surface of the arena
in which they operate ranges from 2.10 m2 to 33.67 m2. We also perform a study in
which we assess the robustness of Mark I3 to the number of robots comprised in the
swarm (Table 1 and Fig. 3). Finally, we perform three studies to demonstrate Mark I4,
Mark II3, and Mark II4. In these studies, each run of the system lasts 100,000 s (i.e.,
about 28 h), which is much longer than the battery life of the e-puck robot. Also for
these three variants, we study their scalability and robustness (Table 1 and Fig. 3).

14

The focus of the research presented here is on how a swarm can sequence tasks in
an autonomous and distributed way, rather than on the specific tasks that it should
sequence. For this reason, in these experiments we consider abstract tasks represented
by TAMs. Robots operate in a bounded arena delimited by walls, which are 42 mm
high. The arena is a regular hexagon when the tasks to be sequenced are three
and a regular octagon when the tasks are four. The TAMs abstracting the tasks
are distributed along the perimeter of the arena and are positiond in the middle of
alternate sides. Each task is associated with a color. When the tasks are three, the
colors are red (R), green (G), and blue (B). When they are four, the fourth color is
orange (O). In each experimental run, the initial position of the robots, the correct
sequence, and the relative position of the tasks are decided randomly. In all the
supplementary movies, for clarity, the correct sequence is always RGB when the tasks
are three and RGBO when they are four.

In all experiments, the final goal of TS-Swarm is to perform the correct sequence
of tasks ten times within a given time cap. As a performance measure, we consider the
time required to complete one, five, and ten executions of the correct sequence. The
first execution indicates that TS-Swarm has been able to solve the task-sequencing
problem. The tenth execution determines the final success of the system and therefore
the end of the experiment. The fifth execution represents the mid point of the previous
two measures and provides visual information on whether the execution time grows
linearly with the number of correct sequences performed or not.

Statistics

We report the performance of TS-Swarm via its empirical run-time distribution.
Given: (a) one of the four variants of TS-Swarm—i.e., Mark I3, Mark I4, Mark II3, or
Mark II4; (b) a specific experimental setting—e.g., a setting characterized by the num-
ber of robots, the surface of the arena, and the time cap; and (c) a target objective—
i.e., the execution of one, five, or ten correct sequences, we perform k independent
runs and we observe, for each run, the time required to attain the target objective.
The empirical run-time distribution is the empirical distribution of these observations.

Formally, let TC be the time cap of each run, j ∈ {1, . . . , k} be the index of
a run, rj be the run-time of run j, and k′ ≤ k be the number of successful runs,
that is, those runs j : rj < TC. The empirical run-time distribution is defined as
RTD(t) = P̂s(τ ≤ t) = #{j | rj ≤ t}/k. Here, P̂s(τ ≤ t) is an estimate of the
probability that the system attains its target objective in an amount of time τ that is
less than or equal to t. In other words, the empirical distribution RTD(t) = P̂s(τ ≤ t)
is an estimate of the probability of success of the system over time (up to TC). For
a given target objective and in a given experimental setting, the success ratio of the
system within the time cap TC is STC = k′/k.

Experiments with Mark I3
To complete a sequence, a robot must perform three tasks in a specific order, which is
a priori unknown. Upon the execution of each task, the robot immediately receives
feedback—a success, if it has performed the task in the right order; a failure, otherwise.

15

In case of failure, the robot must restart the execution of the sequence from the
beginning.

Robot experiments: We run Mark I3 10 times with 20 e-pucks. The experi-
ments are performed in a controlled environment with a flat surface and uniform light
conditions. The arena where the robots operate is a regular hexagon with sides of
0.9 m. A camera operating at about 3 frames per second is mounted on the ceiling
with its axis lying on the vertical line passing through the center of the arena. We
present the results of 10 consecutive runs. The performance of Mark I3 in each of
these 10 runs concurs to the statistics presented: no observed result is discarded for
any reason whatsoever. Once a run starts, it is accounted for in the statistics. The
statistics include therefore also the failures. In Table S3 we report the lab notebook,
which includes the record of all the information that we collected during each of the
10 runs. A run is terminated either at the tenth execution of the correct sequence or
at a time cap of 40 minutes (2,400 s). Results are reported in Fig. 4A.

Assessment of the simulator: Alongside the experiments with the robots, we
perform similar experiments in simulation using ARGoS, with the idea of producing
an assessment of the simulation environment. The control software used in the two
sets of experiments is the same: after performing the robot experiments, we port the
control software back to the simulated environment without any modification. Because
performing experiments in the simulated environment is much less time consuming
than performing them in reality, we gather results on 30 simulated runs. Moreover,
because battery life is not a concern in simulation, we extended the duration of runs
beyond the time cap of 40 minutes. Results are reported in Fig. 4B.

Scalability study: We perform simulated experiments in five experimental set-
tings. In each setting, we double the surface of the arena with respect to the previous
one. We also increase the number of robots by a factor of

√
2. The rationale is that,

by increasing the surface of the arena by a factor 2, the distance between the TAMs
increases by a factor

√
2. We therefore expect the number of robots that become

chain members to grow roughly by the same factor. By increasing the swarm size by
a factor

√
2, we expect that the robots will be sufficiently many to connect all the

TAMs. The control software adopted in the scalability study is exactly the same in all
the settings. The parameters that characterize the five settings are given in Table 1.
We ran Mark I3 30 times in each of the five settings (Fig. 3). Results are reported in
Fig. 5A(a-e).

Robustness study: We use the same five experimental settings considered in
the scalability study. For each of the five settings, we vary the number of robots
with respect to the one adopted in the scalability study. We consider both a smaller
(−10% and −20%) and a larger number of robots (+20%, +40%, +60%, +80%,
and +100%). For each experimental setting and each number of robots tested, we
report the run time distribution for the successful execution of ten sequences and the
empirical distribution of the number of robots in the chain. We ran Mark I3 30 times

16

for each number of robots considered in each of the five settings (Table 1 and Fig. 3).
Results are reported in Fig. 5A(f-o).

Experiments with Mark I4
To complete a sequence, a robot must perform four tasks in a specific order, which is
a priori unknown. The arena is a regular octagon with sides of 0.66 m. To connect
the four TAMs, Mark I4 needs to establish three branches of chain: one more than
the two that Mark I3 needs to establish. For this reason, we consider here a swarm
of 22 robots, rather than 20 as we did for Mark I3. We also increase the time cap
to 100,000 s (i.e., about 28 h). We run Mark I4 30 times in simulation. Finally, we
study the scalability and the robustness of Mark I4 (Table 1 and Fig. 3). Results are
reported in Fig. 4C and Fig. 5B.

Experiments with Mark II3
We consider a scenario in which a robot needs to complete an entire sequence of tasks
before being notified of a possible error. The tasks to be sequenced are three. The
correct sequence is a priori unknown. The arena is the same of the experiments
with Mark I3: a regular hexagon with sides of 0.9 m. As Mark II3 needs to build a
closed-loop chain, the number of robots it requires is larger than the one required by
Mark I3. We consider here a swarm of 25 robots rather than the 20 of the experiments
performed with Mark I3. As Mark II3 must explore a relatively large space of solutions,
we increase the time cap to 100,000 s. We run Mark II3 30 times in simulation. Finally,
we study the scalability and the robustness of Mark II3 (Table 1 and Fig. 3). Results
are reported in Fig. 4D and Fig. 7A.

Experiments with Mark II4
We consider a scenario similar to the one considered for Mark II3, with the only
difference that the tasks to be sequenced are four. The arena is the same of the
experiments with Mark I4: a regular octagon with sides of 0.66 m. We consider here
a swarm of 27 robots: more than those considered in the experiments with Mark I4
because Mark II4 needs to build a closed-loop chain. Also in this case, the time cap is
at 100,000 s. We run Mark II4 30 times in simulation. Finally, we study the scalability
and the robustness of Mark II4 (Table 1 and Fig. 3). Results are reported in Fig. 4E
and Fig. 7B.

17

References

1. G. Beni, From swarm intelligence to swarm robotics, in Swarm Robotics (Springer,
Berlin, Germany, 2005), LNCS vol. 3342, pp. 1–9.

2. E. Şahin, Swarm robotics: from sources of inspiration to domains of application,
in Swarm Robotics (Springer, Berlin, Germany, 2005), LNCS vol. 3342, pp. 10–
20.

3. M. Dorigo, M. Birattari, M. Brambilla, Swarm robotics. Scholarpedia 9, 1463
(2014).

4. G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full, N.
Jacobstein, V. Kumar, M. McNutt, R. Merrifield, B. J. Nelson, B. Scassellati,
M. Taddeo, R. Taylor, M. Veloso, Z. L. Wang, R. Wood, The grand challenges
of Science Robotics. Sci. Robot. 3 (2018).

5. S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau,
Self-organization in Biological Systems (Princeton Univ. Press, Princeton, NJ,
2001).

6. M. Gauci, J. Chen, W. Li, T. Dodd, R. Groß, Self-organized aggregation without
computation. Int. J. Robot. Res. 33, 1145–1161 (2014).

7. M. Schwager, J. McLurkin, D. Rus, Distributed coverage control with sensory
feedback for networked robots, in Robotics: Science and Systems, Proceedings
(MIT Press, Cambridge, MA, 2006), p. 007.

8. M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira, A. L.
Christensen, Evolution of collective behaviors for a real swarm of aquatic surface
robots. PLOS ONE 11, 1–25 (2016).

9. M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly in a thousand-
robot swarm. Science 345, 795–799 (2014).

10. N. Mathews, A. Christensen, R. O’Grady, F. Mondada, M. Dorigo, Mergeable
nervous systems for robots. Nat. Commun. 8, 439 (2017).

11. C. Virágh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai, T. Nepusz, T. Vic-
sek, Flocking algorithm for autonomous flying robots. Bioinspiration Biomim.
9, 025012 (2014).

12. R. O’Grady, R. Groß, A. L. Christensen, M. Dorigo, Self-assembly strategies in
a group of autonomous mobile robots. Auton. Robot. 28, 439–455 (2010).

13. M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi, J. McLurkin, R. Nagpal, Col-
lective transport of complex objects by simple robots: theory and experiments,
in AAMAS 2013, Proceedings (IFAAMAS, Richland, SC, 2013), pp. 47–54.

14. M. Gauci, J. Chen, W. Li, T. Dodd, R Groß, Clustering objects with robots
that do not compute, in AAMAS 2014, Proceedings (IFAAMAS, Richland, SC,
2014), pp. 421–428.

15. J. Werfel, K. Petersen, R. Nagpal, Designing collective behavior in a termite-
inspired robot construction team. Science 343, 754–758 (2014).

18

16. J. Halloy, G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tâche, I. Saïd,
V. Durier, S. Canonge, J. M. Amé, C. Detrain, N. Correll, A. Martinoli, F.
Mondada, R. Siegwart, J. L. Deneubourg, Social integration of robots into groups
of cockroaches to control self-organized choices. Science 318, 1155–1158 (2007).

17. S. Garnier, J. Gautrais, M. Asadpour, C. Jost, G. Theraulaz, Self-organized ag-
gregation triggers collective decision making in a group of cockroach-like robots.
Adapt. Behav. 17, 109–133 (2009).

18. A. Ozdemir, M. Gauci, S. Bonnet, R. Groß, Finding consensus without compu-
tation. IEEE Robotic. Autom. Lett. 3, 1346–1353 (2018).

19. G. Pini, A. Brutschy, M. Frison, A. Roli, M. Dorigo, M. Birattari, Task parti-
tioning in swarms of robots: an adaptive method for strategy selection. Swarm
Intell. 5, 283–304 (2011).

20. E. Castello, T. Yamamoto, W. Liu, A. F. Winfield, Y. Nakamura, H. Ishiguro,
Adaptive foraging for simulated and real robotic swarms: the dynamical response
threshold approach. Swarm Intell. 10, 1–31 (2016).

21. Á. Gutiérrez, A. Campo, F. Monasterio-Huelin, L. Magdalena, M. Dorigo, Col-
lective decision-making based on social odometry. Neural Comput. Appl. 19,
807–823 (2010).

22. G. Valentini, E. Ferrante, H. Hamann, M. Dorigo, Collective decision with 100
kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents
Multi Agent Syst. 30, 553–580 (2016).

23. T. Schmickl, K. Crailsheim, Trophallaxis within a robotic swarm: bio-inspired
communication among robots in a swarm. Auton. Robot. 25, 171–188 (2008).

24. M. A. Montes de Oca, E. Ferrante, A. Scheidler, C. Pinciroli, M. Birattari, M.
Dorigo, Majority-rule opinion dynamics with differential latency: a mechanism
for self-organized collective decision-making. Swarm Intell. 5, 305–327 (2011).

25. A. Reina, G. Valentini, C. Fernández-Oto, M. Dorigo, V. Trianni, A design pat-
tern for decentralised decision making. PLoS ONE 10, e0140950 (2015).

26. A. Scheidler, A. Brutschy, E. Ferrante, M. Dorigo, The k-unanimity rule for self-
organized decision making in swarms of robots. IEEE Trans. Syst. Man Cybern.
46, 1175–1188 (2016).

27. E. O. Wilson, Caste and division of labor in leaf-cutter ants (Hymenoptera:
Formicidae: Atta). Behav. Ecol. Sociobiol. 7, 143–156 (1980).

28. T. D. Seeley, The Wisdom of the Hive (Harvard Univ. Press, Cambridge, MA,
1996).

29. E. Bonabeau, G. Theraulaz, J.-L. Deneubourg, Fixed response thresholds and
the regulation of division of labor in insect societies. Bull. Math. Biol. 60, 753–
807 (1998).

30. M. J. Krieger, J. B. Billeter, L. Keller, Ant-like task allocation and recruitment
in cooperative robots. Nature 406, 992–995 (2000).

31. S. Nouyan, R. Groß, M. Bonani, F. Mondada, M. Dorigo, Teamwork in self-
organized robot colonies. IEEE T. Evolut. Comput. 13, 695–711 (2009).

19

32. T. Schmickl, R. Thenius, C. Moslinger, J. Timmis, A. Tyrrell, M. Read, J. Hilder,
J. Halloy, A. Campo, C. Stefanini, L. Manfredi, S. Orofino, S. Kernbach, T.
Dipper, D. Sutantyo, CoCoRo – The self-aware underwater swarm, in SASOW
2011, Proceedings (IEEE Press, Piscataway, NJ, 2011), pp. 120–126.

33. N. J. Nilsson, “Shakey the robot”, tech. rep. 323 (SRI AI Center, Menlo Park,
CA, 1984).

34. R. A. Brooks, Intelligence without representation. Artif. Intell. 47, 139–159
(1991).

35. R. R. Murphy, Introduction to AI Robotics (MIT Press, Cambridge, MA, 2000).

36. S. Goss, J.-L. Deneubourg, Harvesting by a group of robots, in Towards a Prac-
tice of Autonomous Systems (MIT Press, Cambridge, MA, 1992), pp. 195–204.

37. A. Drogoul, J. Ferber, From Tom Thumb to the dockers: some experiments with
foraging robots, in From Animals to Animats 2 (MIT Press, Cambridge, MA,
1992), pp. 451–459.

38. B. Werger, M. Matarić, Robotic food chains: externalization of state and pro-
gram for minimal-agent foraging, in From Animals to Animats 4 (MIT Press,
Cambridge, MA, 1996), pp. 625–634.

39. S. Nouyan, M. Dorigo, Chain based path formation in swarms of robots, in
Ant colony optimization and swarm intelligence, Proceedings (Springer, Berlin,
Germany, 2006), pp. 120–131.

40. S. Nouyan, A. Campo, M. Dorigo, Path formation in a robot swarm: self-
organized strategies to find your way home. Swarm Intell. 2, 1–23 (2008).

41. V. Sperati, V. Trianni, S. Nolfi, Self-organised path formation in a swarm of
robots. Swarm Intell. 5, 97–119 (2011).

42. F. Ducatelle, G. A. D. Caro, C. Pinciroli, F. Mondada, L. Gambardella, Commu-
nication assisted navigation in robotic swarms: self-organization and cooperation,
in IROS 2011, Proceedings (IEEE Press, Piscataway, NJ, 2011), pp. 4981–4988.

43. M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura,
M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A. L.
Christensen, A. Decugnière, G. A. Di Caro, F. Ducatelle, E. Ferrante, A. Förster,
J. Guzzi, V. Longchamp, S. Magnenat, J. Martinez Gonzales, N. Mathews, M. A.
Montes de Oca, R. O’Grady, C. Pinciroli, G. Pini, P. Rétornaz, J. Roberts, V.
Sperati, T. Stirling, A. Stranieri, T. Stützle, V. Trianni, E. Tuci, A. E. Turgut,
F. Vaussard, Swarmanoid: a novel concept for the study of heterogeneous robotic
swarms. IEEE Robot. Autom. Mag. 20, 60–71 (2013).

44. E. Chang, R. Roberts, An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Commun. ACM 22, 281–283 (1979).

45. R. C. Arkin, Integrating behavioral, perceptual, and world knowledge in reactive
navigation. Robot. Auton. Syst. 6, 105–122 (1990).

46. A. Saffiotti, K. Konolige, E. H. Ruspini, A multivalued logic approach to inte-
grating planning and control. Artif. Intell. 76, 481–526 (1995).

20

47. T. Haynes, S. Sen, Evolving behavioral strategies in predators and prey, in Adap-
tion and Learning in Multi-Agent Systems: IJCAI 1995, Proceedings (Springer,
Berlin, Germany, 1996), pp. 113–126.

48. R. P. Sałustowicz, M. A. Wiering, J. Schmidhuber, Learning team strategies:
soccer case studies. Mach. Learn. 33, 263–282 (1998).

49. M. Quinn, L. Smith, G. Mayley, P. Husbands, Evolving teamwork and role-
allocation with real robots, in ICAL 2003, Proceedings (MIT Press, Cambridge,
MA, 2003), pp. 302–311.

50. R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction (MIT Press,
Cambridge, MA, 1998).

51. J. Kober, J. A. Bagnell, J. Peters, Reinforcement learning in robotics: a survey.
Int. J. Robot. Res. 32, 1238–1274 (2013).

52. R. S. Sutton, Learning to predict by the method of temporal differences.Machine
Learning 3, 9–44 (1988).

53. C. J.C. H. Watkins, P. Dayan, Q-learning. Machine Learning 8, 279–292 (1988).

54. L. Baird, A. Moore, Gradient descent for general reinforcement learning, in NIPS
11, Proceedings (MIT Press, Cambridge, MA, 1999), pp. 968–974.

55. J. Baxter, P. L. Bartlett, Reinforcement learning in POMDPs via direct gradi-
ent ascent, in ICML’00, Proceedings (Morgan Kaufmann Publishers Inc., San
Francisco, CA, 2000), pp. 41–48.

56. C. W. Anderson, “Approximating a policy can be easier than approximating a
value function”, tech. rep. CS-00-101 (Colorado State University, Fort Collins,
CO, 2000).

57. M. T. Rosenstein, A. G. Barto, Robot weightlifting by direct policy search, in
IJCAI’01, Proceedings (Morgan Kaufmann Publishers Inc., San Francisco, CA,
2001), pp. 839–844.

58. L. Panait, S. Luke, Cooperative multi-agent learning: the state of the art. Auton.
Agents Multi Agent Syst. 11, 387–434 (2005).

59. L. Buşoniu, R. Babuška, B. De Schutter, A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Syst. Man Cybern. C 38, 156–172 (2008).

60. P. Stone, M. Veloso, Multiagent systems: a survey from a machine learning per-
spective. Auton. Robot. 8, 345–383 (2000).

61. L. E. Parker, Decision making as optimization in multi-robot teams, in ICDCIT
2012, Proceedings (Springer, Berlin, Germany, 2012), pp. 35–49.

62. J. Girard, M. R. Emami, Concurrent markov decision processes for robot team
learning. Eng. Appl. Artif. Intell. 39, 223–234 (2015).

63. A. Campo, Á. Gutiérrez, S. Nouyan, C. Pinciroli, V. Longchamp, S. Garnier, M.
Dorigo, Artificial pheromone for path selection by a foraging swarm of robots.
Biol. Cybern. 103, 339–352 (2010).

21

64. F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magne-
nat, J.-C. Zufferey, D. Floreano, A. Martinoli, The e-puck, a robot designed for
education in engineering, in Robotica 2009, Proceedings (IPCB, Castelo Branco,
Portugal, 2009), pp. 59–65.

65. A. Gutiérrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-Huelin, L. Mag-
dalena, Open e-puck range & bearing miniaturized board for local communica-
tion in swarm robotics, in ICRA 2009, Proceedings (IEEE Press, Piscataway,
NJ, 2009), pp. 3111–3116.

66. A. Brutschy, L. Garattoni, M. Brambilla, G. Francesca, G. Pini, M. Dorigo,
M. Birattari, The TAM: abstracting complex tasks in swarm robotics research.
Swarm Intell. 9, 1–22 (2015).

67. C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N.
Mathews, E. Ferrante, G. A. Di Caro, F. Ducatelle, M. Birattari, L. M. Gam-
bardella, M. Dorigo, ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intell. 6, 271–295 (2012).

68. L. Garattoni, G. Francesca, A. Brutschy, C. Pinciroli, M. Birattari, “Software
infrastructure for e-puck (and TAM)”, tech. rep. TR/IRIDIA/2015-004 (IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium, 2015).

Acknowledgments: We thank A. Roli, M. Brambilla, and G. Lucy for reading a
preliminary version of the article. M.B. dedicates his work to the memory of his
father. Funding: The project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no. 681872). M.B. acknowledges support from the
Belgian Fonds de la Recherche Scientifique, of which he is a Senior Research Associate.
Author contributions: The authors devised the system together. L.G. realized it
and performed the experiments. The authors wrote the manuscript together. M.B.
conceived and directed the project. Competing interests: The authors declare
that they have no competing interests. Data and materials availability: All
data generated and discussed are included in the article and in the Supplementary
Materials.

22

Supplementary Materials
In Section S1, we provide a detailed description of TS-Swarm and of the implemen-
tations of its four variants. In Section S2 we provide an extensive discussion of the
results of the empirical analysis. In Section S3, we sketch the highlights of movie S1
to provide insight on a typical run of Mark I3.

Section S1. Detailed description of TS-Swarm

The characterizing feature of TS-Swarm is that part of the robots of the swarm form a
chain that (i) assists the navigation of robots between task and task; and (ii) encodes
the order in which tasks must be performed. Chaining has been previously explored
in swarm robotics as a means to search the environment and assist navigation (31,
36–43). Nonetheless, to the best of our knowledge, the concept of robot chain has
never been associated with path planning nor with planning in general. In our work,
we acknowledge chaining as a path planning method and we generalize it to planning
task sequences. Generally speaking, in the context of swarm robotics, a chain is a
group of robots that align in space thus creating a precedence relation: one robot is
positioned after the other. So far, in the swarm robotics literature, chains of robots
have been conceived as sequences of robots that landmark the physical space and act
as waypoints for other robots that need to navigate from one end of the chain to the
other. In TS-Swarm, we generalize this picture to include robots that, in a sense,
“align” in the abstract space of the tasks, one after the other, creating a precedence
relation between the tasks themselves: one task must be performed after the other.
These robots, in a sense, “landmark” the abstract space of the tasks and act as logical
waypoints for other robots that need to perform the tasks in the order encoded by the
chain. The chain that the robots create in TS-Swarm accomplishes the double role of
guiding robots in the physical space and in the abstract space of the tasks. It could be
considered as a chain that develops in the physical space augmented with the abstract
space of the tasks. In the physical subspace, the chain encodes the information needed
for navigation from area to area; in the abstract space of the tasks, it encodes the
order in which tasks themselves must be performed.

In the rest of the section, we give a detailed description of Mark I3 and we then
introduce Mark I4, Mark II3, and Mark II4 by highlighting their distinctive traits. Sec-
tion S1.1 is devoted to Mark I3. Section S1.2 is devoted to Mark I4, Mark II3, and
Mark II4.

S1.1 Mark I3
Although all the robots of the swarm execute the same control software, they as-
sume different roles at runtime. Roles are not pre-assigned, but are rather taken
autonomously by the robots on the basis of their interactions with peers and envi-
ronment. The robots can assume four different roles: guardian, link, tail, and runner.
We will collectively refer to guardians, links, and tail as chain members.

Follow
chain

Random
walk

Receive
guardian
indication

Become
new tail

Random
walk

Tail

Link

Guardian

Runner

unattended
task

task found

new tail

failure

tail found

do not
perform task

guardian found

chain
found

chain
lost perform task

Random
walk

Perform
task

success

Fig. S1. State machine of TS-Swarm. High-level description of the robots’
behavior.

The control software of the robots is realized as a probabilistic finite state machine
in which the control cycle has period of 100 ms. A high-level representation of the
probabilistic finite state machine is given in Fig. S1.

At every control cycle, all chain members broadcast a four-byte message via their
range-and-bearing board. On the other hand, runners broadcast a four-byte range-
and-bearing message only in specific situations, as it will be detailed in the following.
The general scheme of the message encoding is given in Fig. S2. Details will be
provided on a per-role basis in the following of this section.

In the rest of this section, we detail the implementation of the four robot roles of
Mark I3 for the extended e-puck platform (see Materials and Methods).

S1.1.1 Guardian

The guardians are robots that position themselves right in front of a task to signal its
presence and to indicate whether a runner should perform it or not. They announce
their role by displaying the color cyan through their RGB LEDs (Fig. S3). The
guardians also act as end points of the branches of the chain. In particular, they are
in charge of starting the construction of a branch when: (i) the task they guard is the
first to be performed, or (ii) they are reached by the chain being built (provided that
the whole chain is not completed, yet).

Before becoming a guardian, a robot is a runner that explores the environment
performing a random walk. A runner becomes a guardian when it encounters an
unattended task, performs it, and eventually stand in front of it. After performing
the task of which it becomes a guardian, a robot receives positive feedback if the task
is the first one to be performed and a negative one otherwise. More precisely, to act
as a guardian, a robot positions itself so that the TAM of the guarded task is right
behind its back. Indeed, after performing the task, and before assuming the role of

GUA CLR CND/CNTDATA[3]: —

7 6 5 4 3 2 1 0

EST INCHN LNK_NODATA[2]: CONF

7 6 5 4 3 2 1 0

BRN DIR/
FEEDDATA[1]: INHBT TAIL REQ/

RES—

7 6 5 4 3 2 1 0

IDDATA[0]:

7 6 5 4 3 2 1 0

Fig. S2. Encoding of the range-and-bearing message in Mark I3. Guardians
identify their messages by setting DATA[3][6]. Each guardian locally broadcasts its
CND and CONF (see Section S1.1.1) by setting DATA[3][2:0] and DATA[2][7], respec-
tively. Additionally, a guardian indicates the color of the guarded task (DATA[3][5:3]),
whether it is in chain or isolated (DATA[2][5]), and whether the nearby runners should
be inhibited (DATA[1][3])—except the one that initiated the inhibition and whose ID
is indicated in DATA[0][7:0]. When it is reached by a branch of chain, a guardian also
sets DATA[2][6] to indicate that the branch has been established and increments by
1 the value of BRN (DATA[1][6:4]) received from that branch. BRN enumerates the
branches of chain that have been established; it is used to identify each branch and
to determine when all the tasks have been connected by the chain. The links along
a branch relay the value of BRN indicated by the guardian that initiates the branch.
Links indicate also their position within the branch (DATA[2][4:0]) and whether the
branch is established or still being built (DATA[2][6]). The tail identifies its messages
by setting DATA[1][2]. To indicate the sector in which a new tail can join the chain,
the tail sends, only in that sector, a message in which DATA[1][1] is set. To respond to
a request for becoming a new tail, the tail sends a response by setting DATA[1][0] and
inserting the ID of the selected requesting runner in DATA[0][7:0] (see Section S1.1.3
and Fig. S8). Runners’ messages are characterized by the value 0 in the fields GUA,
TAIL, and LNK_NO. Runners can send a request to join the chain as the new tail
by setting DATA[1][0]. They notify a guardian of the success/failure of a task exe-
cution by indicating their value of CNT in DATA[3][2:0] and the feedback received
in DATA[1][1] (see Section S1.1.1 and Fig. S5). Finally, a runner can inhibit other
neighboring runners while communicating with a guardian or performing a task by
sending a message in which DATA[1][3] is set (see Section S1.1.1 and Section S1.1.4).

C Y CYYY

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Fig. S3. Guardians. The guardians are the chain members that are at the two
ends of each branch. They are identified by the color cyan. They place themselves
right in front of a task and instruct other robots on whether they should perform it
or not.

guardian, the robot exits the TAM moving forward and in a straight line for about
0.25 m. As a result, when the robot stops and takes the role of the guardian, the
guarded task is behind its back.

The guardian can be in four different states, depending on the feedback received
after performing the guarded task and on the state of chain construction.

• If the feedback is positive and the chain does not exist yet, the guardian is
isolated in front of the first task. In this case, the guardian acts also as the tail
of the chain to recruit chain members and form the first branch of the chain.

• If the feedback is negative and the chain is not perceived in the neighborhood,
the guardian is isolated in front of either the second or third task. In this case,
the guardian waits to be reached by the chain. In the meantime, it indicates
that runners that have not performed any task should not perform the one it
guards.

• If the feedback is negative and the branch of chain being built has arrived in
the vicinity, the guardian joins the chain and completes the construction of the
branch. If the construction of the chain is not complete, that is, if some tasks
have not been reached yet, the guardian takes also the role of tail and initiates
the construction of a further branch.

• Independently of the feedback originally received, after joining the chain and
after being relieved from the duties of tail, the guardian limits itself to instruct
the runners on the execution of the task guarded.

The transition between these four states is graphically described in Fig. S4.
When acting as a tail, the guardian initiates the construction of a branch of chain

on its right-hand side—the guarded task being behind its back. The goal is to con-
struct a branch that departs from the right-hand side of the task and then sweeps the
space anticlockwise when its tail reaches a wall. In all other respects, the guardian
acts as any other tail—see Section S1.1.3.

The primary goal of a guardian is to guide runners in the execution of tasks. We
will refer to the communication protocol between runners and guardians as guardian

Tail &
Guardian

Guardian

isolated

Guardian

in chain

branch
established

[else]

new tail

new tail

[all tasks
in chain]

[feedback==1]

[feedback==0]

Tail &
Guardian

Fig. S4. State machine of a guardian. The four states in which a guardian can
be, with respect to the construction of the chain.

Table S1. Guardian protocol (G protocol), description of messages.

message full name description

G_ADV advertisement message

Message locally broadcast by a guardian for
nearby runners; it provides the conditions
under which the task should be performed
and the confidence of the guardian; it con-
tains CND and CONF

G_NTF notification message

Message sent by a runner to a guardian after
executing its task; it notifies the guardian
of the feedback received upon execution; it
contains CNT and FEED (which is 1 if the
execution was successful, 0 otherwise)

protocol (G protocol). The G protocol works as follows—see Fig. S5 for an example
of message exchange and Table S1 for a description of the messages. Every guardian
locally broadcasts a range-and-bearing message (G_ADV) that contains information
about the guarded task. The message contains two pieces of information: (i) the
number CND of tasks that a runner must have performed to qualify for performing
the guarded one; and (ii) the Boolean CONF, which states whether the guardian
is confident about the value indicated in CND. CND and CONF are respectively
encoded as DATA[3][2:0] and DATA[2][7]—see Fig. S2.

As mentioned above, a runner that encounters an unattended task performs it and
becomes its guardian. As a guardian, if the feedback received after performing the
task was positive, it will broadcast CND = 0 and CONF = 1. This means that a
runner that has not performed any task will be positively instructed to perform the
guarded one. On the other hand, if the feedback was negative, the task is not the first
to be performed but the information available is insufficient to tell whether the task
is the second or the third of the sequence. In this case, the guardian will broadcast

Guardian Runner

G_ADV CND CONF=1

CND CONF=1

LeavePerform

G_NTF CNT FEED=1

CND == CNT CND != CNT

A B

Guardian Runner

G_ADV CND CONF=0

CND CONF=0

LeavePerform

G_NTF CNT FEED=1

CND <= CNT CND > CNT

CND=CNT+1
CONF=0

CND=CNT-1
CONF=1

CNT CNT

FEED==1 FEED==0

CNT=CNT+1

success failure

G_NTF CNT FEED=0

CNT=CNT+1

Fig. S5. Guardian protocol (G protocol), sequence diagram. A runner
that receives a G_ADV message performs the guarded task depending on whether
the guardian is confident (CONF) about the value of CND. (A) If the guardian
is confident about the value of CND, the runner performs the task provided that
CNT = CND. (B) If the guardian is not confident about the value of CND, the runner
performs the task provided that CND <= CNT. In the latter case, the guardian uses
the feedback notified by the runner through a G_NTF message to update CND and
CONF.

CND = 1 and CONF = 0. This means that a runner needs to have performed at
least one task to qualify for performing the guarded task. Though, this condition is
not sufficient for guaranteeing that the execution will be successful (CONF = 0).

The guardian is notified by every runner that performs the guarded task through
a range-and-bearing message (G_NTF). Specifically, after performing the task, a
runner communicates whether the execution was successful (DATA[1][1], see Fig. S2)
and the number CNT (DATA[3][2:0]) of tasks that it has so far successfully performed
in the right order—including the guarded one, in case its execution was successful. If
the guardian was not confident about the condition CND, that is, if CONF = 0, it
updates its G_ADV as follows. If the runner has successfully performed the task in
the correct order, the guardian sets CONF = 1 and CND = CNT− 1; otherwise, the
guardian confirms CONF = 0 and sets CND = CNT + 1. The rationale is that, if the
execution was unsuccessful, the runner failed to perform its task number CNT + 1
in the correct sequence. This means that the task guarded by the guardian is not
the number CNT + 1 in the sequence. At the same time, as the runner has already
performed CNT tasks, the one guarded by the guardian is not among the first CNT of
the sequence, otherwise the guardian would have been previously notified of a success
and would have already set CONF. All in all, this means that the guarded task
must be at least in position CNT + 2 of the correct sequence. As a consequence, the
guardian will indicate that a runner must have performed at least CNT + 1 tasks
before it qualifies for performing the one at hand.

A further duty of a guardian is to relay inhibition messages produced by the
runners to avoid that they crowd around a task—see Section S1.1.4 for the details.

S1.1.2 Link

The chaining behavior we implemented for TS-Swarm is loosely inspired by previous
works (31, 40). Instead of the polychromatic cyclic pattern previously used (31, 40)
to indicate the sense in which the chain should be followed, the links in TS-Swarm
adopt a monochromatic pattern. They all indicate their role and mark their position
in space by displaying the color yellow through their RGB LEDs. The goal of the chain
is to assist the navigation of runners and ultimately lead them to the guardians of
the tasks. To facilitate the navigation of runners, each link positions itself and aligns
properly with respect to its two neighboring chain members: the one that precedes
and the one that follows in the chain. At every control step, each link adjusts its
position through displacements that consist of two components: distance adjustment
and alignment (Fig. S6).

The direction of the distance adjustment component is defined by the line con-
necting the link itself and the neighboring chain member that is the farthest away (in
absolute value) from a target distance of 0.15 m. The distance adjustment component
is oriented towards this neighboring chain member if the latter is farther that the
target distance (Fig. S6A). Otherwise, it is oriented in the opposite sense (Fig. S6B).

The direction of the alignment component is given by the mean of the angles α
and β under which the preceding and following chain members are seen. Formally,

A

B

Y

Y

Y Y

Y

Y

Fig. S6. Motion of a link. Every movement of a link consists of two components:
distance adjustment and alignment. The two components are computed with respect
to the two closest neighboring chain members that the link perceives. The alignment
component lies in the direction given by the mean (γ) of the angles under which the
link perceives the following chain member (α), and the preceding one (β). Angles
are measured with respect to the heading of the link, which is indicated by the black
triangle and the dashed line. The distance adjustment component lies in the direction
of the neighboring chain member whose distance is the farthest from the target spacing
distance between chain members. (A) If the neighboring chain member is too far, the
distance adjustment component is oriented towards it. (B) If the neighboring chain
member is too close, the distance adjustment component is oriented in the opposite
sense.

the angle γ between the heading of a link and its alignment component is:

γ =

arctan
(

sin(α)+sin(β)
cos(α)+cos(β)

)
, if cos(α) + cos(β) > 0;

arctan
(

sin(α)+sin(β)
cos(α)+cos(β)

)
+ π, if cos(α) + cos(β) < 0 and sin(α) + sin(β) ≥ 0;

arctan
(

sin(α)+sin(β)
cos(α)+cos(β)

)
− π, if cos(α) + cos(β) < 0 and sin(α) + sin(β) < 0;

+π
2
, if cos(α) + cos(β) = 0 and sin(α) + sin(β) > 0;

−π
2
, if cos(α) + cos(β) = 0 and sin(α) + sin(β) < 0;

undefined, if cos(α) + cos(β) = 0 and sin(α) + sin(β) = 0.

To avoid oscillations, a link does not adjust its distance or alignment if its position
with respect to its neighboring chain members is sufficiently close to the ideal one.
The tolerance on the distance is ±0.05 m and the one on the alignment angle is ±10◦.

A link stops in its current position, halting the adjustment of its alignment and
spacing, upon being notified that the branch it composes is established. The notifica-
tion (encoded in DATA[2][6]—see Fig. S2) is sent by the guardian that has established
the branch upon becoming the new tail of the chain; it is then relayed by the links.

S1.1.3 Tail

The tail marks the position that the chain has reached and the point from which the
construction should proceed. To announce its role and location, the tail uses a unique
color for its RGB LEDs: magenta (Fig. S7). In addition, the tail locally broadcasts,
through its range-and-bearing board, a message that announces its role by setting
DATA[1][2]—see Fig. S2. The runners that navigate along the chain are thus informed
when they approach the end of the chain and can attempt to join it to take the role
of the new tail. Joining the chain is a critical process that must be robust to failure,
promote the formation of a well-organized chain, and prevent inconsistent states. In
particular, the process must guarantee that the chain has always one and only one tail.
This is achieved via a communication protocol that regulates the interaction between
the incumbent tail and the prospective one. The communication is performed via
the range-and-bearing board. We call the protocol tail protocol (T protocol). The
T protocol works as follows—see Fig. S8 for an example of message exchange and
Table S2 for a description of the messages.

The tail first makes sure to be at the right distance from the preceding chain mem-
ber. Then, the tail starts broadcasting a directional message T_DIR (DATA[1][1],
see Fig. S2). Through this message, the tail indicates the circular sector in which the
new tail should position itself. The ideal direction along which the new tail should
position itself is computed by extending the segment connecting the tail with the
preceding chain member: as a result, the new tail will be already correctly aligned. If
a runner receives the directional message, it is because it is in the intended circular
sector. In this case, the runner stops in place and sends the tail a request message
T_REQ (DATA[1][0]). The request message carries the unique ID of the runner
(DATA[0][7:0]). The tail might receive multiple requests from different runners. Re-
quests are handled following a first-come-first-served policy. The tail responds with
a T_RES (DATA[1][0]) that contains the ID of the runner selected as the new tail
(DATA[0][7:0]). Upon reception of a response containing its own ID, the selected

A

B

C

MC Y Cno see

C Y Y Y M
see C

C Y Y Y Y C

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Fig. S7. Tail. (A) The tail marks the position that the chain has reached at a given
moment in time during its construction. It is identified by the color magenta. (B)
When the tail sees a guardian in its vicinity, it halts the construction of the current
branch of the chain. (C) The tail becomes a link and transfers its role of tail to the
guardian.

Tail

Runner
R1

Runner
R2

T_REQ ID=R1

T_DIR

T_REQ ID=R2

T_DIR

T_RES ID=R1

T_ACK ID=R1

Become tail

Leave

Timeout

Become link

Fig. S8. Tail protocol (T protocol), sequence diagram. The tail broadcasts a
T_DIR message in the circular sector in which a new tail should join the chain. Both
runners R1 and R2 receive this message and request to join as the new tail through
a T_REQ. The T_REQ contains the ID of the runner that is sending the request.
The tail selects the first request received, in the example, the one of runner R1. Then,
the tail answers by sending a T_RES that contains the ID of the request selected,
in this case, R1. After receiving the T_RES containing its own ID, R1 acknowledges
the tail with a T_ACK message and becomes the new tail. When the tail receives
the T_ACK of R1, it becomes a link. In the meantime, the request of R2 expires
without a response and runner R2 leaves.

Table S2. Tail protocol (T protocol), description of messages.

message full name description

T_DIR directional message

Message broadcast by a tail only in the cir-
cular sector in which a new tail should place
itself; it indicates to a runner that it is in the
right position to join the chain as the new
tail

T_REQ request message
Message sent by a runner to the tail; it rep-
resents the request to become the new tail; it
contains the unique ID of the runner

T_RES response message

Message sent by the tail to a runner that pre-
viously sent a request; it represents for the
runner the confirmation of being the selected
one to become the new tail; it contains the
unique ID of the runner selected as the new
tail

T_ACK acknowledgment message

Message sent by the selected runner to the
tail; it represents the acknowledgment of the
response message and the acquisition of the
role of tail; it contains the ID of the runner,
which is now the tail

runner becomes the new tail and closes the communication via an acknowledgment
message T_ACK (DATA[1][2] is set and its own ID is inserted in DATA[0][7:0]).
The tail transfers its role to the runner after either receiving a T_ACK or detecting
another robot that displays the magenta tail color.

Besides managing the communication with runners that attempt to join the chain,
the tail is also in charge of searching for a guardian. When a guardian is found, the
tail includes it in the branch of chain being built to complete its construction. To
search for a guardian, the tail drives the branch of chain being built so that it sweeps
the environment in an anticlockwise motion. The tail slowly moves perpendicularly to
the direction along which the branch is being built, on the left-hand side of the latter
(Fig. S9C). As links react by adjusting spacing and alignment, the movement of the
tail creates a domino effect: the whole branch turns pivoting around the guardian
from which the branch originates, which stays still in its position in front of its task.
As we have seen in Section S1.1.1, a branch departs from its originating guardian on
its right-hand side—with the TAM on the back of the guardian (Fig. S9B). During
its construction, a branch reaches the wall of the arena, which prevents its further
extension (Fig. S9C). Thanks to the sweeping motion generated by the movement of
the tail, the branch being built disentangles from the wall and allows further runners
to join and extend it (Fig. S9D).

To decide when it should start to move and trigger the sweeping motion of the
branch, the tail cannot rely on its ability to detect the wall of the arena in its vicinity.
This is due to the limited range of the proximity sensors and to the noise that affects
their readings. As an alternative, the tail measures the amount of time during which
no robot attempts to join the branch. Past a predefined threshold, the tail assumes

that the branch being built is stuck against a wall and triggers the sweeping motion.
Once triggered, the sweeping motion is interleaved with pauses to allow links to align
and, possibly, new members to join.

When the tail spots a guardian (Fig. S9E), the sweeping motion stops and the
tail aligns with the guardian and the preceding chain member. The guardian and the
tail then establish the branch of the chain: the tail becomes a link and transfers its
role of tail to the guardian (Fig. S9F). The guardian then broadcasts a notification
(DATA[2][6]—see Fig. S2) for the links that compose the branch. Upon receiving this
notification, the links halt the adjustment of their alignment and spacing, stopping in
place. A new branch of the chain can now depart from the guardian. This mechanism
eventually allows the swarm to form a chain that connects all the tasks, under the
assumptions that the arena is convex, the tasks are located along its perimeter, and
there are no obstacles in the environment (Fig. S9).

S1.1.4 Runner

Runners are all the robots that are not part of the chain. When the system is deployed,
all the robots of the swarm start as runners. At runtime, they might assume the role
of chain members—i.e., guardians, links, or tail—depending on the interactions they
have with peers and environment. Runners do not adopt any color to announce their
role. Indeed, their goal is not to landmark the space nor to provide information about
task execution, but rather to follow the indications provided by the chain (Fig. S10).

A runner might become a guardian if, while performing a random walk, it encoun-
ters an unattended task. This typically happens at the beginning of the lifetime of the
system. The number of runners that become guardians equals the number of tasks to
be performed.

The other runners continue to explore the environment by performing a random
walk. If they encounter a chain, they follow it. Runners perceive the position of chain
members via their omnivision module. Runners navigate along the chain by keeping
it on their left. This generates an anticlockwise movement of the runners around the
chain. The traffic of runners flows neatly along a branch of the chain in both senses
without interfering: the runners that travel in one sense remain on one side of the
chain, those that travel in the other sense remain on the other (Fig. S11).

At every control step, a runner that follows a chain considers up to two neighboring
chain members to define its direction of motion. The direction is given by the sum
of a radial and a tangential component. The radial component keeps the robot at a
target distance d̄ from the chain while the tangential component allows the robot to
proceed along it. The two components refer to a circle centered in a reference point.
If the runner perceives only one chain member, the reference point is the position
of the chain member perceived (Fig. S12A,B). If the runner perceives two chain
members, the reference point is the intersection between the line passing through the
two chain members perceived and its perpendicular passing through the runner itself
(Fig. S12C,D).

Runners are led by the chain towards a guardian. When a runner reaches a
guardian, it is instructed on whether to perform the guarded task—see Section S1.1.1
and Fig. S5. In particular, upon receiving a G_ADV message, a runner evaluates the

Y M

Ø

Y M

Ø

Y

M

Y Ø

see
 branch

established

A B

C D

E F

C

CC

C

C

C C

C

Y

Y

Y

Y

Y

Y

Y

Y

M

CC

CC

CC

Ø

Ø
Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø
Ø

Ø

Ø

ØØ

Ø
Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø
Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Fig. S9. Construction and motion of a branch of chain. (A) Three robots
become guardians of the three tasks. (B) The one that receives positive feedback
after performing its guarded task initiates the construction of a branch of chain on its
right-hand side. (C) The branch extends until it reaches the wall of the arena, which
prevents other runners from joining it. The tail then moves perpendicularly to the
direction of the branch, on the left-hand side of the latter. (D) The movement of the
tail triggers a sweeping motion of the whole branch, which disentangles the branch
from the wall and enables its further extension. (E) The process is repeated until the
tail spots the guardian of a task. (F) The tail transfers its role to the guardian and
completes the construction of the branch.

A

B

C

Ø

MC Y Y Y

Ø

C CYYYY

Ø

CC Y Y Y Y

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Fig. S10. Runners. Runners are not identified by a color. (A) If a runner navigates
along a branch of chain that has not been completed yet, it eventually encounters the
tail and attempts to join the chain as the new tail. (B) If a runner navigates along a
branch of chain that is complete, it eventually encounters a guardian. The guardian
might indicate that the runner must (B) perform the task, or (C) skip it.

C

CC YYYY

Y

Y

Y

Y

Ø

Ø

ØØ

Ø

Ø

Ø

Ø

Ø

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Fig. S11. Trajectory followed by the runners around the chain. Runners
navigate along the chain by keeping it on their left.

B

Y

Ø

C D

Ø

Y Y

Ø

Y Y

A

Y

Ø

Fig. S12. Motion of a runner along a branch of the chain. The direction of
motion is given by the sum of a radial and a tangential component that refer to a circle
(dashed gray line) centered in a reference point. (A, B) When only one chain member
is perceived, the reference point is the position of that chain member. (C, D) When
two chain members are perceived, the reference point is the intersection between the
line passing through those chain members and its perpendicular passing through the
runner itself. (A, C) If the runner is too far from the reference point (d > d̄), the
radial component is oriented towards it. (B, D) If it is too close (d < d̄), the radial
component is oriented in the opposite sense.

information provided in light of the number CNT of tasks it has already performed
in the correct order. The runner performs the task either if (i) CONF = 1 and
CND = CNT; or if (ii) CONF = 0 and CND <= CNT. Otherwise, the runner
skips the task signaled by the guardian. After performing the task—or skipping
it—the runner revolves anticlockwise around the guardian until it finds a branch
of the chain to follow. If the task was performed, while revolving around it, the
runner notifies the guardian of the feedback received upon task execution—see also
Section S1.1.1. The runner notifies the guardian via a G_NTF in which it encodes
its (possibly incremented) value of CNT as DATA[3][2:0] and the feedback received
as DATA[1][1]—see Fig. S2. Eventually, the chain leads each runner through all the
tasks. By using the indication provided by the guardians, runners are able to perform
the tasks along the chain in the correct order. When a runner completes the execution
of a full sequence, it starts a new execution, in a cyclic manner.

To avoid overcrowding around the guardians and to enable an ordered execution of
the tasks, runners adopt a mechanism of inhibition. When a runner starts approaching
a task, it broadcasts an inhibition message through its range-and-bearing board. The
inhibition message is echoed by the guardian of the task, if present. The nearby
runners that perceive the inhibition message transition to an inhibition state or, with
a certain probability, leave the area. Inhibited runners clear the way in front of
the task to avoid hindering other robots’ movement. After a certain period of time
elapsed without receiving any inhibition message, an inhibited runner transitions back
to normal operation.

S1.2 Mark I4, Mark II3, and Mark II4
In this section, we modify the assumptions under which Mark I3 is developed, thus
making the sequencing problem harder. In Section S1.2.1, we modify the assump-
tion that the tasks to be sequenced are three. We do this by introducing TS-Swarm
Mark I4, a system that sequences four tasks. In Section S1.2.2, we modify the as-
sumption that runners receive feedback after performing each single task. Under this
assumption, a runner is notified that the sequence being performed is wrong as soon
as it performs the first task that departs from the correct sequence. We modify this
assumption by considering the case in which a runner has to perform an entire se-
quence before receiving any feedback. We introduce TS-Swarm Mark II3, a system
that sequences three tasks without needing immediate feedback after the execution of
a task. In Section S1.2.3, we modify both assumptions at the same time. We do so by
introducing TS-Swarm Mark II4, a system that sequences four tasks without needing
immediate feedback after the execution of a task.

S1.2.1 TS-Swarm Mark I4

TS-Swarm Mark I4, hereafter Mark I4, sequences four tasks instead of the three se-
quenced by Mark I3. The only difference between Mark I3 and Mark I4 is that in the
latter the task counter of the robots counts up to four. In all other respects, the two
systems are identical. In particular, the implementations, the values of all the param-
eters, and the encoding of the range-and-bearing messages (Fig. S2) are identical.

A B

C

CC Y

CC

C

YYY

Y

Y

Y

Y

C

Y

Y

Y

Y

Y

YY

Y

Y

Ø

Ø

Ø

Ø Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Fig. S13. The chain in Mark I3 and Mark I4. (A) The chain built by Mark I3
is composed of two branches. (B) The one built by Mark I4 is composed of three
branches.

In Mark I4, four robots take the role of guardian, one per task, and the chain
comprises three branches (Fig. S13B).

S1.2.2 TS-Swarm Mark II3

TS-Swarm Mark II3, hereafter Mark II3, assumes that a runner has to perform an
entire sequence before knowing whether the sequence itself is correct or not. Mark II3
differs from Mark I3 in the following main points:

• All guardians initiate the construction of a branch of the chain in parallel. When
all the branches are complete, the chain is a closed loop that connects all the
guardians. The guardians use the closed-loop chain to exchange information
and to establish an initial sequence of the tasks.

• Once the initial sequence is established, the guardians direct the runners so that
the initial sequence and all its permutations are tested, one after the other. The
swarm collectively explores the tree of the permutations of the initial sequence.
Each robot (guardians, links, and runners) contributes to the collective explo-
ration by acting reactively, relying only on partial knowledge of the sequences
being tested.

• After completing a sequence, a runner receives feedback on whether the sequence
is correct or not. It notifies the feedback to the guardian of the last task, which
then shares it with all other guardians via the closed-loop chain. If the sequence
is correct, from then on all runners are instructed so as to perform it. Otherwise,
the following sequence in the depth-first search is tested.

All guardians initiate the construction of a branch because, after executing a task for
the first time, they do not have any way to break the symmetry among themselves.

A B

C

C

C Y Y Y Y

Y

Y

Y

YY

Y

Y

Y

Ø

Ø

Ø

ØØ

Ø

Ø

Ø

Ø

Ø

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

CC

C

C

Y

Y

Y

Y

Y

YY

Y

Y

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Y

Y

Y

Ø

Ø

Fig. S14. The chain in Mark II3 and Mark II4. The guardians do not have
any way to break the symmetry among themselves after performing their guarded
task. Therefore, they all initiate the construction of a branch of the chain. When
all branches are complete, the chain forms a closed loop that the guardians use for
communicating. (A) The chain built by Mark II3; and (B) the one built by Mark II4.

Indeed, in Mark I3 (and Mark I4), after executing their respective tasks, one of the
guardians receives positive feedback while the others a negative one. The one that
receives the positive feedback is the one associated with the first task to be performed
in the sequence. This is the guardian that initiates the construction of the chain.
In Mark II3, no guardian receives any feedback so the above mechanism cannot be
used to break the symmetry at this moment of the system’s lifetime. As an alter-
native, all guardians initiate the construction of a branch. When all branches are
complete and the chain is closed (Fig. S14A), the guardians communicate via range-
and-bearing messages that are relayed by the chain members. The guardians use the
communication medium that they have established to break the symmetry and or-
der themselves. The order of the guardians (and therefore of the tasks they guard)
defines the initial sequence to be tested and eventually the whole permutation tree
that will be then searched. The guardians order themselves using a leader-election
algorithm (44) through which they assign the label c to the one of them with the
largest ID. Guardian c sends a message that is relayed clockwise along the closed-loop
chain. The first guardian that receives the message is assigned the label b and the
following the label a.

Mark II3 explores the space of the possible sequences by traversing the tree of the
permutations of 〈a, b, c〉 (Fig. S15). The tree is explored via depth-first search. In
practice, the guardians coordinate themselves to direct the runners so that they test
the possible sequences one after the other. As a first step, the guardians address the
runners to the tasks guarded by a, b, and c, in this order; as a second step, to the
tasks guarded by a, c, and b; as a third step to the tasks guarded by b, a, and c,
and so on. The exploration of the permutation tree is distributed. At any moment in

0:

2:

1:

5:

A B

3:

4:

UPI

Fig. S15. Exploration of the space of possible sequences in Mark II3.
(A) Permutation tree. (B) List of sequences explored via a depth-first search of
the permutation tree. UPI is the unique permutation identifier : the sequence with
UPI = 0 is the initial sequence defined via the election algorithm. UPI = 1 is its first
permutation encountered by searching the permutation tree via depth-first search;
UPI = 2 is the second one, and so on.

time, each guardian has only partial knowledge about the sequence being tested. To
clarify this, consider the example in Fig. 6, in which the guardian standing in front of
the green task is assigned the label b via the election mechanism described above.

The transition between a step and the following one is triggered by a failure re-
ported by a runner. When a runner that has performed all the three tasks in the order
prescribed at that step receives negative feedback, it reports the failure to the guardian
of the last task performed. This guardian initiates the transition to the following step
by sending a range-and-bearing message that is relayed along the closed-loop chain.
The guardians that receive the message transition to the following step. The explo-
ration of the permutation tree is thus reactive: guardians transition from one sequence
to the following one in response to the notification of a failure from a runner or from
the closed-loop chain.

As they approach a guardian, the runners are notified of the transition and start
from scratch the execution of the new sequence, as directed by the guardians.

Eventually, the search of the permutation tree leads the swarm to hit the correct
sequence. When the first runner receives positive feedback after performing the three
tasks in the correct order, it reports the success to the guardian of the last task
performed. This guardian communicates the event to the other guardians via the
closed-loop chain. The search process terminates and the guardians continue directing
the runners following the policy that produced the correct sequence.

To summarize: in Mark II3, the search process relies on the cooperation of guardians,
links, and runners. Each robot acts reactively and no robot has complete knowledge
of the sequence being performed: (i) runners navigate the environment following the
chain and perform tasks if directed to do so by the guardians; (ii) links relay infor-
mation; (iii) guardians transition from state to state on the basis of the feedback
reported by the runners. In this context, the state of a guardian is "direct to the
guarded task runners that have already performed X tasks". The sequence of states
through which each guardian transitions is uniquely determined by its position in the
initial sequence, as determined by the election process. At no moment in time, a
guardian has knowledge of the whole sequence being performed by the runners. Also

in the absence of immediate feedback, TS-Swarm collectively converges to the correct
sequence without relying on representations of the environment or symbolic reason-
ing. The ability to sequence the given tasks emerges from the interaction of individual
robots that act reactively.

Implementation details. The range-and-bearing message that the guardians ex-
change to transition from a step of the search to the following one contains a 2 bit
field M4PI, modulo 4 permutation identifier. M4PI is an integer ranging from 0 to
3. Its value is M4PI = UPI mod 4, where UPI is the unique permutation identi-
fier, of the new permutation to be tested (Fig. S15B). The general scheme of the
range-and-bearing message encoding in Mark II3 is given in Fig. S16.

S1.2.3 TS-Swarm Mark II4

TS-Swarm Mark II4, hereafter Mark II4, sequences four tasks under the assumption
that a runner has to perform an entire sequence before knowing whether the sequence
itself is correct or not. Mark II4 is based on Mark II3, the only difference being that
the task counter of the robots counts up to four. In all other respects, the two systems
are identical: the implementations, the values of all the parameters, and the encoding
of the range-and-bearing messages (Fig. S16) are the same.

In Mark II4, four robots take the role of guardian, one per task, and the chain is a
closed loop that comprises four branches (Fig. S14B). The tree of permutations and
the list of sequences explored by Mark II4 is given in Fig. S17.

Section S2. Discussion of the results

We further discuss the experimental results reported in the article—Fig. 4, Fig. 5,
and Fig. 7.

S2.1 Experiments with Mark I3
Fig. 4A,B compares the results obtained by Mark I3 in the robot experiments and
in the simulated ones, under the same experimental setting. The two plots show
the empirical run-time distributions for the execution of one, five, and ten correct
sequences—see Materials and Methods for an introduction to the notion of empirical
run-time distribution. The plots indicate that Mark I3 is typically able to perform
the tasks in the correct order. It does so both on the robots and in simulation: the
performance is similar in the two cases.

Concerning the experiments on the robots, Mark I3 was able to complete ten se-
quences before the time cap on 9 runs out of 10. In the remaining run, it was nonethe-
less able to determine the correct order of the tasks and to perform 9 sequences before
the time cap. In the laboratory notebook (Table S3), we report the record of all the
information we collected during the 10 runs with the robots. Concerning the sim-
ulated experiments, Mark I3 achieved a success ratio of 90%: in 27 runs out of 30,
Mark I3 was able to complete ten sequences before the time cap. All in all, the results
show that Mark I3 is able to sequence and perform the three given tasks both on the

SOURCE_IDDATA[3]:

7 6 5 4 3 2 1 0

EST CNDDATA[2]: GUA CLR

7 6 5 4 3 2 1 0

M4PI/LNK_NO DIR/
FEEDDATA[1]: IS_FEED TAIL REQ/

RESELEC INHBT

7 6 5 4 3 2 1 0

IDDATA[0]:

7 6 5 4 3 2 1 0

Fig. S16. Encoding of the range-and-bearing message in Mark II3.
Guardians identify their messages by setting DATA[2][7]. When the closed-loop chain
is complete, the guardians use a leader-election algorithm to break the symmetry
among themselves. In the messages exchanged during the phase of leader election,
the guardians set DATA[1][7]. Once a first order among themselves has been estab-
lished, the guardians start to test the possible sequences of the tasks. By setting
DATA[1][4:3], each guardian broadcasts locally the counter M4PI (modulo 4 permu-
tation identifier). Its value is M4PI = UPI mod 4, where UPI is the unique per-
mutation identifier associated with the permutation of the initial sequence that is
currently being tested—see Fig. S15. Each guardian broadcast locally also the num-
ber CND of tasks that a runner must have performed to qualify for performing the
guarded one. This is done by setting DATA[2][2:0]. Runners notify the guardians of
the success/failure of the sequence being tested by setting DATA[1][6] and inserting
the feedback received in DATA[1][1]. If the feedback is negative, the guardian that
receives the notification switches to the next sequence and sends a message to the
other guardians, which in turn complete the transition to the next sequence. In all
the messages that they send along the closed-loop chain, guardians insert their ID in
both DATA[0][7:0] (ID) and DATA[3][7:0] (SOURCE_ID). This enables a guardian
that receives a message from the chain to identify the source guardian that sent it
by reading the field SOURCE_ID. The field ID is instead overwritten by every link
that relays the message along the chain. The fields that are not described here are
equivalent to the ones used in Mark I3 (and Mark I4)—see Fig. S2.

T
ab

le
S
3.

L
ab

or
at
or
y
n
ot
eb

oo
k.

R
es
ul
ts

of
10

co
ns
ec
ut
iv
e
ru
ns

of
M
ar
k
I 3

on
20

e-
pu

ck
ro
bo

ts
op

er
at
in
g
in

an
he
xa

go
na

la
re
a

of
2.

10
m

2
.
R
ec
or
d
of

al
lt
he

in
fo
rm

at
io
n
th
at

w
e
co
lle
ct
ed

du
ri
ng

ea
ch

of
th
e
10

ru
ns
.

tim
e

to
co

m
pl

et
io

n
of

ru
n

da
te

be
gi

n
en

d
e-

pu
ck

fa
ilu

re
s

ch
ai

n
1

se
q

5
se

q
10

se
q

no
te

s

1
O

ct
11

,2
01

6
1:

26
pm

1:
45

pm
R

un
ne

r
fa

ils
at

3
7
0
s

w
ith

ou
t

ca
us

-
in

g
pr

ob
le

m
s

2
9
0
s

4
1
0
s

7
5
8
s

1
,1
9
8
s

C
ha

in
fu

nc
tio

na
la

nd
bu

ilt
qu

ic
kl

y;
sm

oo
th

ex
ec

ut
io

n
of

10
se

qu
en

ce
s

2
O

ct
11

,2
01

6
3:

57
pm

4:
23

pm
R

un
ne

r
fa

ils
ne

ar
th

e
ch

ai
n

at
1
,1
2
0
s

w
ith

ou
tc

au
si

ng
pr

ob
le

m
s

5
6
5
s

5
9
9
s

9
1
6
s

1
,5
0
6
s

C
ha

in
fu

nc
tio

na
l

bu
t

to
o

sp
ac

ed
ne

ar
th

e
la

st
gu

ar
di

an
;

th
is

sl
ow

s
th

e
ex

ec
ut

io
n

3
O

ct
12

,2
01

6
11

:4
3

am
12

:0
6

pm
N

o
fa

ilu
re

s
4
9
0
s

5
9
0
s

8
9
0
s

1
,2
5
0
s

C
ha

in
hi

gh
ly

fu
nc

tio
na

l
th

an
ks

to
th

e
tw

o
br

an
ch

es
ra

th
er

op
en

;
sm

oo
th

ex
ec

ut
io

n
of

10
se

qu
en

ce
s

4
O

ct
12

,2
01

6
2:

40
pm

3:
18

pm
N

o
fa

ilu
re

s
5
9
5
s

9
0
9
s

1
,4
2
0
s

2
,2
4
8
s

C
om

m
un

ic
at

io
n

pr
ob

le
m

s
in

th
e

co
ns

tr
uc

tio
n

of
th

e
ch

ai
n,

bu
t

th
e

co
ns

tr
uc

tio
n

co
m

pl
et

es
;

sl
ow

ex
-

ec
ut

io
n

du
e

to
a

gu
ar

di
an

to
o

fa
r

fro
m

its
TA

M
(b

lu
e)

5
O

ct
13

,2
01

6
11

:0
9

am
11

:2
7

am
N

o
fa

ilu
re

s
3
0
2
s

3
4
0
s

6
8
0
s

1
,0
7
0
s

C
ha

in
st

ra
ig

ht
an

d
fu

nc
tio

na
l;

sm
oo

th
ex

ec
ut

io
n

of
10

se
-

qu
en

ce
s

6
O

ct
13

,2
01

6
2:

48
pm

3:
24

pm
N

o
fa

ilu
re

s
3
5
0
s

4
9
5
s

7
7
2
s

1
,4
1
0
s

C
ha

in
ov

er
cr

ow
de

d
bu

tf
un

ct
io

na
l,

fir
st

br
an

ch
no

t
pe

rfe
ct

ly
al

ig
ne

d;
sm

oo
th

ex
ec

ut
io

n
of

10
se

qu
en

ce
s

7
O

ct
14

,2
01

6
11

:1
3

am
11

:3
3

am
R

un
ne

r
fa

ils
at

6
0
0
s

w
ith

ou
t

ca
us

-
in

g
pr

ob
le

m
s

3
2
0
s

3
6
2
s

5
6
4
s

9
2
3
s

C
ha

in
w

el
la

lig
ne

d
an

d
fu

nc
tio

na
l;

sm
oo

th
ex

ec
ut

io
n

of
10

se
qu

en
ce

s

8
O

ct
14

,2
01

6
2:

40
pm

3:
06

pm

R
un

ne
r

fa
ils

at
6
0
0
s

ne
ar

a
TA

M
hi

nd
er

in
g

ot
he

r
ru

nn
er

s.
C

om
m

un
i-

ca
tio

n
pr

ob
le

m
s

in
th

e
co

ns
tr

uc
tio

n
of

th
e

fir
st

br
an

ch
.

R
un

ne
rs

ha
ve

pr
ob

le
m

s
to

en
te

rt
he

bl
ue

TA
M

4
2
5
s

4
5
5
s

1
,1
2
5
s

1
,6
0
0
s

C
om

m
un

ic
at

io
n

pr
ob

le
m

s
in

th
e

co
ns

tr
uc

tio
n

of
th

e
fir

st
br

an
ch

;
a

ru
nn

er
fa

ils
an

d
hi

nd
er

s
ot

he
r

ru
n-

ne
rs

sl
ow

in
g

th
e

ex
ec

ut
io

n

9
O

ct
18

,2
01

6
10

:2
8

am
11

:0
8

am
R

un
ne

r
fa

ils
at

1
,8
5
0
s

w
ith

ou
t

ca
us

in
g

pr
ob

le
m

s
6
0
5
s

9
8
8
s

1
,5
5
3
s

tim
e

ca
p

C
ha

in
ov

er
cr

ow
de

d
an

d
po

or
ly

al
ig

ne
d

ne
ar

th
e

gu
ar

di
an

s;
th

is
sl

ow
s

th
e

ex
ec

ut
io

n;
at

tim
e

ca
p,

9
se

qu
en

ce
s

pe
rfo

rm
ed

10
O

ct
18

,2
01

6
1:

26
pm

1:
54

pm
Tw

o
ru

nn
er

s
fa

il
(a

t
5
3
0
s

an
d

1
,4
6
0
s)

w
ith

ou
tc

au
si

ng
pr

ob
le

m
s

3
1
9
s

4
1
1
s

8
1
0
s

1
,6
5
6
s

C
ha

in
fu

nc
tio

na
l

de
sp

ite
th

e
fir

st
br

an
ch

is
sp

ar
se

;
sm

oo
th

ex
ec

u-
tio

n
of

10
se

qu
en

ce
s

0:

2:

1:

A B

...

UPI

3:

22:

23:

Fig. S17. Exploration of the space of possible sequences in Mark II4. (A)
Permutation tree. (B) List of sequences determined by exploring the permutation
tree via depth-first search. UPI is defined in the caption of Fig. S15.

●

●

●

●

●

N
um

be
r

of
 r

ob
ot

s

0.90 1.27 1.80 2.55 3.60

Arena's side (m)

0
20

40
60

80

●
●
●●
●
●
●●
●●●●
●●●●●●
●
●
●●●●
●
●●

●●●
●
●
●●●●●●
●●
●
●●●
●
●●
●●●
●
●
●
●

●
●
●●
●●
●●●
●●●
●●●
●●●
●
●●●

●●●●
●
●●
●
●●●●
●●
●●
●
●
●●
●
●

●●●
●
●
●

●
●●
●●
●

●●
●

●
●●●
●●
●●●●

total

in chain

Fig. S18. Number of chain
members in Mark I3. Chain
members in the scalability study
presented in Fig. 5. The plot con-
firms that the number of chain
members grows linearly with the
side of the arena, as we assumed
in Materials and Methods.

robots and in simulation. Moreover, they indicate that the simulation environment
we adopted allows us to predict the performance of the robots.

In Fig. 5A(a to e), we present the results of the scalability study by reporting
the empirical run-time distributions for each setting. They comprise curves for the
successful execution of one, five, and ten correct sequences. The results show that
Mark I3 scales well with the size of the arena and the number of robots. They also
confirm our hypothesis that by increasing the number of robots by the same factor
of the arena’s side, the robots are sufficiently many to connect all the TAMs—see
Materials and Methods. This is made explicit by the plot presented in Fig. S18.

In Fig. 5A(f to o), we present the results of the robustness study in which we
analyze the robustness of Mark I3 to the variation of the number of robots w.r.t.
the default. The run-time distributions in Fig. 5A(f to j) confirm that Mark I3 is in
general robust to the variation of the number of robots. Increasing sightly the number
of robots is even beneficial to the performance in all the settings, while decreasing it
quickly degrade the performance, as there are no longer enough robots to reliably
connect the three TAMs. The distributions of the number of chain members as a
function of the total number of robots—reposrted in Fig. 5A(k to o)—show that,
given the size of the arena, Mark I3 places roughly the same number of robots to
connect the three TAMs, independently of the total number of robots that the swarm
comprises.

S2.2 Experiments with Mark I4
In Fig. 4C, we report the results of Mark I4. They indicate that TS-Swarm can
successfully sequence and perform more that three tasks without being subject to
substantial modifications. As it should have been expected, it takes slightly longer to
sequence four task than three, but the success ratio is the same obtained by Mark I3:
27/30.

The scalability study reported in Fig. 5B(a to e) indicates that Mark I4 scales well
with the size of the arena and the number of robots. Fig. 5B(f to j) confirm that
Mark I4 is also robust to the variation of the number of robots. Slight increases of the
number of robots are mostly beneficial to the performance in all the settings, whereas
decreases degrade the performance due to a lack of a sufficient number of robots to
reliably connect the four TAMs. Differently from Mark I3, drastically increasing the
number of robots w.r.t. the default also produces a lower performance. This is proba-
bly due to the fact that when the density is too high robots might interfere with each
other or hinder each other’s movements. The distributions of the number of robots
in chain as a function of the total number of robots—reported in Fig. 5B(k to o)—
confirm the observations made for Mark I3: given the size of the arena, Mark I4 uses
roughly the same number of robots to connect the four TAMs, independently of the
total number of robots that the swarm comprises. In all the settings, for at least
50% of the runs the number of chain members is independent of the total number of
robots—with the exception of the -20% and -10% cases in which the number of robots
is apparently insufficient for establishing a chain reliably.

S2.3 Experiments with Mark II3
In Fig. 4D, we report the results obtained by Mark II3. The performance of Mark II3
is only slightly lower than the one of Mark I3 but remains above the 75% line. In 24
out of the 30 runs, Mark II3 successfully performs ten correct sequences within the
time cap. This shows that TS-Swarm can cope with a sequencing problem in which
the feedback is received only at the end of a sequence of tasks. The slightly lower
success ratio with respect to Mark I3 is possibly due to the challenge of building three
branches of chain in parallel. Indeed, when the branches are built in parallel they
risk to interfere or even merge with each other. The scalability study—reported in
Fig. 7A(a to e)—indicate that Mark II3 scales less well than Mark Im, although the
success ratio remains close to 50% even in the largest setting. A factor that might im-
pact negatively the performance of Mark II3 is that links no longer adjust their position
after their branch is established—see Supplementary Materials for a detailed descrip-
tion of the robot control software and the main article for possible improvements. As
a result, if a runner bumps into a link and pushes it away from the ideal position,
the chain might be interrupted and the system might become unable to complete its
mission. This is more likely to happen when the swarm comprises many robots and
the arena is large. The possible improvement discussed in the main article (under
the heading “Robots’ movement is unsophisticated”) could contribute to increase the
scalability of Mark II3. The robustness study—reported in Fig. 7A(f to j)—indicates
that, compared to Mark I3, Mark II3 is also less robust to variations of the number
of robots, again possibly because these variations affect the chain construction pro-

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Time (s)

1E2 1E3 1E4 1E5

0
.2

5
.5

.7
5

1

T
C

 =
 1

00
,0

00

a

●

●
●●

●

●

●

●

●●

Mark II3 Mark II4

2
4

6
8

10

N
um

be
r

of
 r

ob
ot

s
pe

r
br

an
ch

b Fig. S19. Comparison be-
tween Mark II3 (blue) and
Mark II4 (red). (A) Empiri-
cal run-time distributions for the
construction of the chain (dashed
line) and the successful execution
of the first sequence (dotted line).
(B) Number of robots comprised
in each branch of the chain.

cess. Also in this case, we expect that the improvements to the chain construction
and robots’ movement that we propose in the main article could affect positively the
performance of Mark II3 in large arenas, when the number of robots departs from an
ideal value. The distributions of the number of chain members as a function of the
total number of robots—reported in Fig. 7A(k to o)—indicate that, in the successful
runs, the number of robots that are used to connect the three TAMs is not affected
by the total number of robots.

S2.4 Experiments with Mark II4
In Fig. 4E, we report the results of Mark II4. As it should have been expected, the
success ratio of Mark II4 is lower than the one of Mark II3. Nonetheless, in 20 out
of the 30 runs, Mark II4 successfully sequences the four given tasks and performs ten
correct sequences within the time cap. A comparison of the run-time distributions
also shows that the time required by Mark II4 to perform ten sequences of four tasks
is longer than the one required by Mark II3 to perform ten sequences of three tasks.
Indeed, in 50% of the runs Mark II3 performs ten correct sequences in less than 2,000 s.
On the other hand, Mark II4 reaches the 50% mark after 8,000 s. Fig. S19A shows
that Mark II3 and Mark II4 require roughly the same time to construct the closed-
loop chain. Actually, Mark II4 is slightly faster. This is explained by the fact that in
Mark II4, the number of robots comprised in each branch of the chain is lower than
in Mark II3 (Fig. S19B). On the other hand, the time needed by Mark II4 to perform
the first sequence—that is, to solve the sequencing problem—is larger than the one
needed by Mark II3. Two factors contribute to this difference: (i) it takes longer to
a runner to test a sequence in Mark II4 than in Mark II3 (4 tasks to perform vs. 3);
and (ii) the space of the possible sequences explored by Mark II4 is larger than the
one explored by Mark II3 (4! = 24 sequences searched by Mark II4 vs. 3! = 6 searched
by Mark II3). The longer duration of a run in Mark II4 with respect to Mark II3—in
particular, the longer time needed to explore the space of the possible sequences—is
likely the reason why Mark II4 achieves a lower success ratio than Mark II3. Indeed,
the longer the time needed to explore the space of the sequences, the longer the
system (particularly the chain) needs to remain functional, and eventually, the higher
the chance that something goes wrong. For example, the runners might push the links
and/or the guardians out of position thus breaking the continuity of the chain—see
the main article for a description of possible improvements.

The results shown in Fig. 7B support the observations drawn so far. The challenges
of constructing m branches of chain in parallel prevent Mark IIm from achieving a

success ratio similar to the one of Mark Im. It also lowers its scalability and robustness
properties—Fig. 7B(a to e) and Fig. 7B(f to j). However, when Mark IIm completes
the chain and solves the task-sequencing problem (execution of the first sequence),
it reliably executes ten correct sequences. When this happens, the number of chain
members is independent of the total number of robots in the swarm— Fig. 7B(k to o).

Section S3. Highlights of movie S1

We sketch the highlights of movie S1 to provide insight on a typical run of Mark I3.
Each block of text is preceded by a timestamp or an interval (typeset in boldface),
which identifies the moment or the segment of the movie described by the block itself.
In the movie, timestamps are displayed in the lower right corner of the frame.

00:00:00 – 00:00:19 The 20 robots are distributed randomly in the hexagonal
arena. The three tasks to be performed by the robots—i.e., red, green, and blue—
are randomly assigned to the three TAMs that are placed along the perimeter of
the arena. In this example, the red task is assigned to the TAM on the left of the
image, the green task is assigned to the right TAM, and the blue task is assigned
to the TAM at the bottom of the image. The correct order of execution is red,
green, blue, and it is unknown to the robots at the beginning of the run. All robots
start by assuming the role of runner and move randomly in the environment.

00:00:20 – 00:01:22 Robots that see a task attempt to perform it. Three
robots, one per TAM, engage in task execution. The robot that performs the red
task receives positive feedback as this task is the first to be performed in the correct
sequence. The robots that perform the green and the blue tasks receive negative
feedback. After receiving the feedback, the three robots exit the respective TAMs
by moving along a straight line for about 0.25 m; then stop and become guardians.
They signal their role by displaying the color cyan with their LEDs. Because of
the positive feedback received, the guardian of the red task locally broadcasts a
range-and-bearing message that contains CND = 0 and CONF = 1. The other
two guardians, which received negative feedback, both broadcast CND = 1 and
CONF = 0.

00:00:52 – 00:01:49 The guardian of the red task signals nearby runners that
they should initiate the construction of a branch of chain. The guardian indicates
that the chain should be built on its right-hand side by sending a directional
message only from the range-and-bearing emitters placed on the right side of its
body. The chain extends on the right side of the first guardian, one robot after
the other. The current tail of the chain displays the color magenta and the chain
links the color yellow.

00:01:50 – 00:03:49 The branch of chain extends until its tail spots a guardian
and establishes a connection. Here, the guardian spotted by the tail of the first
branch is the one of the blue task. When the guardian of the blue task is reached
by the first branch, it initiates the construction of a new branch that, following
the same process, eventually reaches and connects the guardian of the green task.

While the chain is being built, the runners navigate along it and perform the tasks
they encounter on their way, if instructed to do so by the respective guardian.

00:02:02 – 00:02:55 A runner that has not performed any task before arrives
to the red task and is instructed by the guardian to perform it. This happens
because the guardian knows to be guarding the first task in the sequence. After
executing the task and receiving positive feedback, the runner navigates along the
first branch of chain by keeping the chain members on its left.

00:02:56 – 00:05:47 The runner arrives to the guardian of the blue task. As
no other robot has performed the blue task before our runner (excluding the
guardian itself), the guardian is still broadcasting CONF = 0 and CND = 1. As
the task counter of the runner, after executing correctly the first task, has value
CNT = 1, the condition CONF = 0 and CND <= CNT is verified. The runner
thus is instructed to perform the blue task as the second task. Here, the runner
has to struggle to enter the TAM as other runners block its way.

00:03:50 – 00:04:40 In the meantime, the second branch of the chain is being
built. When it reaches the wall of the arena, the entire branch turns, sweeping
anticlockwise around the originating guardian. The sweeping motion is triggered
by the tail: its goal is to disentangle the branch of chain from the wall and enable
its further extension.

00:05:48 – 00:06:21 The runner that we were following eventually enters the
blue TAM. However, its execution results in a failure, as (we know that) the blue
task is the third task to be performed. The runner receives therefore negative
feedback. The notification of this negative feedback causes the guardian to update
its information to CONF = 0 and CND = 2. From this update on, all further
runners having performed only the first task will be instructed by the guardian to
skip the blue task and continue their navigation along the chain. (The runner that
we were following aborts the execution of the sequence. It will continue along the
chain until it reaches again the guardian of the red task—the first of the sequence.
From there, instructed by the guardians, it will start from scratch the execution
of a sequence.)

00:06:22 – 00:07:21 A runner reaches the green task after executing the red
one and skipping the blue. The runner’s task counter is CNT = 1 and the guardian
broadcasts CONF = 0 and CND = 1. Therefore, the condition CONF = 0 and
CND <= CNT is verified. The runner is therefore instructed to perform the
task. The execution results in a success and the runner updates its counter to
CNT = 2. Upon notification, the guardian updates its information to CONF = 1
and CNT = 1. (It should be noted that the runner enters the TAM at 00:06:38
but cannot establish a communication with it. It exits to enter again at 00:06:58.)

00:07:22 – 00:07:33 The runner has now reached the end of the chain and
revolves around the third (and last) guardian in the chain that acts as a turning
point.

00:08:10 – 00:08:36 Proceeding along the chain, the runner reaches the blue
task—which it had previously skipped. As its task counter is now CNT = 2

and the information of the blue task’s guardian is CONF = 0 and CND = 2, the
condition CONF = 0 and CND <= CNT is verified. The runner thus performs the
blue task. The execution is successful and the notification of the positive feedback
allows the guardian to update its information to CONF = 1 and CND = 2. A
first sequence has been successfully performed and the task-sequencing process is
complete: all the guardians have converged to the correct policy for instructing
the runners. From now on, runners will repeatedly travel along the chain and
perform the tasks in the correct order.

00:18:25 The run stops after the tenth execution of the correct sequence.

