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Research aim

Signaling is a key capability in collective behaviors for robot swarms. Yet, the
current literature on the automatic design of robot swarms does not provide an ap-
proach that effectively leverages signaling capabilities in a generally applicable way.

In this thesis, I propose that automatic modular design (AutoMoDe) is a
suitable approach to addressing this gap. I aim to show that AutoMoDe can
leverage environmental and inter-robot signaling to automatically generate the
control software necessary for robot swarms to operate effectively.

I investigate this issue in the context of design problems where a robots must
cooperate, react to events, and perform missions sequentially. The presented
research shows that AutoMoDe can effectively leverage signaling to address a
wide range of design problems, including designing spatially-organizing behaviors,
stigmergy-based behaviors, shepherding behaviors, and the design of robot swarms
by demonstration.
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Summary

Robot swarms are self-organizing groups of robots that can cooperate to accomplish
tasks beyond their individual capabilities. Swarm robotics offers a promising
solution for coordinating large groups of robots and enabling future large-scale
robotic services. However, designing robot swarms is inherently difficult because
they cannot be programmed directly. At design time, one must produce control
software to program the individual actions of the robots. At deployment time, the
collective behavior of the swarm will emerge from the interactions between robots,
and robots and their environment. The difficulty is that there is no generally
applicable methodology to determine in advance how to program individual robots
to achieve a specific collective behavior after deployment.

Automatic modular design (AutoMoDe) is an appealing approach to overcome
the difficulty of realizing robot swarms. In this approach, the designer specifies a
mission for the swarm, and an automatic method generates the control software
that the robots require to collectively perform the mission. This automatic process
is driven by an optimization algorithm that fine-tunes parametric software modules
and assembles them into a modular control architecture.

In this dissertation, we investigate whether AutoMoDe can establish meaningful
interactions between robots, and robots and their environment, through signal-
based interactions. Our research shows that AutoMoDe can leverage signaling
capabilities if these are provided by the parametric software modules on which
AutoMoDe operates. We experiment with robots that can perceive, display, and
respond to color cues that convey information about the environment and about
the actions/state of other robots. In our studies, AutoMoDe proved capable of
using signaling to establish interaction strategies for missions requiring the swarm
to cooperate, collectively react to events, and perform tasks sequentially. Previous
research on the automatic design of robot swarms has independently utilized
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SUMMARY iv

signaling to address related problems, without evaluating the general applicability
of the proposed methods. In this thesis, we overcome this empirical limitation
and show that AutoMoDe is a versatile approach, offering roboticists a reliable,
optimization-driven method to design collective behaviors for robot swarms.

The thesis developed in this dissertation is supported by empirical evidence.
We present diverse scenarios in which automatically designed robot swarms rely
on mission-specific signaling to perform their mission. In these experiments, we
consider missions on which the performance of the swarm is evaluated by a single
or by concurrent performance measures. Notably, we apply these ideas to the
automatic design of spatially-organizing behaviors, stigmergy-based behaviors,
shepherding behaviors, and the design of robot swarms by demonstration. In
these studies, we show that a simple single-bit signaling protocol embedded in a
specialized module for AutoMoDe was sufficient to overcome previous limitations in
designing spatially organizing behaviors for robot swarms. Furthermore, we show
that AutoMoDe can leverage both direct communication capabilities and indirect
communication using pheromone-based stigmergy. We illustrate how AutoMoDe’s
ability to leverage signaling not only facilitates communication within the swarm
but also enables interactions with other active agents in the swarm’s workspace.
We also show that AutoMoDe can conduct the design process by learning from
demonstrations of the desired collective behavior.

In our research, we addressed these diverse design problems using AutoMoDe
methods that had no fundamental differences from each other. Through this thesis,
we learned how to use, adapt, and extend AutoMoDe to tackle diverse design
problems effectively. As a result, with this dissertation, our aim is also to provide a
reference guide on how to use AutoMoDe and capitalize on its general applicability.



Contributions

The following is a summary of the contributions presented in this thesis:

Critical review of the swarm robotics literature: We provide a critical
review of the state of the art in the automatic modular design of robot swarms,
highlighting common practices in selecting robot capabilities and defining missions
for the robots.

Demonstrations of automatically designed collective behaviors: We
present the most diverse range of missions and applications of the automatic
off-line design of robot swarms currently available in the literature, supported by
simulations and experiments with physical robots.

TuttiFrutti: We introduce TuttiFrutti, a novel modular automatic design
method that enables the design of collective behaviors for robots that can display
and perceive color signals.

Mandarina: We introduce Mandarina, a novel modular automatic design method
capable of handling concurrent design criteria during the design process.

Mate, Habanero, Pistacchio, DTF-MO: We build on the original ideas intro-
duced with Mandarina and TuttiFrutti to demonstrate the versatility of the
automatic modular design approach in four new specialized design methods.

Software implementations: We implemented and maintain the software for
the methods presented in the thesis. The software produced is available as open
source software on the public repository of the DEMIURGE project.
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CONTRIBUTIONS vi

Hardware implementations: We developed new infrastructure to conduct
experiments with swarms of e-pucks. Notably, MoCA, a RGB modular arena,
and Tycho, a robust ROS-based tracking system to monitor robot swarms. The
hardware produced is available as open source hardware on the public repository
of the DEMIURGE project.

Dissemination and public engagement: We contributed to the vulgarization
and dissemination of swarm robotics and the automatic design of robot swarms.
We focused our efforts on producing engaging multimedia demonstrations that
feature the research presented in this thesis.
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1. Introduction

We are becoming increasingly familiar with robots that can perform
tasks in a wide range of domains. Think, for example, of a lawn mower
robot, an autonomous vacuum cleaner, or a flying drone for leisure
photography. Today, these robots are mostly limited to operating as
individual solutions. Soon, cooperation between robots will play a major
role in transforming these solutions into large-scale robotics services.

The problem is that programming robots to work together remains
a challenging task that demands the expertise of skilled designers.
However, this process can be supported by automatic tools that help
with the design, programming, and deployment of the robots. In this
dissertation, we advance the development of automatic methods for
producing control software for robots that must to operate cooperatively.
Specifically, we focus on the design of groups of robots that use signaling
strategies to coordinate with each other.

1
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A robot swarm (Beni 2005; Şahin 2005) is a self-organized group of robots that,
by working together, can collectively perform missions beyond the capabilities
of individual robots. A particularity of robot swarms is that the robots operate
autonomously without relying on a leader robot or on external infrastructure. The
collective behavior of a robot swarm—and hence the swarm’s ability to accomplish
a particular mission—results solely from the interactions that the robots have with
the environment and with their peers (Dorigo et al. 2014). The problem is that,
as of today, conceiving and implementing a collective behavior for a robot swarm
is challenging. The desired collective behavior for the robots is specified globally
for the swarm, but this behavior cannot be programmed directly. At design time,
one must produce control software to program the individual actions of the robots.
At deployment time, the collective behavior of the swarm will emerge from the
interactions between robots, and robots and their environment. The challenge is
that no generally applicable method exists to tell what an individual robot should
do so that the desired collective behavior is obtained in the swarm (Brambilla et al.
2013; Dorigo et al. 2020, 2021).

Swarm robotics (Dorigo et al. 2014; Hamann 2018) emerged therefore as the
study of how to design robot swarms. The field’s seminal work is often dated to
2005 (Şahin 2005; Beni 2005). Since then, swarm robotics has attracted attention in
the scientific community, with numerous papers published in leading journals such
as Nature, Science, Science Robotics, and similar venues (Rubenstein et al. 2014;
Werfel et al. 2014; Garattoni and Birattari 2018; Slavkov et al. 2018; Yu et al. 2018;
Li et al. 2019; Xie et al. 2019; Hasselmann et al. 2021; Talamali et al. 2021; Castelló
Ferrer et al. 2021; Strobel et al. 2023; Salman et al. 2024; Zhu et al. 2024). Indeed,
the design of robot swarms has been identified as one of the major robotics challenges
to be addressed in the upcoming years (Yang et al. 2018). Recent discussions
have foreseen the milestones that would drive the advance of swarm robotics
(Dorigo et al. 2020, 2021): (i) the appearance of novel robot platforms that can
operate in unstructured and dynamic environments (Berlinger et al. 2021); (ii) the
development of new methodologies for the design of collective behaviors (Mathews
et al. 2017); (iii) new opportunities to exploit emergence (Garattoni and Birattari
2018); and (iv) the shift of focus towards applications suited for large groups of
coordinated robots (Hunt and Hauert 2020)—e.g., precision agriculture, ecological
monitoring, and city cleaning. Although the future is promising, the reality is
that at present most achievements in swarm robotics research still occur under
controlled laboratory conditions (Hamann et al. 2020).

There is a need for design methodologies that will enable the transition from
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laboratory experiments to real-world applications (Hunt and Hauert 2020; Jones et
al. 2020). Today, researchers promote the adoption of engineering principles in the
realization of robot swarms (Winfield et al. 2005; Brambilla et al. 2013; Bozhinoski
and Birattari 2018; Birattari et al. 2019). Traditionally, the design process has an
iterative nature and is based on manual trial and error: a human designer manually
refines the control software of the individual robots until the desired collective
behavior emerges—see, for example, St-Onge et al. (2020). This procedure is
costly, time-consuming, and does not guarantee that the results are reproducible.
Reproducibility is a fundamental attribute to be achieved in the design of robot
swarms—as in all branches of engineering. It ensures that the outcomes of the
design process are reliable and predictable, regardless of the designer’s subjective
decisions, level of expertise, or any random variations in the process. In research,
reproducibility is a cornerstone of scientific validity (Baker 2016), as methods that
produce reproducible results are more likely to gain acceptance and be further
developed by the scientific community. A lack of reproducibility in the proposed
design methodologies can limit the practical application of swarm robotics in
real-world scenarios, where consistent and reliable performance is paramount.

Optimization-based design is an alternative approach to the design of collective
behaviors for robot swarms (Birattari et al. 2020). In this approach, an optimization
algorithm explores possible instances of control software for the robots and selects
the one that maximizes performance on the specific mission at hand—according
to a given performance measure. The computer-based nature of the approach
improves the reproducibility achievable in the design process. Being performed by
a machine, it reduces the influence of the designer’s subjective decisions, level of
expertise, and any biases that may be manually introduced into the design process.
Optimization-based methods can be categorized with respect to different criteria.
Common classifications divide them into (i) on-line and off-line methods, and
into (ii) semi-automatic and (fully) automatic ones (Birattari et al. 2020). When
the control software is produced or refined while the robot operates in the target
environment, the method is referred to as on-line. When the control software is
generated before deployment, typically in simulation, the method is referred to as
off-line.1 In semi-automatic methods, a human designer operates an optimization
algorithm that serves as their primary design tool. On the contrary, automatic
methods do not require any human intervention during the design process. Although

1This use of on-line and off-line is consistent with other literature in swarm robotics (Brambilla
et al. 2013; Birattari et al. 2019, 2020; Kuckling 2023b). Other domains might use these terms in
a different sense.
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these classifications are not to be considered as strict—indeed, hybrids exist—they
are convenient to appreciate the relative merits of different methods and to properly
define expectations on their performance (Birattari et al. 2020).

Designers of robot swarms will benefit from developments on on-line/off-line and
automatic/semi-automatic methods. However, it is our contention that automatic
off-line methods will play a central role (Birattari et al. 2019). Semi-automatic
methods are a useful and promising tool but are labor-intensive and require human
intervention during the design process. On-line methods are appropriate to refine
existing control software for robot swarms—limitations exists that restrict their
general applicability. For example, they can explore a relatively small search
space, could produce sub-optimal control software that could damage robots and
environment (notably in the early phases of the design process), and are applicable
only when the robots can assess their own collective performance. This last
limitation is particularly significant. Swarms are typically unable to assess their
performance because individual robots rely on local perception and lack awareness
of the global state of the swarm. Without this information, individual robots
cannot evaluate the swarm’s performance. On-line methods are applicable in
design problems where robots can obtain a reliable measure of their instantaneous
collective performance—making on-line methods unsuitable in the general case.
Off-line methods, by contrast, do not face this restriction. They are more generally
applicable and have the potential to produce control software for robot swarms faster,
with reduced human effort, while helping to ensure that the swarm’s performance
meets specifications and constraints. In this thesis, we make a contribution to the
automatic design of robot swarms, and the research presented here can also support
developments in the semi-automatic case. Although we believe that automatic off-
line design addresses the problem of designing robot swarms in a more general way,
in the long term, we expect that on-line, off-line, semi-automatic and automatic
methods will coexist (Birattari et al. 2020; Xie et al. 2021)—hybrid methods could
be particularly appealing and appropriate in many applications.

Whereas we deem it the most promising approach, automatic off-line design
is not itself free from presenting challenges and open issues. The main problem
faced in automatic off-line design (and also in semi-automatic off-line design) is the
so-called reality gap (Jakobi et al. 1995), that is, the differences between reality and
simulation models on which the off-line optimization is based. Due to the reality gap,
control software designed off-line typically experiences an important performance
drop when ported to the real robots. Even worse, the drop is method-dependent
with some design methods being more intrinsically robust to the effects of the
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reality gap than others. This has implications on how instances of control software
should be assessed and eventually selected before being deployed in reality (Ligot
and Birattari 2020, 2022).

Automatic off-line design is currently an early-stage technology that has been
mostly demonstrated with laboratory experiments (Birattari et al. 2019). Indeed,
automatic methods have rarely been used to produce control software for robot
swarms in realistic deployments. Important scientific and engineering questions
need to be addressed before reaching mature methods that are ready for real-world
application. Key questions focus on the effectiveness of automatic methods in
producing control software that enables robot swarms to meet the specifications
of their mission. Can we design effective and reliable robot swarms via automatic
off-line design? What are the components that influence the effectiveness of a
method? How can we conceive a method that is effective? Given a class of missions,
which is the most appropriate design method? Which features of a mission make
it more or less hard to be tackled? To what extent a design method is robust to
the reality gap? What can we do to improve the robustness of a method? How
can we characterize and specify a mission or a class of missions that a swarm must
perform? To what extent an automatic design method can be ported to other
design problems, and vice versa?

The automatic offline design of robot swarms can be framed as a multi-agent
reinforcement learning problem (Tan 1993; Matarić 1997; Albrecht et al. 2024). In
this framework, a group of robots must learn behaviors without explicit examples,
relying instead on delayed feedback (i.e., a performance metric) that reflects their
collective performance. In reinforcement learning, the goal is to find a policy—a
rule that maps the current state of the system to an action. This search is often
driven by a value function, which evaluates how beneficial it is for an agent to
be in a specific state or take a particular action, ultimately guiding the agent’s
decision-making process. Alterntively, some reinforcement learning approaches
bypass the use of a value function in the learning process and perform a direct
search in the policy space.

Typical multi-agent reinforcement learning approaches, those that rely on a
value function, show significant promise for designing collective behaviors for
groups of robots. However, related research often involves relaxing the desired
characteristics and properties of robot swarms—i.e., injecting expert knowledge,
such as reward shaping, or providing robots with global information to make the
action-state space observable (Kuckling 2023b). Additionally, few demonstrations
exist on their applicability with physical robots (Gharbi et al. 2023; Heuthe et al.
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2024; Sadeghi Amjadi et al. 2024), and the current literature does not position
new methods with respect to the state of the art on the automatic design of robot
swarms (Hüttenrauch et al. 2019; Bloom et al. 2023; Sadeghi Amjadi et al. 2024).

Methods that conduct a direct search in the policy space are predominant in the
state-of-the-art literature on the automatic design of robot swarms, with contribu-
tions that belong mainly in two approaches: (i) neuroevolution (Nolfi and Floreano
2000; Trianni 2008); and (ii) automatic modular design (AutoMoDe) (Francesca
et al. 2014b; Birattari et al. 2021). Neuroevolution is the traditional approach
to the automatic design of collective behaviors for robot swarms: each robot is
controlled by an artificial neural network whose parameters (and possibly the
architecture) are obtained via artificial evolution. This approach has proven to
be flexible, enabling the design of diverse collective behaviors across various robot
platforms. However, it is known to experience significant performance drops when
the robots are deployed, compared to the performance observed in simulation
during the design phase (Ligot and Birattari 2020; Hasselmann et al. 2021). The
AutoMoDe approach was proposed as an alternative to neuroevolution (Francesca
et al. 2014b, 2015). In this approach, the control software of the robots is produced
via an optimization-based process that fine-tunes pre-existing software modules
and combines them into a modular architecture such as a probabilistic finite-state
machine or a behavior tree. The software modules can be produced manually
or with the assistance of optimization processes—for example, via evolutionary
computation (Gomes and Christensen 2018; Hasselmann et al. 2023).

The seminal work of Francesca (2017) on the AutoMoDe approach demonstrated
two key points: (i) in a range of missions, AutoMoDe was shown to produce control
software for robot swarms that met mission specifications more effectively than
those designed by human experts (Francesca et al. 2015); and (ii) AutoMoDe is
less prone to the effects of the reality gap than neuroevolution (Francesca et al.
2014b). More precisely, AutoMoDe methods tend to produce control software that
eventually performs better once ported from simulation to reality. This occurs
because neuroevolution tends to overfit the control software to the simulator’s
characteristics during the design process. On the contrary, the modularity of
AutoMoDe introduces bias into the design process and limits the variance of the
resulting control software to what can be achieved with predefined software modules,
ultimately reducing the risk of overfitting. This understanding of the bias-variance
trade-off aligns with the interpretation commonly discussed in the machine learning
literature (Geman et al. 1992).

Inspired by the early AutoMoDe studies, researchers have devoted significant



CHAPTER 1. INTRODUCTION 7

effort to explore and better understand the underlying capabilities and limitations of
the AutoMoDe approach (Birattari et al. 2021). Notably, Kuckling (2023a) studied
the impact of adopting various optimization strategies and control architectures
within the design process. Ligot (2023) conceived tools and protocols to assess and
predict the performance of automatic design methods. Hasselmann (2023) explored
novel ways to produce software modules for instances of AutoMoDe. Salman (2024)
investigated original ways to exploit stigmergy in AutoMoDe. These investigations,
along with a growing body of literature (Salman et al. 2019; Spaey et al. 2020;
Pagnozzi and Birattari 2021; Bozhinoski and Birattari 2022; Cambier and Ferrante
2022; Gharbi et al. 2023; Endo et al. 2023; Kegeleirs et al. 2024b), have shown
evidence that AutoMoDe is a general framework that can be adapted to study
different aspects of the automatic design of robot swarms.

The research we present here also builds on the work of Francesca (2017)
and draws inspiration and ideas from the research that followed (Birattari et
al. 2019; Garzón Ramos et al. 2021b). Particularly, we focused on investigating
whether AutoMoDe methods could leverage environmental and inter-robot signaling
to design collective behaviors for robot swarms. Signaling is a key mechanism
to enable self-organizing behaviors in robot swarms. Robots can employ various
signaling mechanisms to communicate with one another and interpret environmental
signals, enabling them to adapt to changing conditions (Trianni et al. 2004; Trianni
and Dorigo 2006). Indeed, since the early studies in swarm robotics, it has been
observed that designing effective communication strategies positively influence the
performance of the robots (Trianni and Dorigo 2006). Yet, the current literature on
the automatic design of robot swarms does not provide an approach that effectively
leverages signaling capabilities in a generally applicable way.

Little work exists on the fully automatic design of communication-based behav-
iors for robot swarms (Hasselmann et al. 2023), let alone on developing a general
framework applicable to diverse signaling mechanisms and design problems. We
aim to bridge this gap in the current state of the art through the use of Auto-
MoDe. To do so, we diverged from the recurring experimental scenarios addressed
by Francesca (2017), Kuckling (2023a), Ligot (2023), Hasselmann (2023), and other
AutoMoDe literature. We explored two original avenues. On the one hand, we
explored new experimental scenarios in which robots must rely on different forms
of signaling to collectively perform their mission (Garzón Ramos and Birattari
2020, 2024; Mendiburu et al. 2022; Salman et al. 2024). On the other hand, we
formulated design problems in which robot swarms must perform missions evaluated
by concurrent performance measures (Garzón Ramos et al. 2024; Szpirer et al.
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2024a). Exploring these two avenues helped define the boundaries of AutoMoDe’s
applicability, with scientific contributions showing that automatic modular design
methods can leverage environmental and inter-robot signaling to tackle missions
where a robot swarm is required to communicate, react to events, and perform
missions sequentially—the thesis developed in this dissertation.

Materials and contributions

The scientific contributions of this thesis are grounded in the fundamental principles
that we believe should guide the automatic off-line design of robot swarms (Birattari
et al. 2019). First, the design methods presented here aim to address a class of
missions within a design problem, rather than focusing on a single specific mission.
Indeed, the methods do not require mission-specific modifications or adjustments to
operate. Second, once a mission is specified and provided to the design methods, no
human intervention is required at any stage of the design process. We applied these
principles to both the AutoMoDe methods introduced in the thesis and the baseline
methods we used to assess their performance. In our studies, we routinely used
neuroevolution as a baseline (Garzón Ramos and Birattari 2020, 2024; Mendiburu
et al. 2022; Garzón Ramos et al. 2024; Salman et al. 2024). This contributed to
positioning our research with respect to the literature on the optimization-based
design of robot swarms. Additionally, in some studies, we included control software
manually developed by human designers (Garzón Ramos and Birattari 2024; Salman
et al. 2024; Szpirer et al. 2024a). This other baseline, first introduced by Francesca
(2017), helps apprise the difficulty involved in addressing a design problem. We
used it in our research in a similar way.

In our research, we first investigated whether AutoMoDe methods could establish
meaningful signal-based interactions both between robots and between robots and
their environment. Specifically, we investigated whether AutoMoDe could leverage
signals—detectable changes in the robots’ behavior or environment—to design
mission-specific coordination strategies for robot swarms. This was based on Tu-
ttiFrutti (Garzón Ramos and Birattari 2020), an original method specialized in
generating control software for robots that can display and perceive color signals
using RGB LEDs and a camera, respectively. We used colors as a signaling
mechanism to operationalize AutoMoDe’s ability to create signal-based interactions
between physical robots—without relying on abstract or simulated communication.
AutoMoDe would have to produce control software that enables the robots to utilize
these colors effectively, resulting in collective behaviors that meet the mission’s
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specification. Historically, the diversity of missions that AutoMoDe methods
could address had been limited by the restricted capabilities of the robot platform
considered and the simplicity of the scenarios in which the robots operated—both
constraints inherited from the first AutoMoDe methods. In TuttiFrutti, we
considered a more capable robot platform to perform missions in which robots
must act with respect to the colors displayed by objects in their environment or by
their peers. To address the issue of simple experimental scenarios, we developed
MoCA (Garzón Ramos et al. 2022), an open-source modular system to perform
experiments with robot swarms. MoCA provides the tools to create, simulate, and
physically deploy scenarios in which robots can react to the colors displayed by
programmable RGB modules that surround their workspace. By introducing Tu-
ttiFrutti and MoCA, we significantly expanded the diversity of design problems
and swarm robotics missions that can be studied with the AutoMoDe approach.

The key challenge for TuttiFrutti was that color signals are inherently mean-
ingless or empty at the outset. During the design process, TuttiFrutti had to
assign meaning to these signals, enabling their use in specific contexts to trigger
particular behaviors. With TuttiFrutti, we showed how, and how well, Auto-
MoDe can automatically generate control software to perform missions without
relying on mission-specific predefined communication protocols—as is typically
done in the swarm robotics literature. TuttiFrutti provides the swarm robotics
community with a generally applicable method for designing collective behaviors in
which robots use color signals to coordinate—demonstrated through experiments
with physical robots that must navigate their environment, react to events, and
communicate relevant information to their peers. This is the first major scientific
contribution of the thesis.

In the second part of our research, we used the capabilities introduced with Tu-
ttiFrutti and MoCA to explore whether AutoMoDe methods could address design
problems that require handling multiple design criteria during the optimization
process. This is a complex design problem that had rarely been addressed in
the literature on the automatic design of robot swarms. Traditionally, research
in the field had focused on missions specified by a single design criterion, using
design methods based on single-objective optimization algorithms. This approach
was initially adopted by Francesca (2017) and was inherited in the subsequent
AutoMoDe literature. We relaxed this assumption in our research. We conceived
Mandarina (Garzón Ramos et al. 2024), an original method that builds on Tu-
ttiFrutti and includes modifications to address design problems with multiple
design criteria. We used Mandarina to generate control software, through a single
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design process, for robot swarms to perform missions in sequence. In this problem,
each mission in the sequence represents an independent design criterion that
the automatic method had to handle during the optimization process. Mandari-
na designed robot swarms capable of performing missions sequentially by using
environmental signals to determine which mission to perform and when to switch
missions.

The key challenge for Mandarina was to produce control software capable of
concurrently meeting the specifications of the missions in a given sequence—i.e.,
concurrently maximizing their associated performance metrics. In this process,
Mandarina had to handle sequences of missions with conflicting goals between
missions and performance measures defined on varying scales. Multi-criteria design
problems in swarm robotics have been mostly addressed by manually applying
expert knowledge to combine the design criteria into a single performance measure.
With Mandarina, we showed how AutoMoDe can be adapted to manage such diverse
design criteria during the design process without the need for manual intervention.
Mandarina provides the swarm robotics community with an automatic method
to produce control software for robot swarms in design problems that specify
multiple performance metrics to be optimized. This is the second major scientific
contribution of the thesis.

The results achieved with TuttiFrutti and Mandarina motivated us to apply
their ideas to new problems in the automatic design of robot swarms. There-
fore, we dedicated the final part of our research to explore their application in
the automatic design of (i) spatially-organizing behaviors, (ii) stigmergy-based
behaviors, (iii) shepherding behaviors, and (iv) the design of collective behaviors
by demonstration. We based these studies on four original AutoMoDe methods:
Mate, Habanero, Pistacchio, and DemoTuttiFrutti-MO (DTF-MO). First, experi-
ments with TuttiFrutti showed that robots could use color signals to adjust their
relative distance. We applied this idea in Mate to investigate whether a similar
signaling approach could help meet predefined spatial distribution constraints
for the swarm (Mendiburu et al. 2022). Second, experiments with TuttiFrutti
demonstrated that robots could establish simple communication-based behaviors
using direct signaling. We applied this idea in Habanero to explore whether robots
could establish stigmergy-based communication using indirect signaling based on
artificial pheromones (Salman et al. 2024). Third, experiments with TuttiFrutti
showed that robots could effectively identify their peers and coordinate with them
using color signals. We applied this idea in Pistacchio to investigate whether
robots could use color signals to identify and coordinate with their peers and with
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robots from another swarm in robot shepherding (Garzón Ramos and Birattari
2024). Fourth, the experiments with Mandarina demonstrated that it is possible
to specify and address scenarios requiring the sequential execution of missions. We
applied this idea in DTF-MO to explore whether the desired collective behaviors
for a sequence of missions could be specified using demonstrations (Szpirer et al.
2024a).

The studies conducted with Mate, Habanero, Pistacchio, and DTF-MO ad-
dressed open problems in the automatic design of robot swarms. Mate tackled
limitations of the seminal AutoMoDe methods by enabling the design of robot
swarms that distribute themselves in an ordered manner within a space. Habanero
showed that stigmergy-based behaviors could be automatically designed using
AutoMoDe, providing an alternative to the manual approaches typically seen in
the swarm robotics literature. Pistacchio illustrated how AutoMoDe is capable
of designing coordination strategies for heterogeneous groups of robots, even when
these robots operate with different control software architectures. DTF-MO showed
that AutoMoDe is capable of conducting a multi-criteria design process with greater
automation, removing the requirement for a mathematically formulated objective
function. Most importantly for the purpose of this thesis, the experiments with
Mate, Habanero, Pistacchio and DTF-MO demonstrated the versatility and wide
applicability of the AutoMoDe approach, along with the ideas introduced in Tutti-
Frutti and Mandarina. To the best of our knowledge, we provide here the most
diverse compendium of collective behaviors achieved through the automatic design
of robot swarms. This is the third major scientific contribution of the thesis.

In the course of our work, we collected and analyzed substantial empirical
evidence that supports our thesis. The experiments and analyses were conducted
within a consistent empirical framework, adapted from the original work of Francesca
(2017). In each study, we proposed a set of swarm robotics missions that the
automatic methods under consideration should address. These missions were based
on well-defined collective behaviors for robot swarms, including various forms of
aggregation, coverage, and decision-making (Brambilla et al. 2013; Schranz et al.
2020). All experiments were conducted using a swarm of e-puck robots (Mondada et
al. 2009)—a small wheeled platform widely used in swarm robotics research (Dorigo
et al. 2021). We employed both simulations and physical robots. In each study, we
applied the design methods under consideration multiple times to produce sets of
control software instances. Then, these sets were subjected to statistical analysis
to determine the relative performance between methods. We consistently used
this empirical framework across our studies to ensure the comparability of results,
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minimize potential variability from different approaches, and maintain a clear and
logical structure throughout the thesis.

The scientific output presented in this dissertation, along with the tools and
materials developed, has been made available to the scientific community. These
contributions, both scientific and technical, offer means to assist in the design,
deployment, and assessment of robot swarms. Throughout the development of this
thesis, we actively communicated our research to both the scientific community
and the general public. In doing so, we notably expanded the body of literature
on automatic modular design for robot swarms and helped to popularize swarm
robotics research through outreach activities.

Following this introductory chapter, the rest of the dissertation is organized as
follows. Chapter 2 provides a review of the literature in the automatic modular
design of robot swarms, including references to relevant swarm robotics literature
and to the design problems explored in the thesis. Chapter 3 describes TuttiFrutti
and our research on designing collective behaviors for robots that can display and
perceive color signals. Chapter 4 presents Mandarina and our investigation into the
design of robot swarms under concurrent design criteria, including the application
of these concepts to creating robot swarms capable of performing sequences of
missions. Chapter 5 provides details on Mate, Habanero, Pistacchio, and DTF-MO,
providing an overview of each method, the experiments conducted, and the most
significant findings of each study. We also briefly discuss our outreach efforts.
Finally, Chapter 6 concludes the dissertation and outlines potential directions for
future research.



2. Literature review

Automatic modular design (AutoMoDe) is a general approach to design-
ing collective behaviors for robot swarms that must address a specific
class of problems. Four principal elements characterize the design meth-
ods that are conceived within this approach: the class of problems on
which they are intended to operate; the robot platform for which control
software should be designed; the optimization strategy that drives the
design process; and the control architecture and modules that are used
to produce the control software of the robots.

In this chapter, we review and discuss literature on AutoMoDe in
light of these four elements. To provide context, we briefly introduce
the generalities of swarm robotics and highlight other approaches to
the automatic off-line design of robot swarms. We conclude our litera-
ture review by organizing and revising research relevant to the design
problems addressed in this dissertation.

13
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Figure 2.1: Swarm of e-puck robots. All studies presented in this dissertation are based
on the e-puck.

2.1 Swarm robotics

A robot swarm is a redundant and self-organized group of robots capable of
coordination and cooperation (Şahin 2005). Individually, the robots of a swarm
are usually simple and have limited capabilities. However, through the collective
actions of the group, the swarm can overcome the limitations of individual robots
and perform missions that a single robot could not perform alone. Robot swarms
are the embodiment of the ideas and concepts of swarm intelligence (Dorigo and
Birattari 2007). This characterization has remained consistent since the early
work that formally introduced the systems. For example, Beni (2005) described
robot swarms as groups of non-intelligent robots that, when combined, function
as a single intelligent entity. Indeed, the robots of a swarm are mostly considered
to operate with reactive control and limited information-processing—missing the
inference or planning abilities typical of other robotic systems. However, despite
these limitations, they can achieve complex collective behaviors by relying solely
on local interactions between robots and between robots and the environment.
Figure 2.1 shows a swarm of e-puck robots (Mondada et al. 2009; Garattoni et al.
2015)—the robot platform used during the development of this thesis.

The emergence of collective behavior from local interactions can be described
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and analyzed from two perspectives: the microscopic level and the macroscopic
one (Garattoni and Birattari 2016; Hamann 2018). At the microscopic level, the
focus is on understanding how the individual actions of the robots contribute to the
collective behavior of the swarm. Microscopic analyses study the behavior rules on
which individual robots operate. The discussion centers on how a robot perceives
its environment and how it responds to the local information it has available. In
these analyses, the behavior of a robot is usually described by microscopic models
that describe its control logic. Common approaches consider monolithic principled
methods, such as virtual-physics models, or structured control architectures like
finite-state machines. For example, virtual-physics models have been used to
describe spatially-organizing behaviors such as pattern formation (Spears et al.
2004), chain formation (Maxim et al. 2009), and collective exploration (Howard
et al. 2002). Probabilistic finite-state machines have been used to describe collective
behaviors such as aggregation (Soysal and Şahin 2005), chain formation (Nouyan
et al. 2008), and also division of labor and task allocation (Labella et al. 2006; Liu
et al. 2007). The microscopic perspective enables the application of bottom-up
approaches to the design of robot swarms.

In contrast, the focus at the macroscopic level is on understanding the behavior
of the swarm as a whole and describing how it evolves over time. These analyses aim
to characterize the overall functioning of the collective behavior of the robots and
its related properties. The traditional approach to conducting macroscopic studies
is to apply mathematical analysis and modeling. Hamann (2012), for example,
promoted the development of generally applicable swarm models and formalisms
to provide insight into the behavior and properties of robot swarms. Differential
equations are commonly used for this purpose in the literature. Examples include
models for object clustering (Martinoli et al. 1999), foraging (Lerman and Galstyan
2002), flocking (Winfield et al. 2008), and stick pulling (Lerman et al. 2001).
Recently, data-driven approaches have gained notable attention as an alternative
for characterizing and analyzing collective behaviors. Data-driven approaches
typically rely on the application of performance measures that specify the collective
behavior under study. For instance, Milner et al. (2023) introduced the concept of
swarm performance indicators—measurements derived from empirical data that
describe the degree of robustness, scalability, and flexibility of a robot swarm.
Similarly, Ligot and Birattari (2022) proposed a data-driven protocol to predict the
real-world performance of robot swarms by analyzing their statistical performance
in simulation. Notably, Kuckling et al. (2024) combined traditional mathematical
modeling with data-driven analysis to shed light on misunderstood aspects of the
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scalability of robot swarms.
The increasing interest in the design and realization of robot swarms gave rise to

swarm robotics: a research field devoted to the study, development, validation and
application of groups of robots that coordinate via swarm intelligence (Dorigo et al.
2014). Originally, swarm robotics emerged from the need to empirically validate
theoretical models of social animal behavior (Dorigo et al. 2021)—primarily driven
by research in biology. However, in recent years, the field has gradually shifted
its focus. Although there is still interest in applying biological principles to the
design of robot swarms, an increasing amount of research is now focused on
developing engineering approaches that stand on their own. There is a growing
body of literature that emphasizes the need for systematic design methods that
guarantee system properties and performance levels in the operation of robot
swarms (Brambilla et al. 2013; Hunt and Hauert 2020).

For a comprehensive introduction to swarm robotics, we recommend the text-
book by Hamann (2018). The evolution of the field is thoroughly discussed by
Dorigo et al. (2020, 2021). For an in-depth review of the field, we suggest the liter-
ature compiled and organized by Brambilla et al. (2013), Garattoni and Birattari
(2016), Nedjah and Silva Junior (2019), and Schranz et al. (2020).

2.1.1 Characteristics of a robot swarm

Robot swarms share the typical characteristics of swarm intelligence systems (Dorigo
et al. 2014). As discussed before, the behavior of a robot swarm emerges from
local interactions between individuals and between the individuals and their en-
vironment. Despite being limited to local perception and communication, the
robots can coordinate to perform missions that are relatively complex given their
individual capabilities. Robot swarms operate in large groups without the need
for centralized control or external infrastructure to guide their actions, or to assist
with their localization and communication. A swarm is capable of self-organization
and parallelization. If required by the mission, it can autonomously define roles
and distribute tasks among its members. For example, Ferrante et al. (2015)
investigated how roles emerge in a robot swarm during a complex foraging mission.
In the experiments, the task was autonomously divided into simpler sub-tasks and
distributed among the robots. Similarly, Garattoni and Birattari (2018) demon-
strated that a group of robots can adopt specific roles to collectively sequence and
plan the execution of sub-tasks.

Robot swarms are often characterized as redundant homogeneous systems. In
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the literature, the most common swarm configuration is a group of robots that
share the same physical design, are built with identical hardware, and run the same
control software. This homogeneity, originally adopted from other disciplines in
swarm intelligence, has facilitated the study of self-organization with groups of
robots in simple scenarios. However, it is at the same time a restrictive working
hypothesis. Recent discussions have emphasized the need to inject a degree of
heterogeneity into the system to tackle more complex missions (Dorigo et al. 2021).
At a basic level, this has been achieved by considering quasi-homogeneous robot
swarms. These configurations rely on robots that have similar, but not identical,
physical capabilities and/or operate with different control software. This approach
was adopted by Strobel et al. (2018) to study collective decision-making in swarms
that comprise two types of robots: those susceptible to change their opinion and
those that exhibit stubborn behavior, remaining fixed on a single opinion. In a
different context, Jones et al. (2019) experimented with the automatic design of
collective behaviors by allowing each robot to independently develop its own control
software.

Studies on fully operational heterogeneous robot swarms are rare and are mainly
conducted in simulation. For example, Aswale and Pinciroli (2023) conducted
simulations of multi-skilled groups of robots that must coordinate to perform a
series of tasks. In their experiments, robots dynamically form coalitions to complete
tasks that require the combined skills of different robots in the group. The most
notable example of a heterogeneous robot swarm using physical robots was achieved
by Dorigo et al. (2013) in the Swarmanoid project. In this project, the researchers
created a swarm of aerial, wheeled, and grasping robots that could self-organize
and cooperate to perform an object retrieval mission.

Distinction from other multi-robot systems

Swarm robotics is a specific approach to the coordination of multi-robot systems
that can be distinguished from other more general approaches. In overall, other
multi-robot systems typically incorporate advanced capabilities that are excluded
from robot swarms, such as: (i) global localization and information about their
environment; (ii) complex planning and interaction rules between robots; (iii) so-
phisticated communication protocols with guaranteed connectivity; (iv) explicit
assignment of roles and identities; (v) precise knowledge of the number of op-
erating robots; (vi) an explicit definition of the mission to be performed; and
(vii) centralized control or coordination. It is worth noting that this is not a strict
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boundary between swarm robotics and other forms of multi-robot systems. In fact,
many systems discussed in this review of the literature may incorporate some of
these capabilities. The distinction between robot swarms and other multi-robot
systems is meant to provide a useful framework for organizing the literature. It
allows for fair comparisons between approaches, sets appropriate expectations for
the collective capabilities of the systems, and helps to give context to the design
challenges addressed. For a broader overview of swarm robotics in the context of
other multi-robot systems, we refer the reader to Parker et al. (2016).

2.1.2 Desirable properties of a robot swarm

The main characteristics of a robot swarm—self-organization, redundancy, and
locality—enable the group of robots to operate with varying degrees of robustness,
scalability, and flexibility (Dorigo et al. 2014). These are desirable system properties
that have traditionally attracted attention to the realization of robot swarms.

The robustness of a robot swarm refers to the group’s ability to tolerate indi-
vidual robot failures. As discussed before, a robot swarm is a redundant system
composed of a large number of individuals. If a few robots in the swarm fail,
the overall operation is not significantly impacted as other robots continue to
operate. Furthermore, because the swarm operates autonomously without a leader
or external control infrastructure, the system has no single point of failure. In this
topic, Christensen et al. (2009) conducted studies on the autonomous detection
and repair of failing robots—thus improving the overall resilience of the system. In
their experiments, the failure of a robot could be collectively detected by its peers,
which could then take action to make it operative again. More recently, Lee et al.
(2022) investigated methods to quantify the severity of individual robot failures and
their impact on the overall performance of the swarm. The study aimed to support
autonomous decision-making processes that could identify when interventions are
needed.

The scalability of a robot swarm refers to the possibility of adding or removing
robots to the group without having to redefine their behavior rules. More precisely,
it refers to the ability of the swarm to remain unaffected by changes in the number
of robots. The scalability of a swarm is closely related to the locality of the
information with which robots operate. Each robot interacts only with neighboring
peers, which makes it unaffected by the actions (or inaction) of robots outside its
perception range. As a result, a robot is not severely affected by the appearance or
disappearance of robots in portions of the swarm that are not directly perceivable.
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A remarkable demonstration of the scalability of robot swarms was presented by
Rubenstein et al. (2014) with the successful deployment of one thousand coin-sized
legged robots named Kilobots. It is important to note that the environment in
which the robots operate affects the scalability of the swarm. A significant change
in the number of robots can drastically affect the density of the swarm, which
in turn can greatly impact its operation. The scalability is therefore tied to the
density of interactions between robots (Hamann 2018). Hamann and Reina (2021)
studied this phenomenon in depth and proposed a general model to predict the
potential for scalability in robot swarms and other parallelized systems.

The flexibility of a robot swarm refers to the group’s ability to adapt to a wide
range of tasks and/or potential changes in its environment. As already mentioned,
the robots of a swarm are typically homogeneous, unspecialized, and deployed
without predefined roles. Through self-organization, they can adapt to the specific
requirements of the mission at hand. This flexibility allows the swarm to be easily
reconfigured, display a variety of collective behaviors, and coordinate in different
ways to perform its mission. The adaptability of robot swarms is well demonstrated
by the evolution of the field itself. Much of the existing swarm robotics literature
reports results obtained with generic simple robots endowed with similar functional
capabilities (Dorigo et al. 2021)—for example, the foot-bot (Dorigo et al. 2013)
and the e-puck (Mondada et al. 2009). Relying on similar functional capabilities,
swarms of foot-bots and e-pucks have been shown to be capable of addressing
problems that require abilities as diverse as the emergence of shape (Mathews
et al. 2017) and planning (Garattoni and Birattari 2018). Moreover, foot-bots,
e-pucks, and similar robots are the common base of numerous studies on typical
problems like aggregation, foraging, and collective decision-making—as detailed
in the reviews by Brambilla et al. (2013), Nedjah and Silva Junior (2019), and
Schranz et al. (2020).

In the literature, robot swarms are often described as inherently robust, scalable,
and flexible systems. However, it has been noted that these properties cannot
be taken for granted and may require careful system design to achieve them to a
certain degree (Dorigo et al. 2021; Milner et al. 2023).

2.2 Automatic off-line design of robot swarms

Researchers commonly design robot swarms via an iterative manual process. In
this approach, a designer manually produces and refines the control software for



CHAPTER 2. LITERATURE REVIEW 20

individual robots until the desired collective behavior emerges. A few principled
methods have been proposed to aid in the manual design process for specific
problems and classes of missions (Spears et al. 2004; Kazadi 2009; Schmickl and
Hamann 2011; Berman et al. 2011; Beal et al. 2012; Lopes et al. 2014; Brambilla
et al. 2014; Reina et al. 2015b,a; Lopes et al. 2016; Pinciroli and Beltrame 2016).
However, the underlying assumptions of these methods prevent them from offering
a single universally applicable solution (Birattari et al. 2020). That is, they cannot
offer on their own a single approach to design all types of collective behaviors.
When these principled methods fall short or their underlying hypotheses are too
restrictive for the problem at hand, manual trial-and-error remains the dominant
approach for producing control software for robot swarms.

The manual approach has served to demonstrate the feasibility of a wide variety
of collective behaviors (Brambilla et al. 2013; Schranz et al. 2020). However,
it is labor-intensive and challenging to accurately evaluate or characterize its
performance. Manual design heavily depends on the designer’s expertise, which is
difficult to transfer and makes the process challenging to reproduce by designers
with different skill sets. We argue that for swarm robotics to scale current robotics
solutions into large-scale services, the common approach to producing control
software for robot swarms must undergo a significant change. It must shift from
a labor-intensive, ad hoc approach to a systematic engineering practice capable
of producing robot swarms that are ready to operate out of the box. In this
context, adopting automated practices can offer swarm designers a reproducible
design process, enabling the production of control software with clearly defined
performance guarantees. This is particularly relevant for application scenarios
where the swarm must be repeatedly deployed and adapted to ever-changing
environments (Birattari et al. 2019)—where lengthy manual development is not
feasible.

As an alternative to manual design, optimization-based methods can reduce
the need for human intervention in the design process. In this approach, the
design problem is restated as an optimization problem: an optimization algorithm
explores a space of possible instances of control software for the individual robots,
and selects the one that maximizes the collective performance of the swarm—
according to a mission-specific performance measure. This approach can potentially
allow the design problem to be addressed in a systematic and fully automatic
way (Birattari et al. 2020). Common classifications of optimization-based design
methods divide them into on-line and off-line methods, and into semi-automatic
and (fully) automatic methods (Birattari et al. 2020). This was discussed in further
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detail in Chapter 1. The methods presented in this dissertation belong to the the
automatic off-line design of robot swarms (Birattari et al. 2019). We therefore limit
our discussion to this approach.

Automatic off-line design methods produce the control software of the robots
before the swarm is deployed. Typically, the design process is conducted first
in simulation, and the control software obtained is then ported to the robots.
The largest body of literature on the automatic offline design of robot swarms
belongs to neuroevolution (Nolfi and Floreano 2000; Trianni 2008; Doncieux et al.
2015)—both in the semi-automatic and fully automatic cases. In recent years,
AutoMoDe (Francesca et al. 2014b; Birattari et al. 2021) has also received no-
table attention. In the remainder of the section, we provide a brief overview of
notable studies in the automatic off-line design of robot swarms. We focus here on
optimization-based methods other than those belonging to the AutoMoDe family,
which are discussed in detail in Section 2.3.

For a more general overview of the approaches to the optimization-based design
of robot swarms, we recommend the literature reviewed and organized by Francesca
and Birattari (2016), Bredeche et al. (2018), Birattari et al. (2019, 2020), and
Kuckling (2023b).

2.2.1 Notable research

We highlight design problems, robot platforms, optimization strategies, and control
architectures considered in notable research on the automatic off-line design of
robot swarms.

Quinn et al. (2003) used neuroevolution to generate control software for three
medium-sized wheeled robots. The robots used infrared transceivers to detect each
other by continuously emitting signals. The same sensors were also used to detect
the proximity of obstacles. Each robot sent its sensory data to a central host
computer, which ran distributed instances of control software for the swarm. The
neural network mapped sensory inputs to discrete movements of the wheels (forward,
still, backward). The evolutionary process optimized both the neural network’s
architecture and its weights. This method was demonstrated using physical robots
on missions that required coordinated motion. Notably, they showed that small
adjustments to a performance measure could significantly alter the evolved behavior,
even giving the robots obstacle-avoidance capabilities.

Dorigo et al. (2003) used neuroevolution to generate control software for swarms
of four and eight ground robots called s-bots. These robots could attach to one
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another to form a larger robot, known as a swarm-bot. The authors explored
scenarios where the robots could perceive each other through sound signals when
separated, or via traction sensors when physically connected. The neural network
mapped sensory inputs to the velocity of their differential treels (tracks and wheels).
The study showed results on the evolution of control software for aggregation and
coordinated motion. In aggregation, the robots relied on sound signals to approach
each other. In coordinated motion, a group of pre-assembled s-bots used traction
sensing to align their bodies and move as a unified group.

Pugh et al. (2005) used particle swarm optimization (PSO) and artificial neural
networks to generate control software for two Khepera robots (Mondada et al.
1997). The robots could only detect each other through physical proximity. The
neural network that mapped proximity sensor readings to wheel velocities. The
authors compared the performance of PSO and a genetic algorithm to optimize
the weights of the neural network. The experiments were conducted in simulation
on a mission that required the robots to move quickly while avoiding obstacles.

Christensen and Dorigo (2006) used neuroevolution to generate control software
for a swarm of three s-bots. The s-bots in this study were equipped with ground
sensors, rotation sensors, light intensity sensors, traction sensors, and a sound sensor.
The robots could detect each other by emitting sound signals and using traction
sensors when physically connected. The authors investigated three architectures of
multi-layered feed-forward neural networks to map sensory inputs to the robots’
treels. They compared the effectiveness of three evolutionary processes in optimizing
the weights of the neural network. Initial experiments were conducted in simulation,
followed by physical demonstrations in a mission involving phototaxis with hole-
avoidance. In this mission, black patches on the floor represented the holes that
the robots should avoid. The robots were pre-programmed to emit a sound when
detecting a hole, alerting the entire group. Notably, the authors detailed how they
incorporated various design criteria into a single objective function to guide the
evolutionary process toward the desired behavior.

Trianni and Dorigo (2006) used neuroevolution to generate control software
for a swarm of four s-bots. The s-bots in this study were equipped with ground
sensors, traction sensors, and sound sensors. The neural network mapped sensory
inputs to the treels and speaker of the robot. The experiments were conducted in
simulation on a hole-avoidance mission. The authors compared the evolution of
control software under three different scenarios of inter-robot perception. In the
first scenario, collective motion was evolved while restricting the robots to perceive
each other only through the force detected by their traction sensors. In the second
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scenario, collective movement was again evolved, but this time the robots could
also emit a pre-programmed sound signal whenever one detected a hole. In the
third scenario, both the movement and the protocol for triggering the sound signal
were evolved simultaneously.

Trianni and Nolfi (2009) used neuroevolution to generate control software for
swarms of s-bots. In this study, the s-bots were only equipped with ground sensors
and sound sensors. The robots could detect each other through sound signals,
which were audible to all robots in the arena, but did not allow robot identification.
The neural network mapped sensory inputs to both the wheels and the speaker.
The authors evolved the movement of the robots and the protocol for triggering the
sound signal. The experiments were conducted in simulation on a synchronization
mission with up to ninety-six s-bots, and the control software was later tested on
groups of two and three physical robots. In this mission, the robots synchronized
by exhibiting periodic movement patterns, partially coordinated through sound
signaling.

Hauert et al. (2009) used neuroevolution to generate control software for a swarm
of twenty flying drones. The drones were equipped with sensors to measure their
global heading relative to Earth’s magnetic field. They could also communicate
with other robots by broadcasting predefined data within a local range. The neural
network mapped the heading of the robot and connectivity ratio (i.e., number
of peers in reach) to the turning rate of the robot while in flight. The robot’s
flight speed was not controlled by the neural network and remained constant at
all times. The experiments were conducted in simulation on a networking mission
in which the swarm must establish a connected network between two points. The
drones used communication to estimate their connectivity within the network and,
combined with their heading information, could maneuver effectively to maintain a
constant connection.

Ampatzis et al. (2009) used neuroevolution to generate control software for two
s-bots. Unlike previous studies, these s-bots were equipped with sensors on their
grippers and cameras capable of detecting color signals. The robots could detect
each other by continuously displaying a pre-programmed color signal, which was
perceived through their cameras. The neural network mapped the color signals
detected by the camera, as well as the state of the gripper (whether it was grasping
an object or not), to the movement of the treels and the actuation of the gripper.
The authors evolved control software for a self-assembly mission, where robots
were rewarded for approaching each other, physically connecting, and avoiding
collisions. They also compared the effects of using red, green, and blue signals in
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the communication between s-bots.
Waibel et al. (2009) used neuroevolution to generate control software for a

swarm of ten small wheeled robots called micro-robots. These robots could detect
each other only through physical proximity using proximity sensors, but they could
perceive their environment and other objects using two cameras. The neural network
mapped readings from the proximity sensors and cameras to the movement of the
robots’ wheels. The authors compared four strategies for evolving the weights
of the neural network: (i) homogeneous and heterogeneous team composition;
(ii) individual and group performance assessment. The experiments were conducted
with physical robots in three foraging scenarios in which the robots must collect
objects of different sizes. The evolutionary process produced collective behaviors in
which robots either acted individually to transport smaller objects or cooperated
to move larger ones.

Hettiarachchi and Spears (2009) used artificial evolution to optimize the control
software parameters for swarms of up to one hundred abstract robots. The authors
assumed that the robots could perceive and interact with each other based on
Newtonian and Lennard-Jones force laws, though no specific details about the
required equipment for the robots were provided. The robots operated with control
software produced on the basis of these two force models. The authors used artificial
evolution to determine the optimal parameter values to perform a mission involving
collective motion with obstacle avoidance. They compared the performance of the
two force models in this context. The goal of the evolutionary process was to design
behaviors that allowed the robots to maintain a uniform spatial organization while
performing the mission.

Hecker et al. (2012) used artificial evolution to optimize the control software
parameters for a swarm of three small wheeled robots. The robots detected
objects in their environment using proximity sensors and interacted with each
other via virtual pheromones stored in RFID devices. These pheromones were
tracked and communicated to the robots through a central host computer. The
control software of the robots was produced on the basis of an ant behavior model,
with its parameters optimized using a genetic algorithm. The authors conducted
experiments in which three robots foraged virtual objects stored in RFID tags that
were scattered in their environment. Additional experiments were performed in
simulation with up to one hundred robots.

Gomes et al. (2013) used neuroevolution to generate control software for swarms
of five e-puck robots (Mondada et al. 2009). The robots were equipped with
proximity sensors to detect objects and specialized sensors to estimate the relative
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distance of other robots within a local perception range. Another sensor estimated
the percentage of robots perceived relative to the swarm size. The neural network
mapped sensor readings to the velocity of the wheels, with a dedicated output node
to stop movement immediately. The authors combined novelty search (Lehman and
Stanley 2011) with the evolutionary algorithm NEAT (Stanley and Miikkulainen
2002) in their approach. NEAT allowed the evolutionary process to optimize both
the neural network’s architecture and its parameters. The inclusion of novelty
allowed for the creation of a population of control software with diverse properties,
without the need to explicitly define an objective function to obtaining them. The
authors used simulations to evaluate the performance of the generated control
software in missions involving aggregation and coordinated resource sharing.

Gauci et al. (2014b) used a grid search to explore the space of possible control
software configurations for a swarm of forty e-pucks. The robots were equipped
with a directional camera that acted as a line-of-sight binary sensor to detect
the presence of other robots. The robots operated without a structured control
architecture. Instead, the binary sensor readings were directly mapped to wheel
velocities using a lookup table. The grid search was used to characterize the
control software generated by different mappings, based on its ability to perform an
aggregation mission. The experiments were conducted with both physical robots
and simulations, where the swarm size was scaled up to one thousand robots.

In a parallel study, Gauci et al. (2014a) integrated artificial evolution into
their design method. The robots were also equipped with line-of-sight sensors
that were emulated through their directional cameras. However, in this study, the
robots could detect and distinguish between other robots and movable cylindrical
objects. The robots operated with a lookup table that mapped the line-of-sight
sensor readings to the velocity of their wheels. The evolutionary process searched
for mappings that would enable the robots to cluster the cylindrical objects that
were scattered in the environment. The experiments on this clustering mission
were conducted in simulation with up to one thousand e-pucks, and its feasibility
was demonstrated using five physical robots. In subsequent studies, this design
process was applied to (i) shepherding missions (Özdemir et al. 2017) in which
the robots clustered other robots, and to (ii) a combination of shepherding and
clustering (Dosieah et al. 2022), which involved both robots and static objects.

Duarte et al. (2014) used neuroevolution to generate control software for three
robots similar to the e-puck. The authors conducted experiments in which robots
must push a series of buttons to open gates in a room and then transport objects
within it. To perform these missions, the robots were equipped with proximity
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and sound sensors, as well as specialized sensors to detect other robots, objects,
gates, and corridors. The authors approached the complex mission by manually
decomposing it into simpler sub-missions, then designing control software instances
for each sub-mission, and finally assembling them into a hierarchical architecture.
The hierarchical control architecture with which robots operated consisted of sub-
controllers and arbitrators, with the sub-controllers evolved using neural networks.
For each sub-controller, the neural network mapped the sensory inputs of the
robot to its wheels. Some sub-missions proved too complex for neuroevolution
alone, and the authors manually produced control software for those cases. The
study was conducted in simulation, comparing the hierarchical approach to two
non-hierarchical methods: a simple evolutionary algorithm and NEAT. Notably,
the study demonstrated the feasibility of combining a modular approach with
neuroevolution.

Ferrante et al. (2015) used artificial evolution to generate control software for a
swarm of five foot-bot robots (Dorigo et al. 2013). The robots were equipped with
proximity and ground sensors, along with a range-and-bearing system to detect
nearby robots. This version of the foot-bot also featured a gripper for holding and
transporting objects. The robots operated with two types of control software. The
first was a monolithic approach, in which each robot was assigned a predefined
role from a set of possible roles. The second was a modular architecture that
combined predefined software modules that described generic low-level behaviors.
The authors used these two types of control software in simulation experiments
to explore how task partitioning can emerge in a foraging mission. In a first
experiment, they used artificial evolution to determine the optimal allocation of
roles in the swarm to maximize its performance. In a second experiment, they used
grammatical evolution (O’Neill and Ryan 2003; Ferrante et al. 2013) to find the
optimal combination of low-level behaviors to perform the mission. The results
showed that the modular combination of low-level behaviors could effectively exploit
environmental features, producing behaviors similar to those manually crafted on
the predefined roles.

Trianni and López-Ibáñez (2015) used neuroevolution to generate control soft-
ware for swarms of up to ten foot-bots. These foot-bots were equipped with
proximity sensors, RGB LEDs, and a camera, allowing them to perceive each other
by emitting and detecting color signals. The neural network mapped the color
blobs detected by the camera and proximity readings to the velocity of the wheels
and a single LED beacon. The researchers evolved neural networks to perform
flocking and a variation of the stick-pulling mission (Ijspeert et al. 2001). The
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neural network architecture and sensor configuration were independently selected
for each mission to facilitate the evolution. Notably, this study explored the use of
a multi-objective optimization approach to generate the control software for the
robots. This work is further discussed in Section 2.4.

Duarte et al. (2016) used neuroevolution to generate control software for a
swarm of ten aquatic surface robots. These robots were equipped with virtual
sensors based on GPS, which provided information about the relative positions of
other robots, points of interest, and their own heading and location The robots
could perceive each other and share positional information via WiFi. The neural
network mapped positional data from other robots and points of interest to the
two motors controlling the movement of the robot. The researchers used NEAT
to evolve control software for four missions: homing, aggregation, dispersion, and
coverage. They then demonstrated that these four behaviors could be manually
assembled into a modular architecture to perform a mission with sequential tasks.
Notably, these experiments were conducted with physical robots operating in an
outdoor environment, going beyond typical laboratory settings for swarm robotics
research.

Jones et al. (2018) used automatic modular design to generate control software
for a swarm of twenty-five Kilobot robots (Rubenstein et al. 2014). The robots
were equipped with infrared transceivers for local communication and photore-
sistors to detect light signals projected into their environment. To detect each
other, the robots used infrared messages, which also helped estimate local robot
density and the distance to points of interest. The robots operated using behavior
trees (Champandard 2007; Colledanchise and Ögren 2018). The authors used
genetic programming (Koza 1992) to design the tree architecture by assembling
predefined action and composition nodes—i.e., software modules. The action nodes
defined both the transition conditions based on sensor readings and the movement
behaviors of the robots. The composition nodes coordinated the execution of the
action nodes within the behavior tree. Notably, this study showed how automatic
modular design could generate effective control software even with the limited
capabilities of the Kilobot. In a subsequent study, Jones et al. (2019) showed
that behavior trees could also evolve online, with a distributed design process
implemented in a swarm of e-pucks with enhanced computing capabilities. This
was demonstrated in a mission where the robots were required to collectively push
an object.

Kaiser and Hamann (2019) used neuroevolution to generate control software for
a swarm of one hundred robots represented as discrete agents. The robots operated
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in a grid-like environment and were equipped with binary sensors to detect other
robots within their local perception range. The control software consisted of two
neural networks that evolved together during the neuroevolution process. The first
network controlled the robot’s actions through a sensory-motor mapping, while the
second network predicted the sensor readings based on the actions selected by the
first network. The evolutionary process optimized the network weights to allow
the robots to move while minimizing errors in the predicted sensor readings. This
approach, known as minimizing surprise (Hamann 2014), enables the emergence
of collective behaviors without the need for a mission-specific objective function.
The authors conducted simulation experiments in which the robots demonstrated
shape-formation behaviors. In a follow-up study, Kaiser and Hamann (2022) applied
this method to a swarm of four Thymio II robots (Riedo et al. 2013), adapting the
minimizing surprise concept to an online design approach.

Mason and Hauert (2023) used neuroevolution to generate control software for
a swarm of ten simulated DOTs robots (Jones et al. 2022). The DOTs robots were
only equipped with four proximity sensors, limiting their interactions to physical
proximity. The neural network mapped proximity readings to rotation commands
and a forward velocity. The experiments involved a mission where the robots had
to alternate between two tasks, each defined by an independent design criterion.
One task required the robots to maximize their movement speed, while the other
required them to minimize their distance from the center of the environment. To
facilitate task switching, the neural network included two input nodes that indicated
to the robot which design criterion was prioritized at any given time. The authors
used the evolutionary algorithm xNES (Glasmachers et al. 2010) to optimize the
weights of the neural network. The experiments, conducted in simulation, showed
that the robots could switch between tasks when external stimuli were applied to
the dedicated input nodes.

Endo et al. (2023) used automatic modular design to generate control software
for four Khepera IV robots. The robots were equipped with proximity sensors to
detect other robots and obstacles, and a camera to identify points of interest. The
method operated on parametric software modules that defined the actions the robots
could take and the conditions to transition between those actions. The authors
used particle swarm optimization to find the suitable combinations of modules
to perform an exploration mission. In the experiments, robots were required to
collectively locate, identify, and report points of interest in the environment. They
also accounted for the possibility of robot failures, incorporating repair actions to
keep the robots operational, similar to the approach introduced by Christensen et al.
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(2009). Notably, the researchers applied a multi-level design approach to improve
the efficiency of the design process. First, they used a low-fidelity simulator to select
the optimal combination of modules. Then, they used a high-fidelity simulator
to fine-tune their operational parameters. The experiments were conducted with
physical robots, and the authors compared the performance of the automatic design
process to that of a manual approach.

As discussed in this section, much of the literature on the automatic offline
design of robot swarms has traditionally focused on neuroevolution. This approach
has proven highly versatile, with similar neuroevolutionary methods being adapted
to address various design problems. Neural networks, with their considerable
representational power, have been particularly effective in fitting sensory-motor
mappings that enable robots to display a wide range of collective behaviors. Artifi-
cial evolution algorithms have shown their effectiveness in harnessing this power.
In addition to neuroevolution, automatic modular design has also been used to
generate control software for robot swarms, though in fewer studies and often with
ad hoc methods tailored to specific design problems.

2.3 The AutoMoDe family of methods

AutoMoDe, short for Automatic Modular Design (Francesca et al. 2014b), is
an approach to the design of control software for robot swarms. AutoMoDe
methods produce control software for robots by tuning and assembling predefined
software modules into a modular control architecture. This process is driven by an
optimization algorithm that uses mission-specific performance metrics to search for
suitable control software for the robots.

At present, AutoMoDe researchers have developed a whole family of methods
by adopting the practices introduced by Francesca et al. (2014b). These methods
have been conceived while investigating the application of AutoMoDe to differ-
ent classes of problems, robot platforms, control architectures, and optimization
strategies (Birattari et al. 2021).

In the following, we discuss the most relevant methods developed within the
AutoMoDe family. This review of the literature aims to position the methods
presented in this dissertation with respect to other AutoMoDe research. First,
we elaborate on the background that motivated the development of AutoMoDe
and introduce the core ideas behind the approach. Next, we outline the key
elements that characterize AutoMoDe methods. Following this, we present Vanil-
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la, the seminal AutoMoDe method that established many of the key elements still
commonly used in AutoMoDe research. We then highlight the advances made in
the methods introduced after Vanilla.

2.3.1 Background and core ideas

The large body of swarm robotics literature on neuroevolution, discussed earlier
in this chapter, helped highlight a major issue: the control software produced via
neuroevolution is particularly susceptible to the effects of the reality gap (Jakobi
1997). That is, it is notably affected by the unavoidable differences between
the simulation environment—where the design is conducted—and the real-world
environment—where the robots are deployed. Due to the reality gap, the neural
networks designed in simulation frequently underperform when transferred to
physical robots, sometimes even exhibiting behaviors that differ from those seen
during the design process. This problem is widely acknowledged in the field of
evolutionary robotics (Floreano et al. 2008). To mitigate the effects of the reality
gap, designers commonly intervene in the design process by manually adjusting
objective functions, optimization algorithms, or robot platforms (Birattari et al.
2020). While these interventions can be helpful to some extent, it would be far
more desirable for the entire design process to be intrinsically robust to the reality
gap, without relying solely on manual adjustments. This way, even when manual
adjustments are possible, they could improve a process that is already capable of
handling the reality gap effectively.

Francesca et al. (2014b) introduced automatic modular design (AutoMoDe) as
an alternative to neuroevolution, aiming to address the reality gap problem—see
also Chapter 1. AutoMoDe was conceived on the original idea that the inability
of a design method to overcome the reality gap should be understood in the
context of the bias/variance trade-off in machine learning (Geman et al. 1992). In
neural network training, a low-bias model typically has a complex architecture that
gives the model the power to represent diverse input-output mappings (i.e., a high
variance). Conversely, a high-bias model has a restricted architecture, which reduces
its power to represent such diverse mappings (i.e., a low variance). Although a
low-bias/high-variance model might seem always preferable, it has been shown
that it also carries a higher risk of overfitting. The model can perform well on
the training set but fails to generalize to new data in the test set. In light of this,
Francesca et al. (2014b) conjectured that the performance loss due to the reality
gap was a problem akin to the performance loss due to overfitting. The control
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software can perform well in simulation (i.e., the training set) and fail to generalize
to the physical world (i.e., the test set).

In machine learning, it is known that the risk of overfitting can be reduced by
injecting bias into the model—for example, by restricting the model’s architecture.
Francesca et al. (2014b) adopted this principle in AutoMoDe. They conceived
a design process that generates control software within a constrained modular
control architecture. This injection of bias inherently limited the range of possible
control software that AutoMoDe methods can produce, restricting the solutions to
those achievable within the constrained architecture. However, at the same time,
this approach gave AutoMoDe the potential to reduce the risk of overfitting and
improved its ability to cross the reality gap satisfactorily. This property was first
demonstrated with Vanilla (Francesca et al. 2014b), the initial implementation of
a method within the AutoMoDe family. Since then, it has become the central idea
upon which subsequent AutoMoDe methods have been developed.

2.3.2 Characteristic elements

AutoMoDe is most useful when applied within the principles that we believe should
guide the automatic off-line design of robot swarms (Birattari et al. 2019)—see
Chapter 1. AutoMoDe methods are designed to address a whole class of missions,
rather than focusing on a single, specific mission. Once a mission is specified and
provided to the design method, the entire design process is executed automatically,
with no further human intervention required to produce the control software. In
practice, developers of AutoMoDe methods must design and implement a method
that can produce control software for the class of missions at hand. Once created,
the method can be used repeatedly to automatically generate control software,
without additional input from the designer. This independence from ongoing human
involvement is what qualifies the design process conducted by AutoMoDe as fully
automatic.

AutoMoDe is a general framework that must be specialized to design control
software for robot swarms. With Vanilla, the first AutoMoDe method, Francesca
et al. (2014b) provided a proof of concept for AutoMoDe and established a set of
practices to characterize and uniquely identify AutoMoDe methods. A method
within this family is characterized by four key elements. First, the class of problems
that the method is intended to address, including general mission requirements and
common environmental features across missions. Second, the robot platform for
which the control software will be designed, comprising both the hardware of the
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robot and the control interface available to operate it. Third, the control architecture
used to produce the control software, which considers both the predefined software
modules and the architecture into which they can be assembled. Fourth, the
optimization strategy that drives the design process by selecting and refining control
software instances with respect to a mission-specific performance measure. Once
these four elements are defined and the method is implemented, it is customary to
give each AutoMoDe method a unique name and maintain the method unmodified
for further comparison.

2.3.3 Seminal work: AutoMoDe-Vanilla

Vanilla (Francesca et al. 2014b) is a method for the automatic design of swarms
of e-puck robots. It generates control software by selecting, fine-tuning, and
assembling preexisting parametric software modules into probabilistic finite-state
machines. Vanilla’s software modules were designed in a mission-agnostic way.
They describe general low-level behaviors and transition conditions that can be
combined in various ways to design collective behaviors. Vanilla is intended to
address classes of missions in which robots must react to environmental cues, such as
black and white floor patches or light sources. The specific mission to be addressed
must be specified at design time, including a description of the experimental arena
where the robots will operate and the performance measure used to evaluate their
degree of success.

In the following, we briefly describe the main aspects of Vanilla. For a complete
description of the method, we refer the reader to the original work of Francesca
et al. (2014b).

Robot platform

Vanilla produces control software for an extended version of the e-puck robot (Mon-
dada et al. 2009; Garattoni et al. 2015)—see Figure 2.2. More precisely, Vanilla
produces control software for e-pucks whose functional capabilities are formally
defined by the reference model RM 1.1 (Hasselmann et al. 2018a). Francesca et al.
(2014b) introduced the notion of a reference model in the context of swarm robotics
to formally define the specifications of the platform for which a design method can
produce control software. In practice, the reference model defines the inputs and
outputs of the control interface and their relationship with the hardware of the
robot.
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Figure 2.2: The e-puck robot. The picture indicates the set of sensors and actuators
defined by the reference model RM 1.1, as introduced with Vanilla.

RM 1.1 describes an e-puck endowed with: 8 proximity sensors (prox i) that
can detect nearby obstacles; 8 light sensors (lighti) that can be used to compute
the direction of a light source; 3 ground sensors (gndj) that differentiate between
gray, black, and white floor; a range-and-bearing board (Gutiérrez et al. 2009)
that estimates the number of neighboring peers (n) and their relative aggregate
position (Vn); an Overo Gumstix extension board that runs a linux-based operating
system; and left and right wheels (vk), whose velocity can be set independently.
The hardware and software of this version of e-puck are thoroughly described by
Garattoni et al. (2015). Table 2.1 defines the possible input and output values
of the reference model RM 1.1. For a further description of the reference model
RM 1.1, see Hasselmann et al. (2018a).

Modular control architecture

Vanilla operates on a set of twelve parametric software modules. The set of
modules comprises six low-level behaviors—the actions that a robot can execute,
and seven transition conditions—the events that trigger the transition between
low-level behaviors. Vanilla combines low-level behaviors and transition conditions
to generate control software of the robots. The parameters of the software modules
are automatically tuned during the design process conducted by Vanilla. Table 2.2
lists the set of modules on which Vanilla operates.



CHAPTER 2. LITERATURE REVIEW 34

Table 2.1: The control interface for the e-puck according to the reference model
RM 1.1 (Francesca et al. 2014b; Hasselmann et al. 2018a).

Input Value Description

proxi∈{1,...,8} [0, 1] reading of proximity sensor i

lighti∈{1,...,8} [0, 1] reading of light intensity sensor i

gndj∈{1,...,3} {black, gray, white} reading of ground sensor j

n {0, . . . , 20} number of neighboring robots detected
Vn ([0.5, 20]; [0, 2] π rad) their relative aggregate position

Output Value Description

vk∈{l,r} [−0.16, 0.16] m s−1 target linear wheel velocity
Period of the control cycle: 0.1 s.

Table 2.2: Vanilla’s software modules. The modules are defined on the basis of the
reference model RM 1.1, see Table 2.1.

Low-level behavior Parameter Description

exploration {τ} movement by random walk
stop n.a. standstill state
attraction {α} physics-based attraction to neighboring robots
repulsion {α} physics-based repulsion from neighboring robots
phototaxis n.a. physics-based attraction to a light source
anti-phototaxis n.a. physics-based repulsion from a light source

Transition condition Parameter Description

black-floor {β} black floor beneath the robot
gray-floor {β} gray floor beneath the robot
white-floor {β} white floor beneath the robot
neighbor-count {ξ, η} number of neighboring robots greater than ξ
inv-neighbor-count {ξ, η} number of neighboring robots less than ξ
fixed-probability {β} transition with a fixed probability

The six low-level behaviors are exploration, stop, attraction, repulsion,
phototaxis, and anti-phototaxis. In exploration, the robot moves with
ballistic motion and avoids obstacles by rotating in place if an obstacle is detected.
The parameter τ regulates the number of control cycles during which the robot
rotates. stop sets the robot to a standstill behavior. attraction and repulsion
are physics-based behaviors that drive the robot according to artificial forces that
originate at the position of neighboring peers. In both cases, the magnitude of
the force is determined by the parameter α. If no other robot is perceived, the
robot moves with ballistic motion. phototaxis and anti-phototaxis steadily
drive the robot toward or away from light sources, respectively. If no light source
is perceived, the robot moves with ballistic motion. exploration, attraction,
repulsion, phototaxis, and anti-phototaxis embed physics-based obstacle
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avoidance (Borenstein and Koren 1989).
The six transition conditions are black-floor, gray-floor, white-floor,

neighbor-count, inv-neighbor-count, and fixed-probability. In black-
floor, gray-floor, white-floor, the robot transitions between low-level
behaviors with a probability β if the robot steps into regions with black, gray,
and white floor, respectively. neighbor-count and inv-neighbor-count are
transitions that are triggered when the robot perceives a number of neighboring
peers that is greater or less than ξ, respectively. fixed-probability is triggered
with probability β without further condition.

Automatic design process

Vanilla designs control software using F-race (Birattari et al. 2002; Birattari
2009), a general purpose optimization algorithm originally conceived for tuning
metaheuristics. In Vanilla, F-race explores and evaluates instances of control
software according to a mission-specific performance metric—i.e, a measure of the
degree of success of the swarm in the mission at hand. F-race starts the design
process by randomly sampling the design space for candidate control software.
More precisely, F-race samples candidate finite-state machines that result from
assembling software modules and instantiating their parameters. Vanilla can
assemble finite-state machines with up to four behaviors—each of which can have
four outgoing transitions at most. During the optimization process, F-race evaluates
each finite-state machine on a set of independent problem instances for the mission
at hand. To that end, it performs a large number of simulations in which the initial
position and orientation of the robots is selected at random. The performance of the
swarm is calculated according to the mission-specific performance measure. This
measure is used to rank the candidate solutions according to a series of Friedman
tests (Conover 1999). The design process ends when F-race has exhausted the
maximum number of simulation runs available to evaluate candidate solutions.
After that, Vanilla returns the best instance of control software found, which is
then ported to the physical robots without undergoing any modification.

Experimental setup

Francesca et al. (2014b) compared Vanilla with EvoStick—a straightforward
implementation of the neuroevolutionary approach that operates on the reference
model RM 1.1 of the e-puck. They evaluated the ability of the design methods to
produce effective control software in two missions: aggregation and foraging.
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These missions were performed by a swarm of 20 e-pucks. For each mission,
the authors conducted 20 automatic design processes to obtain 20 instances of
control software—10 for each design method. They experimented with three
different budgets of simulation runs to produce the instances of control software:
10 000, 50 000, and 200 000. After generating all the control software instances,
they evaluated their performance in both simulation and with physical robots.
Simulations during the design process and post-evaluation were performed using
the ARGoS3 simulator along with the argos3-epuck library (Garattoni et al. 2015).
ARGoS3 (Pinciroli et al. 2012) is a fast, parallel, multi-engine simulator specifically
designed for multi-robot systems and is widely used in swarm robotics (Pitonakova
et al. 2018).

In the experiments with physical robots, the authors used a tracking sys-
tem (Stranieri et al. 2013) to monitor the robots in the experimental arena. For
both simulation and physical experiments, the authors computed the performance
of the swarm using ARGoS3. In the simulation runs, ARGoS3 estimated the
position of the simulated robots at every time step and then calculated the swarm’s
performance based on the mission-specific measure. In the experiments with physi-
cal robots, the tracking system provided ARGoS3 with the positions of the robots
at every time step. ARGoS3 then processed this information and returned a per-
formance value. The computation made by ARGoS3 to estimate the performance
of the swarm was consistent in both simulations and physical experiments. By
maintaining the same evaluation procedure in the two settings, the authors could
also study the effects of the reality gap on the automatically generated control
software.

Results

In this first study with AutoMoDe, the results showed that Vanilla outperformed
EvoStick in the automatic design of robot swarms. The control software generated
by EvoStick outperformed Vanilla in simulations, but its performance significantly
dropped when transferred to physical robots. Conversely, Vanilla maintained a
similar performance both in simulation and in reality—outperforming EvoStick in
the latter. This result supported the original idea behind AutoMoDe. By restricting
the design space to a limited set of combinations of software modules, Vanilla
could reduce the risk of overfitting the simulation environment. This, in turn,
allowed Vanilla to cross the reality gap more effectively. On the other hand,
EvoStick had the freedom to produce control software that was highly specialized
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for the simulator—explaining its higher performance in simulation evaluations—but
failed to generalize effectively to the physical robots. Notably, this study identified
for the first time that the effects of the reality gap can be method-dependent. That
is, the same reality gap can impact the performance of different automatic design
methods in different ways. The relationship between the reality gap and machine
learning’s overfitting in EvoStick was further discussed by Birattari et al. (2016).

2.3.4 Research on the optimization process

In a follow-up study, Francesca et al. (2014a) further investigated the ability of
Vanilla to generate control software compared to EvoStick, but also to human
designers. They invited a group of swarm robotics practitioners to (i) propose five
missions that Vanilla must address and (ii) produce themselves control software
for the proposed missions. The missions were conceived for the capabilities of
the e-puck defined by the reference model RM 1.1 and resulted in variations of
aggregation, coverage, and decision-making. In the study, the authors devised two
protocols for human designers to produce control software for a swarm of e-pucks:
U-Human and C-Human. In U-Human, the designers were given unrestricted access
to the robot’s API. They could use it to program the robots directly, without any
limitations on the software they could develop. In C-Human, however, the designers
were restricted to using only the software modules and architecture on which
Vanilla operates. The results showed that Vanilla outperformed U-Human and
EvoStick, but the three were outperformed by C-Human. This outcome indicated
that the human designers benefited from the reduced search space provided by
C-Human. As Vanilla and C-Human operated on the same robot platform and
software modules, the authors concluded that the optimization algorithm used in
Vanilla was the element preventing it from outperforming the human designers.

Francesca et al. (2015) introduced Chocolate, an AutoMoDe method that
improved upon Vanilla by replacing F-race with Iterated F-race (Balaprakash
et al. 2007; Birattari et al. 2010; López-Ibáñez et al. 2016), a more sophisticated
version of F-race. The only new element in Chocolate was the optimization
algorithm; otherwise, it was identical to Vanilla. The authors extended their
2014 study to include Chocolate, comparing its performance against Vanilla,
EvoStick, U-Human, and C-Human. They conducted experiments using the same
missions defined by the human experts. The results showed that Chocolate
outperformed all four alternative methods in producing control software for robot
swarms. Although Vanilla was introduced first, the more powerful optimization
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algorithm of Chocolate has made it the de facto standard method within the
AutoMoDe family. Chocolate commonly serves as a base for the development of
new AutoMoDe methods and is a recurrent baseline for assessing their performance.

Kuckling et al. (2019, 2020b) introduced IcePop, a variation of Chocolate in
which the optimization algorithm is replaced by simulated annealing (Kirkpatrick
et al. 1983)—a stochastic local search metaheuristic. The authors conducted
simulation experiments on two missions previously studied with Vanilla and Choc-
olate, which involved foraging and aggregation. The results showed that simulated
annealing was a viable algorithm for generating control software for robot swarms,
even outperforming Chocolate in some cases. When the control software was
evaluated against estimators for the impact of the reality gap (Ligot and Birattari
2020), IcePop appeared to be more susceptible to its effects than Chocolate.

In a follow-up study, Kuckling et al. (2020a) further explored the application of
local search optimization as an alternative to Iterated F-race. They used iterated
improvement (Gendreau and Potvin 2019) to generate control software for e-pucks
that could operate with two control architectures: probabilistic finite state machines
and behavior trees. In the two architectures, the software modules remained the
same as in Chocolate. The performance of iterated improvement was compared
with that of Iterated F-race and a genetic programming implementation. The
experiments were conducted in simulation on missions similar to those used for
Vanilla and Chocolate. The results showed that, as with simulated annealing in
IcePop, iterated improvement is also a viable option to produce control software
for robot swarms. The design process conducted with iterated improvement
outperformed Chocolate when the design budgets were sufficiently large.

Hasselmann et al. (2021) compared Chocolate against several popular neu-
roevolutionary methods. The authors adapted versions of NEAT (Stanley and
Miikkulainen 2002), CMA-ES (Hansen and Ostermeier 2001), and xNES (Glasmach-
ers et al. 2010) to operate with the reference model RM 1.1 of the e-puck, and
compared their performance against Chocolate and EvoStick. The experiments
were conducted using missions defined for Vanilla and Chocolate. The results
showed that, although they are more advanced methods, NEAT, CMA-ES, and xNES
did not offer any clear advantage over EvoStick when used off the shelf. All neu-
roevolutionary methods performed similarly, but Chocolate outperformed them
all. The study also showed that NEAT, CMA-ES, and xNES were highly susceptible to
the reality gap, similar to EvoStick. Chocolate showed a better ability to cross
the reality gap compared to the neuroevolutionary methods.

Cambier and Ferrante (2022) explored the application of evolutionary optimiza-
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tion in the design process by introducing Pomodoro—a sub-family of AutoMoDe
methods. Pomodoro consists of three methods that adapt Chocolate by replacing
Iterated F-race with an alternative evolutionary algorithm. The first method,
BetterBoy, uses a standard genetic algorithm. The second, EarlyGirl, uses gram-
matical evolution (Ferrante et al. 2013). The third, BigRainbow, uses a version of
differential evolution (Tomczak et al. 2020). The authors conducted simulation
experiments on missions previously studied with Vanilla and Chocolate, com-
paring the performance of these evolutionary-based methods against Chocolate.
The results showed that evolutionary optimization strategies are a viable option
for modular design. The three methods in Pomodoro generally performed similarly
to Chocolate, with Chocolate outperforming them in some cases.

In AutoMoDe, the optimization process is driven by a performance measure
that indicates how successfully the swarm performs its mission. Traditionally,
this performance measure has been an objective function manually defined by the
designer. The problem is that defining an objective function that accurately reflects
the desired swarm behavior is a complex task that requires expert knowledge. This
challenge has motivated new research into alternative approaches for specifying
the performance measure that drives the optimization process. Bozhinoski and
Birattari (2022) developed a simplified structured language that allows mission
specification using common English text. This language operates on a dictionary
that translates the text input into a mission specification compatible with Auto-
MoDe. The dictionary identifies keywords in the text and uses them to select from
a set of parameterizable environmental features and predefined mission-specific
objective functions. This approach allows the user to simply provide a textual
description of the mission for the design process, without the need to formulate an
objective function. The authors conducted experiments with Chocolate, showing
that the design process could be successfully performed using text-based mission
specifications.

In a recent study (Gharbi et al. 2023), we also explored a more intuitive way
to specify missions than providing an objective function. Instead of relying on
a mathematical objective function or a textural description, we adapted Choco-
late to operate over a set of user demonstrations of the desired swarm behavior.
We introduced Demo-Cho, an advanced version of Chocolate that enables the
automatic design of robot swarms starting from user demonstrations. To specify a
mission, the user demonstrates the desired final spatial distribution of the robots
at the end of the experimental run. Demo-Cho then generates control software
that allows the swarm to achieve this spatial distribution. We evaluated Demo-Cho
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and Chocolate on missions previously defined for AutoMoDe. For comparison, we
evaluated the two methods using objective functions that had been used in earlier
studies to produce similar spatial distributions. The results showed that Demo-Cho
could design control software that performed on par with Chocolate, even without
a mathematical objective function.

2.3.5 Research on the robot platform and its capabilities

The first to study the design of communication behaviors in AutoMoDe were Has-
selmann et al. (2018b) and Hasselmann and Birattari (2020). The authors adapted
Chocolate to operate with a new reference model for the e-puck, adding communi-
cation capabilities. They introduced the reference model RM 2, an extension of
RM 1.1 (see Table 2.1), which enables the e-puck to broadcast and receive messages
through its range-and-bearing board. The design method based on RM 2, named
Gianduja, not only used a different robot platform but also modified Chocolate’s
low-level behaviors. The new modules included parameters to decide whether a
message is broadcast during the execution of a module and to define the message
content, with up to three bits per message. The authors conducted experiments
on three missions in which communication-based coordination could provide the
swarm with a performance advantage. The authors compared the performance of
Gianduja with Chocolate and with versions of EvoStick that were adapted to
use the capabilities defined in RM 2. The results showed that Gianduja designed
robot swarms that relied on single-bit communication to perform their mission
effectively. In a follow-up study, the authors conducted experiments on missions in
which the swarm could potentially benefit from two- or three-bit communication.
However, the more complex message structures did not show an advantage over
the results already achieved with a single bit.

Salman et al. (2019) investigated the concurrent design of control software
and hardware. They introduced Waffle, an extension of Chocolate that not
only selects the software modules to be assembled into the finite state machine
but also some of the hardware components for the e-puck. To design control
software, Waffle can select from the software modules of Chocolate. To design
the hardware of the robot, it can select from different range-and-bearing boards,
each offering varying transmission/reception error rates, power consumption levels,
and estimated market prices. The authors conducted simulation experiments using
Waffle in aggregation and foraging missions previously studied with Chocolate. In
addition to the standard objective function, they introduced economic constraints
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into the optimization process. This required Waffle to balance the selection of
fewer robots equipped with expensive high performance boards against the use of
more robots with cost-effective alternatives. The results showed that Waffle could
select the most suitable hardware for each mission while simultaneously designing
the control software to operate them effectively.

Until recently, AutoMoDe had only been applied to designing collective behaviors
for swarms of e-pucks, including the experiments presented in this dissertation.
However, in a recent work (Kegeleirs et al. 2023, 2024b), we showed that Chocolate
could be successfully transferred to a new robot platform called Mercator (Kegeleirs
et al. 2022). Mercator is a small educational robot with a more advanced set of
sensors and actuators compared to the e-puck. It is equipped with a LIDAR, an
RGB ground sensor, an infrared depth camera, and a Raspberry Pi 4 computing
board. Additionally, Mercator is nearly three times larger and can move three
times faster than the e-puck. We were able to apply Chocolate directly to a swarm
of Mercators by relying on the concept of the reference model. By reformatting
Mercator’s sensor data to match the control input requirements of the e-puck’s
reference model RM 1.1, we aligned the functional capabilities of the two robots.
This adaptation allowed Chocolate to operate on the same software modules and
control architecture for both e-puck and Mercator. We conducted experiments on
three missions where Chocolate was tasked with designing collective behaviors for
both e-pucks and Mercators, adjusting the arena size to fit the workspace needed
for each robot. The results showed that Chocolate could effectively design control
software for the Mercators, even though it was not originally developed for them.

2.3.6 Research on the modular control architecture

Research on the modular architecture of AutoMoDe has focused on exploring
suitable control architectures, defining new software modules, or a combination
of both. Here, we focus on methods that introduced new software modules and
control architectures without introducing new hardware. Studies that introduced
new modules and hardware were discussed earlier.

The software modules in AutoMoDe can be customized to develop methods
specialized in addressing specific design problems. In Spaey et al. (2019, 2020), we
investigated whether Chocolate could design more effective exploration behaviors
by incorporating different random-walk behaviors into its modules. Originally, Choc-
olate’s low-level behaviors used a simple ballistic motion as the default random
walk behavior. We relaxed this design choice by introducing Coconut, a method
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that allows the design process to choose from various random walk behaviors and
obstacle avoidance strategies. To achieve this, we modified Chocolate’s modules
by adding parameters that enabled the selection of these alternative behaviors,
previously adapted for the e-puck (Kegeleirs et al. 2019). We conducted experiments
with Coconut and Chocolate on aggregation, foraging, and coverage missions in
both bounded and unbounded environments—robots could potentially escape the
arena in the latter. The results showed that Coconut successfully designed effective
exploration strategies by selecting the most suitable random walk behavior for each
mission. However, this did not provide a significant performance improvement over
Chocolate.

Kuckling et al. (2018a) and Ligot et al. (2020b) investigated the use of behavior
trees as a control architecture in AutoMoDe. They introduced Maple, a modified
version of Chocolate that replaced the probabilistic finite-state machines with
behavior trees. In other aspects, Maple and Chocolate remained the same. The
authors conducted experiments on foraging and aggregation missions, comparing
the performance of Maple with Chocolate and EvoStick. The results showed that
Maple could design effective control software that performed similarly to Chocolate,
with the two modular methods outperforming EvoStick. The control software
produced by Maple, in the form of behavior trees, showed similar capabilities to
cross the reality gap as that produced by Chocolate. This study contributed to
support the idea that AutoMoDe’s ability to cross the reality gap is closely linked
to the modular nature of the design process, which can adopt architectures other
than the probabilistic finite-state machine.

Chocolate’s modules proved to be functional for Maple, yet they missed some
necessary properties to fully leverage the behavior tree formalism. In particular,
the low-level behaviors missed success or failure conditions to drive the control
cycle within the tree. This motivated Kuckling et al. (2021b, 2022) to develop
Cedrata, an AutoMoDe method whose software modules were specifically designed
for behavior trees. Cedrata operates on a modified version of the reference model
RM 2 (Hasselmann et al. 2018b). The modules developed for Cedrata incorporated
the required success/failure conditions and the communication capabilities endowed
by RM 2. In the study, the authors considered three implementations of Cedrata,
each using a different optimization algorithm: Iterated F-race, genetic programming,
and grammatical evolution. The authors conducted experiments on missions in
which the swarm was expected to benefit from communication-based coordination.
As in the original studies on Vanilla and Chocolate, the implementations of
Cedrata were compared to control software produced using the C-Human protocol.
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The results showed that Cedrata could generate high-performing control software
with the new modules, even outperforming human designers. However, Cedrata
failed to design collective behaviors that effectively leveraged communication to
perform the missions. Instead, the robots relied on simpler forms of coordination.

AutoMoDe is an automatic design process that operates without human inter-
vention, but has traditionally relied on the manual development of the software
modules it operates on. Ligot et al. (2020a) proposed an alternative approach to the
development of AutoMoDe modules. They introduced Arlequin, a method in which
low-level behaviors are generated through neuroevolution rather than manually pro-
grammed. In Arlequin, the authors used a neuroevolutionary strategy to replicate
Chocolate’s low-level behaviors. In other aspects, Arlequin operates similarly to
Chocolate. Arlequin uses Iterated F-race to assemble the neuroevolution-based
modules into probabilistic finite-state machines. The authors compared the per-
formance of Arlequin with that of Chocolate and EvoStick. The results showed
that producing modules via neuroevolution is a viable alternative to manually
programming them, potentially increasing the degree of automation in AutoMoDe.
Arlequin also showed a higher sensitivity to the reality gap than Chocolate, but
less than EvoStick. This indicated that a degree of modularity could also provide
an advantage to neuroevolutionary design processes.

Hasselmann et al. (2023) further investigated the application of neuroevolution
to develop software modules in AutoMoDe. They introduced Nata, a design
method that fully automates the creation of low-level behaviors and transition
conditions. The authors applied a novelty search approach to discover a diverse
set of task-agnostic low-level behaviors and transitions compatible with reference
model RM 1.1. This process resulted in a repertoire of 670 low-level behaviors
and 5 transition conditions that Nata could assemble into finite-state machines.
Therefore, unlike Arlequin, Nata is not restricted to operate on low-level behaviors
that mimic those of Chocolate. The authors compared the performance of Nata
with that of Arlequin, Chocolate, and EvoStick. The results showed that the
repertoire of modules generated by Nata enabled the method to produce control
software that can perform missions previously studied with Chocolate. Although
Nata did not outperform Chocolate, it successfully performed the same missions
with less human intervention.
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2.4 Design problems

In this section, we organize and comment on literature that provides context for
the design problems to be addressed in the dissertation. Our aim is not to be
exhaustive, but to highlight significant approaches and challenges in these topics.
We first discuss the design of robot swarms that rely on color-based signaling
to coordinate, a design problem studied with TuttiFrutti in Chapter 3. After,
we discuss the realization of robot swarms under concurrent design criteria, a
design problem studied with Mandarina in Chapter 4. We finish the chapter
by dicussing relevant literature on the design of spatial organization behaviors,
stigmergy-based behaviors, shepherding behaviors, and the design of robot swarms
by demonstration—design problems studied with Mate, Habanero, Pistacchio,
and DTF-MO in Chapter 5.

2.4.1 Design of robot swarms that coordinate via color
signals

Robots that can display or perceive colors have been widely used to demonstrate
collective behaviors in swarm robotics. The literature on robot swarms that use
visual information is extensive. We focus here on studies in which robots can both
display and perceive color signals to coordinate. We exclude from this discussion
any system in which robots only perceive visual information but do not display
it—such as in the work by Waibel et al. (2009), Gauci et al. (2014b), Chen et al.
(2015), Lopes et al. (2016), and Jones et al. (2019).

Designers of robot swarms commonly use color lights to represent specific
information that the robots must identify, process, and/or transmit—the nature
of the information varies from one study to another and is used ad hoc to obtain
a particular behavior. For example, Nouyan et al. (2008) designed a swarm that
connects locations of interest by establishing a chain of robots that act as waypoints
for their peers. They conducted two experiments in which robots use colors
differently: in the first experiment, robots repeat a pattern of 3 colors along the
chain to indicate the direction in which the peers should move; in the second one,
robots use colors to inform their peers about a location of interest. Mathews et al.
(2017) designed a swarm in which robots self-organize in mergeable structures. In
their experiments, robots react to colored objects in their environment and display
color signals that indicate their location. Garattoni and Birattari (2018) designed
a robot swarm that autonomously identifies and performs sequences of tasks. In
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their experiments, robots emit color signals to coordinate their collective action
and associate objects that display a particular color with a task in the sequence.

In a more general sense, one can find a similar approach in swarms that exhibit
self-assembly and morphogenesis (O’Grady et al. 2009, 2010; Mathews et al. 2017,
2019), collective fault detection (Christensen et al. 2009; Mathews et al. 2017),
collective exploration (Nouyan et al. 2009; Ducatelle et al. 2011; Dorigo et al.
2013; Garattoni and Birattari 2018), collective transport (Nouyan et al. 2009;
Dorigo et al. 2013), coordinated motion (Ferrante et al. 2010; Mathews et al.
2017, 2019), human-swarm interaction (Giusti et al. 2012; Podevijn et al. 2012),
chain formation (Nouyan et al. 2008, 2009; Garattoni and Birattari 2018), group
size regulation (Pinciroli et al. 2009), task allocation (Pini et al. 2011a,b, 2014;
Brutschy et al. 2015; Garattoni and Birattari 2018), object clustering (Allwright
et al. 2014; Pini et al. 2014), and foraging (Brambilla et al. 2014)—according to
the taxonomy proposed by Brambilla et al. (2013). In these studies, designers
manually established ad hoc relationships between the colors that a robot can
perceive and the corresponding behavior that a robot must adopt when it perceives
them. In other words, designers used mission-specific knowledge and expertise to
define communication protocols that enable the robots to coordinate effectively.
In this dissertation, conversely, we investigated whether AutoMoDe can establish
similar relationships in a fully automatic way. This would allow designers of robot
swarms to achieve robot coordination without requiring mission-specific expertise
to design the communication strategy. Transitioning from ad hoc methods to a
systematic and automated process is a technological step forward.1

Color lights are a signaling mechanism to operationalize the ability of an au-
tomatic design method to establish signal-based interactions between physical
robots—without relying on abstract or simulated communication. Although other
mechanisms have been used in the literature, e.g., infrared (Hasselmann and Bi-
rattari 2020) or sound (Trianni and Nolfi 2009), using color lights has additional
advantages to deploying physical robot swarms. First, the capability of display-
ing and perceiving colors is platform independent and generalizes across different
missions—robot platforms used in swarm robotics often include LEDs and cam-

1Automatically learning communication protocols for artificial agents is an area of interest
in related fields, such as multi-agent reinforcement learning. However, popular literature on the
topic remains constrained to simulated scenarios (Foerster et al. 2016; Das et al. 2019). In the
context of swarm robotics, very recent advances in applying Large Language Models (LLMs)
to robot swarms (Strobel et al. 2024) can open new possibilities for leveraging communication,
enabling robot swarms to interact more effectively not only with each other but also with human
operators.
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eras (Nedjah and Silva Junior 2019). Second, colors facilitate the conception and
implementation of complex missions—colored environments can be implemented
in various manners (Mayet et al. 2010; Brutschy et al. 2012; Allwright et al. 2014;
Brutschy et al. 2015; Soleymani et al. 2015). Finally, colors simplify the visualiza-
tion and monitoring of robot swarms (Nedjah and Silva Junior 2019)—a property
relevant to the human understandability of collective behaviors (Kolling et al. 2016).

The design of collective behaviors for robots that can display and perceive
color signals has not been studied in a systematic way. We argue that evaluating
automatic design methods across multiple missions—where robots communicate and
respond to color-based information—provides an ideal benchmark. In an automatic
design process, color signals do not inherently carry meaning. The challenge for
any method is to assign meaning to these signals and operationalize them during
the design process. The method must produce control software that uses color
signals selectively in specific contexts, triggering appropriate robot behaviors that
help the swarm meet the mission specifications. Here, we center our attention
to methods framed within the principles of the automatic offline design of robot
swarms (Birattari et al. 2019).

Some of the neuroevolution studies mentioned in Section 2.2 were conducted
with robots that can display and perceive colors. For example, Floreano et al. (2007)
evolved communication behaviors for a swarm that must perform a foraging mission.
Ampatzis et al. (2009) evolved self-assembly behaviors with a team of two robots.
Sperati et al. (2008, 2011) evolved coordinated motion behaviors with a group
of three robots, and afterward developed a dynamic chain of robots to perform
a foraging-like mission. Trianni and López-Ibáñez (2015) used multi-objective
optimization to evolve flocking and a two-robot collaborative behavior. These
studies belong in semiautomatic design rather than fully automatic design. The
design methods under analysis were not tested for their ability to generate control
software autonomously—i.e., without human intervention. The authors either
focused on a single mission (Floreano et al. 2007; Ampatzis et al. 2009; Sperati
et al. 2011) or modified the design methods and robot platforms to investigate
multiple missions (Sperati et al. 2008; Trianni and López-Ibáñez 2015).

In related neuroevolutionary studies, mission-specific bias has been manually
introduced into how robots display and perceive color signals. For example, the
robots display colors that are manually defined at the beginning of the experi-
ment (Ampatzis et al. 2009). Otherwise, they display color-based information
that is manually encoded by the researchers (Sperati et al. 2011; Trianni and
López-Ibáñez 2015). Alternatively, the perception capabilities of the robots are
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adjusted to ease the design of specific behaviors on a per-mission basis (Sperati
et al. 2008, 2011). These studies also did not fully explore the potential of using
color-based information in the automatic design of collective behaviors. In fact,
these previous works were limited to producing control software for robots that can
display and perceive only one (Floreano et al. 2007; Sperati et al. 2008; Ampatzis
et al. 2009) or at most two simultaneous colors (Sperati et al. 2011; Trianni and
López-Ibáñez 2015).

Experimental environments

Swarm robotics research is conducted mainly under controlled laboratory conditions.
Researchers design robot swarms to exhibit specific collective behaviors in simplified
ad hoc scenarios. These scenarios typically involve convex and bounded spaces that
are populated with objects that the robots can perceive, identify, and interact with.
The characteristics of the environment where the robots operate partially condition
the collective behaviors that the swarm can exhibit. Indeed, the scenario must
provide the elements that enable the emergence of a desired collective behavior. For
example, a robot swarm that navigates its environment using color cues requires
colored objects to operate correctly.

As already described in this section, swarm robotics platforms often have
cameras that give the robots the capability to perceive colored objects. Designers
of robot swarms commonly conceive experiments in which these objects represent
information that is relevant to the task that a swarm must perform. For example,
objects that display different colors can indicate regions of the scenario in which
robots should act differently. We identify two types of objects that are used to
this purpose: non-programmable simple objects like prints, or wooden and plastic
items (Francesca et al. 2014b, 2015; Castelló Ferrer et al. 2016; Kegeleirs et al. 2019;
Jones et al. 2019); and programmable devices that can modify their characteristics
in runtime and/or actively interact with the robots (Nouyan et al. 2009; Brutschy
et al. 2015; Mathews et al. 2017; Allwright et al. 2019). On the one hand, simple
objects are cost-effective and easy to fabricate. However, it is difficult to use them
beyond the context of the specific experiment for which they are created. On
the other hand, programmable devices require additional configuration steps in
preparing an experimental setup. Yet, they are more versatile, reusable, and enable
the design of experiments that consider time-varying scenarios.

In the swarm robotics literature, researchers typically focus on the robots and
pay less attention to the components of the experimental arena where they operate.
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Indeed, few systems have been formally released that enable the fast creation of
experimental arenas for robots that perceive colored objects—we refer to systems
that comprise programmable devices. Within these few systems, Allwright et al.
(2019) developed a multi-robot construction system in which robots assemble small
programmable RGB cubic blocks named SRoCS. The blocks in SRoCS are modules
that embed a micro-controller and can communicate with robots by using Near-field
Communication (NFC) modules, Xbee radio transceivers, and by changing the color
of RGB LEDs. Similarly, Brutschy et al. (2015) introduced the Task Abstraction
Module (TAM). The TAM is a programmable booth-shaped smart device with
which robots can interact by stepping inside. The TAM can communicate with
the robots using infrared transceivers and by displaying colors using RGB LEDs.
It also embeds Xbee radio transceivers that enable the communication between
TAMs.

Systems such as SRoCS and the TAM exemplify the benefits of using objects
that display colors in swarm robotics experiments. Although these devices are
limited to providing individual interaction points for the robots, they offer a flexible
way to configure the workspace. This flexibility greatly facilitates the execution
of complex and innovative experiments, such as those in Garattoni and Birattari
(2018).

2.4.2 Design of robot swarms under concurrent design cri-
teria

The concept of designing robot swarms under concurrent design criteria applies
primarily to optimization-based design approaches. Traditional trial-and-error
methods for manually designing collective behaviors cannot be easily analyzed
within this framework. Manual design is largely driven by the designer’s intuition
and expertise, which are difficult to quantify and may not directly align with
well-defined performance measures—i.e. the design criteria.

In optimization-based design, the performance measure is formally defined as
part of the mission specification. The literature provides various examples in which,
given a particular mission, the performance measure is formally defined as (i) a
single function that measures the degree of success of the robots in the mission
at hand or (ii) multiple functions that indicate whether the robots attain a set of
objectives and satisfy a set of constraints. When multiple functions are considered,
these are ultimately concurrent design criteria to be satisfied by the robot swarm.
Examples of missions specified as a single function are provided by Francesca et al.
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(2014b, 2015), Garzón Ramos and Birattari (2020), Hasselmann and Birattari
(2020), Kuckling et al. (2021b), and Hasselmann et al. (2021). Otherwise, examples
of missions specified through multiple functions are provided by Quinn et al. (2003),
Christensen and Dorigo (2006), Marocco and Nolfi (2007), Ampatzis et al. (2009),
Trianni and Nolfi (2009), Gomes et al. (2013), Duarte et al. (2014, 2016), Trianni
and López-Ibáñez (2015), Francesca et al. (2015), Gomes and Christensen (2018),
Jones et al. (2018, 2019), Garzón Ramos and Birattari (2020), Hasselmann and
Birattari (2020), and Kuckling et al. (2021b).

Researchers in optimization-based design rarely adopt multi-criteria optimiza-
tion methods to address problems with concurrent design criteria. The typical
approach to address these problems is to aggregate the criteria into a single per-
formance measure and then apply single-criterion optimization methods (Trianni
and López-Ibáñez 2015). Previous studies in the automatic off-line design of robot
swarms—both with neuroevolution and AutoMoDe—have indirectly addressed
missions with concurrent design criteria in this way (Francesca et al. 2015; Garzón
Ramos and Birattari 2020; Hasselmann and Birattari 2020). We believe that the
current taxonomy of the possible approaches to optimization-based design (Birat-
tari et al. 2020) should be extended further to include the single/multi-criteria
dichotomy. Indeed, on-line and off-line methods, as well as semi-automatic and
automatic ones, face the challenge of enabling the design of robot swarms that
comply with concurrent requirements specified by a designer.

Trianni and López-Ibáñez (2015) described how designers often encode con-
current mission-specific and mission-generic design criteria into single objective
functions—see also Doncieux and Mouret (2014). Mission-specific criteria are
meant to express preferences on the desired outcome of the mission and/or on
the behavior of the robots—for example, the number of objects collected in for-
aging (Francesca et al. 2014b; Jones et al. 2018, 2019) or the time needed by the
robots to aggregate (Francesca et al. 2015; Gomes and Christensen 2018). On the
other hand, mission-generic criteria are independent of the mission and are meant
to express preferences on the design process itself—for example, the diversity and/or
complexity of the control software that is produced (Gomes et al. 2013; Jones et al.
2018, 2019) or the financial cost of realizing a certain robot swarm (Salman et al.
2019). Many studies indirectly consider the optimization-based design of robot
swarms under concurrent design criteria. However, although these studies frame
multi-criteria design problems, their focus is not on investigating multi-objective
optimization approaches to address them. The formulation of a multi-criteria
problem is often only a convenient tool that favors the materialization of a desired
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collective behavior.
Little research has been devoted to formally studying the advantages and limita-

tions of addressing multi-criteria design with multi-objective optimization methods.
Trianni and López-Ibáñez (2015) made a significant contribution to these ideas. As
described in Section 2.2, they used simulations and neuroevolution to produce con-
trol software for robot swarms. They experimented in missions related to collective
motion and an abstraction of the collaborative stick-pulling experiment (Ijspeert
et al. 2001). In each mission, the performance was measured with respect to two
objective functions—i.e., the design criteria. The study compared a weighted sum
approach (Marler and Arora 2010) with a multi-objective approach based on the
estimation of the Pareto set. In the weighted sum approach, the design criteria
were mapped into terms that were subsequently aggregated into a single objective
function. The authors explored various combinations of the weights associated with
each term. In the multi-objective approach, the design criteria were mapped into
terms that were used independently to compute the hypervolume (Zitzler and Thiele
1998)—i.e., the size of the design space that is dominated by the solutions obtained.
In the two cases, the result of the design process was a set of solutions from which
to manually select a desired one with respect to a performance preference.

Trianni and López-Ibáñez concluded that a weighted sum is appropriate when
the designer is able to properly set the weights. Indeed, setting properly the weights
could be possible in some cases due to the existence of prior knowledge or as a result
of a trial-and-error process—for example, by testing various combinations of weights.
The authors also concluded that a multi-objective method is more suitable when
prior knowledge is not available or when it is not even possible to find a suitable
combination of weights. For example, this is the case of criteria that vary in different
proportion to each other and result in non-comparable or non-linearly related scales.
The literature shows that the common approach to multi-criteria design remains the
mapping of mission-specific and mission-generic design preferences into components
of a single objective function—i.e., linear scalarization or weighted sum. Indeed,
the design methods commonly require casting the multi-criteria design problem
into a single-objective optimization one. This is the approach adopted in a large
share of studies that belong in semi-automatic design and/or neuroevolution, but
also in AutoMoDe. For semi-automatic design and/or neuroevolution, see the work
of Quinn et al. (2003), Christensen and Dorigo (2006), Marocco and Nolfi (2007),
Ampatzis et al. (2009), Trianni and Nolfi (2009), Duarte et al. (2014, 2016), Trianni
and López-Ibáñez (2015), and Jones et al. (2018, 2019). For AutoMoDe, see the
work of Francesca et al. (2015), Garzón Ramos and Birattari (2020), Hasselmann
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and Birattari (2020), and Kuckling et al. (2021b).
In most studies that focus on neuroevolution, the authors do not describe

the steps they followed to conceive the objective function of the multi-criteria
design problem that is considered. An example of this is the recurrent use of
functions that combine a mission-specific objective with a second term that penalizes
collisions (Ampatzis et al. 2009; Duarte et al. 2014, 2016). Authors rarely state
whether the objective function is (i) the formal specification of the mission in
mathematical terms or it is rather (ii) a function engineered on the basis of
prior/domain knowledge to guide the optimization process toward a desired solution.

In studies focusing on modular design, recent work considered missions that
were specified as multi-criteria problems more explicitly by defining a set of sub-
missions to be achieved (Francesca et al. 2015; Garzón Ramos and Birattari 2020;
Hasselmann and Birattari 2020; Kuckling et al. 2021b). In these missions, the
overall performance of the swarm is measured by a weighted sum of its performance
in two sub-missions—which are executed either simultaneously (Francesca et al.
2015) or sequentially (Garzón Ramos and Birattari 2020; Hasselmann and Birattari
2020; Kuckling et al. 2021b). For example, Hasselmann and Birattari (2020) studied
the design of a robot swarm that must change its behavior after finding a given
marker in its environment. Initially, the robots must keep a steady motion; after
a robot finds the marker, all robots must stop in place. In this mission, the two
sub-missions must be performed sequentially and the overall performance of the
swarm is measured by a weighted sum of its performance on the two.

Sequences of missions: a design problem with concurrent design criteria

Designing robot swarms that perform sequences of missions is in its own nature a
design problem that requires meeting concurrent design criteria. If done manually,
a user must (i) produce control software that performs well in all the sub-missions
considered and (ii) devise efficient transitions from one to another. This is a more
complex design problem than designing a robot swarm that performs a single
mission. Little research exists on how to automatically design robot swarms that
must perform sequences of missions, transitioning from one sub-mission to another.
Previous related studies have assumed that the sub-missions can be addressed
separately, and the transitions and/or order in the sequence are known beforehand.
As noted in Section 2.2, Duarte et al. (2016) evolved individual neural networks
to perform specific desired behaviors. They then assembled these neural networks
into a single modular architecture capable of executing a mission composed by



CHAPTER 2. LITERATURE REVIEW 52

a sequence of sub-missions. Garattoni and Birattari (2018) presented a robot
swarm that is able to collectively sequence sub-missions at run-time, without the
need to know a priori the order in which they should be executed. However,
the behaviors needed to perform the sub-missions were manually programmed in
advance. Further examples of robot swarms that perform sequences of missions are
available in Krieger et al. (2000), Nouyan et al. (2009), Schmickl et al. (2011), and
Castelló Ferrer et al. (2021).

2.4.3 Design of spatially-organizing collective behaviors

Spatially-organizing behaviors are a class of collective behaviors that focus on
the organization and distribution of robots and objects in space (Brambilla et
al. 2013). In this dissertation, we are mainly interested in the design of spa-
tially-organizing behaviors that resemble those observed in previous studies on
pattern formation (Lopes et al. 2014, 2016, 2017). Pattern-formation behaviors are
commonly realized within the framework of virtual physics with methods based
on artificial potential fields (Spears and Gordon 1999). In this approach, robots
react to attractive and/or repulsive virtual forces that originate in the location of
perceived peers. The artificial potential field approach was proposed by Khatib
(1986), and then adapted to swarm robotics by Spears and Gordon (1999). This
approach to realize spatially-organizing behaviors has been applied in the context
of monitoring and surveillance (Spears et al. 2004; Shucker and Bennett 2007),
distributed sensing and actuation (Lochmatter et al. 2013), coverage (Howard et al.
2002; Shucker and Bennett 2007), and collective motion (Spears et al. 2004; Turgut
et al. 2008; Ferrante et al. 2012) among others. In this design problem, researchers
also commonly produce control software for the robots by following a manual ad
hoc process.

The literature on the optimization-based design of spatially-organizing beha-
viors belongs mainly in evolutionary robotics and neuroevolution. For example, as
discussed in Section 2.2, Duarte et al. (2014, 2016) produced hybrid and hierarchical
control software by evolving individual behaviors that are then executed via a
behavior arbitrator. The authors used this method to design spatially-organizing
behaviors for a swarm that detects intruders in its workspace—both in simulation
and with physical robots. Similar approaches have been adopted in the design
of spatially-organizing behaviors by incorporating virtual physics and artificial
potential fields—mainly in the case of semi-automatic design. For example, Pinciroli
et al. (2008b) produced control software for swarms of satellites that self-organize
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in lattices. In a follow-up study, the authors used artificial evolution to fine-tune
the parameters of the control software (Pinciroli et al. 2008a). Further examples of
this approach are presented by Hettiarachchi and Spears (2005, 2006, 2009).

In AutoMoDe, Francesca et al. (2015) conducted experiments with Chocolate in
three missions in which robots must operate under spatial distribution constrains. In
these missions, the swarm was considered to perform well if the robots (i) uniformly
cover the perimeter and surface of two target regions, (ii) uniformly cover the arena
without entering in regions indicated as forbidden, and (iii) establish a network of
robots that maximized the surface covered by the swarm. Although Chocolate
could in principle design control software for this class of missions, the results
were not completely satisfactory. In most cases, the robots addressed the mission
without achieving any meaningful spatial organization strategy.

2.4.4 Design of stigmergy-based collective behaviors

Stigmergy is a coordination mechanism in which agents self-organize through in-
direct local communication that is mediated by the environment (Grassé 1959;
Heylighen 2016a). In swarm robotics, a common way to study stigmergy is by im-
plementing pheromone-based behaviors, which mimic the communication strategies
of some social insects. For example, ants leave trails of chemical substances—i.e.,
pheromones—to which their peers can perceive and respond. Analogously, a robot
swarm can use pheromone-based stigmergy to coordinate if robots are endowed
with the means to emulate the process of releasing and perceiving pheromones in
an artificial way (Salman et al. 2020).

Authors commonly use smart environments to implement pheromone-based
stigmergy for robots. These include systems of robots or stationary devices, such
as RFID tags or other electronic modules, distributed in the environment to store
symbolic messages that represent virtual pheromones. Implementations of these
virtual pheromones are presented by Payton et al. (2001), Campo et al. (2010),
Khaliq et al. (2014), Antoun et al. (2016), and Alfeo et al. (2019). Alternatively,
other authors have experimented with devices that display or project virtual
pheromones on the ground, which robots can detect with their sensors. Examples
of such systems are discussed by Garnier et al. (2013), Na et al. (2019, 2020), and
Hunt et al. (2019). In other cases, mixed-reality environments have been used to
immerse the robots in a space where they can release and sense virtual pheromones.
The use of these mixed-reality systems is explored by Reina et al. (2017), Talamali
et al. (2020), and Feola et al. (2023). Alternatively, other studies have focused
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on mechanisms for the physical release of artificial pheromones using specialized
onboard hardware that can dispense substances such as alcohol or wax, as presented
by Russell (1997, 1999) and Fujisawa et al. (2014).

In recent work, we also developed a system for studying the design of pheromone-
based stigmergy in swarm robotics. We named this system Phormica (Salman
et al. 2020). It comprises a hardware module for the e-puck that projects UV light
downward, laying an artificial pheromone trail on a ground floor previously coated
with photochromic material. The ground exposed to UV light changes color from
white to magenta, which fades back to white in about 50 s after the UV light is
removed—mimicking the evaporation of chemical pheromones.

Designing stigmergy-based behaviors, whether using artificial pheromones or
other forms of environmental modification, is still a challenging problem (Heylighen
2016b). There is an inherent complexity to the design problem as coordination
strategies must be achieved relying on modifications to the environment. This
makes the design process less intuitive compared to designing collective behaviors
based on direct communication strategies—like those described for the coordination
via color signals. Currently, no method exists to determine the conditions and
quantities in which individuals should release pheromones, or react to them, to
achieve a given desired behavior.

In the literature, pheromone-based stigmergy for robot swarms has mostly
been achieved through manual design and while being tailored to specific missions
in each case—as seen with the systems discussed above. The only exception to
manual design is a study by Na et al. (2022) in which deep reinforcement learning
was used to develop a collision avoidance behavior based on virtual pheromones.
Although limited to simulation, this study showed that control software produced
via a learning process could outperform that produced with manual design. The
approach relied on a centralized infrastructure to store and distribute global
pheromone information to the robots. This design choice ultimately limited its
applicability in scenarios where robots are expected to autonomously release and
detect artificial pheromones in their physical environment.

2.4.5 Design of robot shepherding behaviors

Research on swarm robotics often overlooks a critical aspect for the future deploy-
ment of robot swarms in real-world settings: the swarm must be endowed with the
ability to operate in highly dynamic environments populated by other machines,
robots, or living beings (King et al. 2023). This is also a topic that has rarely been
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studied in the automatic design of robot swarms. Indeed, little research has been
devoted so far to investigating how effectively automatic design methods can tackle
missions that occur in such populated environments.

In this dissertation, we investigated the design of robot swarms that coordinate
with other robots that populate their environment. We framed this problem as a
robot shepherding problem (Lien et al. 2004). In robot shepherding, it is assumed
that two groups of robots of different kind operate in the same environment—the
shepherds and the sheep. Shepherds and sheep influence each other’s behavior and
constitute a heterogeneous system that must coordinate in a shared environment.
Robot shepherding has been investigated mostly within the framework of collective
motion. In most cases, the behavior of the sheep is inspired by flocking—see
Brambilla et al. (2013). Typically, a designer defines a model that describes the
desired behavior for the sheep and shepherds, and then manually produces control
software for the two. The designer uses their knowledge and expertise to tailor the
behavior of the shepherds to the behavior of the sheep, which is assumed to be
known at design time. The purpose of these studies is often restricted to verify
whether the models are suitable for creating shepherding behaviors.

Recent studies have shown that certain models offer a viable, principled approach
to manually producing specific shepherding behaviors. These studies have shown
that it is possible to coordinate the sheep with a single shepherd (Genter and
Stone 2014, 2016; Licitra et al. 2019) or with a group of shepherds that act
cooperatively (Özdemir et al. 2017; Pierson and Schwager 2018; Hu et al. 2020;
Dosieah et al. 2022; Sebastián et al. 2022). Some of these studies also showed the
benefits of using optimization processes to fine-tune the parameters of the control
software (Özdemir et al. 2017; Dosieah et al. 2022). The limitation of the existing
methods is that they have not been conceived to be of general applicability. They
have not been tested to operate on a class of missions that involve varied interactions
between shepherds and sheep. Indeed, these methods cannot be easily transferred
from one problem to another if the behavior of the sheep differs significantly. For
example, a model designed for sheep that move away from shepherds cannot be
applied to scenarios where the sheep move toward them.

2.4.6 Design of robot swarms by demonstration

As discussed in Section 2.3, using demonstrations for the automatic design of
robot swarms avoids the need to manually define an objective function to drive
the design process. Instead of relying on a predefined objective function, this
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approach learns a suitable performance measure by operating on demonstrations of
the desired behavior. The design process therefore searches for control software
that can replicate the demonstrations.

The idea of using demonstrations to program robot swarms builds on recent
advances in imitation learning. Imitation learning is a type of reinforcement
learning where the reward function is not explicitly defined (Osa et al. 2018).
Instead, the learning process relies on demonstrations of the desired behavior, with
agents attempting to learn a policy that replicates or closely approximates the
demonstrated behavior. The most common imitation learning methods primarily
focus on learning trajectories for the movement of individual robots, where a robot’s
trajectory is typically represented by the states of its joints and links. The learning
algorithm then associates perceived stimuli with actions to achieve these states—
see, for example, Pérez-Dattari et al. (2024). However, applying these methods to
program robot swarms presents significant challenges. There is no standardized
numerical or feature-based representation to describe the behavior of multiple
interacting robots, as exists for individual trajectories. Additionally, without
mission-specific expert knowledge, there is no established way to quantitatively
measure the similarity between two collective behaviors. Therefore, common
imitation learning methods must be revisited and adapted to the particularities of
the problem of designing robot swarms. For a comprehensive review of imitation
learning approaches, we recommend the work of Hussein et al. (2017). For an
overview of its application to swarm robotics, see the review by Kuckling (2023b).

The the adoption of imitation learning in the automatic design of robot swarms is
relatively new and little research has been devoted to investigate it. In this context,
Li et al. (2016) proposed Turing Learning. This method uses a discriminator to
drive the design process by assessing how closely the swarm can match a set of
demonstrated trajectories. Similarly, Alharthi et al. (2022) used video recordings of
Kilobots to learn a behavior tree capable of producing collective behaviors similar to
those demonstrated in the videos. Inverse reinforcement learning was first applied
to robot swarms by Šošić et al. (2017). They presented a solution to learning a
local reward function that explains and reproduces the desired global behavior of a
swarm. In their study, the authors designed collective behaviors for a swarm of
particles that perform collective motion and alignment.

As introduced in Section 2.3, we developed Demo-Cho: an AutoMoDe method
that can design robot swarms on the basis of user demonstrations (Gharbi et al.
2023). Demo-Cho combines Chocolate with apprenticeship learning (Abbeel and
Ng 2004), an implementation of the inverse reinforcement learning approach. Our
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study with Demo-Cho focused on investigating the general applicability of inverse
reinforcement learning in the automatic design of robot swarms. We therefore
applied Demo-Cho to various missions previously studied with Chocolate. As in
Šošic’s work, we conducted experiments with a swarm that must achieve a desired
spatial organization.



3. AutoMoDe-TuttiFrutti

The diversity of the missions that AutoMoDe can address has been so
far constrained by the limited capabilities of the e-puck considered in
the conception of Vanilla and Chocolate. We advanced the state of
the art of the AutoMoDe family by developing TuttiFrutti: a method
that generates control software for swarms of e-pucks that can display
and perceive color signals using their RGB LEDs and omnidirectional
camera. In this chapter, we show that these new capabilities enabled us
to explore the automatic design of robot swarms capable of performing
missions that involve communication, navigation, and the reaction to
events.

58
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Francesca and Birattari (2016) discussed how the capabilities of robot platforms can
limit the variety of collective behaviors that automatic design methods can produce.
As detailed in Chapter 2, most AutoMoDe methods build on Chocolate and have
been limited to the class of missions defined for the e-puck with reference model
RM 1.1—see Table 2.1. In these missions, the robots must position themselves
relative to their peers or a few static environmental features, such as black or
white floor patches, and rely on a single global reference for navigation, typically a
strong ambient light source. Hasselmann et al. (2018b) showed that by expanding
the capabilities of the e-puck in RM 2, they achieved a wider range of collective
behaviors using Gianduja. Indeed, by allowing robots to broadcast and respond
to messages, Gianduja could perform complex missions that Chocolate could not
address—e.g., those requiring event-handling collective behaviors.

Our approach to developing TuttiFrutti borrows from the reasoning of Has-
selmann et al. (2018b). We conceive TuttiFrutti as an AutoMoDe method that
targets e-puck robots with the added capability of displaying and perceiving col-
ors. TuttiFrutti therefore specializes in designing collective behaviors for robot
swarms that use color signals to coordinate. By developing TuttiFrutti, we over-
come the limitations of previous AutoMoDe methods from a two-fold perspective.
First, e-pucks that can display and perceive colors allow for the design of swarms
where individuals communicate through color signals. Second, these more capable
swarms can perform missions in complex and time-varying environments. With
the research conducted with TuttiFrutti, we significantly enlarged the variety of
collective behaviors that can be designed with AutoMoDe—as will also be shown
in Chapters 4 and 5.

TuttiFrutti can address missions that previous instances of AutoMoDe cannot
not address. We used these missions to investigate various aspects of the design
problem: (i) whether TuttiFrutti is capable of determining if a color displayed
in the environment provides useful information to perform a mission; (ii) whether
it can produce collective behaviors that demonstrate color-based communication
between robots; (iii) whether the extended capabilities of the e-puck increase the
difficulty of automatically designing control software for the robot swarm; (iv) and
how these new resources can be used to create more complex missions.

The following sections provide a detailed description of TuttiFrutti, its char-
acteristic elements, and the experiments we conducted with the method.
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Figure 3.1: Extended version of the e-puck. The picture indicates the set of sensors and
actuators defined by RM 3, as introduced with TuttiFrutti. Alongside, we also show
the RGB blocks that we used in our experiments with TuttiFrutti.

3.1 Robot platform

TuttiFrutti produces control software for an extended version of the e-puck (Mon-
dada et al. 2009; Garattoni et al. 2015)—see Figure 3.1. Like Francesca et al.
(2014b) in Vanilla, we also adopt the concept of reference model to formally
characterize the e-puck for which TuttiFrutti can produce control software. We
consider a model of the e-puck endowed with a set of sensors and actuators defined
by the reference model RM 3—see Table 3.1.

In the reference model RM 3, the e-puck operates with an Overo Gumstix
extension board that runs a linux-based operating system. The e-puck can detect
nearby obstacles by its eight proximity sensors (prox i) distributed around its chassis.
Three infrared ground sensors (gndj) allow the e-puck to differentiate between
black, gray and white floor. A range-and-bearing board (Gutiérrez et al. 2009)
allows the e-puck to estimate the number of neighboring peers (n) in a 0.5 m range.
A vector (Vn) represents the relative aggregate position of the neighboring e-pucks.
The omnidirectional vision turret allows the e-puck to perceive red, blue, green,
cyan, magenta, and yellow lights (camc) in a 360◦ field of view and within a 0.5 m
range. For each color perceived, a unit vector (Vc) represents the relative aggregate
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Table 3.1: The control interface for the e-puck according to the reference model RM 3.
Robots can perceive: red (R); green (G); blue (B); cyan (C); magenta (M); and
yellow (Y ). Robots can display no color (∅); cyan (C); magenta (M); and yellow (Y ).
Vc is calculated likewise Vn—for each perceived color, the positions of color signals are
aggregated into a unique vector.

Input Value Description

proxi∈{1,...,8} [0, 1] reading of proximity sensor i

gndj∈{1,...,3} {black, gray, white} reading of ground sensor j

n {0, . . . , 20} number of neighboring robots detected
Vn ([0.5, 20]; [0, 2] π rad) their relative aggregate position
camc∈{R,G,B,C,M,Y } {yes, no} colors perceived
Vc∈{R,G,B,C,M,Y } (1.0; [0, 2] π rad) their relative aggregate direction

Output Value Description

vk∈{l,r} [−0.12, 0.12] m s−1 target linear wheel velocity
LEDs {∅, C, M, Y } color displayed by the LEDs
Period of the control cycle: 0.1 s.

position of robots/objects that display the color. The control software of the robot
can set the velocity of each wheel (vk) between −0.12 and 0.12 m s−1. The control
software can also set the three RGB LEDs placed on the top of the e-puck to
display cyan, magenta or yellow.

RM 3 is the first reference model in the AutoMoDe family to include the
omnidirectional vision turret and RGB LEDs of the e-puck. An important difference
between TuttiFrutti and other instances of AutoMoDe is that in RM 3 we removed
the capability of the e-puck for estimating the position of ambient light sources.
Although present in the reference models RM 1.1 and RM 2 (Hasselmann et al.
2018a), this capability is incompatible with the omnidirectional vision turret and
RGB LEDs we added in RM 3. The ambient light sources in RM 1.1 and RM 2 are
in practice strong halogen lights, which unavoidably overexpose the camera of the
e-puck and make it difficult for the vision system to detect the RGB LEDs of other
robots.

3.2 Modular control architecture

TuttiFrutti assembles predefined software modules into probabilistic finite-state
machines—like Vanilla, Chocolate, and other AutoMoDe methods. The set
of modules in TuttiFrutti comprise six low-level behaviors—the actions that
a robot can take, and seven transition conditions—the events that trigger the
transition between low-level behaviors. These modules adapt and extend the
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Table 3.2: TuttiFrutti’s software modules. The modules are defined on the basis of
reference model RM 3, see Table 3.1.

Low-level behavior* Parameter Description

exploration {τ, γ} movement by random walk
stop {γ} standstill state
attraction {α, γ} physics-based attraction to neighboring robots
repulsion {α, γ} physics-based repulsion from neighboring robots
color-following {δ, γ} steady movement towards robots/objects of color δ
color-elusion {δ, γ} steady movement away from robots/objects of color δ

Transition condition Parameter Description

black-floor {β} black floor beneath the robot
gray-floor {β} gray floor beneath the robot
white-floor {β} white floor beneath the robot
neighbor-count {ξ, η} number of neighboring robots greater than ξ
inv-neighbor-count {ξ, η} number of neighboring robots less than ξ
fixed-probability {β} transition with a fixed probability
color-detection {δ, β} robots/objects of color δ perceived
* All low-level behaviors display a color γ ∈ {∅, C, M, Y } alongside the action described.

modules originally conceived for Vanilla—see Table 2.2. TuttiFrutti’s modules
have been designed to operate with RM 3 and provide the e-puck different ways of
interacting with robots and objects that display colors. Table 3.2 lists TuttiFru-
tti’s low-level behaviors and transition conditions.

3.2.1 Low-level behaviors

In exploration, the robot moves straight until it detects an obstacle in front
(prox i). It then rotates for a number of control cycles defined by the integer
parameter τ , in a range of τ∈{0, . . . , 100}. stop sets the robot to a standstill
behavior. In attraction and repulsion, the robot moves closer (Vd) or further
from (−Vd) neighboring peers, respectively. In both cases, the velocity of the robot
is a function of the number of robots detected (n) and the parameter α∈[0, 5]. If
the robot does not detect other robots, it moves straight. color-following
and color-elusion move the robot with constant velocity towards (Vc) or away
(−Vc) from robots or objects displaying specific colors (camc). The parameter
δ∈{R, G, B, C, M, Y } determines the color to which the robots react. Robots can
display the colors δ∈{C, M, Y }, and other objects that might populate the environ-
ment can display the colors δ∈{R, G, B}. If the robot does not perceive the color
determined by δ, it moves straight. attraction, repulsion, color-following
and color-elusion incorporate physics-based obstacle avoidance (Borenstein
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and Koren 1989). In all the low-level behaviors, the parameter γ∈{∅, C, M, Y }
determines the color displayed by the RGB LEDs of the robot. The parameters τ ,
α, δ, and γ are tuned by the automatic design process.

3.2.2 Transition conditions

black-floor, gray-floor and white-floor trigger a transition when the robot
steps on a region of the floor (gndj) that is, respectively, black, gray or white. The
parameter β∈[0, 1] determines the probability of transitioning. neighbor-count
and inv-neighbor-count are transition conditions that consider the number of
neighboring robots (n). neighbor-count triggers a transition with a probability
z(n) ∈ [0, 1], with z (n) = 1

1+eη(ξ−n) . Conversely, inv-neighbor-count triggers a
transition with a probability of 1 − z(n). The parameter ξ∈[0, 20] determines the
inflection point of the probability function z(n), and the parameter η∈{0, . . . , 10}
determines its steepness. fixed-probability triggers a transition with a fixed
probability determined by β∈[0, 1]—no further condition is considered. color-
detection is based on the colors perceived by the robot (camc). The parameter
δ∈{R, G, B, C, M, Y } defines the color that triggers a transition with probability
β∈[0, 1]. Robots in the swarm can display the colors δ∈{C, M, Y }, and other
objects that might populate the environment can display the colors δ∈{R, G, B}.
The parameters β, ξ, η, and δ are tuned by the automatic design process.

exploration, stop, attraction and repulsion are modified versions of
Vanilla’s original low-level behaviors. In TuttiFrutti, we extended these modules
by adding the ability to control the color displayed by the LEDs. All transition
conditions, with the exception of color-detection, are implementations of
Vanilla’s original modules. color-following, color-elusion, and color-
detection are modules that we introduced for the first time with TuttiFrutti.

Figure 3.2 shows a simplified illustration of TuttiFrutti’s software modules
assembled into a probabilistic finite-state machine and the resulting behavior on
an e-puck.

3.3 Automatic design process

TuttiFrutti produces control software using the automatic design process in-
troduced in Chocolate—see Chapter 2. It conducts an optimization process to
find a combination of modules and parameters that, once deployed to the robots,
maximize the performance of the swarm according to a mission-specific perfor-
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Figure 3.2: Simplified illustration of TuttiFrutti’s software modules assembled into
a probabilistic finite-state machine (PFSM) and the resulting behavior on an e-puck.
1.) The finite-state machine starts with the behavior exploration (Exp), which in this
case sets the e-puck’s LEDs to display yellow while the robot moves randomly in the arena.
2.) The e-puck detects a robot on its left and turns right to avoid a collision. 3.) When the
e-puck detects a region with a black floor, the transition black-floor (BF) is activated,
and the e-puck switches to the behavior color-elusion (CE). 4.) The e-puck executes
color-elusion (CE), driving the robot away from the blue walls and changing its LEDs
to display magenta. 5.) The e-puck detects that other robots are displaying cyan with their
LEDs, activating the transition color-detection (CD) and switching to the behavior
color-following (CF). 6.) The e-puck executes color-following (CF), moving
toward other robots displaying cyan and changing its own LEDs to cyan as well. 7.) The e-
puck detects two neighboring robots within its perception range, activating the transition
neighbor-count (NC) and switching back to exploration (CE). 8.) The finite-state
machine continues to operate until the mission ends. For more information on the modules
and their parameters, see Table 3.2.
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mance measure. In TuttiFrutti, the probabilistic finite-state machine is restricted
to a maximum of four states—the low-level behaviors—and four outgoing edges
per state—the transition conditions. Transitions always occur between different
states, and self-transitions are not permitted. The modules and their parameters
are selected off-line through an optimization process conducted with Iterated F-
race (López-Ibáñez et al. 2016). Iterated F-race explores the design space to find
control software configurations suited for the mission at hand. The performance of
the configurations is estimated through simulations performed in ARGoS3 (Pinciroli
et al. 2012), version beta 48, together with the argos3-epuck library (Garattoni
et al. 2015). The duration of the optimization process is determined by a predefined
simulations budget. Once the budget is exhausted, the design process ends and
TuttiFrutti returns the best configuration found. This configuration is then
uploaded to the physical robots and evaluated in the target environment.

3.4 Experimental setup

We investigate the ability of TuttiFrutti to address a class of missions in which
the colors displayed by objects in the environment provide relevant information to
the robots. To evaluate this design problem, we conduct experiments in simulation
and with physical robots in three missions. The baseline for these experiments is
an implementation of the neuroevolutionary approach.

3.4.1 Experimental environment

We developed a programmable RGB environment named MoCA to leverage the new
capabilities introduced with TuttiFrutti. This system allowed us to explore more
complex environments and missions than those previously studied with AutoMoDe.
MoCA (Garzón Ramos et al. 2022) is an open source, modular platform that provides
tools for creating, simulating, and deploying physical scenarios to experiment with
robots that react to colored objects. At its core, MoCA consists of interconnected
blocks equipped with RGB LEDs, which are controlled via a computer. The RGB
blocks are 0.25 m in length and match the height of the e-puck. MoCA’s blocks can
display color patterns that can be reconfigured at run-time. The modularity of
MoCA facilitates the deployment of experimental arenas of various sizes and shapes.

In our experiments, we use MoCA to create experimental scenarios by arranging
the RGB blocks into polygonal structures that serve as robot arenas. In addition
to the physical system, we developed a simulated version that is used in ARGoS3
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Figure 3.3: MoCA’s RGB blocks. The picture shows the modular RGB blocks connected
in the corner of an experimental arena for the e-pucks. Alongside, we also also illustrate
the inner structure of a block.

during the automatic design process. We introduced MoCA along with TuttiFrutti,
and its functionalities turned instrumental to support our further research. As it
will be shown in Chapters 4 and 5, we used MoCA to investigate new problems in
the automatic design of robot swarms. Figure 3.3 shows MoCA’s RGB blocks. For
a detailed description of MoCA’s hardware and software we refer the reader to the
technical documentation of the system—see Garzón Ramos et al. (2022).

3.4.2 Missions

We conduct experiments with twenty e-pucks that must perform missions in which
environmental signals, expressed as colors, provide relevant information to the
swarm. We experiment with TuttiFrutti in three missions: stop, aggregation,
and foraging. stop and aggregation are adaptations we make from equivalent
missions proposed by Hasselmann et al. (2018b) to study Gianduja. foraging is
an abstraction of a foraging task, in a best-of-n fashion—similar to the experiments
described by Valentini et al. (2015, 2017). In each case, the performance of the
swarm is evaluated according to a mission-specific objective function. We select
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Figure 3.4: Experimental arenas for TuttiFrutti’s experiments. The figure shows the
arenas used for the three missions in the study. The top row displays the initial positions
of the robots at the start of an experiment. The bottom row shows their positions at
the end, after performing the mission using control software generated by TuttiFrutti.
The RGB blocks in the arena are configured on a per-mission basis.

these missions because we conjecture that, to successfully perform them, the robots
need to identify, process, and/or transmit color-based information.

The time available to the robots to perform a mission is always T = 120 s.
We use MoCA to display colors on the walls of the arena, which are defined on a
per-mission basis. Each RGB block can display the colors red, green, and blue
{R, G, B}. In the context of these missions, when we refer to walls of a given color,
we imply that the RGB blocks arranged in the wall display the named color—for
example, “the green wall” stands for a wall in which the RGB blocks composing it
display the color green. Figure 3.4 shows the arenas for the three missions. In the
following, we provide the specifications for each of them.

STOP

The robots must move until one of the walls that surrounds the arena emits a stop
signal by turning green. Once the wall turns green, all robots in the swarm must
stop moving as soon as possible. The swarm operates in an octagonal arena of
2.75 m2 and gray floor. The wall that emits the stop signal is selected randomly.
At the beginning of each run, the robots are positioned in the right side of the
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arena. Figure 3.4 (left) shows the arena for stop.
The score of the swarm is determined by time during which the robots do not

perform the intended behavior, before and after the stop signal:

fST.T =
t̄∑

t=1

N∑
i=1

Īi(t) +
T∑

t=t̄+1

N∑
i=1

Ii(t), (3.1)

which must be minimized. N and T represent the number of robots and the
duration of the mission, respectively. The time at which the stop signal is displayed
is represented by t̄. The value of t̄ is uniformly sampled between (40, 60) s. The
indicators Ii(t) and Īi(t) are defined as:

Ii(t) =

 1, if robot i is moving at time t;
0, otherwise;

Īi(t) = 1 − Ii(t).

We selected this mission because it challenges TuttiFrutti to design collective
behaviors with event-handling capabilities, which can help the swarm react when
the stop signal appears.

AGGREGATION

The robots must aggregate in the left black region of the arena as soon as possible.
The swarm operates in a hexagonal arena of about 2.60 m2 and gray floor. Triangular
black regions of about 0.45 m2 are located at the left and right sides of the arena.
The walls lining the left black region are blue and those lining the right black
region are green—the colors do not change during the mission. Each black region
is characterized by the color of the walls that lines it. That is, the blue zone
refers to the black region lined by blue walls and the green zone refers to the black
region lined by green walls. At the beginning of each run, the robots are randomly
positioned in the center of the arena—between the black regions. Figure 3.4 (center)
shows the arena for aggregation.

The score of the swarm is determined by the time that the robots spend outside
of the blue zone:

fAG.T =
T∑

t=1

N∑
i=1

Ii(t), (3.2)

which must be minimized. N and T represent the number of robots and the
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duration of the mission, respectively. The indicator Ii(t) is defined as:

Ii(t) =

 1, if robot i is not in the aggregation area at time t;
0, otherwise.

We selected this mission because it challenges TuttiFrutti to design collective
behaviors in which the swarm uses the blue walls as a reference to identify the
aggregation zone and navigate toward it.

FORAGING

The robots must select and forage from the most profitable of two sources of items.
The swarm operates in a squared arena of 2.25 m2 and gray floor. A rectangular
white region of about 0.23 m2 is located at the bottom of the arena and represents
the nest of the swarm. A rectangular black region of 0.23 m2 is located at the top
of the arena and represents the two sources of items—the sources are separated by
a short wall segment that does not display any color. This wall segment divides
the black region in half. We account that an item is transported and successfully
delivered when a robot travels from any of the sources to the nest. The walls lining
the nest are red, the walls lining the left source are blue, and the walls lining the
right source are green—the colors do not change during the mission. We consider
two types of source of items: a blue source—the black region lined by blue walls;
and a green source—the black region lined by green walls. At the beginning of
each run, the robots are randomly positioned in the center of the arena—between
the white and black areas. Figure 3.4 (right) shows the arena for foraging.

The score of the swarm is the aggregate profit of the total of items collected
from the two sources:

fFR.T = (κ)Ib + (−κ)Ig; (3.3)

κ = 1,

which must be maximized. Ib and Ig represent the number of items collected from
the blue and green sources, respectively. We added the factor κ to balance the
profit of the items available in each source. We considered κ = 1. Items from the
blue source account for a profit of +1 and items from the green source account for
a penalization of −1. We selected this mission because it challenges TuttiFrutti
to design collective behaviors in which the swarm uses the color displayed by the
walls as a reference to navigate the environment. Robots can use the blue walls to
navigate toward the blue source, the green walls to avoid the green source, and the
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red walls to navigate toward the nest.

3.4.3 Baseline method

No standard automatic design method exists to address the class of missions we
consider in this study. As described in Chapter 2, the few related work describes
experiments conducted with neuroevolutionary methods applied in a mission-
specific context. Therefore, we consider that a typical implementation of the
neuroevolutionary approach is a suitable baseline to appraise the performance of
TuttiFrutti. We introduce here EvoColor: a neuroevolutionary method for the
automatic design of swarms of e-pucks that can display and perceive colors.

EvoColor

EvoColor is an adaptation of EvoStick (Francesca et al. 2014b), the neuroevolu-
tionary method recurrently used as a yardstick in AutoMoDe studies—see Chapter 2.
EvoColor produces control software for swarms of e-pucks that operate with the
reference model RM 3—see Table 3.1. The control software has the form of a
fully connected feed-forward artificial neural network with 41 input nodes (in), 8
output nodes (out) and no hidden layers. In this topology, the input and output
nodes are directly connected by synaptic connections (conn) with weights (ω) in a
range of [−5, 5]. The activation of each output node is determined by the weighted
sum of all input nodes, filtered through a standard logistic function. EvoColor
selects appropriate synaptic weights using an evolutionary process based on elitism
and mutation. As in TuttiFrutti, the evolutionary process is conducted through
simulations performed in ARGoS3, version beta 48, together with the argos3-epuck
library. The evolution ends when a predefined simulations budget is exhausted.
Table 3.3 summarizes the topology of the neural network and the parameters used
in the evolutionary process.

The readings of the proximity (prox) and ground (gnd) sensors are passed
directly to the network. Information about the number of neighboring peers (n) is
provided through the function z′(n) ∈ [0, 1], with z′(n) = 1 − 2

1+e(n) . The vector Vn

and each vector in Vc∈{R,G,B,C,M,Y } are translated into scalar projections onto four
unit vectors that point at 45◦, 135◦, 225◦, and 315◦ with respect to the front of
the robot. Then, each projection is passed to the network through an independent
input node. The last input of the network corresponds to a bias node. Four output
nodes encode tuples (v′) of negative and positive components of the velocity of the
wheels. Each tuple is obtained from two independent output nodes and is defined
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Table 3.3: Neural network topology and parameters of the evolutionary process in
EvoColor. The neural network operates according to RM 3, see Table 3.1.

Architecture

Fully-connected feed-forward neural network without hidden layers

Input node Description

ina∈{1,...,8} readings of proximity sensors proxi∈{1,...,8}
ina∈{9,...,11} readings of ground sensors gndj∈{1,...,3}
ina∈{12} value of the density function z′(n)
ina∈{13,...,16} scalar projections of Vn

ina∈{17,...,40} scalar projections of Vc∈{R,G,B,C,M,Y }
ina∈{41} bias input

Output node Description

outb∈{1,...,4} tuples v′ to map each velocity in the set vk∈{l,r}
outb∈{5,...,8} activation of each color in the set {∅, C, M, Y }

Connection Description

conns∈{1,...,328} synaptic connections with weights ω∈[−5, 5]

Evolution parameters
Number of generations * —
Population size 100
Elite individuals 20
Mutated individuals 80
Evaluations per individual 10
Post-evaluation per
individual **

100

* The number of generations is computed according to the budget of simulations.
** The population obtained in the last generation is post-evaluated to select the
best individual.

as v′ = ([−12, 0], [0, 12]). The velocity of a wheel (v) is calculated as the sum of the
two elements in a tuple (v′). Similarly, the color displayed by the RGB LEDs of the
robot is selected by comparing the value of the output nodes that correspond to
colors in the set {∅, C, M, Y }. The color displayed corresponds to the maximum
value found in all four colors.

EvoColor differs from EvoStick in two aspects: the reference model and how
the output of the neural network is mapped to the velocity of the robots. First,
EvoColor is based on RM 3 and EvoStick on RM 1.1. In accordance with RM 3,
EvoColor does not integrate the capability of the e-pucks to detect ambient light
sources, originally integrated in EvoStick. The second difference between EvoColor
and EvoStick is how the output of the neural network is mapped to the velocity
of the e-pucks. In EvoColor, we introduced a velocity mapping based on tuples
to facilitate the evolution of standstill behaviors, as we expected that robots need
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them to perform stop and aggregation.
In EvoStick, the control software directly maps a single output node of the

neural network into velocity commands (v = [−12, 12]) for each wheel (vk∈{l,r})—a
robot can stand still only if the velocity of the two wheels is set exactly to 0. A
standstill behavior is then difficult to achieve since only one pair of values in the
output nodes maps exactly to vl = 0 and vr = 0. Moreover, the output nodes
cannot maintain a steady value because they are subject to the injection of sensory
noise. In EvoColor, the control software maps the sum of elements of a tuple
(v′) to the velocity commands for each wheel vk∈{l,r}. Each tuple is defined by
two output nodes and provides a negative and a positive component to compute
the velocity—see also (Quinn et al. 2003). We expected that this mapping could
facilitate the evolution of standstill behaviors. First, robots can stand still if the
elements of each tuple (v′) are any pair of values of equal magnitude—steady values
are not required provided that the output nodes that encode the same tuple vary
proportionally. Second, the sum of the positive and negative components can cancel
out the sensory noise injected in the output nodes that encode a tuple—given a
proper tuning of the synaptic weights. If one compares EvoColor with EvoStick,
the first has more freedom to tune neural networks that lead to standstill behaviors.

3.4.4 Protocol

For each mission, we conduct 10 independent design processes with TuttiFrutti
and 10 with EvoColor. This results in 60 instances of control software—10 per
method and mission. The design methods are given a budget of 100 000 simulation
runs to produce each instance of control software. We evaluate the effectiveness of
the methods by testing each instance of control software once in simulation and
once with physical robots. The performance of the swarm is computed in both
simulation and reality using ARGoS3. In the simulations, ARGoS3 computes the
performance directly from the simulation data. In the experiments with physical
robots, ARGoS3 is provided with the position of the real robots using a tracking
system (Stranieri et al. 2013).

Statistics

The performance of the instances of control software obtained in the experiments
is presented with box-plots. For each method, we report the performance obtained
in simulation (thin boxes) and with physical robots (thick ones). In all cases,
comparative statements are supported with an exact binomial test, at 95 % con-
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fidence (Conover 1999). Statements like “A performs significantly better/worse
than B” imply that the comparison is supported by an exact binomial test, at
95 % confidence. In addition, we estimate the overall performance of TuttiFrutti
with respect to EvoColor. To this purpose, we aggregate the results by comparing
the performance of the two design methods across each mission. In the context
of the overall performance of the design methods, any statement like “A performs
significantly better/worse than B” also implies that the comparison is supported
by an exact binomial test, at 95 % confidence.

3.5 Results

We discuss first the behavior and performance of the swarms on a per-mission
basis. Then, we elaborate on the aggregate performance across the three missions.
Demonstration videos are provided in the Supplementary Videos of the disserta-
tion (Garzón Ramos 2025). In the context of these results, references to colored
robots imply that the robots display the named color—for example, “cyan robots”
stands for robots that display the color cyan.

3.5.1 Per-mission results

We present a quantitative and qualitative analysis of the results obtained with
TuttiFrutti and EvoColor for each mission. Performance plots are shown in
Figure 3.5.

STOP

Figure 3.5 (left) shows the performance of TuttiFrutti and EvoColor in stop.
In this mission, TuttiFrutti performed significantly better than EvoColor.

We visually inspected the behavior of the swarm. In this mission, TuttiFrutti
produced control software that effectively uses the robots’ capabilities to display
and perceive colors. The swarm disperses and homogeneously covers the arena,
with the aim of rapidly detecting the stop signal. If a robot detects the stop signal,
it stands still and disseminates the information by emitting a signal of an arbitrary
color. When other robots perceive the signal emitted by their peer, they also
transition to a standstill behavior and relay the signal. The process continues
until all robots in the swarm are standing still. We consider that this behavior
shows the potential of TuttiFrutti to produce collective behaviors that require
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Figure 3.5: Performance obtained in the missions studied with TuttiFrutti. Results per
design method are presented with grayscale box-plots, TuttiFrutti ( ), EvoColor ( ).
Thin boxes represent results obtained in simulation and thick boxes the ones obtained
with physical robots.

event-handling properties. The swarm collectively transitions from coverage to
standstill when the stop signal appears. As we expected, TuttiFrutti produced
control software on which communication protocols are established by correctly
pairing the color of the signals that robots emit and the behavior other robots must
adopt when they perceive them—similarly to the results obtained by Hasselmann
et al. (2018b) with Gianduja.

EvoColor, unlike TuttiFrutti, designed collective behaviors that do not re-
spond to the stop signal. The swarm adopts a rather simplistic behavior in which
robots move until they are stopped by the walls. They then remain in a standstill
behavior because they persistently push against the walls—no reaction can be ob-
served in the swarm when the stop signal appears. This behavior was also observed
in the experiments with physical robots, and in many cases, robots maintained
standstill behaviors by pushing against other robots too.

In the experiments with physical robots, both TuttiFrutti and EvoColor
showed a significant drop in performance with respect to the simulations. However,
the difference in median performance between simulations and experiments with
physical robots is larger for EvoColor than for TuttiFrutti. The swarms deployed
with control software produced by TuttiFrutti show the same collective behavior
observed in simulation, although the rapidness of discovering the stop signal and
disseminating the information decreased. In the case of EvoColor, robots often do
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repulsion
α = 2.40
γ = ∅

stop
γ = Y

color-detection
δ = G

β = 0.95

color-detection
δ = Y

β = 0.99

color-detection
δ = Y

β = 0.10

black-floor
β = 0.59

color-detection
δ = M

β = 0.01

Figure 3.6: Instance of control software produced by TuttiFrutti for stop. The prob-
abilistic finite state machine shows the effective modules in black and non-reachable
modules in light gray. Circular modules represent the low-level behaviors and rhomboid
modules represent transition conditions.

not reach the walls and push against each other to remain still in place.
Figure 3.6 shows an example of the control software produced by TuttiFrutti

for stop. Robots start in repulsion with no color displayed (γ = ∅). They
transition to stop and turn yellow (γ = Y ) when color-detection is triggered
either by a green wall (δ = G) or by yellow robots (δ = Y ). In this sense, robots
change their behavior when they perceive either the stop signal or the yellow signals
that other robots emit.

AGGREGATION

Figure 3.5 (center) shows the performance of TuttiFrutti and EvoColor in ag-
gregation. In this mission, TuttiFrutti performed significantly better than
EvoColor.

In this mission, TuttiFrutti also produced control software that effectively
uses the capabilities of robots to display and perceive colors. As we expected,
TuttiFrutti designed collective behaviors in which robots reach and remain in
the blue zone by moving toward blue walls. This behavior is often accompanied by
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navigation or communication strategies that increase the efficiency of the swarm.
For example, some instances of control software include a repulsion behavior that
drives robots away from the green walls—robots reach the blue zone faster by
avoiding unnecessary exploration in the green zone. In other instances, robots
that step in the blue zone, or perceive the blue walls, emit a signal of an arbitrary
color—other robots then follow this signal to reach the blue zone. In this sense,
robots communicate and navigate collectively the environment to aggregate faster.
We observed that a few instances of control software combine the two strategies.

EvoColor designed collective behaviors in which robots use the colors displayed
in the arena. Robots explore the arena until they step into one of the black
regions—either in the blue or green zone. If robots step in the green zone, they
move away from the green walls and reach the blue zone. If robots step in the blue
zone, they attempt to stand still. In this sense, robots react and avoid the green
walls as a strategy to aggregate in the blue zone.

The control software produced by TuttiFrutti and EvoColor showed a sig-
nificant drop in performance when ported to the physical robots. As observed in
stop, the difference in median performance between simulations and experiments
with physical robots is larger for EvoColor than for TuttiFrutti. Robot swarms
that use the control software produced by TuttiFrutti display the same collective
behavior observed in simulation. The decrease in performance occurs because few
robots that leave the blue zone do not return as fast as observed in the simulations.
The control software produced by EvoColor did not port well to the physical
robots—i.e., robots appear to be unable to reproduce the behavior observed in the
simulation. The robots ramble in the arena and seem to react to the presence of
their peers; however, no specific meaningful behavior can be identified by visual
inspection.

Figure 3.7 shows an example of the control software produced by TuttiFrutti
for aggregation. Robots start in color-following displaying yellow (δ = Y )
and move towards cyan robots (γ = C). When they perceive the blue walls (δ = B),
color-detection triggers and the robots transition to a second module color-
following in which they move towards the blue walls (δ = B) while emitting a
cyan signal (γ = C). By cycling in these behaviors, robots can navigate to the blue
zone either by moving towards the blue walls or by following the cyan signals that
other robots emit. The transition conditions fixed-probability, gray-floor,
and neighbor-count trigger the color-following behavior that allows the
robot to return to the aggregation area.
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c-following
δ = C
γ = Y

c-following
δ = B

γ = C

color-detection
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β = 0.60

white-floor
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fixed-probability
β = 0.29
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ξ = 4

η = 4.44

Figure 3.7: Instance of control software produced by TuttiFrutti for aggregation.
The probabilistic finite state machine shows the effective modules in black and non-
reachable modules in light gray. Circular modules represent the low-level behaviors and
rhomboid modules represent the transition conditions. Modules labeled as c-following
stand for the low-level behavior color-following.

FORAGING

Figure 3.5 (right) shows the performance of TuttiFrutti and EvoColor in forag-
ing. In this mission, EvoColor performed significantly better than TuttiFrutti in
simulation. However, TuttiFrutti performed significantly better than EvoColor
in the experiments with physical robots.

As in the other missions, TuttiFrutti produced control software that effectively
uses the capabilities the robots have to display and perceive colors. Robots explore
the arena and forage only from the profitable source. However, contrary to what
we expected, TuttiFrutti designed collective behaviors that do not use the three
colors displayed in the arena. In fact, robots mostly forage by randomly exploring
the arena while moving away from the green wall—in other words, they only avoid
to step in the green source. Although the swarm can perform the mission with this
behavior, we expected that robots could navigate faster by moving toward the blue
and red walls. TuttiFrutti produced only a few instances of control software in
which robots react to more than one color—see Figure 3.8 for an example. We
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conjecture that TuttiFrutti exploited the convex shape of the arena to produce
solutions that are effective at minimal complexity. That is, the performance of a
swarm in this mission might not improve even if robots react to all three colors.

EvoColor designed collective behaviors in which the swarm does not react to
the colors displayed in the arena. Robots forage from the blue source by following
the walls of the arena in a clockwise direction. This behavior efficiently drives the
robots around the arena and across the blue source. When the robots reach the
intersection that divides the blue and green source, they continue moving straight
and effectively reach the nest. By cycling in this behavior, the swarm maintains an
efficient stream of foraging robots.

TuttiFrutti and EvoColor showed a significant drop in performance in the
experiments with physical robots, compared to the performance obtained in the
simulations. As in the other two missions, the difference in median performance
between simulations and experiments with physical robots is larger for EvoColor
than for TuttiFrutti. In the case of TuttiFrutti, we did not observe any
difference in the behavior of the swarms with respect to the simulations. Conversely,
the collective behaviors designed by EvoColor are affected to the point that the
swarm is unable to complete the mission. In the control software produced by
EvoColor, the ability of the robots to follow the walls strongly depends on the
fine-tuning of the synaptic weights in the neural network—more precisely, it requires
a precise mapping between the proximity sensors and wheels of the robots. In the
physical robots, the noise of the proximity sensors and wheels likely differs from
that of the simulations, and a fine-tuned neural network is less effective. This can
possibly explain why the swarm is no longer able to maintain the stream of foraging
robots, and on the contrary, robots stick to each other and to the walls.

We observe a rank inversion of the performance of the two methods in this
mission. As described by Ligot and Birattari (2020), a rank inversion is a phe-
nomenon that manifests when an instance of control software outperforms another
in simulation, but it is outperformed by the latter when evaluated in physical robots.
In this mission, TuttiFrutti was outperformed by EvoColor in simulation, but
it outperformed EvoColor when ported to the physical robots. These results are
consistent with those reported by Francesca et al. (2014b), and further discussed
by Birattari et al. (2016) and Ligot and Birattari (2020), for comparisons between
the modular and the neuroevolutionary approach to the automatic design of robot
swarms.

Figure 3.8 shows an example of the control software produced by TuttiFrutti
for foraging. Robots start in color-following displaying cyan (γ = C)
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c-following
δ = B
γ = C

c-elusion
δ = G
γ = C

color-detection
δ = Y

β = 0.41

black-floor
β = 0.68

neighbor-count
ξ = 9
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color-detection
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Figure 3.8: Instance of control software produced by TuttiFrutti for foraging.
The probabilistic finite state machine shows the effective modules in black and non-
reachable modules in light gray. Circular modules represent the low-level behaviors and
rhomboid modules represent the transition conditions. Modules labeled as c-following
and c-elusion stand for the low-level behaviors color-following and color-elusion,
respectively.

and move towards the blue wall (δ = B). If a robot steps into one of the two
sources, black-floor triggers and the robot transitions to color-elusion—it
then becomes cyan (γ = C) and moves away from the green wall (δ = G). When
the robot steps into the nest, white-floor triggers and the robot switches back
to color-following. By cycling this behavior, robots move back and forth
between the blue source and the nest. When robots are in color-elusion, color-
detection can trigger with a low probability (β = 0.09) if robots perceive the
green wall (δ = G). This transition mitigates the penalty caused by robots that
enter the green source. If a robot steps into the green source, it transitions back
to color-following and moves towards the blue wall. Finally, the transition
condition neighbor-count can trigger when the robot perceives more than four
neighboring robots. We do not find a clear effect of this last transition on the
overall behavior of the robots.
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3.5.2 Aggregate results

TuttiFrutti and EvoColor obtain similar results when the control software is
evaluated with simulations. On the other hand, TuttiFrutti is significantly better
than EvoColor when the control software is ported to the physical robots. These
results, obtained across the three missions considered, indicate that EvoColor is
more affected by the reality gap than TuttiFrutti. The stronger effects of the
reality gap in EvoColor are evident in both the performance drop and the difference
in behavior between simulation and real-world environments. The control software
generated by EvoColor often exhibited diametrically different collective behaviors
between simulation and reality. In contrast, the behaviors of the control software
generated by TuttiFrutti remained similar across the two environments.

By introducing TuttiFrutti, we also investigated the impact of an extended
design space in the optimization process of AutoMoDe. The size of the design
space in Vanilla and Chocolate is O(|B|4 |C|16), as estimated by Kuckling et al.
(2018b). B and C represent, respectively, the number of modules in low-level
behaviors and transition conditions. Using the same computation, we estimate
that the design space in TuttiFrutti is O(|4B|4 |C|16)—that is, 256 times larger
than the one searched by Chocolate. Notwithstanding the larger design space,
we did not find evidence that TuttiFrutti is affected by the increased number of
parameters to tune. In fact, TuttiFrutti produced effective control software for
all the missions considered.

3.6 Discussion

TuttiFrutti showed to be effective in selecting, tuning and assembling control
software with modules that provide means to the robot to perceive and display color
signals. These signals, both produced in the environment or by peer robots, enabled
the robots to identify and communicate relevant information on a per-mission basis.
The collective behaviors designed by TuttiFrutti showed event-handling and
navigation properties.

We also observed that TuttiFrutti can design collective behaviors that exhibit
color-based communication between robots. For example, TuttiFrutti designed
collective behaviors with communication properties in stop and aggregation—
missions in which communication can influence the performance of the swarm.
These collective behaviors were feasible due to the extended capabilities of the
e-puck in RM 3—which enabled a larger space of possible control software than
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the one considered by Vanilla and Chocolate with RM 1.1. As the design space
of TuttiFrutti is larger than that of Vanilla and Chocolate, one could have
expected that the automatic design process would have difficulties in producing
meaningful control software. However, we did not find evidence that TuttiFrutti
suffers from an increased difficulty to design collective behaviors for robot swarms.
The reference model RM 3 and the set of modules introduced with TuttiFrutti
allowed us to conceive stop and aggregation—variants of missions already
studied with AutoMoDe, and foraging—a new mission framed within the best-
of-n problem. By introducing TuttiFrutti, we enlarged the variety of collective
behaviors and missions that can be studied with AutoMoDe.

The experiments we conducted with TuttiFrutti provided the first evidence
that AutoMoDe can establish a mission-specific relationship between the colors
perceived by the robots and the behavior they must adopt. In Chapter 2, we
highlighted literature in which this relationship enabled the manual design of
complex collective behaviors (Nouyan et al. 2008; Mathews et al. 2017; Garattoni
and Birattari 2018). The more complex collective behaviors described in the
literature share functional similarities with those designed by TuttiFrutti. For
example, robots react to color signals that trigger in the environment and/or use
color signals to communicate with each other. The possibility of designing more
complex behaviors with the same functional capabilities introduced by TuttiFrutti
motivated us to further explore applying its original ideas to new design problems.
In doing so, we aimed to test AutoMoDe in the realization of robot swarms that
can address more complex missions. As we will show in the following Chapters,
TuttiFrutti served as the basis for developing new methods and experiments that
helped bridge the gap between the complexity of missions achieved via manual and
automatic design.



4. AutoMoDe-Mandarina

Since the introduction of Vanilla and Chocolate, AutoMoDe has been
constrained to address missions specified by a single design criterion.
We overcame this limitation by developing Mandarina: an automatic
design method that can handle multiple concurrent design criteria in
the generation of control software for robot swarms. In this chapter,
we show that Mandarina enables the realization of robot swarms that
perform sequences of missions, where each mission is an independent
design criterion to be handled during the design process. We also show
that automatically designed robot swarms can use environmental signals
to switch their behavior and perform missions sequentially.

82
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Mandarina is a method for the automatic design of robot swarms under concurrent
design criteria. Given a mission specification with multiple design criteria and a
space of possible instances of control software, Mandarina searches for an instance
that maximizes the performance of the swarm in the given mission. More precisely,
it conducts a multi-criteria design process to find a neutral compromise solution
where all design criteria are satisfied to their best.

The notion of multi-criteria design builds upon multi-criteria decision making—
that is, the problem of selecting an alternative on the basis of a preference relation-
ship (Fishburn 1970). Multi-criteria decision making is relevant to many different
domains (Zopounidis and Doumpos 2017) and is commonly addressed from the
perspective of single-objective and multi-objective optimization. For a classical
introduction to multi-criteria decision making, see Fishburn (1970); and for a rela-
tively recent survey on evolutionary algorithms for multi-objective optimization, see
Emmerich and Deutz (2018). In single-objective approaches, the decision criteria
are aggregated (e.g., by means of scalarization) into a single objective function and
the space of the alternatives is totally ordered. On the other hand, multi-objective
approaches do not aggregate the decision criteria, and as a result, the space of the
alternatives is only partially ordered—the notion of optimal solution is replaced
by the one of set of non-dominated solutions, the Pareto set. As discussed in
Chapter 2, the application of these notions to the automatic design of robot swarms
is rare. Trianni and López-Ibáñez (2015) were the first to apply these concepts
to neuroevolution within a semi-automatic design process. To the best of our
knowledge, Mandarina is the first method to apply them in the fully automatic
generation of modular control software.

We developed Mandarina on the basis of TuttiFrutti. They both produce
probabilistic finite-state machines for e-pucks that interact with each other and
with the environment by displaying and reacting to color signals. Mandarina and
TuttiFrutti also share Iterated F-race (Balaprakash et al. 2007; Birattari et al.
2010) as their optimization algorithm, but they differ in how Iterated F-race is
configured to drive the design process. Originally designed for single-criterion
optimization, Iterated F-race has proven to be effective an effective algorithm
for designing robot swarms in single-criterion problems—see Chapter 2. With
Mandarina, we show that by making minor adjustments to the way Iterated F-race
operates, it can also be suitable for designing robot swarms in problems with
concurrent design criteria.

Mandarina exploits some originally unintended properties of Iterated F-race
to handle more than one design criterion at a time. More precisely, it exploits its
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non-parametric nature and the fact that it operates on ranks. These properties were
originally intended for handling problems with large scale variations and complex
distributions of the objective functions. We noticed that they turn out to be
appropriate and natural for handling concurrent design criteria in a multi-criteria
optimization setup. Thanks to these properties, Mandarina allows for an automatic
design process that does not require aggregating the design criteria into a single
objective function. In this chapter, we limit ourselves to demonstrating these
properties in a bi-criteria problem, but we expect the methodology to be applicable
in design problems with additional criteria.

The design process introduced with Mandarina fully aligns with the tenets of the
automatic off-line design of robot swarms (Birattari et al. 2019): (i) an automatic
method can address a whole class of missions without undergoing any modification;
and, (ii) once a mission is specified, no human intervention is allowed for in any phase
of the design process. On the other hand, the approaches that rely on manually
aggregating design criteria, described in Chapter 2, unavoidably prevent practicing
these tenets. Aggregating criteria requires mission-specific human intervention and
the injection of domain knowledge. In the typical case, the designer is required to
estimate/measure the range of scores spanned by each design criterion. Under this
condition, mission-specific experimentation is necessary to understand the nature
of the design criteria and to produce and refine an appropriate objective function.
A method that requires aggregating design criteria via prior experimentation or
expert knowledge belongs mostly to the semi-automatic approach (Birattari et al.
2020). Conversely, the fact that Mandarina operates without aggregating criteria
makes the method a fully automatic one.

The following sections provide a detailed description of Mandarina, its charac-
teristic elements, and the experiments we conducted with the method. As noted
earlier, Mandarina shares many elements with TuttiFrutti. To maintain consis-
tency with how TuttiFrutti was introduced in Chapter 3, and how other methods
will be presented in Chapter 5, we briefly comment on the elements shared be-
tween Mandarina and TuttiFrutti—i.e., the robot platform and modular control
architecture. However, the main focus of this Chapter is on the original research
conducted with Mandarina and its multi-criteria design process.
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4.1 Robot platform

Mandarina produces control software for the same version of the e-puck considered
in TuttiFrutti—see Figure 3.1. The functional capabilities of the robot are
adopted from TuttiFrutti without any modification and are formally defined
by the reference model RM 3—see Table 3.1. RM 3 describes an e-puck endowed
with proximity sensors that can detect nearby obstacles; ground sensors that
differentiate between gray, black, and white floor; a range-and-bearing board that
estimates the number of neighboring peers and their relative aggregate position; an
omnidirectional vision turret that can perceive color signals emitted by neighboring
objects and/or robots, and estimates their relative aggregate direction; RGB
LEDs to emit color signals; and left and right wheels, whose velocity can be set
independently. A detailed description of the robot and the reference model RM 3
is provided in Chapter 3.

4.2 Modular control architecture

Mandarina generates control software by fine-tuning and assembling predefined
software modules into probabilistic finite-state machines. It operates on the thir-
teen parametric software modules that were originally conceived for TuttiFru-
tti—see Table 3.2. The set of modules comprises 6 low-level behaviors—the
actions that a robot can execute—and 7 transition conditions—the events that
trigger the transition between low-level behaviors. The six low-level behaviors
are exploration, stop, attraction, repulsion, color-detection, and
color-elusion. The seven transition conditions are black-floor, gray-floor,
white-floor, neighbor-count, inv-neighbor-count, fixed-probability,
and color-detection. Mandarina combines low-level behaviors and transi-
tion conditions to generate the control software of the robots. The parameters
of the software modules are automatically tuned during the design process. As
with TuttiFrutti, the modules in Mandarina allow robots to interact with their
peers and with objects in the environment by perceiving and displaying color
signals—according to the reference model RM 3. A detailed description of the
implementation of the software modules is provided in Chapter 3.
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4.3 Multi-criteria automatic design process

In Mandarina, the multi-criteria design process is cast into an optimization problem
that is addressed with Iterated F-race. We use the implementation of Iterated F-
race provided by the irace package (López-Ibáñez et al. 2020) version 2.2. Iterated
F-race maximizes the performance of the robot swarm with respect to a set of
mission-specific metrics: the objective functions associated to the design criteria.
Starting from the specifications of a mission, Iterated F-race selects software
modules, fine-tunes their parameters, and combines them into probabilistic finite-
state machines—the control software of the robots. Likewise TuttiFrutti, the
finite-state machines that Mandarina produces can have up to four states—i.e.,
low-level behaviors, and up to four outgoing transitions per state—i.e., transition
conditions. A transition condition will always originate and end in different states.

During the design process, Iterated F-race searches the design space looking for
probabilistic finite-state machines that perform well in the mission at hand. Each
finite-state machine is assessed with simulations executed in ARGoS3 (Pinciroli
et al. 2012). As with TuttiFrutti, we use ARGoS3 version beta 48, together with
the argos3-epuck plugin. Iterated F-race is given a maximum number of simulations
to find a candidate solution (i.e., a finite-state machine to address the mission).
The maximum number of simulations determines the duration of the optimization
process. When Iterated F-race exhausts the maximum number of simulations, the
optimization process ends and Mandarina returns the best candidate solution found
so far. The control software produced by Mandarina is then deployed to the robots
without further modification.

Mandarina operates with a design process similar to that introduced by Francesca
et al. (2015) for Chocolate, which was also used in TuttiFrutti in Chapter 3. The
main difference is that, as mentioned at the beginning of this Chapter, Mandarina
uses Iterated F-race to address missions whose specifications define multiple design
criteria to drive the design process. These design criteria are formally specified
by a set of objective functions to be optimized. In our research, we focused on
the bi-objective case: missions are characterized by two objective functions. To
achieve this, we did not need to modify Iterated F-race. We simply set it up in
a way that differs from previous implementations of AutoMoDe. In Chocolate
and TuttiFrutti, as in the other existing implementations of AutoMoDe, Iterated
F-race evaluates candidate solutions with respect to the single objective function
that characterizes the mission at hand. In Mandarina, we set up Iterated F-race so
as to evaluate each candidate solution on the two objective functions defined in
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the mission specification.
Figure 4.1 illustrates the operation of Iterated F-race, the original optimization

algorithm as used in Chocolate and TuttiFrutti, and the optimization algorithm
as used in Mandarina. Iterated F-race operates in three main steps (López-Ibáñez
et al. 2016): (i) sampling candidate instances of control software according to a
particular distribution; (ii) selecting the best instance(s) from the newly sampled
ones by racing; and (iii) updating and refining the sampling distribution in order
to bias the sampling towards the best instance(s) found. In each race, Iterated
F-race iteratively evaluates candidate finite-state machines on a number of problem
instances. Each problem instance is a specific realization of the mission at hand—for
example, a specific realization of initial conditions such as position/heading of
the robots. While in Chocolate and TuttiFrutti, which address single-objective
problems, the evaluation of a candidate solution on a problem instance produces a
single number (the score in the mission); in Mandarina, it produces two numbers:
the corresponding scores of the two objective functions.

Iterated F-race uses statistical tests—i.e., Friedman tests (Conover 1999)—to
discard candidate solutions that significantly perform worse than at least one other
candidate solution. The candidate solutions are selected with respect to the average
rank of their observed performance and not with respect to the numerical values.
In Mandarina, Iterated F-race conducts the statistical tests on the two scores that
are returned, and discards candidate solutions that significantly perform worse than
at least one other candidate solution in the two of them. Eliminating candidate
instances of control software under concurrent design criteria is only possible
because Iterated F-race operates on the ranks, and not on the score obtained from
the objective functions. It is not always possible to directly compare the score of
an instance of control software across two objective functions. However, it is indeed
possible to compare the average rank of its observed performance across them.

To tackle multi-objective optimization problems, it is customary to first identify
a set of solutions that represent various performance compromises across the
objectives—an approximation of the Pareto set. From this set, an a posteriori
decision-making process is applied to select a preferred solution with respect to the
observed performance—as shown by Trianni and López-Ibáñez (2015). In Manda-
rina, we take a different approach. Mandarina returns a single solution: the one
that statistically does not perform worst than any other solution in the two design
criteria. In other words, it returns only one solution that consistently proved to be
a good performing neutral compromise among the criteria considered.

From a practical point of view, the modifications we made to the design process
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Iterated F-Race
Race algorithm
original version

Race algorithm
in Mandarina

Figure 4.1: Illustration of Iterated F-race, the original race algorithm, and of how it
is used in Mandarina. Iterated F-race conducts iterative races (Ri) in which candidate
solutions (θj)—i.e., instances of the control software being developed—are evaluated
with respect to a number of problem instances (Ik). Each box is the evaluation of one
candidate solution on one problem instance. Dots (•) in a box represent the number of
objective functions evaluated.

In the first race (R1), Iterated F-race uniformly samples the parameter space to generate
candidate solutions (θ{1,...,6}). In the subsequent races (R{2,...,n}), Iterated F-race refines
and updates the sampling distribution to bias the sampling towards the best instance(s)
found so far. For example, in R2, θ{7,8} and θ{9,10} result from biased sampling towards
θ1 and θ2, respectively. The refinement of the sampling process is illustrated by the color
gradient of the boxes.

The original race algorithm evaluates one single objective function. In Mandari-
na, Iterated F-race evaluates two objective functions. In a race, candidate solutions
are discarded after conducting statistical tests: ’×’ indicates that no statistical test is
performed; ’−’ indicates that the test discarded at least one candidate solution; and
’=’ indicates that the test did not discard any candidate solution. Statistical tests are
conducted only after sufficient statistical evidence is gathered on the performance of the
candidate solutions in an initial set of problem instances (I1,...,5).

Mandarina requires evaluating both objective functions on an instance Ik before
conducting statistical tests to discard configurations. As no configuration can be discarded
based on just one of the two objective functions, no statistical test is needed after
evaluating only the first objective function of instance Ik.
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originally conceived by Francesca et al. (2015) for AutoMoDe are minor. Indeed,
in Mandarina, we only made very few technical adjustments to the typical use of
Iterated F-race to enable the evaluation of candidate control software with respect
to two objective functions. However, the conceptual implications of making these
modifications in Mandarina are important. Iterated F-race can address multi-
criteria design problems if the objective functions to be optimized concurrently are
presented to the algorithm as independent problem instances. This property was
originally unintended in the conception of Iterated F-race. In our research, we do
not explore the extent to which this property generalizes and/or whether Iterated F-
race could address design problems that consider more than two objective functions.
However, we find reasonable to think that Iterated F-race could turn viable to
tackle the design of robot swarms with respect to more than two criteria—provided
that they can be presented as independent problem instances as well.

4.4 Experimental setup

We assess Mandarina on multi-criteria missions that are specified as bi-objective
optimization problems. In the absence of well-defined benchmarks, we devise a
framework in which we combined instances of aggregation, foraging, and coverage
to create missions. The missions included in this framework draw inspiration from
missions used in previous automatic design studies (Francesca et al. 2014b, 2015;
Trianni and López-Ibáñez 2015; Garzón Ramos and Birattari 2020; Kuckling et al.
2022; Kegeleirs et al. 2024b). Alongside Mandarina, we also conduct experiments
with baseline modular and neuroevolutionary design methods.

4.4.1 Mission framework

We experiment with a swarm of twenty e-puck robots that must perform missions
composed of two sequential parts. Each part is a sub-mission to be accomplished and
is evaluated by an independent objective function, a design criterion. The mission
framework comprises a set of fifteen missions, which result from combining the six
sub-missions into sets of two:

(
6
2

)
= 15. In these missions, the swarm must perform

one sub-mission for a given amount of time, then switch its behavior to perform
the second one for the same amount of time.

The robots operate in an octagonal arena of 2.75 m2 surrounded by MoCA’s
RGB blocks—see Figure 4.2. The robots are randomly positioned at the beginning
of each experimental run. The RGB blocks are arranged in walls and each of
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Figure 4.2: Experimental arenas for Mandarina’s experiments. The figure shows examples
of the two possible states of the arena. On the left, the RGB blocks of the walls display
blue and all RGB blocks adjacent to a black patch are switched on, displaying green. On
the right, the RGB blocks of the walls display red and some RGB blocks adjacent to a
black patch have switched off, displaying no color. The robots are randomly positioned.

them can possibly display a different color. The floor of the arena is gray with
nine square patches, each measuring 25 cm on each side. One of the patches is
white, and the other eight are black. In every mission, the RGB blocks adjacent
to black patches initially turn green, and afterward, they will randomly switch
off with uniform probability. The remaining RGB blocks turn red or blue to
inform the robots about the sub-mission to be executed. Typically, in automatic
design studies, the arena is modified on a per-mission basis to allow for varying
mission specifications. This is the procedure we followed in the experiments with
TuttiFrutti, presented in Chapter 3. Here, we specify a diverse set of bi-criteria
missions (and their sub-missions) in a single experimental arena by changing the
color of MoCA’s RGB blocks at run-time.

Sub-missions

We consider a set of six sub-missions (S{1, . . . , 6}), which can be performed by
e-pucks that comply with the reference model RM 3. These sub-missions are a
sample of the class of missions that can be addressed with Mandarina and other
methods that adopt the same reference model. Each sub-mission is specified by a
description of a task to be executed and a corresponding objective function.

Sub-mission 1 (S1): the robots must occupy the black patches whose adjacent
RGB blocks display green. The swarm is given 1 point for every 100 cumulative
timesteps that the robots spend on each suitable patch. For example, a single robot
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in a patch will be given one point after 100 timesteps, but 10 robots in a patch
will be given 1 point after 10 timesteps. The score of the swarm is the number of
points it obtains in the allotted time:

fS1 =
T ′∑

t=1

H∑
i=1

Ii(t), (4.1)

which must be maximized. H is the number of patches and T ′ the time available
to the robots to perform the sub-mission. The indicator Ii(t) is defined as:

Ii(t) =

 1, if at time t the robots accumulate 100 timesteps in the patch i;
0, otherwise.

Sub-mission S1 is inspired by aggregation missions in which the robots must gather
at an indicated place (Francesca et al. 2014b, 2015).

Sub-mission 2 (S2): the robots must iteratively travel from any black patch
to the white one. The swarm is given 1 point every time a robot completes a trip.
The score of the swarm is the number of points it obtains in the allotted time:

fS2 = IT ′ , (4.2)

which must be maximized. IT ′ is the number of trips executed in the time T ′

available to the robots to perform the sub-mission. Sub-mission S2 is inspired by
foraging missions in which the robots must travel between two locations: a food
source and a nest (Francesca et al. 2014b; Garzón Ramos and Birattari 2020).

Sub-mission 3 (S3): the robots must occupy the black patches adjacent to
RGB blocks that are switched off. The swarm is given one point if at least two
robots spend 50 timesteps in the corresponding black patch. The count of timesteps
starts as soon as the two robots step into the patch, and it will continue as long as
they both remain on it. The count is not affected if more than two robots occupy
the patch. The score of the swarm is the number of points it obtains in the allotted
time:

fS3 =
T ′∑

t=1

H∑
i=1

Ii(t), (4.3)

which must be maximized. H represents the number of patches and T ′ the time
available to the robots to perform the sub-mission. The indicator Ii(t) is defined
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as:

Ii(t) =

 1, if at time t two robots accumulate 50 timesteps in the patch i; ;
0, otherwise.

Sub-mission S3 is inspired by strictly cooperative missions in which the robots must
jointly perform a single task (Ijspeert et al. 2001; Trianni and López-Ibáñez 2015).

Sub-mission 4 (S4): the robots must iteratively enter and leave the white
patch. The swarm is awarded 1 point every time a robot performs these two actions.
The score of the swarm is the number of points it obtains in the allotted time:

fS4 = IT ′ , (4.4)

which must be maximized. IT ′ is the number of times a robot entered and left the
white patch in the time T ′ that is available to the robots to perform the sub-mission.
Also sub-mission S4 is inspired by foraging missions, as sub-mission S2, but here,
the robots start and end at a single location.

Sub-mission 5 (S5): the robots must disperse and cover the arena. We con-
sider the coverage to be the most effective when the minimum distance between
any two pair of robots is maximized. The score of the swarm is the cumulative
sum of the minimum inter-robot distance, over time:

fS5 =
T ′∑

t=1
min

(
dij(t)

)
, (4.5)

which must be maximized. Here, dij is the minimum distance between any pair of
robots (i, j) at time t, and T ′ is the time available to the robots to perform the
sub-mission. Sub-mission S5 is inspired by dispersion and coverage missions in
which the robots must maintain a fixed inter-robot distance to achieve a specific
spatial distribution (Francesca et al. 2015; Kegeleirs et al. 2024b).

Sub-mission 6 (S6): the robots must remain within a 25 cm distance from
the walls of the arena, without entering the black patches. The score of the swarm
is the aggregate time that the robots spend in the suitable areas:

fS6 =
T ′∑

t=1

N∑
i=1

Ii(t) , (4.6)

which must be maximized. N is the number of robots and T ′ is the time available
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to the robots to perform the sub-mission. The indicator Ii(t) is defined as:

Ii(t) =

 1, if the robot i is in gray floor and within 25 cm from a wall at time t;
0, otherwise.

Sub-mission S6 is inspired by missions in which the robots must display a specific
spatial distribution (Francesca et al. 2015; Kuckling et al. 2022), like sub-mission
S5. However, the robots here must maintain a specific distance from an element in
their environment, irrespective of the distance to their peers.

We selected the sub-missions S{1, . . . , 6} because they pose specific challenges to a
multi-objective optimization process. First, the performance of candidate solutions
is stochastic and depends on the robots’ initial positions (e.g., in S5 and S6) and on
the way the RGB blocks turn off (e.g., in S1 and S3). Second, estimating realistic
bounds for the objective functions is not straightforward without conducting
preliminary experiments (e.g., in S2 and S4). Indeed, it is challenging to anticipate
to what degree the interactions between the robots will hinder a candidate solution
from reaching a theoretical upper performance bound. Third, the objective functions
can take discrete or continuous variables (e.g., in S4 and S5), and their range can
span over different orders of magnitude (e.g., in S3 and S6). Finally, the objective
functions can represent conflicting goals (e.g., in S1 and S3).

Specification of bi-criteria missions

We define the set M of bi-criteria missions (mSp.Sq) by pairing sub-missions (Sp,
Sq) in fifteen combinations—see Table 4.1. In all cases, the robots must execute
the two sub-missions, one after the other. The time T available to the robots to
execute a mission is 120 s. The time T ′ available to execute each sub-mission is
60 s. Accordingly, the swarm’s performance in a mission is assessed for the initial
60 s with regard to one sub-mission and for the remaining 60 s with regard to the
other. The two scores are returned after each experimental run.

We expect the swarm to be able to perform a mission mSp.Sq regardless of the
order of Sp and Sq. Therefore, in our experiments, the order in which the sub-
missions must be executed is randomly defined at the beginning of the evaluation
of the mission (i.e., for each problem instance). For example, the execution of
mSp.Sq can result uniformly in the sequence Sp→ Sq or Sq→ Sp. We anticipate
that using a fixed predefined order of sub-missions could lead to control software
instances specialized for that specific order, making it likely to fail when the order
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Table 4.1: Set of missions (M) considered in Mandarina’s study. The missions are
paired combinations (mSp.Sq) of the six sub-missions (S{1, · · · , 6}). In each combination,
the colors blue and red characterize the sub-missions Sp ( ) and Sq ( ). In a mission
(mSp.Sq), the sub-missions Sp and Sq must be executed in sequence, but the order of the
sequence (Sp ⇄ Sq) is randomly defined in every experimental run. Sp and Sq are
executed during an equivalent period of time. The execution of a mission mSp.Sq returns
the score of the swarm with respect to Sp and Sq, regardless the order of the sequence.

No. Mission Combination of sub-missions

1 mS1.S2 S1 ⇄ S2
2 mS1.S3 S1 ⇄ S3
3 mS1.S4 S1 ⇄ S4
4 mS1.S5 S1 ⇄ S5
5 mS1.S6 S1 ⇄ S6
6 mS2.S3 S2 ⇄ S3
7 mS2.S4 S2 ⇄ S4
8 mS2.S5 S2 ⇄ S5
9 mS2.S6 S2 ⇄ S6
10 mS3.S4 S3 ⇄ S4
11 mS3.S5 S3 ⇄ S5
12 mS3.S6 S3 ⇄ S6
13 mS4.S5 S4 ⇄ S5
14 mS4.S6 S4 ⇄ S6
15 mS5.S6 S5 ⇄ S6

of Sp and Sq changes. On the contrary, our stochastic approach helps minimize
the risk of biasing the design process toward a specific order.

In every mission, we use a fixed color coding (blue and red) to characterize the
associated sub-missions—see Table 4.1. At every moment in time, the walls of the
arena display blue or red to indicate the sub-mission to be executed. For example,
in a sequence Sq→ Sp, the walls will initially display the color blue, indicating that
the swarm must execute the sub-mission Sq. After 60 seconds, the walls switch to
red, indicating the end of Sq and the start of the sub-mission Sp. The color of the
walls is an environmental signal that the robots can perceive. We anticipate that the
design methods will design robot swarms that, although not pre-programmed to do
so, will rely on the color of the walls to transition between behaviors and accomplish
the two sub-missions—as in the experiments conducted with TuttiFrutti.

4.4.2 Baseline methods

We conduct experiments with three automatic design methods other than Man-
darina: TuttiFrutti and EvoColor, introduced in Chapter 3, and NEAT-Color,
an original implementation of the neuroevolutionary approach. Like Mandarina,
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these three methods produce control software for e-pucks defined by the reference
model RM 3, and are specialized in the design of collective behaviors for robots
that can perceive and react to color signals. However, unlike Mandarina, they do
not naturally work with concurrent design criteria. TuttiFrutti, EvoColor, and
NEAT-Color are limited to using a single score as an evaluation criterion during
the design process. We consider these methods as our baseline because, to address
a bi-criteria design problem, they need to aggregate the concurrent design criteria
into a single performance measure—the standard approach in the literature, as
discussed in Chapter 2.

The implementations of TuttiFrutti and EvoColor in this study are iden-
tical to those from Chapter 3. NEAT-Color is a neuroevolutionary method in
which the evolutionary process selects both the network topology and the synaptic
weights of the artificial neural network. NEAT-Color is based on NEAT—an algo-
rithm introduced by Stanley and Miikkulainen (2002) and tested by Hasselmann
et al. (2021) in the context of the automatic design of robot swarm. The input
and output nodes in NEAT-Color are the same as for EvoColor, which are defined
according to the reference model RM 3–see Table 3.1. In NEAT-Color, the topology
of the network is initialized with a disconnected network. NEAT-Color selects
the network architecture and fine-tunes the synaptic weights via an evolutionary
optimization process based on elitism and mutation. We include NEAT-Color as a
more sophisticated alternative method to EvoColor.

In the experiments, we conduct the design process using TuttiFrutti and
EvoColor as originally introduced in Chapter 3. The parameters for conducting the
design process with NEAT-Color are the ones defined by Hasselmann et al. (2021)
for NEAT. To apply these methods in our study, we considered popular approaches
to combine the concurrent design criteria into a single performance measure.

4.4.3 Aggregating multiple criteria into a single criterion

We use TuttiFrutti, EvoColor, and NEAT-Color alongside unary metrics that
aggregate the two scores of a mission into a single measure. We consider the
weighted sum (WS), the hypervolume (HV), and the l2-norm (L2). These unary
metrics provide the single performance value that TuttiFrutti, EvoColor, and
NEAT-Color require to conduct the design process.
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The weighted sum approach (WS)

We scalarize the two objective functions (fSp and fSq) of a mission (mSp.Sq) through
a weighted sum (fmSp.Sq

= (α).fSp + (1 − α).fSq) regulated by a parameter α ∈ [0, 1].
This metric can be used alongside TuttiFrutti, EvoColor, and NEAT-Color, but it
requires defining a suitable α value for the mission before the design process begins.
Suitable values for α are typically determined through mission-specific expert
knowledge or prior experimentation, which help define the relationship between fSp

and fSq. However, we chose not to adopt either of these approaches, as relying on
them would prevent us from achieving a fully automatic design process. Therefore,
we consider the absence of a well-defined performance range for fSp and fSq, which
makes hardly possible to predefine suitable α values. To address this issue, we adopt
the approach of Trianni and López-Ibáñez (2015) and we conduct experiments with
a set of five α values in every mission (α ∈ {0.2, 0.4, 0.5, 0.6, 0.8}).

By applying five α values to the weighted sum, the experiments yield a large set
of instances of control software for each baseline method and mission. Therefore,
a subsequent decision-making process is necessary to select solutions from this
set. We conduct this decision-making process manually. After all experiments
are completed, we evaluate the instances produced with the five α values and
we rank them according to their score. For each method, we identify the best,
median, and worst combination of α values for every mission. We then use these
α values to assemble three sets of instances of control software for each method:
the best (B), median (M ), and worst (W ) instances produced. It should be noted
that this a posteriori manual selection process does not align with the tenets of a
fully automatic design process (Birattari et al. 2019). However, we include it in
our study to provide an estimate of the best, median, and worst performance one
can expect when using a weighted sum in these missions.

The hypervolume approach (HV)

The hypervolume quantifies the area in the objective space that a candidate solution
dominates. In our experiments, the sub-missions and their associated objective
functions define the objective space for each mission. To calculate the hypervolume,
the objective space must be normalized using a reference point, indicating the upper
performance bounds of the two objective functions under consideration. However,
in our experiments, we cannot pre-establish this normalization due to the absence
of a score range for fSp and fSq. Iterated F-race has a way to address this problem:
it dynamically computes these bounds for every problem instance based on the
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observed scores of all candidate solutions on that specific instance. Therefore, in the
case of TuttiFrutti, the hypervolume can be computed using the implementation
provided by the maintainers of the irace software package (López-Ibáñez et al.
2020), originally proposed by Fonseca et al. (2006). In the case of EvoColor
and NEAT-Color, there is no straightforward way to dynamically compute the
performance bounds during the evolutionary optimization process. Consequently,
we do not apply the hypervolume to the neuroevolutionary methods.

In our experiments, we use the hypervolume in a way that differs from the
typical approach found in the multi-objective optimization literature (Guerreiro et
al. 2021). The hypervolume is often used to identify a set of solutions with different
performance trade-offs—i.e., an aproximation of the Pareto front—and then select
a preferred solution through an informed decision-making process. This was the
approach followed by Trianni and López-Ibáñez (2015). Conversely, we use the
hypervolume in TuttiFrutti to find a single no-preference solution to the design
problem. TuttiFrutti will look for a solution that, on an individual basis, covers
the largest area in the objective space across all tested problem instances. We
expect that an instance that maximizes its coverage of the objective space will yield
a neutral compromise solution, where the two sub-missions are performed at their
best. We consider this application of the hypervolume a fully automatic design
method because it does not require prior experimentation, or manual intervention
and decision making after the design process.

The l2-norm approach (L2)

We compute the Euclidean distance in the objective space between a reference
point and the point defined by the two scores of a candidate solution. Like the
hypervolume, TuttiFrutti uses Iterated F-race to dynamically compute perfor-
mance bounds for each problem instance, normalizing the objective space and
establishing an appropriate reference point. Then it aggregates the two scores of
the candidate solution using the l2-norm. In this case, we also do not apply the
l2-norm to EvoColor and NEAT-Color as they do not provide a straightforward way
to dynamically compute the performance bounds.

The l2-norm is a metric used in no-preference multi-objective optimization meth-
ods (Miettinen 1998). These methods aim at finding a single solution that satisfies
a decision maker who has no special expectations or preference on performance
trade-offs. In essence, all objective functions are treated as equally important, and
the decision maker is satisfied with finding a single solution that optimizes them.
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This reasoning aligns well with our multi-criteria design problem: our goal is to
find instances of control software that enable the swarm to execute its mission
(mSp.Sq) by performing well in the two sub-missions it comprises (Sp, Sq)—no other
information is provided to the design process. We expect that TuttiFrutti will
produce neutral compromise solutions by incorporating the l2-norm. We consider
this application of the l2-norm also a fully automatic design method.

4.4.4 Protocol

Table 4.2 lists the design methods considered in our experiments. We use Manda-
rina and the baseline methods to produce control software for the fifteen missions.
We generate 150 instances of control software with Mandarina—10 per mission. In
the experiments involving the weighted sum, we produce a total of 2250 instances of
control software using NEAT-Color, EvoColor, and TuttiFrutti—10 per method,
mission, and α value. For each method, we then select sets of the best, median, and
worst instances, each comprising 150 instances—10 per mission. We also produce
150 instances of control software using TuttiFrutti and the hypervolume, and
other 150 using TuttiFrutti and the l2-norm—10 per mission in each case. All
design methods are given a budget of 100 000 simulation runs to produce each
instance of control software.

The instances of control software produced by a design method are evaluated
twice—once for each possible order of the sub-missions. We do this to assess
the swarm’s capability to perform the mission regardless of the order of the sub-
missions. In all cases, the design process and the evaluation of the control software
is conducted using ARGoS3.

We also produce 180 demonstration videos of the behavior of the robots when
the control software produced in simulation is ported to physical robots. We present
30 videos for each method among NC-WS-B, EC-WS-B, TF-WS-B, TF-HV, TF-L2, and
Mandarina. They demonstrate the behavior of instances of control software for
every mission and for each possible order of the sub-missions.

Statistics

We use a Friedman rank sum test (Conover 1999) to compare the relative perfor-
mance of the methods across all 15 missions, taking into account the evaluations
conducted in each sub-mission. Specifically, we conduct a Friedman two-way analy-
sis of variance with repeated measures. This rank-based non-parametric test uses a
block design. In our protocol, the treatment factor is the method under analysis
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Table 4.2: Design methods under evaluation in Mandarina’s study. We consider three
versions of NEAT-Color, EvoColor and TuttiFrutti that adopt the weighted sum. Each
of these versions comprises a set of control software instances produced using the best,
median, and worst combinations of α values identified for each mission. We also consider
two additional versions of TuttiFrutti, one that adopts the hypervolume and other
that adopts the l2-norm. The last method method under evaluation is Mandarina.

No. Label Method Unary metric Set of instances Approach

1 NC-WS-W NEAT-Color weighted sum worst neuroevolution
2 NC-WS-M NEAT-Color weighted sum median neuroevolution
3 NC-WS-B NEAT-Color weighted sum best neuroevolution
4 EC-WS-W EvoColor weighted sum worst neuroevolution
5 EC-WS-M EvoColor weighted sum median neuroevolution
6 EC-WS-B EvoColor weighted sum best neuroevolution
7 TF-WS-W TuttiFrutti weighted sum worst AutoMoDe
8 TF-WS-M TuttiFrutti weighted sum median AutoMoDe
9 TF-WS-B TuttiFrutti weighted sum best AutoMoDe
10 TF-HV TuttiFrutti hypervolume n.a. AutoMoDe
11 TF-L2 TuttiFrutti l2-norm n.a. AutoMoDe
12 Mandarina Mandarina n.a. n.a. AutoMoDe

and the blocking factor is the sub-missions. We present the results of the Friedman
test with the average rank of the methods along with its 95% confidence interval.
The average rank indicates the relative performance of a method with respect to the
others across the complete set of experimental results. We selected the Friedman
test to compare methods because it is invariant to the magnitude of the objective
functions of the sub-missions and can be applied with no assumptions about the
distribution of the performance data. First adopted by Francesca et al. (2015) in
the initial studies with Chocolate, the Friedman test has since proven to be a
valuable tool for assessing the relative expected performance of automatic design
methods.

In our experiments, we use different performance measures to conduct the
optimization process (scores, hypervolume, and the l2-norm). A priori, focusing
solely on the aggregated results based on one of these measures could unfairly favor
the design methods that use that same measure. Therefore, to make fair compar-
isons, we report the relative aggregate performance of the methods when evaluated
according to the three: the scores, hypervolume, and the l2-norm. We present
results of three Friedman tests computed according to the scores, hypervolume, and
the l2-norm. By considering and presenting them all, we compensate for possible
bias. A method is considered significantly better than another if it has a lower
average rank, and there is no overlap in the confidence intervals of the two methods.
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The per-mission results are presented through scatter plots that show the perfor-
mance of control software instances in the objective space—the scores. These scatter
plots are provided for each mission. For the weighted sum approach, we only include
the best sets from NEAT-Color, EvoColor, and TuttiFrutti as they illustrate the
best performance one could expect.

4.5 Results

In Chapter 3, we discussed how TuttiFrutti addresses individual missions using
environmental and inter-robot signaling, presenting the results on a per-mission
basis. Given that Mandarina and TuttiFrutti can generate identical control
software and address the missions in similar ways, we shift our focus here to the
differentiating element of Mandarina: the optimization processes. In the following,
we focus on the overall relative performance of the methods rather than how
they address individual missions. We present the results on a per-method basis,
starting with those obtained with AutoMoDe, followed by the results obtained with
neuroevolution. We briefly comment on the observed behavior on physical robots
at the end of the section.

Figure 4.3 shows three statistical comparisons of the methods under analysis.
Figure 4.3.A shows the results of a Friedman test that is applied directly to the
scores obtained from the evaluation of the generated control software. Figure 4.3.B
also shows the results of a Friedman test, but in this case the test is applied after
aggregating the scores using the hypervolume. Figure 4.3.C shows the results
of a Friedman test that is applied after aggregating the scores using the l2-norm.
Figures 4.4 and 4.5 show scatter plots with the scores obtained for each mission.

4.5.1 AutoMoDe methods

Mandarina

In all three Friedman tests (Figure 4.3), the average rank of Mandarina is signifi-
cantly lower than the average rank of the baseline methods. Mandarina outper-
formed the baselines, whether the comparison is conducted directly using scores,
the hypervolume, or the l2-norm. This indicates that Mandarina was more effective
than the other methods in producing neutral compromise instances of control
software that satisfied the design criteria. In the per-mission results (Figures 4.4
and 4.5), the score of Mandarina’s instances is mostly concentrated in the top-right
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A. Friedman test:
scores

Mandarina
TF-L2
TF-HV
TF-WS-B
TF-WS-M
TF-WS-W
EC-WS-B
EC-WS-M
EC-WS-W
NC-WS-B
NC-WS-M
NC-WS-W

50 100 150

Average rank

B. Friedman test:
hypervolume

Mandarina
TF-L2
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C. Friedman test:
l2-norm

Figure 4.3: Friedman tests with aggregate results from Mandarina’s study. A. The test
is directly applied to the scores. B. The test is applied after aggregating the scores using
the hypervolume. C. The test is applied after aggregating the scores using the l2-norm.
In all cases, the test considers the results obtained across all missions and provides a
relative ranking between the methods. The plot shows the average rank of each method
and its 95 % confidence interval. The lower the rank, the better.
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Figure 4.4: Performance obtained in the missions studied with Mandarina: missions 1
to 9. The scatter plots show the performance (scores) of control software instances in
the objective space for the 15 missions, and for the methods NC-WS-B ( ), EC-WS-B ( ),
TF-WS-B ( ), TF-HV ( ), TF-L2 ( ), and Mandarina ( ). The results are displayed using a
logarithmic scale to accommodate the performance ranges of the sub-missions, which
span varying orders of magnitude. In all plots, the higher, the better. These results have
been obtained with simulations in ARGoS3.
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Figure 4.5: Performance obtained in the missions studied with Mandarina: missions 10
to 15. The scatter plots show the performance (scores) of control software instances in
the objective space for the 15 missions, and for the methods NC-WS-B ( ), EC-WS-B ( ),
TF-WS-B ( ), TF-HV ( ), TF-L2 ( ), and Mandarina ( ). The results are displayed using a
logarithmic scale to accommodate the performance ranges of the sub-missions, which
span varying orders of magnitude. In all plots, the higher, the better. These results have
been obtained with simulations in ARGoS3.
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region of the scatter plots. This shows that, in most cases, the collective behaviors
designed by Mandarina aim at maximizing the performance of the swarm in the
two sub-missions.

TuttiFrutti and the weighted sum approach

By exploring a wide range of weight combinations, we generated a repertoire
of control software instances that satisfy the design criteria in varying degrees.
From this repertoire, we identified the best (TF-WS-B), median (TF-WS-M ), and
worst (TF-WS-W ) sets using the post hoc decision-making process described in
Section 4.4. In the three Friedman tests (Figure 4.3), the average rank of the
best, median, and worst sets of instances of TuttiFrutti is significantly lower
than the average rank of the sets of EvoColor and NEAT-Color. TuttiFrutti
generated sets of instances that generally outperform those produced by EvoColor
and NEAT-Color when using the weighted sum approach. On the other hand, the
relative performance between the selected sets (TF-WS-B, TF-WS-M , TF-WS-W ) and
the other variants of TuttiFrutti (TF-HV and TF-L2) differs depending on the
metrics used to conduct the test. TF-WS-B has a significantly lower rank than TF-HV
and TF-L2 when the instances are directly evaluated with respect to the scores
(Figure 4.3.A). However, the rank difference fades if the instances are evaluated
with respect to the hypervolume and the l2-norm—see Figures 4.3.B and 4.3.C,
respectively. In the per-mission results (Figures 4.4 and 4.5), the score of TF-WS-B’s
instances is spread in the top-right region of the scatter plots. This indicates that
the collective behaviors designed by TF-WS-B aim at maximizing the performance
of the swarm in the two sub-missions, in most cases.

TuttiFrutti and the hypervolume approach

In all Friedman tests (Figure 4.3), TF-HV has a significantly lower rank than the
methods based on EvoColor and NEAT-Color. However, compared to other methods
based on TuttiFrutti, the average rank of TF-HV also varied depending on the
metrics used to conduct the tests. If the instances are evaluated with respect to the
hypervolume, TF-HV ranks similarly to TF-WS-B (the best set)—see Figure 4.3.B.
However, if the instances are directly evaluated using the scores, the average rank
of TF-HV is similar to that observed in TF-WS-M (the median set)—see Figure 4.3.A.
A similar phenomenon appears when comparing TF-HV and TF-L2. If the instances
are evaluated with respect to the hypervolume, the rank of TF-HV is significantly
lower than that of TF-L2—see Figure 4.3.B. However, when the instances are
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evaluated based on the l2-norm, which is the measure used in the optimization
process of TF-L2, our experimental setup was unable to detect significant differences
between TF-HV and TF-L2—see Figure 4.3.C. In the per-mission results (Figures 4.4
and 4.5), the score of TF-HV’s instances is spread near the top-right region of the
scatter plots. This shows that most of the designed collective behaviors also aim at
maximizing the performance of the swarm in the two sub-missions.

TuttiFrutti and the l2-norm approach

The average rank of TF-L2 is significantly lower than that of the methods based on
EvoColor and NEAT-Color in the three Friedman tests (Figure 4.3). However, as
discussed previously, the relative average rank of TF-L2 compared to other methods
based on TuttiFrutti varies depending on the metric used to conduct the tests.
If the instances are directly evaluated with respect to the scores, the average rank
of TF-L2 is between TF-WS-M and TF-WS-W —see Figure 4.3.A. This rank shows a
sub-par performance for the method. If the instances are evaluated with respect
to the hypervolume, the average rank of TF-L2 is situated between TF-WS-B and
TF-WS-M—see Figure 4.3.B. Unlike the previous case, this second rank shows that
the method has moderate performance. TF-L2 ranks the best if the instances are
evaluated with respect to the l2-norm—see Figure 4.3.C. In this third case, we did
not observe a significant difference between the average rank of TF-L2 and that
of TF-WS-B and TF-HV, and the average rank of TF-L2 is significantly lower than
that of TF-WS-M . In the per-mission results (Figures 4.4 and 4.5), TF-L2 instances
scored with mixed performance. In a minor share of missions, the instances are
distributed close to the top-right region of the scatter plots. However, in a larger
share, they concentrate near the axes of the scatter plots. This shows that, in
most cases, TF-L2 failed to consistently design collective behaviors that aim at
maximizing the performance of the swarm in the two sub-missions.

4.5.2 Neuroevolutionary methods

EvoColor and the weighted sum approach

Likewise with TuttiFrutti, we also used EvoColor to generate a repertoire of
behaviors and we identified the best (EC-WS-B), median (EC-WS-M ), and worst (EC-
WS-W ) sets. In the three Friedman tests (Figure 4.3), the average rank of the
sets of EvoColor is only significantly lower than that of the sets of NEAT-Color.
All other alternative methods outperformed EvoColor, except for NEAT-Color.
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The per-mission results (Figures 4.4 and 4.5) show that the score of EC-WS-B’s
instances is concentrated near the axes of the scatter plots, attaining high values in
a single sub-mission but not in the other. Instead of generating neutral compromise
solutions that maximize the performance in both sub-missions, EvoColor primarily
designed collective behaviors that prioritize maximizing the performance of one of
them. By only addressing a single design criterion, EvoColor instances are able to
achieve the highest performance values in single sub-missions—compared to the
neutral compromise solutions produced by the modular methods. However, by
doing so, EvoColor did not produce instances of control software that fully satisfy
all the design criteria.

NEAT-Color and the weighted sum approach

The experiments with NEAT-Color showed results that are qualitatively similar
to those obtained with EvoColor. Also in this case, we generated a repertoire of
behaviors and we identified the best (NC-WS-B), median (NC-WS-M ), and worst (NC-
WS-W ) sets. In the three Friedman tests, all alternative methods outperformed the
sets of NEAT-Color—see Figure 4.3. The per-mission results (Figures 4.4 and 4.5)
show that, like EC-WS-B, the score of NC-WS-B’s instances concentrates near the axes
of the scatter plots. However, in general, NEAT-Color’s instances often achieve lower
scores compared to EvoColor’s instances. The collective behaviors designed by
NEAT-Color also prioritize maximizing the performance of a single design criterion.
In this sense, NEAT-Color also failed to produce instances of control software that
fully satisfy the design criteria.

4.5.3 Assessment with physical robots

We assessed the control software produced by NC-WS-B, EC-WS-B, TF-WS-B, TF-HV,
TF-L2, and Mandarina in physical e-pucks. Video demonstrations are provided
in the Supplementary Videos of the dissertation (Garzón Ramos 2025). The
demonstrations show that modular methods—TF-WS-B, TF-HV, TF-L2, and Mandari-
na—transfer better from simulation to reality than those based on neuroevolution—
NC-WS-B, EC-WS-B. In the case of modular methods, the behavior observed in
physical e-pucks qualitatively resembles that observed in simulation. Conversely,
in the case of neuroevolutionary methods, the e-pucks do not show any meaningful
behavior that resembles the one observed in simulation. These results are consistent
to those obtained with TuttiFrutti and EvoColor in the experiments presented in
Chapter 3. Neuroevolutionary methods tend to overfit the simulation environment,
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which prevents their control software from porting well to physical robots. Our
results show that this phenomenon also seems to occur in the multi-criteria design
problem we considered in this Chapter.

4.6 Discussion

The optimization-based design of robot swarms (fully or semi-automatic) has
been traditionally studied on missions specified as single-criterion design problems,
whether they are inherently single-criterion or adapted from multi-criteria ones.
Consequently, there is currently no established experimental framework for specify-
ing multi-criteria missions and studying how automatic design methods perform
when addressing them. Building on our previous study with TuttiFrutti, we
developed a new framework to explore this design problem.

To conduct our experiments, we specified bi-criteria missions by combining
instances of well-known swarm robotics problems—foraging, aggregation, and
coverage—into missions consisting of sequential parts. More precisely, (i) we speci-
fied a diverse set of sub-missions to be combined in a set of missions, (ii) we system-
atically performed experiments on the resultant combinations, and (ii) we compared
the methods on their aggregated performance across all missions in the set. These se-
quential missions allowed us to estimate the expected performance of the methods
under study and demonstrated to be an appropriate experimental framework for
research on multi-criteria design. In our experiments, we focused on studying a
bi-criteria case, but we believe the framework can be extended to a larger set of
concurrent design criteria. Likewise, the missions we devised here are intended to
be performed by e-puck robots that comply with the reference model RM 3, but we
believe that the experimental protocol can be used to develop new experimental
setups for other robot platforms or environments.

The missions in our experiments are distinctive from the related literature
in that they consist of a combination of sub-missions that must be executed
sequentially. In this class of missions, the modular methods (Mandarina and Tu-
ttiFrutti) outperformed the neuroevolutionary ones (EvoColor and NEAT-Color).
Mandarina and TuttiFrutti designed robot swarms that, as anticipated, can use
the environmental signals (red and blue lights) to switch between behaviors and
execute each sub-mission with a tailored action. On the contrary, EvoColor and
NEAT-Color designed robot swarms that do not seem to react to the color signals.
Instead, they typically stick to a single behavior that either addresses the two
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sub-missions to a very limited extent, or that is only tailored to address one of them.
By observing the results of the two approaches, we argue that the modular methods
performed better because they succeeded in designing robot swarms that can switch
behaviors at run-time, which we consider necessary for executing the sequential
missions. Switching between behaviors is a rather complex action inherently
enabled on Mandarina and TuttiFrutti due to their modular control architecture—
i.e., the probabilistic finite-state machine. The neuroevolutionary methods, on
the contrary, must evolve the switching behavior from scratch within the artificial
neural network. Neither EvoColor nor the more sophisticated NEAT-Color achieved
this task successfully.

In Mandarina, we leverage Iterated F-race’s non-parametric, rank-based nature
to address challenges that arise in multi-criteria design problems. On the one
hand, thanks to its non-parametric nature, we could use Mandarina in all missions
without requiring information about the behavior/distribution of the objective
functions. The objective functions of the sub-missions were ultimately treated as
black-boxes during the optimization process. On the other hand, thanks to its
rank-based nature, Mandarina could effectively handle pairs of objective functions
with different score ranges, discrete and continuous, and across various orders of
magnitude.

We compared Mandarina with other alternative methods that also use Iterated
F-race—i.e., the baselines derived from TuttiFrutti. The aggregated results show
that Mandarina achieved significantly better performance. Mandarina differs from
the multi-criteria methods based on TuttiFrutti in that Iterated F-race directly
operates on the scores obtained in each sub-mission. Indeed, Mandarina operates
without normalization or estimation of the performance bounds of the objective
functions. On the contrary, in the methods based on TuttiFrutti, Iterated F-race
operates on performance estimations that result from aggregating the scores into
single performance measures—the weighted sum, the hypervolume, or the l2-norm.
We conjecture that in Mandarina, Iterated F-race could perform more accurate
statistical comparisons of the performance of the candidate solutions by directly
comparing the scores of each sub-mission. This could possibly have contributed to
the search for better performing control software instances. In the methods based
on TuttiFrutti, aggregating the scores into a single measure may have hindered
the ability of Iterated F-race to statistically distinguish between the performance
of candidate solutions.

We dedicated a substantial part of our research to estimating the expected
performance of weighted sum methods with respect to the other approaches under
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evaluation. To do so, we conducted a systematic search to find suitable weight
combinations for each method and mission individually. TF-WS-B, EC-WS-B, and
NC-WS-B are sets of control software instances generated using the best weight
combinations found in the search. In a sense, these three sets represent the
expected outcome of a design process in which a designer is able to set appropriate
weights to scalarize the objective functions across all missions. The results of our
experiments showed that, even in this best-case scenario, the most effective weighted
sum method (TF-WS-B) did not outperform other multi-criteria approaches (e.g.,
TF-HV and TF-L2). On the contrary, it was outperformed by one of them: Mandari-
na. The weighted sum is currently the common approach for framing/addressing
multi-criteria problems in the optimization-based design of robot swarms. Here, we
provide empirical evidence to support the idea that exploring multi-criteria design
methods beyond the conventional weighted sum is worthwhile. First, a designer
can avoid the time-consuming and costly process of manually searching for suitable
weights. Second, methods like Mandarina can produce solutions that perform
better than those obtained with the weighted sum.

The results we obtained with Mandarina motivated us to further investigate
other problems that also consider multiple design criteria in the fully and semi-
automatic design of robot swarms. As we will show in Chapter 5, we applied
notions of multi-criteria design, and the mission framework presented here, to the
generation of control software for robot swarms by demonstration.



5. Further applications

TuttiFrutti and Mandarina introduced original ideas that enlarged
the range of problems that AutoMoDe can address. Building on these
ideas, we further explored the versatility of AutoMoDe by develop-
ing four new specialized methods. In this chapter, we present Mate,
Habanero, Pistacchio, and DTF-MO. We conceived these four meth-
ods to study the automatic design of spatially-organizing behaviors,
stigmergy-based coordination, robot shepherding, and the realization
of collective behaviors by demonstration.

Throughout the development of this thesis, we made efforts to
present and communicate our research not only to the scientific com-
munity, but also to the general public. We conclude this chapter by
discussing the outcome of these outreach efforts.

110
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We present a series of studies in which we leverage environmental and inter-robot
signaling to address design problems in the realization of robot swarms. For each
design problem, we describe the objective of the study, the AutoMoDe method we
developed to address it, the experiments conducted, the results obtained, and we
provide a brief discussion. To maintain consistency throughout the chapter, we
present the methods with a systematic structure, occasionally highlighting common
elements across them. We focus on commenting on the most relevant points for
each study. For a detailed description of the research work to be presented here,
we refer the reader to the original publications by Mendiburu et al. (2022), Salman
et al. (2024), Garzón Ramos and Birattari (2024), and Szpirer et al. (2024a).

5.1 Automatic design of spatially-organizing be-
haviors

Spatially-organizing behaviors involve the arrangement and distribution of robots
and objects in space. As discussed in Chapter 2, the first studies with Choc-
olate tested the generation of spatially-organizing behaviors (Francesca et al.
2015). However, although Chocolate was equipped with modules that were though
capable of producing spatially-organizing behaviors, the results were unsatisfactory
when the robots were required to maintain specific relative positioning. The swarm
was able to occupy designated regions in the arena, but the robots failed to achieve
meaningful spatial distribution once there. The main hypotheses for this outcome
have been that (i) Chocolate actually does not have a proper set of modules to
effectively address this class of missions, or (ii) the method fails to properly combine
the modules into good-performing control software.

We developed Mate to investigate this issue. Mate is an AutoMoDe method
specialized in designing spatially-organizing behaviors for robot swarms. It builds
on Chocolate and, like other AutoMoDe methods, it assembles predefined software
modules into probabilistic finite-state machines. The single difference between
Mate and Chocolate is the addition of a new module: formation, a low-level
behavior that enables robots to form hexagonal patterns. By introducing this
module, which facilitates the relative positioning of robots, we expect Mate to
overcome the limitations of Chocolate.

formation is a low-level behavior that drives the robot using virtual forces.
The robots detect each other and respond to artificial forces based on their rel-
ative positions. These forces are calculated using the Lennard-Jones potential
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model (Jones 1924). To allow selective responses to these forces, we incorporated
a signaling protocol using the robots’ LEDs and cameras—a restricted version of
TuttiFrutti’s signaling. Robots running formation signal to each other to main-
tain the desired relative distance using their LEDs, according to the Lennard-Jones
model. When a sufficient number of robots maintain this specified distance, the
swarm achieves a structured spatial distribution, forming a pattern.

We evaluated Mate in three missions in which the performance of the swarm
depends on the robots’ ability to operate within spatial distribution constraints.
In these experiments, we compared the performance of Mate with that of Choco-
late and a neuroevolutionary baseline. If the addition of formation leads to a
significant improvement in Mate’s performance over Chocolate, it would suggest
that Chocolate’s task-agnostic modules are likely not well-suited for designing
spatially-organizing behaviors, contrary to the initial expectations. In this sense,
we also expect that Mate will be capable of selectively using the signaling capability
embedded in formation to obtain performance advantages over Chocolate, which
cannot rely on it.

The following sections provide a brief description of Mate, its characteristic
elements, and the experiments we conducted with the method.

5.1.1 AutoMoDe-Mate

Robot platform

Mate produces control software for the same version of the e-puck considered in
TuttiFrutti—see Figure 3.1. However, the functional capabilities of the robot
are adapted to meet the requirements of Chocolate and the formation module.
Mate operates on an e-puck whose capabilities are formally defined by the reference
model RM 3.1—see Table 5.1.

Modular control architecture

Mate generates control software by fine-tuning and assembling predefined soft-
ware modules into probabilistic finite-state machines. It operates on the twelve
parametric software modules that were originally conceived for Chocolate and
one additional module named formation—see Table 5.2. The parameters of the
software modules are automatically tuned during the design process.

The new module, formation, is a low-level behavior in which the robot is
subject to virtual forces that are computed through the Lennard-Jones poten-
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Table 5.1: The control interface for the e-puck according to the reference model RM 3.1.
Robots can perceive a cyan (C) signal. Robots can display no color (∅) or cyan (C). Vc

is calculated likewise Vn—the positions of perceived signals are aggregated into a unique
vector. VLJ is a force vector computed using the Lennard-Jones model, considering robots
perceived as displaying cyan.

Input Value Description

proxi∈{1,...,8} [0, 1] reading of proximity sensor i

lighti∈{1,...,8} [0, 1] reading of light intensity sensor i

gndj∈{1,...,3} {black, gray, white} reading of ground sensor j

n {0, . . . , 20} number of neighboring robots detected
Vn ([0.5, 20]; [0, 2] π rad) their relative aggregate position
camc∈{C} {yes, no} color cyan perceived
VLJ ([0, 1]; [0, 2] π rad) Lennard-Jones force vector

Output Value Description

vk∈{l,r} [−0.12, 0.12] m s−1 target linear wheel velocity
LEDs {∅, C} color cyan displayed by the LEDs
Period of the control cycle: 0.1 s.

tial (Jones 1924). This molecular interaction model has already proven suitable for
developing and optimizing distributed control strategies that allow robot swarms
to form hexagonal lattices (Pinciroli et al. 2008a,b). As in other implementations
of the artificial potential field approach (Spears et al. 2004), a group of robots
executing formation tends to adopt a spatial configuration that minimizes its
overall potential energy. That is, robots aim to remain in equilibrium positions
that are reached when the swarm is homogeneously distributed in space. A robot
executing formation reacts to virtual forces that originate from one or more
neighboring peers executing formation as well. formation sums the effects
of the Lennard-Jones force with the short-range obstacle avoidance that is also
embedded in other low-level behaviors of Chocolate. formation aggregates all
virtual forces that act on the robot and computes a desirable motion vector.

The e-pucks that execute formation display cyan using their LEDs. This signal
allows the robots to detect and locate nearby peers also executing formation,
using their omnidirectional cameras. The force vector VLJ that drives the motion
of the robot is computed through an average sum of the Lennard-Jones force for
the all robots perceived with the camera. Robots executing formation aim to
remain equidistant at a target distance with respect to neighboring peers—defined
by the parameter d∗. We expect that by doing so they will tend to form hexagonal
patterns——as previously reported for the Lennard-Jones model (Kellogg et al.
2002). The size and density of the patterns depend on the target distance specified
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Table 5.2: Mate’s software modules. The modules are defined on the basis of the reference
model RM 3.1, see Table 5.1.

Low-level behavior Parameter Description

exploration {τ} movement by random walk
stop n.a. standstill state
attraction {α} physics-based attraction to neighboring robots
repulsion {α} physics-based repulsion from neighboring robots
phototaxis n.a. physics-based attraction to a light source
anti-phototaxis n.a. physics-based repulsion from a light source
formation {d∗} motion driven by Lennard-Jones force

Transition condition Parameter Description

black-floor {β} black floor beneath the robot
gray-floor {β} gray floor beneath the robot
white-floor {β} white floor beneath the robot
neighbor-count {ξ, η} number of neighboring robots greater than ξ
inv-neighbor-count {ξ, η} number of neighboring robots less than ξ
fixed-probability {β} transition with a fixed probability

by d∗. Large values of d∗ form large and sparse lattices of robots and small values
form small and dense ones. In our experiments, the target distance between robots
is tuned by the automatic design process in the range d∗ ∈ (0.07, 0.25) m.

We chose the Lennard-Jones model to develop formation because it requires
only a minimal set of sensors and actuators to be implemented; and relies solely
on local interactions. We expect that the automatic design process will select this
module and fine-tune the target distance between robots to perform missions with
spatial distribution constraints.

Automatic design process

Mate produces control software using the automatic design process described in
TuttiFrutti—see Chapter 3. In Mate, the probabilistic finite-state machine is
also restricted to a maximum of four states—the low-level behaviors—and four
outgoing edges per state—the transition conditions. Transitions always occur
between different states, and self-transitions are not permitted. The modules and
their parameters are selected off-line through an optimization process conducted
with Iterated F-race. The design process is conducted with simulations performed
in ARGoS3, version beta 48, together with the argos3-epuck library. The duration
of the optimization process is determined by a predefined simulations budget.
The design process ends when the budget is exhausted and Mate returns the best
configuration found. This configuration is then uploaded to the physical robots
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and evaluated in the target environment.

5.1.2 Experimental setup

Missions

We conduct experiments with twenty physical e-pucks that must perform missions
that impose constraints on how the swarm self-distributes in the environment. We
experiment with Mate on three missions: any-point closeness, networked
coverage, and conditional coverage. The first two are variations of missions
previously proposed by Francesca et al. (2015), and conditional coverage is a
mission we conceived on the basis of a collective decision-making mission introduced
by Hasselmann and Birattari (2020).

The time available to the robots to perform a mission is always T = 120 s. In
the three missions, the e-pucks operate in a dodecagonal arena of about 4.9 m2

surrounded by walls. The floor is gray and might contain black and white regions.
The presence of black and/or white regions is specified on a per-mission basis
and they denote the target region where robots must operate while exhibiting
spatially-organizing behaviors. Figure 5.1 shows the arenas for the three missions.

ANY-POINT CLOSENESS: The robots must uniformly cover a target region
in the arena. The target region is a black square area of 1 m2. At the beginning of
each run, the robots are positioned in the right side of the arena. Figure 5.1 (left)
shows the arena for any-point closeness.

The score of the swarm is determined by the expected distance from any point
in the target region to its closest robot:

fAC.M = E[d(T )]2, (5.1)

which must be minimized. E[d(T )] is the expected distance, at time T , between a
generic point within the target region and its closest robot inside the target region.
We estimate/approximate E[d(T )] by computing the average distance between
any point within the target region (in practice, a sufficiently large set of randomly
sampled points) and its closest robot inside the target region. More precisely,

E[d(T )] ≈
P∑

p=1
mini(dip)/P,

where p ∈ [1, 1000] is a point in a set of points randomly and uniformly sampled
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Figure 5.1: Experimental arenas for Mate’s experiments. The figure shows the arenas
used for the three missions in the study. The top row displays the initial positions of the
robots at the start of an experiment. The bottom row shows their positions at the end,
after performing the mission using control software generated by Mate.

from within the target region; and i ∈ [1, 20] is a robot in the set of robots that
are inside of the target region at time T . The distance dip is therefore the distance
between a random point p and a robot i that are both within the target region.
We selected this mission because it challenges Mate to design collective behaviors
in which robots identify the target region and engage with their peers to cover it
uniformly.

NETWORKED COVERAGE The robots must establish a network of robots
that covers a target region in the arena. The target region is a black area of about
1 m2. The coverage range for each robot is smaller than the distance at which the
robot can establish a network. We consider that each robot covers a circular area
of 0.15 m radius. When robots are in the target region, they establish a network if
they are at 0.3 m from each other. The area covered by the swarm is the sum of
the area covered by all the robots. At the beginning of each run, the robots are
randomly positioned on the bottom side of the arena. Figure 5.1 (center) shows
the arena for networked coverage.

The score of the swarm is determined by the ratio between the area covered by
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the robots in the network and the total area of the target region:

fNC.M =
T∑

t=0
ANB

(t)/ATR, (5.2)

which must be maximized. ANB
(t) is the area of the target region that is covered

by the network of robots NB, and ATR = 1 m2 is the total area of the target region.
NB is the network of robots with the largest number of individuals within the target
region. The performance is measured at every time step (∆t = 0.1 s). We selected
this mission because it grows in complexity with respect to any-point closeness.
It challenges Mate to design collective behaviors in which the swarm establishes a
network of robots that maintain an arbitrary distance between themselves, while
covering the target region.

CONDITIONAL COVERAGE: The robots must selectively cover one out of
two target regions in the arena. The target regions are a black and a white area of
about 1 m2. The target region to cover is conditioned at each experimental run
by the starting position of the robots: if the robots start the experiment in the
black area, they must travel to the opposite side of the arena and cover the white
one; conversely, if robots start the experiment in the white area, they must travel
to the opposite side and cover the black one. Each robot covers a circular area of
0.15 m radius. Figure 5.1 (right) shows the arena for conditional coverage.

The score of the swarm is the ratio between the area of the target region they
cover and its total area:

fCC.M =
T∑

t=0
Am(t)/ATR, (5.3)

which must be maximized. ANB
(t) is the area of the target region that is covered

by the network of robots NB, and ATR = 1 m2 is the total area of the target
region. The performance is measured at every time step (∆t = 0.1 s). We selected
this mission because it challenges Mate to design collective behaviors in which the
robots identify the region to be covered by reacting to the initial conditions of the
mission—which differ from one execution to the other.

Baseline methods

Chocolate: we use Chocolate as originally implemented by Francesca et al. (2015)—
see Chapter 2. Chocolate operates unmodified on the basis of the reference model
RM 1.1 of the e-puck, described in Table 2.1. In principle, Chocolate has the
low-level behaviors necessary for robots to maintain a constant relative distance.
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To design such behavior, Chocolate could potentially produce a fine-tuned finite-
state machine that constantly transitions between attraction and repulsion—
ultimately keeping the robots at a constant distance. This behavior is analogous to
that implemented in formation using the Lennard-Jones model, which is based
on the balance of attraction and repulsion forces.

EvoSpace: we use a neuroevolutionary method that integrates the virtual
physics model of Mate. Likewise Mate extends Chocolate, EvoSpace extends
EvoStick—see Chapter 2. EvoSpace is a method conceived to produce control
software for the reference model RM 3.1 of the e-puck. The artificial neural network
in EvoSpace includes input information obtained from the Lennard-Jones model
embedded in Mate’s formation. EvoSpace tunes the synaptic weights of the neural
network via artificial evolution—using the evolutionary algorithm implemented
for EvoStick. Likewise Mate, EvoSpace optimizes the neural network until a
predefined budged of simulation runs is exhausted. We expected that EvoSpace
could, in principle, design control software that benefits from this input to produce
spatially-organizing behaviors similar to those expected from Mate. Table 5.3
summarizes the topology of the neural network and the parameters used in the
evolutionary process.

Protocol

For each mission, we conduct 10 independent design processes with Mate, Choc-
olate, and EvoSpace. This results in 90 instances of control software—10 per
method and mission. The design methods are given a budget of 200 000 simulation
runs to produce each instance of control software. We evaluated the effectiveness of
the methods by testing each instance of control software once with physical robots.
The performance of the swarm is computed using ARGoS3, with information on
the physical robots provided by a tracking system (Stranieri et al. 2013).

Statistics: We use box-plots to present the performance of the instances of
control software obtained in the experiments. In all cases, comparative statements
are supported with a Wilcoxon paired rank sum tests, at 95 % confidence (Conover
1999). In addition, we present the results of Friedman test that aggregates the
overall performance of the methods across the three missions—see also Chapter 4.

5.1.3 Results

Figure 5.2 shows the performance of each method across the three missions. Demon-
stration videos of the behavior of the robots are provided in the Supplementary
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Table 5.3: Neural network topology and parameters of the evolutionary process in
EvoSpace. The neural network operates according to RM 3.1, see Table 5.1.

Architecture

Fully-connected feed-forward neural network without hidden layers

Input node Description

ina∈{1,...,4} scalar projections of aggregated vector from proxi∈{1,...,8}
ina∈{5,...,8} scalar projections of aggregated vector from lighti∈{1,...,8}
ina∈{9} aggregated readings of ground sensors gndj∈{1,...,3}
ina∈{10} value of the density function z′(n)
ina∈{11,...,13} scalar projections of Vc∈{C}
ina∈{14} bias input

Output node Description

outb∈{1,2} wheel velocities for vk∈{l,r}
outb∈{3,4} activation cyan color {∅, C}

Connection Description

conns∈{1,...,56} synaptic connections with weights ω∈[−5, 5]

Evolution parameters

Number of generations * —
Population size 100
Elite individuals 20
Mutated individuals 80
Evaluations per individual 10
Post-evaluation per
individual **

100

* The number of generations is computed according to the budget of simulations.
** The population obtained in the last generation is post-evaluated to select the
best individual.

Videos of the dissertation (Garzón Ramos 2025).

Per-mission results

ANY-POINT CLOSENESS: Mate performed significantly better than Chocolate
and EvoSpace—see Figure 5.2 (left). As expected, the performance of the swarm is
highly conditioned by the ability of the robots to position themselves with respect
to their peers. In this mission, the distribution of robots in the target region is more
relevant than the number of robots inside it. Mate designed collective behaviors
that distribute the robots more uniformly than those designed by Chocolate and
EvoSpace. The capability of Mate to design such behaviors is reflected in a better
performance. Despite that Chocolate designed collective behaviors in which more
robots reach the target region, the swarm did not distribute uniformly. EvoSpace
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Figure 5.2: Performance obtained in the missions studied with Mate. Results per
design method are presented with grayscale box-plots, Mate ( ), EvoSpace ( ),
Chocolate ( ). These results have been obtained with physical robots. In all plots,
the lower, the better.

designed collective behaviors in which the robots are not very efficient in exploring
the arena and do not reach it to cover it satisfactorily.

NETWORKED COVERAGE: Also in this case, Mate performed significantly
better than Chocolate and EvoSpace—see Figure 5.2 (center). The ability of the
robots to signal each other and remain at a fixed distance with respect to their
peers plays an important role in this mission. To cover a large area, the robots
should maximize the relative distance between each other. However, they must
constrain this distance to avoid losing the connectivity of the network. Robot
swarms designed by Mate self-organized in the form of repetitive and cohesive
lattices of robots—which are effective in the execution of the mission. On the
contrary, although the swarms designed by Chocolate are capable of establishing
small networks, they neither maintain a stable connectivity nor properly cover
the target region. They tend to line up on its boundaries. EvoSpace mainly
designed collective behaviors in which robots explore the arena until they reach
the target region, and then remain in place by continuously rotating. The control
software produced by EvoSpace suffered strong effects from the reality gap and
was ineffective when ported to the physical robots.

CONDITIONAL COVERAGE: As in the other two missions, Mate performed
significantly better than Chocolate and EvoSpace—see Figure 5.2 (right). forma-
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Figure 5.3: Friedman tests with aggregate results from Mate’s study. The test
considers the results obtained across all missions and provides a relative ranking
between the methods. The plot shows the average rank of each method and its
95 % confidence interval. The lower the rank, the better.

tion contributed to designing spatially-organizing behaviors in which the robots
efficiently cover the target region. On the other hand, the performance of Choco-
late and EvoSpace was strongly affected because the control software produced
relies on the individualistic behaviors. In these behaviors, robots reach the target
region but do not consider the presence of their peers to position themselves. There-
fore, they are unable to achieve a meaningful spatial distribution. Compared with
the other two missions, conditional coverage turned to be more challenging
for the design methods. This is probably due to the decision-making component
of the mission. The number of robots that remain outside the target region at
the end of the experimental run increased for the three methods with respect to
the other two missions. The highest increase was observed in the results obtained
by Chocolate, and the lowest increment was observed in the results obtained by
Mate.

Aggregate results

Figure 5.3 shows the aggregate results of the experiments with physical robots across
the three missions. The plot represents the average rank of the three methods and
their 95% confidence interval. In these experiments, Mate performed significantly
better than Chocolate and EvoSpace. As previously described, Mate designed
collective behaviors that achieved a better spatial distribution of robots than the
baseline methods. The class of missions that we studied is highly dependent on
this ability, and therefore Mate outranked the two baselines.
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5.1.4 Discussion

We evaluated Mate in missions in which the robots must operate while taking
into account static environmental cues (black and white regions) and the relative
distances they maintain from one another. The control software designed by Mate
proved effective in the three missions. In any-point closeness, the robots uni-
formly covered an indicated target region in the arena. In networked coverage,
the robots established coverage networks while maintaining connectivity at a fixed
distance. And in conditional coverage, Mate designed collective behaviors
that allowed the swarm to selectively cover one out of two possible target regions.
In all these cases, the signaling protocol embedded in formation allowed the
robots to selectively establish spatially-organizing behaviors to perform the mission
at hand.

Initially, we expected that Chocolate and EvoSpace would be able to address
the same missions as Mate. Chocolate includes behaviors modules that could
emulate the effects of formation. However, the collective behaviors designed by
Chocolate did not exhibit the spatial distribution properties observed in those
designed by Mate. In a similar way, EvoSpace incorporates the model of virtual
physics that we used to conceive formation. However, we did not notice any
meaningful use of this information in the behavior of the robots. We argue that
the inability of Chocolate and EvoSpace to design behaviors in which robots
maintain specific relative positions with respect to each other translated into lower
performance.

The results of this study highlight limitations of existent automatic methods for
the design of spatially-organizing behaviors for robot swarms. This design problem
had been mostly addressed with neuroevolution in the past (e.g., in pattern
formation and flocking). However, neuroevolutionary methods are prone to suffer
strong effects from the reality gap—as shown in our experiments too. Moreover,
other alternative approaches like AutoMoDe do not provide yet the means to design
complex spatially-organizing behaviors with particular robot positioning schemes.
For example, existing AutoMoDe methods (including Mate) cannot produce control
software for the organization of robot swarms in complex patterns or chains of
robots. With the introduction of Mate, we approach the effective realization of this
type of collective behavior. Here, we focused on demonstrating that the addition
of a single module, formation, allows AutoMoDe to effectively tackle missions
that Chocolate could not. We believe that this idea can be extended to develop
new modules for the design of more complex spatially-organizing behaviors.
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5.2 Automatic design of stigmergy-based behav-
iors

In swarm robotics, collective behaviors based on stigmergy have traditionally been
designed manually. This process is time-consuming, costly, difficult to replicate, and
heavily dependent on the designer’s expertise. Here, we show that stigmergy-based
behaviors can be automatically designed using AutoMoDe. We demonstrate this
ability with a group of robots capable of laying and sensing artificial pheromones.
We introduce Habanero, a method from the AutoMoDe family specialized in the
automatic design of stigmergy-based behaviors for robot swarms. The e-puck
robots used in this study are equipped with Phormica, a hardware module that
lays artificial pheromone trails by focusing UV light onto a floor coated with
photochromic material—see Chapter 2. When exposed to UV light, the floor
changes from white to magenta, and after the UV light is removed, the floor returns
to its original color in about 50 second. These trails can be detected by other
robots using their omnidirectional cameras. The artificial pheromones act as color
signals that mark the environment and allow robots to communicate information
within the swarm.

Habanero builds on TuttiFrutti, adopting its capabilities to produce control
software for robots that perceive and respond to color signals, which in this
case allows robots to detect and react to pheromone trails. The main difference
between TuttiFrutti and Habanero is that Habanero incorporates the hardware
and software specifically designed to lay and detect artificial pheromones. In this
study, we demonstrate Habanero by generating control software for a set of missions
in which robots must rely on stigmergy-based coordination. To assess the quality
of the control software produced by Habanero, we compare its performance against
three baseline methods: (i) control software generated through neuroevolution, (ii)
control software manually developed by human designers, and (iii) a random-walk
behavior. We investigate whether Habanero, and by extension AutoMoDe, is a
viable method for designing pheromone-based stigmergy. As in the early AutoMoDe
experiments (Francesca et al. 2015), we also investigate whether AutoMoDe can
enable stigmergy-based coordination that outperforms control software developed by
human designers. Finally, we explore whether Habanero can leverage the signaling
capabilities of Phormica to create mission-specific coordination strategies, similar
to the direct communication strategies observed in experiments with TuttiFru-
tti—see Chapter 3.
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Figure 5.4: Extended version of the e-puck. The picture indicates the set of sensors
and actuators defined by RM 4.1. Alongside, we show the RGB blocks and photochromic
floor that we used in our experiments with Habanero.

5.2.1 AutoMoDe-Habanero

Robot platform

Habanero produces control software for a version of the e-puck equipped with
hardware to lay and detect artificial pheromones, as shown in Figure 5.4. The
robot’s functional capabilities are adapted from reference model RM 3 to incorporate
this new feature, and are formally defined by reference model RM 4.1. In addition
to the features introduced in RM 3 (Table 3.1), RM 4.1 allows the control software
to control the UV LEDs (phe) on the e-puck, enabling it to project pheromone
trails of different thickness (thin, thick) or leave no trail (∅). It also provides
the ability to adjust the camera’s field of view (fov), allowing for both narrow
and omnidirectional perception ( 1

12π, 2π). In RM 4.1, we remove the capabilities
associated with the LEDs and range-and-bearing board of the e-puck to restrict the
robot interactions to those achievable via stigmergy. The reference model RM 4.1
is detailed in Table 5.4.
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Table 5.4: The control interface for the e-puck according to the reference model RM 4.1.
Robots can perceive: red (R); green (G); blue (B); cyan (C); magenta (M); and
yellow (Y ). Robots can set the UV LEDs to project: no pheromone trail (∅); a thin
trail (thin); or a thick one (thick). Vc is calculated by aggregating the positions of
perceived color signals into a unique vector.

Input Value Description

proxi∈{1,...,8} [0, 1] reading of proximity sensor i

gndj∈{1,...,3} {black, gray, white} reading of ground sensor j

fov { 1
12 π, 2π} camera field of view

camc∈{R,G,B,C,M,Y } {yes, no} colors perceived
Vc∈{R,G,B,C,M,Y } (1.0; [0, 2] π rad) their relative aggregate direction

Output Value Description

vk∈{l,r} [−0.12, 0.12] m s−1 target linear wheel velocity
phe {∅, thin, thick} projection of UV lights
Period of the control cycle: 0.1 s.

Modular control architecture

Habanero generates control software by fine-tuning and assembling predefined
software modules into probabilistic finite-state machines. It adapts the parametric
modules originally designed for TuttiFrutti—see Table 5.5. Habanero’s set of
modules includes two independent low-level behaviors and a transition condition
that react to pheromone trails: trail-following, trail-elusion, and trail-
detection. The implementations of these modules are similar to those for
color-following, trail-elusion, and trail-detection in TuttiFrutti. As
a novelty, Habanero’s modules have parameters for selectively depositing pheromone
trails (phe) and adjusting the camera’s field of view (fov)—according to the reference
model RM 4.1. Habanero also includes a new module, waggle, which enables
robots to maintain in-place rotations. The parameters of the software modules are
automatically tuned during the design process.

Automatic design process

Habanero produces control software using the automatic design process described for
TuttiFrutti—see Chapter 3. In Habanero, the probabilistic finite-state machine
is also restricted to a maximum of four states—the low-level behaviors—and four
outgoing edges per state—the transition conditions. Transitions always occur
between different states, and self-transitions are not permitted. The modules and
their parameters are selected off-line through an optimization process conducted
with Iterated F-race. The design process is conducted with simulations performed
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Table 5.5: Habanero’s software modules. The modules are defined on the basis of
reference model RM 4.1, see Table 5.4.

Low-level behavior* Parameter Description

exploration {τ, phe} movement by random walk
stop {phe} standstill state
color-following {δ, phe, fov} steady movement towards robots/objects of color δ
color-elusion {δ, phe, fov} steady movement away from robots/objects of color δ
trail-following {phe, fov} steady movement towards pheromone trails
trail-elusion {phe, fov} steady movement away from pheromone trails
waggle {phe} in-place waggle motion

Transition condition Parameter Description

black-floor {β} black floor beneath the robot
gray-floor {β} gray floor beneath the robot
white-floor {β} white floor beneath the robot
fixed-probability {β} transition with a fixed probability
color-detection {δ, fov, β} robots/objects of color δ perceived
trail-detection {fov, β} pheromone trail perceived
* All low-level behaviors can set the UV LEDs (phe) alongside the action described.

Modules that use the camera can set its field of view (fov) alongside the action described.

in ARGoS3, version beta 48, together with original libraries to simulate the e-puck
according to RM 4.1 and also the photochromic floor on which the robots operate.
The duration of the optimization process is determined by a predefined simulations
budget. The design process ends when the budget is exhausted and Habanero
returns the best configuration found. This configuration is then uploaded to the
physical robots and evaluated in the target environment.

5.2.2 Experimental setup

Missions

We conduct experiments with eight physical e-pucks that must perform missions
that impose constraints on how the swarm self-distributes in the environment.
We experiment with Habanero on four missions: stop, aggregation, decision
making, and rendezvous point. stop, decision making, and rendezvous
point are adaptations of missions conducted in TuttiFrutti. aggregation is a
common realization of an aggregation behavior.

The time available to the robots to perform a mission is always T = 180 s. In
the three missions, the e-pucks operate in a rectangular arena of about 1.8 m2

surrounded by MoCA’s RGB blocks. The floor of the arena is white and has been
coated with a photochromic material that acts as a medium to lay the pheromone
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trails (Salman et al. 2020). The photochromic material turns magenta when exposed
to UV light. Once the UV light is removed, the magenta color gradually fades and
the floor returns to white in about 50 s. Figure 5.5 shows the arenas for the four
missions.

STOP: The robots must move until one of the walls that surrounds the arena
emits a stop signal by turning blue. Once the wall turns blue, all robots in the
swarm must stop moving as soon as possible. The wall that emits the stop signal
is randomly selected. At the beginning of each run, the robots are randomly
positioned in the arena. Figure 5.5 (top-left) shows the arena for stop.

The score of the swarm is determined by time during which the robots do not
perform the intended behavior, before and after the stop signal:

fST.H =
t̄∑

t=1

N∑
i=1

Īi(t) +
T∑

t=t̄+1

N∑
i=1

Ii(t), (5.4)

which must be minimized. N and T represent the number of robots and the
duration of the mission, respectively. The time at which the stop signal is displayed
is represented by t̄. The value of t̄ is uniformly sampled between (70, 90) s. The
indicators Ii(t) and Īi(t) are defined as:

Ii(t) =

 1, if robot i is moving at time t;
0, otherwise;

Īi(t) = 1 − Ii(t).

We selected this mission because it challenges Habanero to design collective
behaviors with event-handling capabilities by relying on pheromone-based stigmergy,
similar to the behaviors observed with TuttiFrutti.

AGGREGATION: The robots must approach one another to form a cluster
and remain close until the end of the mission. At the beginning of each run, the
robots are randomly positioned in the arena. Figure 5.5 (top-right) shows the arena
for aggregation.

The score of the swarm is the average distance from a robot to any other robot:

fAG.H =
T∑

t=1
davg(t), (5.5)

which must be minimized. At each time step t, the average distance davg between
the robots is added to fAG.H. The performance is measured at every time step
(∆t = 0.1 s). We selected this mission because it challenges Habanero to design
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Figure 5.5: Experimental arenas for Habanero’s experiments. The figure shows the
arenas used for the four missions in the study. For each mission, the top row displays
the initial positions of the robots at the start of an experiment. The bottom row shows
their positions at the end, after performing the mission using control software generated
by Habanero. The RGB blocks in the arena are configured on a per-mission basis. The
floor of the arena is coated with a photochromic substance that enable the robots to lay
artificial pheromones.
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collective behaviors in which robots must communicate to maintain a specific
spatial distribution.

DECISION MAKING: The robots must select between a green and a blue
region, signaled to the robots by RGB blocks that display blue and green colors.
The two regions are squared portions of the arena located on its corners. The green
and blue signals disappear after a random amount of time, which is uniformly
sampled between 70 and 90 s. Figure 5.5 (bottom-left) shows the arena for decision
making.

At every time step t, the score increases by +1 for every robot that is in the
green region, and by +2 for every robot that is in the blue one. The score is the
total of points accumulated by the end of the mission:

fDM.H =
T∑

t=1

N∑
i=1

Ii(t), (5.6)

which must be maximized. The indicator Ii(t) is defined as:

Ii(t) =


1 if robot i is in green region,
2 if robot i is in blue region,
0 otherwise.

We selected this mission because it challenges Habanero to identify and select
among environmental features that are relevant to the mission—as investigated
with TuttiFrutti.

RENDEZVOUS POINT: The robots must reach the green region and stay
there until the end of the mission. A blue region is added as a decoy to possibly
confuse the robots. Like in the past mission, the two regions are squared portions
of the arena. A wall with a narrow gate laterally divides the arena into two sections:
the left side, where the robots are deployed at the beginning of the experiment;
and the right side, which contains the green and blue regions. Both green and
blue signals disappear after a random amount of time, which is uniformly sampled
between 70 and 90 s. Figure 5.5 (bottom-left) shows the arena for decision
making.

The score is determined by the number of robots inside the green region at the
end of the mission:

fDM.H = Kin − Kout, (5.7)

which must be maximized. Kin is the number of robots inside the green region
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at the end of the mission, and Kout is the number of robots outside. We selected
this mission because it challenges Habanero to design collective behaviors in which
robots use the pheromones to navigate their environment—a behavior observed in
TuttiFrutti.

Baseline methods

EvoPheromone: we use a neuroevolutionary method that can produce control
software for the e-puck as formally described by the reference model RM 4.1—the
same as Habanero. Like EvoColor and EvoSpace, EvoPheromone also builds on
EvoStick—see Chapter 2. EvoSpace tunes the synaptic weights of the neural
network via artificial evolution using the evolutionary algorithm implemented for
EvoStick. EvoPheromone optimizes the neural network until a predefined budged
of simulation runs is exhausted. EvoPheromone has access to the same capabilities
as Habanero, and therefore we expect it to be able to design pheromone-based
stigmergy behaviors for the robots. Table 5.6 summarizes the topology of the
neural network and the parameters used in the evolutionary process.

C-Human: we follow the protocol developed by Francesca et al. (2015) to compare
automatically generated control software with that obtained by manual design. In
these experiments, 10 human designers were requested to produce control software
using the software modules of Habanero. In a sense, a human designer acts as
an optimization agent that assembles a finite-state machine and fine-tunes its
parameters. C-Human produces control software for the e-puck formally described
by reference model RM 4.1—the same as Habanero. The human designers who
participated in this study had various levels of expertise in swarm robotics—ranging
from bachelor students to post-doctoral researchers in swarm robotics. We provided
the designers with a visualization tool to produce and manipulate finite-state
machines, to visualize simulations, and to compute the value of the objective
function (Kuckling et al. 2021a). All simulations were executed in ARGoS3 with
special libraries to simulate the pheromone module and the photochromatic floor—
the same as Habanero. The designers were allotted 4 hours per mission—as
originally devised by Francesca et al. (2015).

R-Walk: although not an automatic design method, we include a random-walk
behavior in the study as a lower bound on the performance of robot swarms. In
R-Walk, the robots move in a straight line in the arena, when they encounter an
obstacle, they rotate for a random number of control steps and then resume their
straight motion. Random-Walk is also conceived for the e-puck formally described
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Table 5.6: Neural network topology and parameters of the evolutionary process in
EvoPheromone. The neural network operates according to RM 4.1, see Table 5.4.

Architecture

Fully-connected feed-forward neural network without hidden layers

Input node Description

ina∈{1,...,8} readings of proximity sensors proxi∈{1,...,8}
ina∈{9,...,11} readings of ground sensors gndj∈{1,...,3}
ina∈{12,...,35} scalar projections of Vc∈{R,G,B,C,M,Y } with fov{ 1

12 π}
ina∈{36,...,59} scalar projections of Vc∈{R,G,B,C,M,Y } with fov{2π}
ina∈{60} bias input

Output node Description

outb∈{1,...,4} tuples v′ to map each velocity in the set vk∈{l,r}
outb∈{5,...,7} activation of UV LEDs with {∅, thin, thick}

Connection Description

conns∈{1,...,420} synaptic connections with weights ω∈[−5, 5]

Evolution parameters —

Number of generations * —
Population size 100
Elite individuals 20
Mutated individuals 80
Evaluations per individual 10
Post-evaluation per
individual **

100

* The number of generations is computed according to the budget of simulations.
** The population obtained in the last generation is post-evaluated to select the
best individual.

by the reference model RM 4.1.

Protocol

For each mission, we conduct 10 independent design processes with Habanero,
EvoPheromone, and C-Human. This results in 120 instances of control software—10
per method and mission. We also include 10 runs of R-Walk per mission. This
amounts a total of 160 observations in the experiments. The design methods are
given a budget of 100 000 simulation runs to produce each instance of control
software. We evaluate the effectiveness of the methods by testing each instance
of control software once with physical robots. The performance of the swarm is
computed using ARGoS3, with information of the physical robots provided by a
tracking system (Legarda Herranz et al. 2022).
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Statistics: We use box-plots to present the performance of the instances of
control software obtained in the experiments. In all cases, comparative statements
are supported with a Wilcoxon paired rank sum tests, at 95 % confidence (Conover
1999). In addition, we present the results of Friedman test that aggregates the
overall performance of the methods across the four missions—see Chapter 4.

5.2.3 Results

Figure 5.6 shows the performance of each method across the four missions. Demon-
stration videos of the behavior of the robots are provided in the Supplementary
Videos of the dissertation (Garzón Ramos 2025).

Per-mission results

STOP: Habanero and C-Human performed similarly well, and both performed
significantly better than EvoPheromone and R-Walk—see Figure 5.6 (top-left). In
this mission, the robots must halt and stand still as soon as a stop signal is perceived.
Unlike experiments with TuttiFrutti, the e-pucks in this study are incapable
of direct communication. Therefore, the robots that detect the signal can only
rely on stigmergy to alert any peers that are in a position from which the signal
cannot be seen. Habanero designed collective behaviors in which robots detect
the signal, waggle in place, and lay pheromone trails to alert their peers. Other
robots mimic this behavior and propagate the alert in the swarm. The collective
behaviors produced by EvoPheromone did not accomplish the mission in its true
sense. The robots took advantage of stigmergy to gradually repel each other,
approach the walls, and eventually stop against them. No reaction is perceived
with respect to the stop signal—as observed with EvoColor. C-Human produced
collective behaviors similar to those generated by Habanero.

AGGREGATION: Habanero performed significantly better than all other de-
sign methods—see Figure 5.6 (top-right). To aggregate, the robots cannot rely on
any form of direct communication or on the ability to directly sense the presence
of their peers in their vicinity. They must leverage the pheromone trails to attract
their peers and aggregate using stigmergy. Habanero produced collective behaviors
in which the robots lay pheromone trails only for short periods of time and keep
searching the environment for pheromone traces left by their peers. By laying
pheromone trails intermittently, the robots avoid saturating the environment and
mark only isolated spots, which then serve as aggregation points. EvoPheromone
designed robots that lay pheromone trails while moving along a circular trajectory
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Figure 5.6: Performance obtained in the missions studied with Habanero. Results per de-
sign method are presented with grayscale box-plots, Habanero ( ), EvoPheromone ( ),
C-Human ( ), R-Walk ( ). These results have been obtained with physical robots. In
all plots, the lower, the better.
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and gather at places with high pheromone concentration. However, this behavior
did not translate well to the physical robots. The control software produced by
C-Human continuously laid pheromone trails with the expectation that all robots
would gather at one place. This caused the robots to remain trapped in local
pheromone accumulations.

DECISION MAKING: Also in this case, Habanero performed significantly
better than all other methods—see Figure 5.6 (bottom-left). In this mission, the
robots must take the decision to aggregate in either the blue or green region.
Halfway through each run of the experiment, the blue and green RGB blocks are
switched off, leaving the robots without any visual cue to identify the two regions.
In order to maximize the score, the robots must quickly aggregate in the region
that provides the highest score per time step—i.e., the blue one—and remain there
even once the environmental cues are removed. In all experimental runs, the robot
swarm designed by Habanero correctly selected the blue region to aggregate. The
robots relied on the pheromone trails not only to attract other robots to the blue
region, but also to stay there after the signals are removed. The robot swarms
generated by EvoPheromone were unable to aggregate in a single region: robots
stay in the first region in which they enter without considering the colors. The
robot swarm produced by C-Human was able to correctly aggregate in the blue
region but is unable to remain there once the signals are removed.

RENDEZVOUS POINT: Habanero performed significantly better than all
other methods—see Figure 5.6 (bottom-right). In this mission, the robots must
cross the narrow gate to gather in the green region. As in decision making,
the blue and green RGB blocks are also switched off halfway through each run
of the experiment. The robots therefore are required to leverage the pheromone
trails to collectively navigate the environment towards the green region and remain
there, before the environmental signals are removed. The robot swarms designed by
Habanero rely on random walk to cross the gate and find the green region. Once
there, the robots lay pheromone trails to mark the place, attract their peers, and
remain there when the green light is removed. EvoPheromone designed collective
behaviors in which robots move along the walls of the arena to eventually cross
the gate and reach the green region. This behavior, also observed in EvoColor,
fails when transferred to physical robots and causes them to remain stuck in the
walls. The robot swarm produced by C-Human was able to correctly aggregate in
the green region but is unable to remain there once the cues are removed.
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Figure 5.7: Friedman tests with aggregate results from Habanero’s study. The test
considers the results obtained across all missions and provides a relative ranking
between the methods. The plot shows the average rank of each method and its
95 % confidence interval. The lower the rank, the better.

Aggregate results

Figure 5.7 shows the aggregate results of the experiments with physical robots
across the three missions. The plot represents the average rank of the three
methods and their 95% confidence interval. In these experiments, Habanero
performed significantly better than all other methods. Habanero successfully
used pheromone trails to develop mission-specific interaction strategies for the
robots, which remained effective when transferred to physical robots. The ability
of Habanero to exploit this signaling mechanism gave the method a performance
advantage over the baseline methods considered, and therefore it outranked them
all.

5.2.4 Discussion

As shown in Chapters 3 and 4, automatic design can ease the realization of robot
swarms across different missions, while minimizing human intervention. The
experiments presented in this study show that this holds true also in the case
of robot swarms that rely on pheromone-based stigmergy. Indeed, Habanero
automatically designed stigmergy-based collective behaviors that were effective
across all missions considered. For each mission, it found appropriate ways to
use the pheromones effectively. As with TuttiFrutti, the interaction strategies
generated by Habanero were tailored to each mission and varied from one to
another. In these interaction strategies, the limited perception and computation
capabilities of the individual robots were compensated at the swarm level by
exploiting pheromone-based stigmergy.
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The e-puck used in the experiments, as a single robot, has limited spatial
coordination, memory, and communication abilities. However, spatial organiza-
tions, memory, and communication emerged at the collective level thanks to the
pheromone-based stigmergy. Spatial organization: In aggregation, decision
making, and rendezvous point, the e-pucks self-organized and distributed in
space driven by their pheromone trails and other environmental signals. Memory:
In decision making and rendezvous point, the swarm of e-pucks retained
relevant information about the past state of the environment by laying pheromone
trails. Communication: The semantics of pheromone trails is mission-specific. For
example, the pheromone trails that the e-pucks laid in stop had a meaning (stop
where you are) that is radically different from the meaning in aggregation (come
here). It is interesting to note that spatial organization, memory, and communi-
cation (including the semantics of pheromone trails) were not hand-coded in the
modules on which Habanero operates: they were the product of the way in which
Habanero automatically combined these modules on a per-mission basis.

With Habanero, we demonstrated that it is possible to generate pheromone-
based collective behaviors through an automatic process that is repeatable and
generally applicable. We believe this step toward the systematic development
of stigmergy-based behaviors can motivate further research into designing more
complex behaviors For instance, future work could focus on behaviors that require
fine-tuned sensitivity to pheromone concentrations or the ability to simultaneously
respond to different types of pheromone trails.

5.3 Automatic design of robot shepherding be-
haviors

Research on AutoMoDe has focused on missions that the swarm can perform by
itself, interacting only with a static environment, and without the presence of other
active entities. In this study, we investigate the design of robot swarms that perform
missions by interacting with other robots that populate their environment. We
frame this design problem into the robot shepherding problem (Lien et al. 2004). In
robot shepherding, it is assumed that two groups of robots of different kind operate
in the same environment—the shepherds and the sheep. Shepherds and sheep
influence each other’s behavior and constitute a heterogeneous system that must
perform missions collectively. We use AutoMoDe to produce the control software
of the shepherds so that they coordinate the sheep in a set of spatially-organizing
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missions. The sheep operate with predefined fixed control software. In a sense,
the sheep are active entities that populate the environment of the automatically
designed swarm of shepherds.

To investigate this problem, we introduce Pistacchio: an automatic design
method from the AutoMoDe family that we use to design the control software
for the shepherds. Pistacchio is a simplified version of TuttiFrutti that we
developed to allow experimentation with multiple swarms in a single environment.
We use e-puck robots as both shepherds and sheep, which can interact via color
signals. The shepherds can use different color signals to trigger various behaviors
in the sheep. The goal of this study is to determine whether an automatic design
process can effectively discover and exploit the dynamics between the two robot
groups. In these experiments, the behavior of the sheep is a black-box to the design
process. The dynamics of the sheep must be discovered while the automatic design
process produces the control software of the shepherds.

We use simulations to evaluate Pistacchio in nine experimental scenarios
that combine shepherding missions with sheep operating under three different
predefined behaviors: attraction, repulsion, or a combination of the two. We
compare the performance of Pistacchio with that of three baseline methods: a
neuroevolutionary method, a manual design approach, and a random-walk. Unlike
TuttiFrutti’s experiments, we focus here on whether AutoMoDe can effectively
identify and leverage the dynamics of other active robots, rather than on fixed
environmental signals. We expect that the automatic design process will leverage
mission-specific signaling protocols, similar to those in TuttiFrutti, to allow the
swarm of shepherds to coordinate the sheep.

5.3.1 AutoMoDe-Pistacchio

Robot platform

Pistacchio produces control software for the version of the e-puck introduced with
TuttiFrutti—see in Figure 3.1. We adapt the functional capabilities defined in the
reference model RM 3 to restrict interactions between shepherds and sheep to those
triggered by stimuli that are visually perceivable—i.e., the relative distance between
robots and the colors they display. In this way, we simplify the visualization and
monitoring of the interactions between the two groups of robots. We formalize the
capabilities of the e-puck in the reference model RM 3.3. In this reference model,
we remove the capabilities associated with the range-and-bearing board of the
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Table 5.7: The control interface for the e-puck according to the reference model RM 3.3.
Robots can perceive: cyan (C); magenta (M); and yellow (Y ). Robots can display no
color (∅); cyan (C); magenta (M); and yellow (Y ). Vc is calculated by aggregating the
positions of color signals into a unique vector.

Input Value Description

proxi∈{1,...,8} [0, 1] reading of proximity sensor i

gndj∈{1,...,3} {black, gray, white} reading of ground sensor j

camc∈{C,M,Y } {yes, no} colors perceived
Vc∈{C,M,Y } (1.0; [0, 2] π rad) their relative aggregate direction

Output Value Description

vk∈{l,r} [−0.12, 0.12] m s−1 target linear wheel velocity
LEDs {∅, C, M, Y } color displayed by the LEDs
Period of the control cycle: 0.1 s.

e-puck because these cannot be perceived by visual inspection. We also restrict the
colors that e-pucks can perceive to δ ∈ {C, M, Y }. The colors δ ∈ {R, G, B} are
reserved for environmental signals, which are not used in this case. The reference
model RM 3.3 is detailed in Table 5.7.

Modular control architecture

Pistacchio generates control software by fine-tuning and assembling predefined
software modules into probabilistic finite-state machines. It incorporates most
of the parametric modules originally designed for TuttiFrutti (see Table 5.8)
but excludes those related to the e-puck’s range-and-bearing board: attrac-
tion, repulsion, neighbor-count, and inv-neighbor-count. As a novelty,
Pistacchio introduces circling, a low-level behavior that allows the robot to
move in circular patterns with a turning angle defined by the parameter θ. We
include this module because we expect it to help shepherds maneuver around the
sheep, potentially enclosing them—similar to natural shepherding behaviors. The
parameters of the software modules are automatically tuned during the design
process.

Automatic design process

Pistacchio also produces control software for the shepherds using the automatic
design process described for TuttiFrutti—see Chapter 3. The probabilistic finite-
state machine is restricted to a maximum of four states—the low-level behaviors—
and four outgoing edges per state—the transition conditions. Transitions always
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Table 5.8: Pistacchio’s software modules. The modules are defined on the basis of
reference model RM 3.3, see Table 5.7.

Low-level behavior* Parameter Description

exploration {τ, γ} movement by random walk
stop {γ} standstill state
color-following {δ, γ} steady movement towards robots/objects of color δ
color-elusion {δ, γ} steady movement away from robots/objects of color δ
circling {θ, γ} circular movement with angle θ

Transition condition Parameter Description

black-floor {β} black floor beneath the robot
gray-floor {β} gray floor beneath the robot
white-floor {β} white floor beneath the robot
fixed-probability {β} transition with a fixed probability
color-detection {δ, β} robots/objects of color δ perceived
* All low-level behaviors display a color γ ∈ {∅, C, M, Y } alongside the action described.

occur between different states, and self-transitions are not permitted. The modules
and their parameters are selected off-line through an optimization process conducted
with Iterated F-race. The design process is conducted with simulations performed
in ARGoS3, version beta 48, together with argos3-epuck library. The duration of
the optimization process is determined by a predefined simulations budget. The
design process ends when the budget is exhausted and Pistacchio returns the
best configuration found. This configuration is then uploaded to the shepherds and
evaluated in the target environment.

5.3.2 Experimental setup

We considered a heterogeneous system of five shepherds and ten sheep, which
jointly performed a set of missions. We devised the control software for the sheep
so that they do not take action unless stimulated by the shepherds. In this way, the
performance of the heterogeneous system strictly depends on the effectiveness of the
shepherding behaviors that are designed. We experiment with Pistacchio on three
missions: aggregation, dispersion, and herding. For these three missions,
we consider three variants of sheep behavior: C1-Attraction, C2-Repulsion, and
C3-Attraction&Repulsion. By combining missions and sheep behavior, we produce
9 experimental scenarios on which to evaluate Pistacchio.
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Sheep control software

Each sheep operated with one out of three predefined instances of control software:
C1-Attraction, C2-Repulsion, and C3-Attraction&Repulsion. Shepherds could
stimulate the sheep by physical proximity in a 3 cm range, or by displaying colors
with their LEDs in a 40 cm range. The ground sensor of the sheep allows them to
detect regions of interest in the environment.

In C1-Attraction, sheep are attracted to shepherds that display the color
magenta. In C2-Repulsion, sheep are repelled by shepherds that display the color
cyan. In C3-Attraction&Repulsion, sheep are both attracted to shepherds that
display the color magenta and repelled by shepherds that display the color cyan.
In all cases, the sheep display the color yellow and remain static if no stimuli is
perceived—physical proximity or color. If a sheep steps into a white-floor region, it
halts its movement and turns off its LEDs until the end of the mission.

C1-Attraction, C2-Repulsion, and C3-Attraction&Repulsion are probabilistic
finite-state machines created with software modules that are similar to those of
Pistacchio. We followed a manual trial-and-error process to design them. These
finite-state machines were undisclosed to the design process that generates the
behavior of the shepherds, which sees them as a black box.

Missions

The time available to the robots to perform a mission is always T = 120 s. The
robots operate in an octagonal arena of about 2.8 m2 and gray floor. Figure 5.8
shows the arenas for the three missions.

AGGREGATION: At the beginning of each run, shepherds and sheep are
randomly distributed in the arena. The shepherds must group the sheep. Fig-
ure 5.8 (left) shows the arena for aggregation.

The score of the swarm is determined by the average distance from each sheep
to the center of mass of all sheep at the end of the mission:

fAG.P =
∑10

i=1 Di(T )
10 , (5.8)

which must be minimized. Di(T ) is the distance from a sheep i, at position (xi, yi),
to the center of mass of all sheep (xc, yc) at time T .

DISPERSION: At the beginning of each run, shepherds and sheep are randomly
distributed at the center of the arena. The shepherds must separate the sheep.
Figure 5.8 (center) shows the arena for dispersion.
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Figure 5.8: Experimental arenas for Pistacchio’s experiments. The figure shows the
arenas used for the three missions in the study. The top row displays the initial positions
of the robots at the start of an experiment. The bottom row shows their positions at the
end, after performing the mission using control software generated by Pistacchio.

The score of the swarm is also determined by the average distance from each
sheep to the center of mass of all sheep at the end of the mission:

fDS.P =
∑10

i=1 Di(T )
10 , (5.9)

which in this case must be maximized. Di(T ) is the distance from a sheep i, at
position (xi, yi), to the center of mass of all sheep (xc, yc) at time T .

HERDING: At the beginning of each run, shepherds and sheep are randomly
distributed at the center of the arena. The shepherds must drive the sheep to four
indicated locations. The indicated locations are circular white regions of about
0.3 m2. The four locations are equivalent to each other. Figure 5.8 (right) shows
the arena for herding.

The score of the swarm is the number of sheep that remain out of the four
locations at the end of the mission:

fDM.H =
T∑

t=1

N∑
i=1

Ii(t), (5.10)
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which must be minimized. T is the duration of the mission.

By pairing sheep control software and missions, we presented varied challenges
to the automatic design of the shepherding behaviors. The sheep could be more
or less cooperative with the shepherds for the mission at hand. For example, we
expect the shepherds to group the sheep more effectively when the sheep operate
with C1-Attraction, and less effectively when they operate with C2-Repulsion.
Conversely, we expect the shepherds to separate the sheep more effectively when
the sheep operate with C2-Repulsion, and less effectively when they operate with
C1-Attraction. C3-Attraction&Repulsion gives more freedom to the automatic
design process to select the best performing strategy.

Baseline methods

EvoCMY: we use a neuroevolutionary method that can produce control software
for the e-puck described by the reference model RM 3.3. EvoCMY is a restricted
version of EvoColor, which we also developed to enable the experimentation with
multiple swarms in a single environment—like Pistacchio. EvoCMY tunes the
synaptic weights of the neural network via artificial evolution with the same design
process as EvoColor—see Chapter 3. EvoCMY optimizes the neural network until
a predefined budget of simulation runs is exhausted. Table 5.9 summarizes the
topology of the neural network and the parameters used in the evolutionary process.

C-Human: we also consider here the protocol developed by Francesca et al.
(2015) to compare automatic and manual approaches to the design of collective
behaviors for robot swarms. In these experiments, 3 human designers were requested
to produce control software using Pistacchio’s software modules. The human
designers are tasked with assembling suitable finite-state machines and fine-tuning
their parameters, adopting the role of an optimization agent. C-Human produces
control software for the e-puck formally described by reference model RM 3.3—the
same as Pistacchio. The human designers who participated in this study had more
than one year of experience in swarm robotics and some familiarity with AutoMoDe,
the e-puck, and ARGoS3. We provided the designers with a visualization tool
to produce and manipulate finite-state machines, to visualize simulations, and to
compute the value of the objective function (Kuckling et al. 2021a). All simulations
were executed in ARGoS3—the same setting as Pistacchio. The designers were
allotted 4 hours per mission, as originally devised by Francesca et al. (2015).

R-Walk: we also include here a random-walk behavior in the study as a lower
bound on the performance of robot swarms. In R-Walk, the robots move in a
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Table 5.9: Neural network topology and parameters of the evolutionary process in
EvoCMY. The neural network operates according to RM 3.3, see Table 5.7.

Architecture

Fully-connected feed-forward neural network without hidden layers

Input node Description

ina∈{1,...,8} readings of proximity sensors proxi∈{1,...,8}
ina∈{9,...,11} readings of ground sensors gndj∈{1,...,3}
ina∈{12} value of the density function z′(n)
ina∈{12,...,23} scalar projections of Vc∈{C,M,Y }
ina∈{24} bias input

Output node Description

outb∈{1,...,4} tuples v′ to map each velocity in the set vk∈{l,r}
outb∈{5,...,8} activation of each color in the set {∅, C, M, Y }

Connection Description

conns∈{1,...,192} synaptic connections with weights ω∈[−5, 5]

Evolution parameters

Number of generations * —
Population size 100
Elite individuals 20
Mutated individuals 80
Evaluations per individual 10
Post-evaluation per
individual **

100

* The number of generations is computed according to the budget of simulations.
** The population obtained in the last generation is post-evaluated to select the
best individual.

straight line in the arena, when they encounter an obstacle, they rotate for a random
number of control steps and then resume their straight motion. Random-Walk is
also conceived for the e-puck formally described by reference model RM 3.3.

Protocol

In this study, we consider a number of experimental scenarios that is larger than
those of previous studies considering C-Human. Therefore, we cannot replicate the
experimental procedure exactly as reported by Francesca et al. (2015). In our
experiments, we use Pistacchio and EvoCMY to produce repeatedly more instances
of control software than what C-Human can produce. We do so because producing
control software with these automatic methods costs less than producing it with
C-Human. We adjust the number of evaluations to obtain an equivalent number of
observations across methods for statistical analysis.
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Pistacchio and EvoCMY are given a budget of 100 000 simulations to produce
each instance of control software. We produce 90 instances of control software with
Pistacchio and other 90 with EvoCMY—10 per scenario. Each of these instances is
assessed once to obtain 90 observations per method. C-Human produced 9 instances
of control software, 1 per scenario. We obtain the equivalent 90 observations by
assessing each of these instances 10 times. R-Walk is assess 10 times in each scenario
to obtain 90 observations.

In the experiments, neither the automatic methods nor the human designers
had direct access to information about the sheep control software. The dynamics
between shepherds and sheep had to be discovered during the design process via
simulations.

Statistics: We use box-plots to present the performance of the instances of
control software obtained in the experiments. As in the other studies, comparative
statements are supported with a Wilcoxon paired rank sum tests, at 95 % confi-
dence (Conover 1999). We also present here the results of a Friedman test that
aggregates the overall performance of the methods across the four missions—see
Chapter 4.

5.3.3 Results

Figure 5.9 shows the performance of each method across the nine scenarios. Fig-
ure 5.10 shows the average rank of the design methods over the nine experimental
scenarios. Demonstration videos of the behavior of the robots are provided in the
Supplementary Videos of the dissertation (Garzón Ramos 2025).

The per-mission results and the Friedman test did not detect any significant
difference between the performance of Pistacchio and EvoCMY, but the two are
significantly better than C-Human and R-Walk. Moreover, C-Human was significantly
better than R-Walk. The results show that automatic design was more effective
than manual design in addressing the shepherding problems we considered. Also,
all design methods generated collective behaviors that are more effective than
the simple random walk—the lower bound. Our simulation-only comparison
between Pistacchio and EvoCMY was not sufficient to identify possible performance
differences between the modular and the neuroevolutionary approach—differences
that have been observed in the studies with physical robots presented earlier in
this dissertation.
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Figure 5.9: Performance obtained in the missions studied with Pistacchio. The plots
show results per mission and sheep control software. Results per design method are
presented with grayscale box-plots, Pistacchio ( ), EvoCMY ( ), C-Human ( ),
R-Walk ( ). These results have been obtained with simulations in ARGoS3. In all
plots, the lower, the better.
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Figure 5.10: Friedman tests with aggregate results from Pistacchio’s study. The
test considers the results obtained across all missions and provides a relative ranking
between the methods. The plot shows the average rank of each method and its
95 % confidence interval. The lower the rank, the better.

Shepherding strategies obtained in the experiments

Pistacchio and EvoCMY leveraged coordination and localization via color signals
to create effective interactions between shepherds and sheep. In most cases, the two
methods designed behaviors in which the shepherds stimulated the sheep in similar
ways. We describe here some shepherding strategies that were generated. The
following are general observations we made over all instances of control software by
visual inspection.

Grouping the sheep in aggregation: When the sheep operated with C1-
Attraction, the shepherds displayed magenta to attract them and they were them-
selves also attracted to other shepherds that displayed magenta. In this way,
shepherds and sheep remained close to each other, keeping the sheep close to
their center of mass. The automatic methods designed a coordinated cooperative
behavior between shepherds. When the sheep operated with C2-Repulsion, the
shepherds displayed cyan and moved on a circular trajectory close to the walls of
the arena. The sheep were therefore steadily repelled towards the center of the
arena and formed a single group. When the sheep operated with C3-Attraction&Re-
pulsion, the shepherds used a behavior similar to that observed in C1-Attraction
or C2-Repulsion—no noticeable preference was observed.

Separating the sheep in dispersion: When the sheep operated with C1-
Attraction, the shepherds remained close to the walls and displayed magenta
to attract the sheep. This behavior dispersed the sheep along the edges of the
arena, keeping them far from their center of mass. When the sheep operated
with C2-Repulsion, the shepherds moved in circles in the center of the arena while
displaying cyan. In this way, the shepherds separated the sheep by steadily pushing
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them towards the walls. When the sheep operated with C3-Attraction&Repul-
sion, the shepherds used a behavior similar to that observed in C1-Attraction or
C2-Repulsion—also no noticeable preference was observed.

Driving the sheep in herding: The shepherds reacted to the color yellow that
the sheep displayed. When the sheep operated with C1-Attraction, the shepherds
displayed magenta to attract the sheep. Simultaneously, they were also repelled
from the color yellow the sheep displayed. In this way, the shepherds guided
the sheep from the front. The two navigated the arena together until the sheep
stepped into a white region and turned off their LEDs. When the sheep operated
with C2-Repulsion, the shepherds displayed cyan to repel the sheep. Unlike the
behavior observed in C1-Attraction, in this case, the shepherds were attracted to
the color yellow that the sheep displayed. The simultaneous execution of these two
behaviors resulted in shepherds that chased the sheep until the latter stepped into
a white region and turned off their LEDs. The shepherds used a behavior similar
to that observed in C1-Attraction or C2-Repulsion when the sheep operated with
C3-Attraction&Repulsion. Also in this case, no noticeable preference was observed.

Color signaling and physical proximity were two alternative ways for the shep-
herds to interact with the sheep. Unlike Pistacchio and EvoCMY, C-Human pro-
duced control software that leveraged the color displayed by the shepherds only
in a few cases. C-Human and Pistacchio operate on the same set of modules and
software architecture, and can potentially produce control software that performs
similarly. However, the human designers mainly used sub-optimal strategies (based
on physical proximity) to enable the interaction between shepherds and sheep. In
a way, they failed to discover and use the most effective strategy: the interaction
via color signals.

5.3.4 Discussion

Pistacchio effectively searched the design space and exploited the dynamics
between shepherd and sheep. The shepherds used color stimuli to interact with
the sheep in a meaningful and good-performing way. In some cases, the shepherds
coordinated with each other using the same stimuli. In our experiments with
TuttiFrutti, Mate, and Habanero, we already showed that by enabling simple
color signaling in AutoMoDe’s modules, the automatic design process can generate
mission-specific coordination and spatial-organization strategies. However, those
results were obtained with a homogeneous robot swarm. In the experiments we
presented here, Pistacchio generated similar mission-specific coordination and
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spatial organization between shepherds and sheep. We show therefore that this
ability of AutoMoDe can extend to heterogeneous setups.

So far, automatic design research has focused mainly on missions performed by
a single robot swarm that operates alone. With our experiments, we showed that
existing approaches are also well suited to address more complex heterogeneous
scenarios. We consider heterogeneity in both the number of swarms that populate
an environment and the type of control software they use. In our experiments,
the sheep operated with finite-state machines. Pistacchio and EvoCMY generated
effective shepherding strategies despite that their shepherds operated with different
kinds of control software—finite-state machines and neural networks, respectively. A
key element to enable a setup with heterogeneous control software was to formally
define the capabilities of shepherd and sheep within a single reference model,
RM 3.3.

A priori, we expected to observe a significant performance difference in ag-
gregation and dispersion when the sheep operated with diametrically different
behaviors such as C1-Attraction and C2-Repulsion. However, no such performance
difference was observed. This indicates that Pistacchio and EvoCMY simultane-
ously tailored the control software of the shepherds to the one of the sheep, and to
the goal of the mission—regardless of the combination. On the other hand, C-Human
was less effective. Human designers had difficulties on exploring the design space
and finding good-performing shepherding strategies. We conceived the experiments
in a way that the dynamics between shepherd and sheep had to be discovered
during the design process. Automatic methods have a notable advantage in this
task. The optimization process is more effective than a human designer in exploring
the large and complex design space.

The shepherding problem was an appropriate framework to study the design
of robot swarms that must interact with other robots. Our current experimental
setup can be directly extended to missions that involve other types of interactions.
The sheep we considered are rather individualistic: they react individually to the
stimuli of the shepherds without considering the behavior of other sheep (beyond
the physical proximity). Moreover, their naturally-static behavior made them
easy to handle for shepherds. One could possibly create more complex missions
with sheep that continuously move and operate with a more coordinated collective
behavior—both cooperative or adversarial. In this sense, we believe research work
presented here could bootstrap recent studies on the design of robot swarms that are
robust to attacks from adversarial robots (Strobel et al. 2020, 2023; Castelló Ferrer
et al. 2021; Reina et al. 2023)
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5.4 Automatic design of robot swarms by demon-
stration

AutoMoDe is intended to minimize human intervention in the process of designing
robot swarms. In most AutoMoDe methods, the only required input from the
designer is defining the mission specifications and performance measures. However,
a challenge still remains in in formulating a performance measure that accurately
captures the desired swarm behavior—a task that requires expert knowledge. We
contend that automatic design must evolve toward methods that use more natural
and intuitive forms of mission specification—such as simplified language (Bozhinoski
and Birattari 2022) or behavior demonstrations (Šošić et al. 2017; Gharbi et al.
2023). This is a necessary step to achieve truly automatic design processes that
allow the design and deployment of robot swarms without the need for technical
expertise.

In this study, we experiment with AutoMoDe and inverse reinforcement learn-
ing (Abbeel and Ng 2010) as an alternative to manually formulating an objective
function to drive the design process. Inverse reinforcement learning can auto-
matically generate an objective function based on user demonstrations. Both the
objective function and the control software of the robots are learned simultaneously
through an iterative process. This approach offers advantages over traditional
AutoMoDe methods. Demonstrating desired behaviors is generally easier, more
natural, and intuitive than manually creating an objective function that fully
captures the desired swarm behavior.

As discussed in Chapter 2, we recently applied inverse reinforcement learning
to AutoMoDe and structured a design process that combines the two (Gharbi
et al. 2023). In this section, we build on those experiments to investigate the
automatic design of robot swarms that perform sequences of missions—as previ-
ously studied with Mandarina in Chapter 4. We conduct this new study using
DemoTuttiFrutti-MO (DTF-MO), a method from the AutoMoDe family that in-
tegrates inverse reinforcement learning with multi-criteria design. Similarly to
Mandarina, the missions here consist of two sub-missions that must be performed
sequentially. We also use MoCA to provide the robots with environmental signals
that inform the swarm which sub-mission to execute at any given time. The
sub-missions are defined through demonstrations of the desired spatial organization
the swarm should achieve. DTF-MO addresses these sub-missions concurrently,
with a design process that generates a single instance of control software based
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on demonstrations for the two sub-missions. No human intervention is required
other than providing the demonstrations. The challenges for DTF-MO in this design
problem are: (i) identifying relevant features that define the sub-missions using
only demonstrations, and (ii) designing a single instance of control software capable
of handling the two sub-missions concurrently.

We compare the performance of DTF-MO with a baseline method that involves a
higher degree of human intervention. In this baseline, the sub-missions are handled
independently and the design process generates two separate instances of control
software—one for each demonstrated sub-mission. Then, we manually hard-code
a transition rule that allows the robots to switch between sub-missions. This
procedure is based on experiments conducted by Duarte et al. (2016), as described
in Chapter 2. We also include a second baseline in which the control software is
completely produced by hand.

This is probably the most complex design problem addressed in this thesis.
With this study, we investigate whether the results achieved with TuttiFrutti
and Mandarina can be extended to a design process in which missions are specified
with demonstrations.

5.4.1 DemoTuttiFrutti-MO (DTF-MO)

Robot platform

DTF-MO produces control software for the version of the e-puck introduced with
TuttiFrutti—see Figure 3.1. The functional capabilities of the robot are adopted
from RM 3 without further modification. The reference model RM 3 is detailed in
Table 3.1.

Modular control architecture

DTF-MO generates control software by fine-tuning and assembling predefined soft-
ware modules into probabilistic finite-state machines. It operates on the same
parametric modules originally designed for TuttiFrutti. As with Mandarina, we
leverage here TuttiFrutti’s modules to conceive sequences of missions in which an
environmental signal—specifically, a color displayed by the walls enclosing the arena
in which the robots operate—is available to inform the robots that they should
transition from one sub-mission to the other. The parameters of the software
modules are automatically tuned during the design process. The modules are
detailed in Table 3.2.
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Automatic design process

The automatic design process in DTF-MO is an iterative procedure consisting of two
steps. First, an objective function is learned on the basis of user demonstrations.
Then, this objective function is used to generate instances of control software
that perform the mission according to the learned objective function. The new
iteration starts by using the generated control software to refine the estimation of
the objective function, with the aim of fitting better the user demonstrations. In
subsequent iterations, the objective function is improved, and therefore the method
produces control software that attains more effectively the demonstrated behavior.
This iterative process simultaneously refines both the learned objective function
and the control software for the robots. The following sections provide a detailed
description of this process.

Learning the objective function from demonstrations: DTF-MO builds
on Demo-Cho (Gharbi et al. 2023), and also adopts the algorithm known as
apprenticeship learning via inverse reinforcement learning (Abbeel and Ng 2004).
In DTF-MO, the user is required to provide demonstrations for each sub-mission in
the sequence, which specifically indicate the robots’ positions and exemplify the
desired spatial distribution of the swarm in the environment. For the apprenticeship
learning algorithm, the position of the robots—i.e., swarm state—is mapped to a
mission-independent feature vector ϕ(s) ∈ [0, 1]k. This feature vector encapsulates
the spatial distribution of the swarm—inter-robot distances—and the location of
the swarm in the arena—landmarks-robots distances. It is important to stress here
that the feature vector is defined only once, depends only on the environment and
the robots, and is agnostic to the mission to perform. That is, it can map the
desired behavior from different sub-missions without further modification.

DTF-MO applies mapping transformations, which are similar to those of Demo-
Cho, to convert the positions of the robots into features that describe the spatial
relationships between robots, and between robots and their environment. In our
experimental setup, we consider a swarm of 20 e-pucks that operate in an arena that
comprises three landmarks—see experimental setup in this section. The mapping
results into 60 features that describe the distance between each robot and the three
landmarks, and 20 features that describe the distance between each robot and its
closest peer. The features related to landmarks are calculated as follows:

ϕrl =

 1, if robot r is inside landmark l;
10− 2

d
Drl , otherwise.

(5.11)
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Here, d is the diameter of the arena and Drl is the distance from robot r = {1, . . . , n}
to landmark l = {1, . . . , m}, where n and m are the number of robots and the
number of landmarks, respectively. For each landmark, r = 1 is the closest robot
to the landmark itself and r = 20 the farthest one.

The features related to distance between robots are calculated as follows:

ϕr = 10− 2
d

Dr , (5.12)

where Dr is distance between robot r = {1, . . . , n} and its closest peer, and n

is the number of robots. Here, r = 1 is the robot whose distance to its closest
peer is the shortest; and r = 20, the one whose distance to its closest peer is
the longest. Swarm robots are interchangeable, with mapping based on relative
positions. The feature vector, ϕ(s) = (ϕ11, . . . , ϕ1m, . . . , ϕn1, . . . , ϕnm, ϕ1, . . . , ϕn),
describes the spatial configuration of the swarm, regardless of individual identities.

In Demo-Cho, the apprenticeship learning algorithm was limited to learning a
single objective function from the demonstrations. In DTF-MO, the algorithm learns
an objective function for each sub-mission. The sequences of missions we consider
in this study comprise two sub-missions. Therefore, the apprenticeship learning
algorithm must learn two objective functions to be optimized, Rw1(s) = w1 · ϕ(s)
and Rw2(s) = w2 · ϕ(s), where w1 and w2 are the weight vectors that describe the
importance given to each feature.

We set a maximum number of iterations as the termination criterion for the
apprenticeship learning—the same criterion defined in Demo-Cho. The maximum
number of iterations is chosen to be sufficiently large to allow w1 and w2 to converge.

Generating control software with multi-criteria optimization: DTF-MO gen-
erates control software based on the objective functions learned through appren-
ticeship learning, Rw1(s) and Rw2(s), which define two performance measures to
be maximized. To do so, DTF-MO conducts a single-objective optimization process
that considers both Rw1(s) and Rw2(s) concurrently. The method linearly combines
the two objectives into a single one: R(S) = Rw1(s) + Rw2(s) = w1 · ϕ(s) + w2 · ϕ(s).
This simple approach is adopted from the experiments conducted in Chapter 4.
The two objective functions are weighted equally, as there is no prior reason to
assume that one sub-mission is more important than the other.

As in TuttiFrutti and Mandarina, the design process in DTF-MO is based
on Iterated F-race and relies on simulations conducted in ARGoS3. During the
design process, DTF-MO produces a set of candidate control software instances, each
representing a potential solution to the sequence of missions. In order to select the
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best performing instance, we assume that the distance in the feature space indicates
how close a behavior is to the demonstrations given for each sub-mission. Each
instance has two associated distances, one for each objective, Rw1(s) and Rw2(s).
DTF-MO computes the l2-norm to aggregate the distance values of an instance into
a single measure. This measure can be used to compare instances across the two
sub-missions. The smaller the l2-norm, the closer the control software is to the
demonstrations. This method has been shown to be effective in feature selection
problems (Salman et al. 2022).

5.4.2 Experimental setup

Missions

The robots operate in a hexagonal arena of 2.60 m2 with gray floor. The arena
comprises three landmarks: a white circular region in the center and two black
triangular regions at the left and right sides. These are the three landmarks
considered in the learning process. The arena is surrounded by 24 MoCA’s RGB
blocks, which can change their color at run-time. The 4 blocks at the right corner
of the arena constantly display the color green.

The robots have 120 s to perform the two sub-missions, with 60 s allocated to
each. The walls of the arena (except for the right corner) are red for the first 60 s
and then turn blue, indicating which sub-mission should be performed. This is the
environmental signal DTF-MO can use to transition from one behavior to another.
The reaction to this cue and the behavior transition must be automatically inferred
during the design process. DTF-MO extracts and evaluates the position of the robots
only at the end of each sub-mission—that is, after their allocated 60 s. Figure 5.11
shows the experimental arena.

We conceived five sub-missions that we paired to produce twelve sequences of
missions.1 Figure 5.11 shows the sub-missions as specified by the demonstrations.
The sub-missions we conceived are inspired by the spatial-organizing behaviors
considered in our previous studies, as well as those investigated by Francesca et al.
(2015) with Chocolate. For clarity, we also provide a written description of the
desired behavior specified by the demonstrations in Figure 5.11. sub-mission
A (ma): the robots must aggregate in the center of the arena, in the white area.
sub-mission B (mb): the robots must line in the edges of the arena, except for
the two rightmost walls. sub-mission C (mc): the robots must cover the entire

1By combining the five missions, we could generate twenty sequences. We selected twelve of
them for these experiments.
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SUB-MISSION A SUB-MISSION B SUB-MISSION C

SUB-MISSION D SUB-MISSION E

Figure 5.11: Experimental arenas for DTF-MO’s experiments. The figure shows the three
landmarks, RGB blocks, and a swarm of 20 e-pucks that exemplify the demonstrations
given for each sub-mission. The green walls do not change color. Other walls switch
from red to blue to indicate the transition between sub-missions. This is the signal that
the automatic design process must learn to exploit. Demonstrations are provided in a
user interface developed with the Unity game engine, which parses the information to a
format usable in ARGoS3.

arena. sub-mission D (md): the robots must aggregate in the left black area.
sub-mission E (me): the robots must aggregate in the right black area.

The twelve missions are organized in pairs, with each pair denoted as mp·q,
where p and q represent the sub-missions to be executed sequentially. The pairs
are: ma·b, mb·a, mc·b, mb·c, mc·d, md·c, me·a, ma·e, mb·e, me·b, md·e and me·d.

Baseline methods

DemoTuttiFrutti-2SO (DTF-2SO): a method that addresses the sub-missions
independently, generating separate instances of control software for each demon-
strated sub-mission. Like DTF-MO, DTF-2SO learns objective functions for the
sub-missions through apprenticeship learning, using the same demonstrations as
DTF-MO. However, DTF-2SO conducts separate single-objective optimization pro-
cesses for Rw1(s) and Rw2(s), producing two instances of control software—one that



CHAPTER 5. FURTHER APPLICATIONS 155

maximizes Rw1(s) and another that maximizes Rw2(s). After the design process
ends, we manually assemble the two instances by hard-coding a transition condition
from one to the other. This transition is triggered by the change of the color of the
walls, from blue to red, which indicates the change of sub-mission to be performed.
Therefore, this environmental signal indicates the control software produced by
DTF-2SO to switch its behavior. As mentioned earlier, this approach is similar to
the one devised by Duarte et al. (2016). Other than this difference, DTF-2SO and
DTF-MO are identical. The two methods use TuttiFrutti’s modules and control
architecture, and they design control software for the e-puck defined by reference
model RM 3. DTF-2SO’s optimization process is driven by Iterated F-race, like
DTF-MO.

Manual design: Without a pre-existing theoretical baseline, we developed
our own. Using TuttiFrutti’s modules, we manually designed a control software
instance for each sub-mission. Then, we manually assembled the two corresponding
instances for every sequence. In this procedure, we use the same hard-coded
transition we implemented in DTF-2SO.

Protocol

We generate 120 instances of control software with DTF-MO and other 120 with
DTF-2SO—10 for each mission. In every design process, we specify the sequence
with 10 demonstrations—five for each associated sub-mission. In all cases, the
apprenticeship learning algorithm performs 15 iterations. In every iteration, Iterated
F-race has a budget of 100 000 simulations to produce a control software instance.
DTF-MO was given these 100 000 simulations to produce a single instance of control
software for the two sub-missions. DTF-2SO was given an budget of 100 000
simulations to produce each of the two instances of control software, which are
required by the two sub-missions. This resulted in an advantage for DTF-2SO,
considering that its search space is less than half that of DTF-MO.

Statistics: We use box-plots to present the performance of the instances of
control software obtained in the experiments. We use the l2-norm to quantitatively
compare the performance of the instances of control software produced with DTF-
MO, DTF-2SO, and the manual baseline—as described for the automatic design
process. We use heat-map plots to present the distribution of weights, w1 and w2,
that the apprenticeship learning algorithm assigned to the linear combination of
features. We conduct a visual inspection of the behaviors of the robots to verify
their ability to reproduce the given demonstrations.
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Figure 5.12: l2-norm of the distance in the feature space between the observed behavior
of the robots and the demonstrations. Results per design method are presented with
grayscale box-plots, DTF-MO ( ), DTF-2SO ( ), Manual design ( ).These results
have been obtained with simulations in ARGoS3. In the plot, the lower, the better.

5.4.3 Results

Figure 5.12 shows the performance of each method for the twelve sequences of
missions. Demonstration videos of the behavior of the robots are provided in the
Supplementary Videos of the dissertation (Garzón Ramos 2025).

The performance results presented in Figure 5.12 show that DTF-2SO outper-
forms DTF-MO and the manual baseline in half of the missions. Specifically, the
l2-norm is lower for DTF-2SO in these missions. Two factors can influence the
performance of the methods: (i) the ability to learn the objective functions from
the demonstrations, (ii) and the effectiveness of the optimization process in finding
suitable control software.

We first investigated the ability of DTF-MO and DTF-2SO to identify the subset of
features that is most relevant for each sub-mission, and properly learn a distribution
of weights for w1 and w2. The heatmap plots showed that, across all missions, the
two methods were able to identify the most relevant features during the learning
process—see Szpirer et al. (2024b). Indeed, DTF-MO and DTF-2SO assigned mission-
specific distribution of weights that properly characterized the desired spatial
relationship between robots and environment—according to the demonstrations of
the two associated sub-missions. We illustrate these results here with the weights
assigned in mission mD·E (Figure 5.13).
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Figure 5.13: Heat-map plots that represent the weight given to each of the 80 features
in the objective functions in Mission mD·E . The feature vector is organized as follows:
positions 0 to 19 are associated to the white circular region (WCC); positions 20 to 39 are
associated to the black right triangular region (BRT); positions 40 to 59 are associated
to the black left triangular region (BRT); and positions 60 to 79 are associated to
the inter-robot distances (NGB). When the weight is near zero, the feature’s impact
on the objective function is minimal. Negative weights (blue color) require feature
minimization, positive weights (orange color) require maximization. As features are
inversely proportional to distances, maximizing a feature minimizes its corresponding
distance, and vice versa. DTF-MO (top) and DTF-2SO (bottom) learned for (i) mD, to
maximize the distance from the right triangle and minimize it with the left one; (ii) mB,
to maximize the distance with the left triangle and the center and minimize it with the
right triangle and the peers.
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In sub-mission D, the robots were expected to stay close to the left black
landmark and far from the right one. Conversely, in sub-mission E, the robots
were expected to remain close to the right black landmark and far from the left one.
Figure 5.13 shows that both DTF-MO and DTF-2SO set the appropriate emphasis
on the related features in each case. These results allowed us to isolate the main
factor that caused the performance difference: the optimization process and its
ability to produce suitable control software.

Figure 5.12 shows that DTF-MO performed better than the manual baseline and
equally or better than DTF-2SO in four missions: mC·B, mA·B, mC·D and mA·E. We
visually inspected these missions to determine possible reasons for the performance
difference with respect to the general results. We observed that DTF-MO was more
effective because it designed behaviors that ease the transition from one sub-mission
to the other. By concurrently considering the two sub-missions, it optimized not
only each part of the sequence but also the transition phase between them. For
example, in sub-mission A of mA·B, the robots do not exactly aggregate in the
center of the arena—as indicated in the demonstration. Instead, they remain near
the borders of the white circle to perceive the walls more easily and react promptly
to the signal. Similarly, we observed that in sub-mission D of mC·D, the robots
not only head toward the left landmark. They also trigger their own cue to signal
other robots to follow them—a color-based communication behavior previously
observed in TuttiFrutti.

We also inspected two missions in which neither DTF-MO nor DTF-2SO out-
performed the manual baseline. We observed that missions mE·A and mB·A are
challenging because of a difficult transition phase between the sub-missions. DTF-
MO focuses on the second sub-mission and optimizes performance for it, without
risking performance loss caused by the time spent in the transition. In DTF-2SO,
the optimization process is conducted independently for each sub-mission and
the control software is manually assembled afterward, preventing the generation
of behaviors that consider the transition between sub-missions. For example, in
mE·A, the robots effectively aggregate in the right green corner. However, from this
corner, some of them are unable to perceive the cue to start performing mission
sub-mission A, and fail to aggregate in the center of the arena—as required.

5.4.4 Discussion

The experiments show that DTF-MO is a viable method to automatically design
robot swarms that perform sequences of missions, which are specified via demon-
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strations. However, the method was challenged by the increased search space of
conducting a design process that tracts the sequences as a whole. DTF-MO had to
simultaneously design effective control software for two sub-missions, identify the
environmental signal, and define the transition rule. Conversely, DTF-2SO benefited
from addressing the sub-missions independently during the design process and from
a higher degree of human intervention: manually assembling the generated control
software and hard-coding the transition rule. We argue that this intervention eased
the exploration of the search space for DTF-2SO with respect to DTF-MO, and
allowed it to perform better. The visual inspection show that DTF-2SO’s advantage
is challenged when the demonstrations present conflicting robot positioning, as
this can prevent the swarm from properly triggering the manually coded transition
rule. Devising an effective transition rule is heavily influenced by the designer’s
bias, and it can become ineffective without prior experimentation/validation on
the mission at hand.

A limitation of our approach to the design of robot swarms by demonstration
is that it currently only supports specifying static spatial-organizing behaviors, as
noted in previous experiments with Demo-Cho (Gharbi et al. 2023). This restricts
the range of behaviors that can be automatically generated. To expand on our
previous research, we studied how a robot swarm can switch between behaviors
to perform missions in sequence. The experimental protocol we developed for
Mandarina turned out to be useful in designing these more complex collective
behaviors.

In this study, DTF-MO successfully generated control software based solely
on demonstrations of the desired swarm behavior. This shows that some of the
multi-criteria design concepts studied with Mandarina can be applied together
with inverse reinforcement learning. However, DTF-MO’s performance still falls
short compared to that achieved with manual intervention by human designers (i.e.,
DTF-2SO). In DTF-MO, we used a rather simple multi-criteria optimization strategy
and we expect that more advanced alternatives (Emmerich and Deutz 2018) could
possibly extend the range of missions it can address. In the literature, there are
more advanced optimization algorithms available that could bootstrap the design
capabilities of DTF-MO, while maintaining the fully automatic nature of its design
process. As discussed in Chapters 2 and 4, the selection of appropriate optimization
algorithms is an open problem in the automatic design of robot swarms.
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5.5 Outreach with the automatic modular design
of robot swarms

How to engage the general public in swarm robotics using AutoMoDe? We contend
that frontier research must generate knowledge that is accessible to society in all
contexts, and for both the specialized and non-specialized public. Throughout
the development of this thesis, we were committed to communicating the context,
research, and outcome of our work to a wide range of audiences. The goal we set
for our efforts was to increase the visibility of swarm robotics and the automatic
design of robot swarms.

We focus our outreach strategy on producing and sharing two types of video
communications that highlight our research outcomes.2 The first type, “Swarm
Robotics Capsules,” are short, informative clips that introduce fundamental con-
cepts of swarm robotics and showcase parts of our experiments. These were designed
to provide an accessible introduction to swarm robotics for enthusiasts. The second
type, “Holiday Specials,” are seasonal video clips featuring relatable swarm robotics
experiments. These were created to reach a broader audience beyond the robotics
community, with the aim of making swarm robotics visible to all.

We produced the Holidays’ Specials videos using AutoMoDe. To comment on
our approach, it is convenient to first illustrate a possible practical application for
the automatic off-line design of robot swarms. Meet Franziska (Figure 5.14).

Franziska’s swarm of robot actors

Franziska is a young digital content creator who recently gained popu-
larity on a mainstream video platform. She became a trending figure
thanks to her unique covers of famous movie scenes, performed by a
swarm of robot actors she developed during her PhD studies. As her
follower count grows, Franziska has already started accepting sponsored
deals. What began as a sporadic hobby—manually programming the
robots to recreate movie scenes—has now evolved into a full-time job
where she must produce both these recreations and original content
that can be monetized.

To maintain momentum on her channel, Franziska now needs to
upload high-quality content on a consistent schedule. How can Franziska

2This science communication material is an original contribution of this dissertation, produced
within the framework of the DEMIURGE project, which supported the development of the thesis.
The material is available at https://demiurge.be/outreach.html.

https://demiurge.be/outreach.html
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Figure 5.14: Franziska and her swarm of robot actors. Illustration generated with Open
AI’s DALL·E 3 model.



CHAPTER 5. FURTHER APPLICATIONS 162

possibly keep up the pace as an independent creator? After all, her
channel is just getting started and she is still running everything on
her own. She handles all the production by herself—writing scripts,
scouting filming locations, building props, setting up spaces, directing
shoots, editing the videos, and sharing them on social media. The most
time-consuming task, however, is programming the robot swarm to
perform the scenes exactly as scripted. When video creation was just
a hobby, she could take one or two months to prepare and publish a
single video. But now that she is pursuing this professionally, she needs
to release at least two new videos every week, on schedule, to meet the
expectations of her growing audience and sponsors.

With little time between productions, Franziska can no longer man-
ually program the robots herself. To keep up, she decided to adopt an
automatic off-line design approach to streamline this process. Now, all
she needs to do is script the video and sketch the filming location (the
mission specification). This information is then given to an automatic
design method which generates the control software the robots need
to perform the scene. This approach is ideal for Franziska’s workflow.
Each video has different scripts and locations, making it impossible
to create a one-size-fits-all control software instance for her videos.
Instead, each video demands custom-tailored control software, which
the automatic design method can provide. Renting filming locations
is also costly for Franziska, so every minute counts. Thanks to her
automatic off-line design approach, the robot swarm is always ready to
perform right out of the box—no rehearsals, prior testing, or setting up
infrastructure is needed before shooting.

Franziska is also benefitting from recent advances in the automatic
design of robot swarms. It would be difficult for Franziska to formulate
a precise performance measure (objective function) to evaluate how
well the robots follow her script in every automatic design process.
Fortunately, she can now rely on a simpler solution: she can start
the design process by only demonstrating the desired positions for
the robots in a scene. The automatic design process then generates
interaction strategies for the swarm, allowing the robots to achieve the
demonstrated positions and communicate and coordinate with each
other as needed during filming. Additionally, Franziska can now script
multiple scenes for a video at once, and the robots will play them
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in sequence, responding to her direction cues (signals) for "action"
and "cut."

As all robot programming happens off-line with an unattended
process, Franziska has more time to focus on the creative aspects of
video production. She can now refine her scripts, build better props,
create more elaborate sets, improve her video editing, and engage more
with her followers and sponsors on social media. This has resulted in
higher quality content and better engagement with her community. The
automatic off-line design of robot swarms has transformed Franziska
from a hobbyist into a successful one-woman enterprise.

Our approach to creating video material for scientific communication with Auto-
MoDe was not so distant from Franziska’s approach. We repurposed the experimen-
tal setups and tools described in this dissertation to produce demonstrations for the
Holidays’ specials videos—see Figure 5.15. The e-pucks were the robot actors we
featured in our productions. Like Franziska, we used AutoMoDe to avoid the effort
of manually programming the robots for these demonstrations and instead focused
on improving the creative aspects of the videos. First, we defined a mission for the
robots that could be easily understood by a broad audience. Next, we selected an
appropriate method from our repertoire which should be capable of performing
the mission. While the design process was executed off-line, we worked on the
remaining elements of the creative production. In our videos, we used various
cinematographic techniques, storytelling, and relatable soundtracks. We focused
on seasonal themes, as they could easily convey visual messages across different
countries, cultures, and languages. In these videos, we always only showed what
robots are capable of and what we could do with our research. The content we
produced kept a rigorous and scientifically sound narrative. At each production
step, we curated the content and verified the accuracy of the message we were
conveying and the information provided.

V1: Christmas clip: Automatic design of swarms of Santa’s little
helpers (a.k.a. robot swarms). In this Christmas clip, we use AutoMoDe to
design a swarm of Santa’s little helpers. The little helpers are e-puck robots, and
their mission is to first step into the machines until they turn on, and then transport
presents from the machines to the Christmas tree. The collective behavior of the
swarm was automatically produced, without the need for human intervention in the
design process. We used TuttiFrutti to design the robot swarm and developed
a Christmas-themed interface in the Unity game engine to monitor the swarm
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Demonstration of TuttiFrutti’s STOP mission in the media

V1: Christmas-themed video V2: Easter-themed video

V3: Christmas-themed video V4: Halloween-themed video

Figure 5.15: Snapshots of swarm robotics popularization videos. These videos are
outreach results from the thesis. On top, a demonstration of TuttiFrutti’s experiments
presented in the Belgian media. The videos V1 to V4 are realizations of robot swarms in
seasonally-themed missions, all produced using AutoMoDe. The videos are available in
the Supplementary Videos of the dissertation (Garzón Ramos 2025).
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during the execution of the mission. The interface for monitoring the robot swarm
is part of our ongoing research on the realization of robot swarms using the Robot
Operating System (ROS) (Kegeleirs et al. 2024a; Legarda Herranz et al. 2022). A
snapshot of the video is shown in Figure 5.15 (mid-left).

V2: Automatic design of collective (collecting) behaviors for robot
(rabbit) swarms: Easter egg hunt. In this Easter clip, we use AutoMoDe
to design a swarm of Easter egg hunters. The “rabbits” are e-puck robots, and
their mission is to gather in a basket the Easter eggs that randomly appear in the
garden. The collective behavior of the swarm was automatically produced, without
the need for human intervention in the design process. We used TuttiFrutti to
design the robot swarm and developed an Easter-themed interface to monitor the
swarm during the execution of the mission—as in V1. A snapshot of the video is
shown in Figure 5.15 (mid-right).

V3: Swarming lights on winter nights–AutoMoDe edition: a robot
swarm ballet. In this Christmas clip, we use AutoMoDe to design the collective
behavior for a swarm of shepherd robots that drive their peers towards a Christmas
tree. The mission of the shepherd robots (in red) is to position as many of the
yellow robots in the tree. The collective behavior of the swarm of shepherd robots
was produced automatically, without human intervention in the design process.
We used Pistacchio to design the robot swarm and developed a new Christmas-
themed interface to monitor the swarm during the execution of the mission—as in
V2 and V3. A snapshot of the video is shown in Figure 5.15 (bottom-left).

V4: Paranormal swarmctivity: a ghostly robot swarm that learns
from demonstrations! In this Halloween clip, we use an extension to the
AutoMoDe approach, Demo-Cho, to produce an action-live video. Starting from
demonstrations, Demo-Cho designs the collective behavior of a robot swarm. In the
video, the researcher demonstrates three collective behaviors that are imitated by the
robot swarm. The collective behaviors of the swarm were produced automatically,
without the need for human intervention in the design process. The original idea for
developing DTF-MO resulted from using Demo-Cho in the sequential demonstrations
shown in this video. A snapshot of the video is shown in Figure 5.15 (bottom-right).

The video material we created using AutoMoDe, along with our methodology
for producing it, became a key tool for communicating the scientific outcome
of our research during presentations, invited talks, and media interactions—see
Figure 5.15 (top). Through our efforts to produce content for science communication,
we learned how outreach and public engagement not only foster our creativity but
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also enrich our scientific work. So far, in this dissertation, we have focused on
demonstrating the versatility of AutoMoDe in generating collective behaviors for
robot swarms through extensive experimentation. The final contribution of this
thesis, presented in this section, aims to motivate further application of AutoMoDe
in creating scientific and educational content to popularize swarm robotics. With
this contribution, we join ongoing efforts to engage the general public in shaping
the way we understand, develop, use, deploy, and teach swarm robotics (Hamann
et al. 2018; Carrillo-Zapata et al. 2020; Garzón Ramos et al. 2021a; Alhafnawi et al.
2022).



6. Conclusions

In this dissertation, we investigated the design of collective behaviors
for robot swarms via automatic modular design. We introduced novel
experimental scenarios where robots use various forms of signaling to
collectively perform their mission. Additionally, we addressed design
problems where robot swarms must be realized under concurrent design
criteria. In our research, we collected sufficient empirical evidence
to assert that AutoMoDe can leverage environmental and inter-robot
signaling to tackle missions where a robot swarm is required to commu-
nicate, react to events, and perform missions sequentially—the thesis
developed in this dissertation. We provide the swarm robotics commu-
nity with a suite of AutoMoDe methods for generating control software
for robot swarms. These address state-of-the-art design problems by
enabling the coordination of robots through visual signaling.

In this final chapter, we summarize the major contributions of the
thesis, highlight key findings, and propose directions for future efforts.

167
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Automatic design, both fully- and semi-automatic, has become a viable approach to
the realization of robot swarms. Our review of the literature in Chapter 2 showed
that there is a growing scientific community contributing to the development of
new methods and approaches in the field. However, the proposed methods are
rarely evaluated for general applicability, and there is no well-established state of
the art or benchmark problems to assess their effectiveness. Comparisons between
methods are also rare, as are systematic evaluations across robot platforms with
varying capabilities. We argue that the main body of literature needs to shift from
proving feasibility to thoroughly investigating the strengths and limitations of the
design approaches.

The research presented in this dissertation was conducted using a systematic
and empirical approach. We developed a series of methods from the AutoMoDe
family, each building on previous ones. For each method, we identified its unique
and/or inherited elements, evaluated its ability to design collective behaviors
across different missions and performance metrics, and compared it to alternative
solutions—including neuroevolutionary and manual design approaches. We con-
ducted experiments in both simulation and with physical robots, using statistical
tools to draw clear conclusions about the relative performance of the methods.
This effort resulted in what is, to the best of our knowledge, the most diverse
compendium of collective behaviors achieved through the automatic design of robot
swarms, whether using AutoMoDe or other approaches. We consider this to be a
significant contribution to the state of the art in swarm robotics. The core factor in
achieving this result was the versatility and flexibility of AutoMoDe, which allowed
us to leverage various forms of inter-robot and environmental signaling to address
a wide range of design problems in the automatic design of robot swarms.

In Chapter 3, we presented TuttiFrutti and our first study on the design of col-
lective behaviors for robots that can display and perceive color signals. We showed
that TuttiFrutti was capable of establishing an appropriate relationship between
the colors that robots perceive and the behaviors they must adopt. Experiments
with TuttiFrutti showed that AutoMoDe can design collective behaviors with
three desirable capabilities if color signaling is enabled in the modules on which
it operates. First, robots can use the colors that they perceive as a reference to
navigate the environment. Second, the swarm can collectively change its behavior
when a specific color signal appears. Third, the swarm can exhibit communication
behaviors in which robots pair the color signals they emit and the colors to which
they react. In our experiments, the relationship between the environmental and
inter-robot signaling and the behavior change was established on a per-mission basis,
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and responded to the specifications of the mission at hand. With TuttiFrutti,
we have greatly increased the variety of collective behaviors that AutoMoDe can
generate. This is an original contribution from the thesis.

From Chapter 3, we identified a key question to be addressed in future work:
How can AutoMoDe and the robots’ signaling capabilities be used to support ongoing
human-swarm interaction research? During the realization of all experiments
presented in this dissertation, the color signaling mechanism helped monitor the
state of the robots and interpret the behavior of the swarm. A promising research
direction is to explore how the swarm can intentionally and automatically use this
signaling to communicate with human operators. AutoMoDe’s ability to discover
effective interaction dynamics could facilitate the development of suitable human-
swarm interaction strategies, using simple visual signaling that operators can
directly perceive. In the context of human-swarm interaction research, AutoMoDe
could allow the swarm to actively define a communication protocol with a human,
finding ways to be understood rather than relying on the human to program when
and how the swarm communicates information.

In Chapter 4, we built on the ideas introduced with TuttiFrutti and presented
Mandarina along with our research on the design of robot swarms under concurrent
design criteria. We used Mandarina to address design problems in which the
mission the swarm must perform is specified as a set of independent objective
functions to be optimized concurrently. In particular, we investigated the design of
robot swarms that use environmental signals to transition between behaviors and
perform missions sequentially. The traditional approach to addressing multi-criteria
design problems in swarm robotics is to aggregate the design criteria into a single
performance measure. In Mandarina, on the contrary, we used Iterated F-race to
conduct the design process without aggregating the design criteria. Our experiments
showed that this approach outperforms the traditional approach, including methods
that use the weighted sum, the hypervolume, and the l2-norm.

The literature revised in Chapter 2 shows that multi-criteria design problems are
common and interesting to the swarm robotics community. In fact, researchers often
unintentionally specify missions that simultaneously express varied preferences and
design criteria related to mission outcomes, robot behavior, or the design process
itself. However, in the related studies, the researchers neglect the multi-criteria
nature of the design problem and the possible benefit of using multi-objective
optimization methods to address it. Our study on bi-criteria design presents
elements that can bootstrap further research into the broader multi-criteria design
of robot swarms using optimization-based techniques. More precisely, we provided
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here (i) an experimental framework for specifying bi-criteria missions, which can
be extended to consider additional criteria; (ii) a set of baseline approaches—-the
weighted sum, the hypervolume, and the l2-norm; (iii) empirical results regarding
popular automatic design approaches—modular design and neuroevolution; and
(iii) we demonstrate the feasibility of this automatic design processes with both
simulations and physical robots. This is also an original contribution of the thesis.

From Chapter 4, we identified two key questions to be addressed in future work:
What is the most suitable way to compare design methods effectively? Our study with
Mandarina considered design methods that rely on optimization processes driven
by different performance measures. We noticed that the expected performance of
a method compared to others can vary depending on the metric used to assess
the generated control software instances. For this reason, we decided to analyze
and compare the methods with respect to all performance measures used in the
optimization processes. However, a better protocol should be defined to compare
the methods in a fair way. To which extent Mandarina’s capability to address
multi-criteria design problems generalize beyond the bi-objective case? In this
dissertation, we focused on missions specified by two concurrent design criteria.
However, in practice, Mandarina could handle additional criteria as long as each is
provided to Iterated F-race as an independent problem instance to be considered in
the optimization process. Considering more concurrent criteria during the design
process can lead to a greater number of performance trade-offs and potentially make
Iterated F-race’s statistical comparison of control software less effective. Future
research should expand the experimental setup to investigate this issue.

In Chapter 5, we introduced four design methods—Mate, Habanero, Pista-
cchio, and DTF-MO—demonstrating how AutoMoDe can leverage inter-robot and
environmental signaling across a variety of design problems. With Mate, we showed
that a simple single-bit signaling protocol embedded in a specialized module for
AutoMoDe was sufficient to overcome previous limitations in designing spatially
organizing behaviors for robot swarms. With Habanero, we showed that the direct
communication capabilities developed with TuttiFrutti using color signals could
also be applied to indirect communication using pheromone-based stigmergy. With
Pistacchio, we showed that AutoMoDe’s capabilities to leverage signaling not
only facilitate communication within the swarm but also enable interactions with
other active agents that populate the swarm’s workspace. DTF-MO expanded
on our previous research by removing the need for a preexisting performance
measure to guide the design process, showing that AutoMoDe can handle problems
with concurrent design criteria based solely on demonstrations. Our approach to
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developing and evaluating these methods followed the practices originally defined
by Francesca et al. (2014b, 2015) in the seminal work on AutoMoDe. We addressed
these diverse design problems with AutoMoDe methods that had no fundamental
differences from each other. An original contribution of the thesis is to have
demonstrated this flexibility and versatility of AutoMoDe.

From Chapter 5, we also identified two key questions to be addressed in
future work: Can AutoMoDe design robot swarms that use both direct and indirect
communication, either alternately or simultaneously? With TuttiFrutti, we
showed that direct communication can emerge from an automatic design process,
and with Habanero, we showed that indirect communication can also be designed
automatically. An interesting direction for future research is to explore whether
AutoMoDe can design collective behaviors where robots use a combination of
these two communication methods, or whether it can select between them on a
per-mission basis. Can AutoMoDe design collective behaviors that enable swarms to
identify and interact with cooperative, non-cooperative, or neutral external agents?
In the heterogeneous setup we studied with Pistacchio, the sheep neither acted
with intent nor aimed to maximize their own performance measure. A more
realistic scenario would involve external agents driven by inference and planning.
Future work should focus on how AutoMoDe can discover and design appropriate
interaction dynamics between the swarm and such more complex agents.

The dissertation presented here, along with that of Francesca (2017), Ligot
(2023), Hasselmann (2023), Kuckling (2023a), and Salman (2024), has shown
that a consistent empirical framework can be used to systematically develop, test,
and compare new automatic design methods across different design problems
and platforms. We demonstrated this in the context of AutoMoDe, building a
cumulative knowledge base that resulted from collaboration between multiple
researchers. We believe that the growing scientific community in the automatic
design of robot swarms can benefit from similar coordinated work. Future efforts
should also be devoted to organizing the scientific community to collectively review
current approaches, explore new directions, and establish well-defined engineering
methodologies to design robot swarms via optimization. These efforts could be
structured around working groups in professional societies or possibly through the
establishment of an interinstitutional doctoral network.

A robot swarm is a group of robots that, by working together, can collectively
perform missions beyond their individual capabilities. We, as swarm roboticists,
must also fully leverage this powerful approach to build a mature engineering
discipline for the automatic design of robot swarms. In this thesis, we show the
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swarm robotics community how to use AutoMoDe to advance the design of robot
swarms by fully automating the generation of communication-based collective
behaviors.



Bibliography

Abbeel, P. and Ng, A. Y. (2004). “Apprenticeship learning via inverse reinforcement
learning”. In: ICML’04: Proceedings of the 21th Annual International Conference
on Machine Learning. ACM, p. 1.

Abbeel, P. and Ng, A. Y. (2010). “Inverse reinforcement learning”. In: Encyclopedia
of Machine Learning. Ed. by C. Sammut and G. I. Webb. Springer Handbooks.
Springer, pp. 554–558.

Albrecht, S. V., Christianos, F., and Schäfer, L. (2024). Multi-Agent Reinforcement
Learning: Foundations and Modern Approaches. MIT Press.

Alfeo, A. L., Castelló Ferrer, E., Lizarribar Carrillo, Y., Grignard, A., Alonso Pastor,
L., Sleeper, D. T., Cimino, M. G. C. A., Lepri, B., Vaglini, G., Larson, K.,
Dorigo, M., and Pentland, A. (2019). “Urban swarms: a new approach for
autonomous waste management”. In: 2019 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 4233–4240.

Alhafnawi, M., Hunt, E. R., Lemaignan, S., O’Dowd, P., and Hauert, S. (2022).
“MOSAIX: a swarm of robot tiles for social human-swarm interaction”. In: 2022
IEEE International Conference on Robotics and Automation (ICRA). IEEE,
pp. 6882–6888.

Alharthi, K., Abdallah, Z. S., and Hauert, S. (2022). “Automatic extraction of
understandable controllers from video observations of swarm behaviors”. In:
Swarm Intelligence: 13th International Conference, ANTS 2022. Ed. by M.
Dorigo, H. Hamann, M. López-Ibáñez, J. García-Nieto, A. P. Engelbrecht, C.
Pinciroli, V. Strobel, and C. L. Camacho Villalón. Vol. 13491. Springer, pp. 41–
53.

Allwright, M., Bhalla, N., El-faham, H., Antoun, A., Pinciroli, C., and Dorigo, M.
(2014). “SRoCS: leveraging stigmergy on a multi-robot construction platform for
unknown environments”. In: Swarm Intelligence: 9th International Conference,

173



BIBLIOGRAPHY 174

ANTS 2014. Ed. by M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes
de Oca, C. Solnon, and T. Stützle. Vol. 8667. Lecture Notes in Computer Science.
Springer, pp. 158–169.

Allwright, M., Zhu, W., and Dorigo, M. (2019). “An open-source multi-robot
construction system”. In: HardwareX 5, e00050.

Ampatzis, C., Tuci, E., Trianni, V., Christensen, A. L., and Dorigo, M. (2009).
“Evolving self-assembly in autonomous homogeneous robots: experiments with
two physical robots”. In: Artificial Life 15.4, pp. 465–484.

Antoun, A., Valentini, G., Hocquard, E., Wiandt, B., Trianni, V., and Dorigo, M.
(2016). “Kilogrid: a modular virtualization environment for the Kilobot robot”.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, pp. 3809–3814.

Aswale, A. and Pinciroli, C. (2023). “Heterogeneous coalition formation and schedul-
ing with multi-skilled robots”. In: 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, pp. 5402–5409.

Baker, M. (2016). “1,500 scientists lift the lid on reproducibility”. In: Nature
533.7604, pp. 452–454.

Balaprakash, P., Birattari, M., and Stützle, T. (2007). “Improvement strategies
for the F-Race algorithm: sampling design and iterative refinement”. In: Hy-
brid Metaheuristics: 4th International Workshop, HM 2007. Ed. by T. Bartz-
Beielstein, M. J. Blesa, C. Blum, B. Naujoks, A. Roli, G. Rudolph, and M.
Sampels. Vol. 4771. Lecture Notes in Computer Science. Springer, pp. 108–122.

Beal, J., Dulman, S., Usbeck, K., Viroli, M., and Correll, N. (2012). “Organizing the
aggregate: languages for spatial computing”. In: Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments. Ed. by M. Marjan. IGI
Global, pp. 436–501.

Beni, G. (2005). “From swarm intelligence to swarm robotics”. In: Swarm Robotics:
SAB 2004 International Workshop. Ed. by E. Şahin and W. M. Spears. Vol. 3342.
Lecture Notes in Computer Science. Springer, pp. 1–9.

Berman, S., Kumar, V., and Nagpal, R. (2011). “Design of control policies for spa-
tially inhomogeneous robot swarms with application to commercial pollination”.
In: 2011 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, pp. 378–385.

Berlinger, F., Gauci, M., and Nagpal, R. (2021). “Implicit coordination for 3D
underwater collective behaviors in a fish-inspired robot swarm”. In: Science
Robotics 6.50, eabd8668.



BIBLIOGRAPHY 175

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). “A racing
algorithm for configuring metaheuristics”. In: GECCO’02: Proceedings of the
4th Annual Conference on Genetic and Evolutionary Computation. Ed. by W. B.
Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F.
Miller, E. K. Burke, and N. Jonoska. Morgan Kaufmann Publishers, pp. 11–18.

Birattari, M., Yuan, Z., Balaprakash, P., and Stützle, T. (2010). “F-Race and
Iterated F-Race: an overview”. In: Experimental Methods for the Analysis of
Optimization Algorithms. Ed. by T. Bartz-Beielstein, M. Chiarandini, L. Paquete,
and M. Preuss. Springer, pp. 311–336.

Birattari, M., Delhaisse, B., Francesca, G., and Kerdoncuff, Y. (2016). “Observing
the effects of overdesign in the automatic design of control software for robot
swarms”. In: Swarm Intelligence: 10th International Conference, ANTS 2016.
Ed. by M. Dorigo, M. Birattari, X. Li, M. López-Ibáñez, K. Ohkura, C. Pinciroli,
and T. Stützle. Vol. 9882. Lecture Notes in Computer Science. Springer, pp. 45–
57.

Birattari, M., Ligot, A., Bozhinoski, D., Brambilla, M., Francesca, G., Garattoni, L.,
Garzón Ramos, D., Hasselmann, K., Kegeleirs, M., Kuckling, J., Pagnozzi, F.,
Roli, A., Salman, M., and Stützle, T. (2019). “Automatic off-line design of robot
swarms: a manifesto”. In: Frontiers in Robotics and AI 6, p. 59.

Birattari, M., Ligot, A., and Hasselmann, K. (2020). “Disentangling automatic and
semi-automatic approaches to the optimization-based design of control software
for robot swarms”. In: Nature Machine Intelligence 2.9, pp. 494–499.

Birattari, M., Ligot, A., and Francesca, G. (2021). “AutoMoDe: a modular approach
to the automatic off-line design and fine-tuning of control software for robot
swarms”. In: Automated Design of Machine Learning and Search Algorithms.
Ed. by N. Pillay and R. Qu. Natural Computing Series. Springer, pp. 73–90.

Birattari, M. (2009). Tuning Metaheuristics: A Machine Learning Perspective.
Springer.

Bloom, J., Paliwal PranjalMukherjee, A., and Pinciroli, C. (2023). “Decentralized
multi-agent reinforcement learning with global state prediction”. In: 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, pp. 8854–8861.

Borenstein, J. and Koren, Y. (1989). “Real-time obstacle avoidance for fast mo-
bile robots”. In: IEEE Transactions on Systems, Man, and Cybernetics 19.5,
pp. 1179–1187.



BIBLIOGRAPHY 176

Bozhinoski, D. and Birattari, M. (2018). “Designing control software for robot
swarms: software engineering for the development of automatic design methods”.
In: RoSE’18: Proceedings of the 1st International Workshop on Robotics Software
Engineering. ACM, pp. 33–35.

Bozhinoski, D. and Birattari, M. (2022). “Towards an integrated automatic design
process for robot swarms”. In: Open Research Europe 1, p. 112.

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). “Swarm robotics:
a review from the swarm engineering perspective”. In: Swarm Intelligence 7.1,
pp. 1–41.

Brambilla, M., Brutschy, A., Dorigo, M., and Birattari, M. (2014). “Property-driven
design for swarm robotics: a design method based on prescriptive modeling and
model checking”. In: ACM Transactions on Autonomous Adaptive Systems 9.4,
17:1–17:28.

Bredeche, N., Haasdijk, E., and Prieto, A. (2018). “Embodied evolution in collective
robotics: a review”. In: Frontiers in Robotics and AI 5, p. 12.

Brutschy, A., Pini, G., and Decugnière, A. (2012). Grippable objects for the foot-bot.
Tech. rep. TR/IRIDIA/2012-001. IRIDIA, Université Libre de Bruxelles.

Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M., and
Birattari, M. (2015). “The TAM: abstracting complex tasks in swarm robotics
research”. In: Swarm Intelligence 9.1, pp. 1–22.

Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S.,
and Dorigo, M. (2010). “Artificial pheromone for path selection by a foraging
swarm of robots”. In: Biological Cybernetics 103.5, pp. 339–352.

Cambier, N. and Ferrante, E. (2022). “AutoMoDe-Pomodoro: an evolutionary
class of modular designs”. In: GECCO’22: Proceedings of the Genetic and
Evolutionary Computation Conference. Ed. by J. E. Fieldsend. ACM, pp. 100–
103.

Carrillo-Zapata, D., Milner, E., Hird, J., Tzoumas GeorgiosVardanega, P. J., Sooriya-
bandara, M., Giuliani, M., Winfield, A., and Hauert, S. (2020). “Mutual shaping
in swarm robotics: user studies in fire and rescue, storage organization, and
bridge inspection”. In: Frontiers in Robotics and AI 7, p. 53.

Castelló Ferrer, E., Yamamoto, T., Dalla Libera, F., Liu, W., Winfield, A., Naka-
mura, Y., and Ishiguro, H. (2016). “Adaptive foraging for simulated and real
robotic swarms: the dynamical response threshold approach”. In: Swarm Intel-
ligence 10.1, pp. 1–31.

Castelló Ferrer, E., Hardjono, T., Pentland, A., and Dorigo, M. (2021). “Secure
and secret cooperation in robot swarms”. In: Science Robotics 6.56, eabf1538.



BIBLIOGRAPHY 177

Champandard, A. J. (2007). Understanding Behavior Trees. http://aigamedev.
com/open/articles/bt-overview/.

Chen, J., Gauci, M., Li, W., Kolling, A., and Groß, R. (2015). “Occlusion-based
cooperative transport with a swarm of miniature mobile robots”. In: IEEE
Transactions on Robotics 31.2, pp. 307–321.

Christensen, A. L. and Dorigo, M. (2006). “Evolving an integrated phototaxis and
hole-avoidance behavior for a swarm-bot”. In: Artificial Life X: Proceedings of
the Tenth International Conference on the Simulation and Synthesis of Living
Systems. Ed. by L. M. Rocha, L. S. Yaeger, M. A. Bedau, D. Floreano, R. L.
Goldstone, and A. Vespignani. MIT Press, pp. 248–254.

Christensen, A. L., O’Grady, R., and Dorigo, M. (2009). “From fireflies to fault-
tolerant swarms of robots”. In: IEEE Transactions on Evolutionary Computation
13.4, pp. 754–766.

Colledanchise, M. and Ögren, P. (2018). Behavior Trees in Robotics and AI: An
Introduction. Chapman & Hall/CRC Artificial Intelligence and Robotics Series.
CRC Press.

Conover, W. J. (1999). Practical Nonparametric Statistics. Wiley Series in Proba-
bility and Statistics. John Wiley & Sons.

Das, A., Gervet, T., Romoff, J., Batra, D., Parikh, D., Rabbat, M., and Pineau,
J. (2019). “TarMAC: targeted multi-agent communication”. In: ICML 2019:
Proceedings of the 36th Annual International Conference on Machine Learning.
ACM, pp. 1538–1546.

Doncieux, S. and Mouret, J.-B. (2014). “Beyond black-box optimization: a review
of selective pressures for evolutionary robotics”. In: Evolutionary Intelligence
7.2, pp. 71–93.

Doncieux, S., Bredeche, N., Mouret, J.-B., and Eiben, A. (2015). “Evolutionary
robotics: what, why, and where to”. In: Frontiers in Robotics and AI 2, p. 4.

Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella Thomas, H., Baldassarre, G.,
Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., and Gambardella, L. M.
(2003). “Evolving self-organizing behaviors for a Swarm-bot”. In: Autonomous
Robots 17, pp. 223–245.

Dorigo, M. and Birattari, M. (2007). “Swarm intelligence”. In: Scholarpedia 2.9,
p. 1462.

Dorigo, M. et al. (2013). “Swarmanoid: a novel concept for the study of hetero-
geneous robotic swarms”. In: IEEE Robotics & Automation Magazine 20.4,
pp. 60–71.

http://aigamedev.com/open/articles/bt-overview/
http://aigamedev.com/open/articles/bt-overview/


BIBLIOGRAPHY 178

Dorigo, M., Birattari, M., and Brambilla, M. (2014). “Swarm robotics”. In: Schol-
arpedia 9.1, p. 1463.

Dorigo, M., Theraulaz, G., and Trianni, V. (2020). “Reflections on the future of
swarm robotics”. In: Science Robotics 5, eabe4385.

Dorigo, M., Theraulaz, G., and Trianni, V. (2021). “Swarm robotics: past, present,
and future [point of view]”. In: Proceedings of the IEEE 109.7, pp. 1152–1165.

Dosieah, G. Y., Özdemir, A., Gauci, M., and Groß, R. (2022). “Moving mixtures
of active and passive elements with robots that do not compute”. In: Swarm
Intelligence: 13th International Conference, ANTS 2022. Vol. 13491. Lecture
Notes in Computer Science. Springer, pp. 183–195.

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014). “Hybrid control for
large swarms of aquatic drones”. In: ALIFE 14: The Fourteenth International
Conference on the Synthesis and Simulation of Living Systems. Ed. by H.
Sayama, J. Rieffel, S. Risi, R. Doursat, and H. Lipson. MIT Press, pp. 785–792.

Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S. M., and
Christensen, A. L. (2016). “Evolution of collective behaviors for a real swarm
of aquatic surface robots”. In: PLOS ONE 11.3, e0151834.

Ducatelle, F., Di Caro, G. A., Pinciroli, C., and Gambardella, L. M. (2011). “Self-
organized cooperation between robotic swarms”. In: Swarm Intelligence 5,
pp. 73–96.

Emmerich, M. T. M. and Deutz, A. H. (2018). “A tutorial on multiobjective
optimization: fundamentals and evolutionary methods”. In: Natural Computing
17.3, pp. 585–609.

Endo, W., Baumann, C., Asama, H., and Martinoli, A. (2023). “Automatic multi-
robot control design and optimization leveraging multi-level modeling: an
exploration case study”. In: IFAC-PapersOnLine 56.2, pp. 11462–11469.

Feola, L., Reina, A., Talamali, M. S., and Trianni, V. (2023). “Multi-swarm in-
teraction through augmented reality for Kilobots”. In: IEEE Robotics and
Automation Letters 8.11, pp. 6907–6914.

Ferrante, E., Turgut, A. E., Mathews, N., Birattari, M., and Dorigo, M. (2010).
“Flocking in stationary and non-stationary environments: a novel communication
strategy for heading alignment”. In: Parallel Problem Solving from Nature –
PPSN XI: 11th International Conference. Ed. by R. Schaefer, C. Cotta, J.
Kołodziej, and G. Rudolph. Vol. 6239. Lecture Notes in Computer Science.
Springer, pp. 331–340.



BIBLIOGRAPHY 179

Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., and Dorigo, M.
(2012). “Self-organized flocking with a mobile robot swarm: a novel motion
control method”. In: Adaptive Behavior 20.6, pp. 460–477.

Ferrante, E., Duéñez-Guzmán, E. A., Turgut, A. E., and Wenseleers, T. (2013).
“GESwarm: grammatical evolution for the automatic synthesis of collective
behaviors in swarm robotics”. In: GECCO’13: Proceedings of the 15th annual
conference on Genetic and evolutionary computation. Ed. by C. Blum. ACM,
pp. 17–24.

Ferrante, E., Turgut, A. E., Duéñez-Guzmán, E. A., Dorigo, M., and Wenseleers, T.
(2015). “Evolution of self-organized task specialization in robot swarms”. In:
PLOS Computational Biology 11.8, e1004273.

Fishburn, P. C. (1970). Utility Theory for Decision Making. Publications in Opera-
tions Research. John Wiley & Sons.

Floreano, D., Mitri, S., Magnenat, S., and Keller, L. (2007). “Evolutionary condi-
tions for the emergence of communication in robots”. In: Current Biology 17.6,
pp. 514–519.

Floreano, D., Husbands, P., and Nolfi, S. (2008). “Evolutionary robotics”. In:
Springer Handbook of Robotics. Ed. by B. Siciliano and O. Khatib. Springer
Handbooks. Springer, pp. 1423–1451.

Foerster, J., Assael, I. A., De Freitas, N., and Whiteson, S. (2016). “Learning to
communicate with deep multi-agent reinforcement learning”. In: NeurIPS’16:
Proceedings of the 29th International Conference on Neural Information Pro-
cessing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R.
Garnett. Vol. 29. Curran Associates, Inc.

Fonseca, C. M., Paquete, L., and López-Ibáñez, M. (2006). “An improved dimension-
sweep algorithm for the hypervolume indicator”. In: 2006 IEEE Congress on
Evolutionary Computation. IEEE, pp. 1157–1163.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn,
G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Trianni, V., and
Birattari, M. (2014a). “An experiment in automatic design of robot swarms:
AutoMoDe-Vanilla, EvoStick, and human experts”. In: Swarm Intelligence:
9th International Conference, ANTS 2014. Ed. by M. Dorigo, M. Birattari, S.
Garnier, H. Hamann, M. Montes de Oca, C. Solnon, and T. Stützle. Vol. 8667.
Lecture Notes in Computer Science. Springer International Publishing, pp. 25–
37.



BIBLIOGRAPHY 180

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M. (2014b).
“AutoMoDe: a novel approach to the automatic design of control software for
robot swarms”. In: Swarm Intelligence 8.2, pp. 89–112.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn,
G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V.,
and Birattari, M. (2015). “AutoMoDe-Chocolate: automatic design of control
software for robot swarms”. In: Swarm Intelligence 9.2–3, pp. 125–152.

Francesca, G. and Birattari, M. (2016). “Automatic design of robot swarms: achieve-
ments and challenges”. In: Frontiers in Robotics and AI 3.29, pp. 1–9.

Francesca, G. (2017). “A modular approach to the automatic design of control
software for robot swarms: from a novel perspective on the reality gap to
AutoMoDe”. PhD thesis. Université Libre de Bruxelles.

Fujisawa, R., Dobata, S., Sugawara, K., and Matsuno, F. (2014). “Designing
pheromone communication in swarm robotics: group foraging behavior mediated
by chemical substance”. In: Swarm Intelligence 8.3, pp. 227–246.

Garnier, S., Combe, M., Jost, C., and Theraulaz, G. (2013). “Do ants need to
estimate the geometrical properties of trail bifurcations to find an efficient route?:
a swarm robotics test bed”. In: PLOS Computational Biology 9.3, e1002903.

Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., and Birattari, M. (2015).
Software infrastructure for e-puck (and TAM). Tech. rep. TR/IRIDIA/2015-004.
IRIDIA, Université Libre de Bruxelles.

Garattoni, L. and Birattari, M. (2016). “Swarm robotics”. In: Wiley Encyclopedia
of Electrical and Electronics Engineering. Ed. by J. G. Webster. John Wiley &
Sons, pp. 1–19.

Garattoni, L. and Birattari, M. (2018). “Autonomous task sequencing in a robot
swarm”. In: Science Robotics 3.20, eaat0430.

Garzón Ramos, D. and Birattari, M. (2020). “Automatic design of collective
behaviors for robots that can display and perceive colors”. In: Applied Sciences
10.13, p. 4654.

Garzón Ramos, D., Bolaños, J. P., Diaz, J., Pachajoa, G., and Birattari, M. (2021a).
“Introduciendo la robótica de enjambres a entusiastas de la robótica: experiencias
y resultados de una colaboración académica”. In: I Congreso Internacional de la
Sociedad de Doctores e Investigadores de Colombia (SOPHIC 2021): la ciencia
al servicio de la sociedad. Ed. by E. Ramírez Vargas, L. A. Pedraza Herrera,
V. Otero Jiménez, and S. L. Leiva Maldonado. Editorial SoPhIC, pp. 46–48.

Garzón Ramos, D., Bozhinoski, D., Francesca, G., Garattoni, L., Hasselmann, K.,
Kegeleirs, M., Kuckling, J., Ligot, A., Mendiburu, F. J., Pagnozzi, F., Salman,



BIBLIOGRAPHY 181

M., Stützle, T., and Birattari, M. (2021b). “The automatic off-line design of
robot swarms: recent advances and perspectives”. In: R2T2: Robotics Research
for Tomorrow’s Technology. Ed. by G. De Masi, E. Ferrante, and P. Dario.

Garzón Ramos, D., Salman, M., Ubeda Arriaza, K., Hasselmann, K., and Birattari,
M. (2022). MoCA: a modular RGB color arena for swarm robotics experiments.
Tech. rep. TR/IRIDIA/2022-014. IRIDIA, Université Libre de Bruxelles.

Garzón Ramos, D. and Birattari, M. (2024). “Automatically designing robot swarms
in environments populated by other robots: an experiment in robot shepherding”.
In: 2024 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, pp. 12240–12247.

Garzón Ramos, D., Pagnozzi, F., Stützle, T., and Birattari, M. (2024). “Automatic
design of robot swarms under concurrent design criteria: a study based on
Iterated F-Race”. In: Advanced Intelligent Systems, p. 2400332.

Garzón Ramos, D. (2025). Leveraging environmental and inter-robot signaling in the
automatic modular design of robot swarms: communication, reaction to events,
and sequential missions – Supplementary Videos. https://dgarzonramos.com/
posts/Gar2025phd.html.

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014a). “Clustering
objects with robots that do not compute”. In: AAMAS ’14: Proceedings of the
2014 international conference on Autonomous agents and multi-agent systems.
International Foundation for Autonomous Agents and Multiagent Systems
(IFAAMAS), pp. 421–428.

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014b). “Self-organized
aggregation without computation”. In: The International Journal of Robotics
Research 33.8, pp. 1145–1161.

Geman, S., Bienenstock, E., and Doursat, R. (1992). “Neural networks and the
bias/variance dilemma”. In: Neural Computation 4.1, pp. 1–58.

Genter, K. and Stone, P. (2014). “Influencing a flock via ad hoc teamwork”. In:
Swarm Intelligence: 9th International Conference, ANTS 2014. Ed. by M. Dorigo,
M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, and T.
Stützle. Vol. 8667. Lecture Notes in Computer Science. Springer International
Publishing, pp. 110–121.

Genter, K. and Stone, P. (2016). “Adding influencing agents to a flock”. In: AAMAS
’16: Proceedings of the 2016 International Conference on Autonomous Agents
and Multiagent Systems. International Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS), pp. 615–623.

https://dgarzonramos.com/posts/Gar2025phd.html
https://dgarzonramos.com/posts/Gar2025phd.html


BIBLIOGRAPHY 182

Gendreau, M. and Potvin, J.-Y., eds. (2019). Handbook of Metaheuristics. Interna-
tional Series in Operations Research & Management Science. Springer.

Gharbi, I., Kuckling, J., Garzón Ramos, D., and Birattari, M. (2023). “Show me
what you want: inverse reinforcement learning to automatically design robot
swarms by demonstration”. In: 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, pp. 5063–5070.

Giusti, A., Nagi, J., Gambardella, L. M., and Di Caro, G. A. (2012). “Distributed
consensus for interaction between humans and mobile robot swarms (demon-
stration)”. In: AAMAS ’12: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems – Volume 3. International Foun-
dation for Autonomous Agents and Multiagent Systems (IFAAMAS), pp. 1503–
1504.

Glasmachers, T., Schaul, T., Yi, S., Wierstra, D., and Schmidhuber, J. (2010).
“Exponential natural evolution strategies”. In: GECCO’10: Proceedings of the
12th annual conference on Genetic and evolutionary computation. ACM, pp. 393–
400.

Gomes, J., Urbano, P., and Christensen, A. L. (2013). “Evolution of swarm robotics
systems with novelty search”. In: Swarm Intelligence 7.2–3, pp. 115–144.

Gomes, J. and Christensen, A. L. (2018). “Task-agnostic evolution of diverse
repertoires of swarm behaviours”. In: Swarm Intelligence: 11th International
Conference, ANTS 2018. Ed. by M. Dorigo, M. Birattari, C. Blum, A. L.
Christensen, A. Reina, and V. Trianni. Vol. 11172. Lecture Notes in Computer
Science. Springer, pp. 225–238.

Grassé, P.-P. (1959). “La reconstruction du nid et les coordinations interindividuelles
chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie:
essai d’interprétation du comportement des termites constructeurs”. In: Insectes
Sociaux: International Journal for the Study of Social Arthropods 6.1, pp. 41–80.

Guerreiro, A. P., Fonseca, C. M., and Paquete, L. (2021). “The hypervolume indi-
cator: computational problems and algorithms”. In: ACM Computing Surveys
54.6.

Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., and
Magdalena, L. (2009). “Open e-puck range & bearing miniaturized board
for local communication in swarm robotics”. In: 2009 IEEE International
Conference on Robotics and Automation (ICRA). Ed. by K. Kosuge. IEEE,
pp. 3111–3116.



BIBLIOGRAPHY 183

Hamann, H., Pinciroli, C., and Mammen, S. von (2018). “A gamification concept for
teaching swarm robotics”. In: 2018 12th European Workshop on Microelectronics
Education (EWME). Ed. by J. Haase. IEEE, pp. 83–88.

Hamann, H., Schranz, M., Elmenreich, W., Trianni, V., Pinciroli, C., Bredeche, N.,
and Ferrante, E. (2020). “Editorial: designing self-organization in the physical
realm”. In: Frontiers in Robotics and AI 7, p. 164.

Hamann, H. and Reina, A. (2021). “Scalability in computing and robotics”. In:
IEEE Transactions on Computers.

Hamann, H. (2012). “Towards swarm calculus: universal properties of swarm
performance and collective decisions”. In: Swarm Intelligence: 8th International
Conference, ANTS 2012. Ed. by M. Birattari, C. Blum, A. L. Christensen, A. P.
Engelbrecht, R. Groß, M. Dorigo, and T. Stützle. Vol. 7461. Lecture Notes in
Computer Science. Springer, pp. 168–179.

Hamann, H. (2014). “Evolution of collective behaviors by minimizing surprise”.
In: ALIFE 14: The Fourteenth International Conference on the Synthesis and
Simulation of Living Systems. Ed. by H. Sayama, J. Rieffel, S. Risi, R. Doursat,
and H. Lipson. MIT Press, pp. 344–351.

Hamann, H. (2018). Swarm robotics: a formal approach. Springer.
Hansen, N. and Ostermeier, A. (2001). “Completely derandomized self-adaptation

in evolution strategies”. In: Evolutionary Computation 9.2, pp. 159–195.
Hasselmann, K., Ligot, A., Francesca, G., Garzón Ramos, D., Salman, M., Kuckling,

J., Mendiburu, F. J., and Birattari, M. (2018a). Reference models for AutoMoDe.
Tech. rep. TR/IRIDIA/2018-002. IRIDIA, Université Libre de Bruxelles.

Hasselmann, K., Robert, F., and Birattari, M. (2018b). “Automatic design of
communication-based behaviors for robot swarms”. In: Swarm Intelligence:
11th International Conference, ANTS 2018. Ed. by M. Dorigo, M. Birattari, S.
Garnier, H. Hamann, M. Montes de Oca, C. Solnon, and T. Stützle. Vol. 11172.
Lecture Notes in Computer Science. Springer, pp. 16–29.

Hasselmann, K. and Birattari, M. (2020). “Modular automatic design of collective
behaviors for robots endowed with local communication capabilities”. In: PeerJ
Computer Science 6, e291.

Hasselmann, K., Ligot, A., Ruddick, J., and Birattari, M. (2021). “Empirical
assessment and comparison of neuro-evolutionary methods for the automatic
off-line design of robot swarms”. In: Nature Communications 12, p. 4345.

Hasselmann, K., Ligot, A., and Birattari, M. (2023). “Automatic modular design of
robots swarms based on repertoires of behaviors generated via novelty search”.
In: Swarm and Evolutionary Computation 83, p. 101395.



BIBLIOGRAPHY 184

Hasselmann, K. (2023). “Advances in the automatic modular design of control
software for robot swarms: using neuroevolution to generate modules”. PhD
thesis. Université Libre de Bruxelles.

Hauert, S., Zufferey, J.-C., and Floreano, D. (2009). “Evolved swarming without
positioning information: an application in aerial communication relay”. In:
Autonomous Robots 26.1, pp. 21–32.

Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., and Moses, M. E. (2012).
“Formica ex machina: ant swarm foraging from physical to virtual and back
again”. In: Swarm Intelligence: 8th International Conference, ANTS 2012. Ed.
by M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. P. Engelbrecht, R.
Groß, and T. Stützle. Vol. 7461. Lecture Notes in Computer Science. Springer,
pp. 252–259.

Hettiarachchi, S. and Spears, W. M. (2005). “Moving swarm formations through
obstacle fields”. In: Proceedings of the 2005 International Conference on Artificial
Intelligence, ICAI 2005. Vol. 1. CSREA Press, pp. 97–103.

Hettiarachchi, S. and Spears, W. M. (2006). “DAEDALUS for agents with ob-
structed perception”. In: 2006 IEEE Mountain Workshop on Adaptive and
Learning Systems. IEEE, pp. 195–200.

Hettiarachchi, S. and Spears, W. M. (2009). “Distributed adaptive swarm for
obstacle avoidance”. In: International Journal of Intelligent Computing and
Cybernetics 2.4, pp. 644–671.

Heuthe, V.-L., Panizon, E., Gu, H., and Bechinger, C. (2024). “Counterfactual
rewards promote collective transport using individually controlled swarm mi-
crorobots”. In: Science Robotics 9.97, eado5888.

Heylighen, F. (2016a). “Stigmergy as a universal coordination mechanism I: defini-
tion and components”. In: Cognitive Systems Research 38, pp. 4–13.

Heylighen, F. (2016b). “Stigmergy as a universal coordination mechanism II:
varieties and evolution”. In: Cognitive Systems Research 38, pp. 50–59.

Howard, A., Matarić, M. J., and Sukhatme, G. S. (2002). “Mobile sensor network
deployment using potential fields: a distributed, scalable solution to the area
coverage problem”. In: Distributed Autonomous Robotic Systems 5. Ed. by H.
Asama, T. Fukuda, and T. Hasegawa. Springer, pp. 299–308.

Hu, J., Turgut, A. E., Krajník, T., Lennox, B., and Arvin, F. (2020). “Occlusion-
based coordination protocol design for autonomous robotic shepherding tasks”.
In: IEEE Transactions on Cognitive and Developmental Systems, p. 1.



BIBLIOGRAPHY 185

Hunt, E. R., Jones, S., and Hauert, S. (2019). “Testing the limits of pheromone
stigmergy in high-density robot swarms”. In: Royal Society Open Science 6.11,
p. 190225.

Hunt, E. R. and Hauert, S. (2020). “A checklist for safe robot swarms”. In: Nature
Machine Intelligence 2, pp. 420–422.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. (2017). “Imitation learning: a
survey of learning methods”. In: ACM Compututing Surveys 50.2, p. 21.

Hüttenrauch, M., Šošić, A., and Neumann, G. (2019). “Deep reinforcement learning
for swarm systems”. In: Journal of Machine Learning Research 20.1, pp. 1966–
1996.

Ijspeert, A. J., Martinoli, A., Billard, A., and Gambardella, L. M. (2001). “Collab-
oration through the exploitation of local interactions in autonomous collective
robotics: the stick pulling experiment”. In: Autonomous Robots 11.2, pp. 149–
171.

Jakobi, N., Husbands, P., and Harvey, I. (1995). “Noise and the reality gap: the
use of simulation in evolutionary robotics”. In: Advances in Artificial Life:
Third European Conference on Artificial Life. Ed. by F. Morán, A. Moreno,
J. J. Merelo, and P. Chacón. Vol. 929. Lecture Notes in Artificial Intelligence.
Springer, pp. 704–720.

Jakobi, N. (1997). “Evolutionary robotics and the radical envelope-of-noise hypoth-
esis”. In: Adaptive Behavior 6.2, pp. 325–368.

Jones, S., Studley, M., Hauert, S., and Winfield, A. (2018). “Evolving behaviour
trees for swarm robotics”. In: Distributed Autonomous Robotic Systems: The
13th International Symposium. Ed. by R. Groß, A. Kolling, S. Berman, E.
Frazzoli, A. Martinoli, F. Matsuno, and M. Gauci. Vol. 6. Springer Proceedings
in Advanced Robotics. Springer, pp. 487–501.

Jones, S., Winfield, A., Hauert, S., and Studley, M. (2019). “Onboard evolution
of understandable swarm behaviors”. In: Advanced Intelligent Systems 1.6,
p. 1900031.

Jones, S., Milner, E., Sooriyabandara, M., and Hauert, S. (2020). “Distributed
situational awareness in robot swarms”. In: Advanced Intelligent Systems 2.11,
p. 2000110.

Jones, S., Milner, E., Sooriyabandara, M., and Hauert, S. (2022). DOTS: an open
testbed for industrial swarm robotic solutions. https://arxiv.org/abs/2203.
13809.

Jones, J. E. (1924). “On the determination of molecular fields”. In: Proceedings of
the Royal Society of London 106, pp. 463–477.

https://arxiv.org/abs/2203.13809
https://arxiv.org/abs/2203.13809


BIBLIOGRAPHY 186

Kaiser, T. K. and Hamann, H. (2019). “Engineered self-organization for resilient
robot self-assembly with minimal surprise”. In: Robotics and Autonomous Sys-
tems 122, p. 103293.

Kaiser, T. K. and Hamann, H. (2022). “Innate motivation for robot swarms by
minimizing surprise: from simple simulations to real-world experiments”. In:
IEEE Transactions on Robotics 38.6, pp. 3582–3601.

Kazadi, S. (2009). “Model independence in swarm robotics”. In: International
Journal of Intelligent Computing and Cybernetics 2.4, pp. 672–694.

Kegeleirs, M., Garzón Ramos, D., and Birattari, M. (2019). “Random walk explo-
ration for swarm mapping”. In: Towards Autonomous Robotic Systems: 20th
Annual Conference, TAROS 2019. Ed. by K. Althoefer, J. Konstantinova, and K.
Zhang. Vol. 11650. Lecture Notes in Computer Science. Springer, pp. 211–222.

Kegeleirs, M., Todesco, R., Garzón Ramos, D., Legarda Herranz, G., and Birattari,
M. (2022). Mercator: hardware and software architecture for experiments in
swarm SLAM. Tech. rep. TR/IRIDIA/2022-012. IRIDIA, Université Libre de
Bruxelles.

Kegeleirs, M., Garzón Ramos, D., Garattoni, L., Francesca, G., and Birattari, M.
(2023). “Automatic off-line design of robot swarms: exploring the transferability
of control software and design methods across different platforms”. In: ICRA
2023 Transferability in Robotics Workshop. EU Horizon project euRobin.

Kegeleirs, M., Garzón Ramos, D., and Birattari, M. (2024a). “DeimOS: a ROS-
ready operating system for the e-puck”. In: Journal of Open Research Software,
(accepted).

Kegeleirs, M., Garzón Ramos, D., Hasselmann, K., Garattoni, L., Francesca, G.,
and Birattari, M. (2024b). “Transferability in the automatic off-line design of
robot swarms: from sim-to-real to embodiment and design-method transfer
across different platforms”. In: IEEE Robotics and Automation Letters 9.3,
pp. 2758–2765.

Kegeleirs, M., Garzón Ramos, D., Legarda Herranz, G., Gharbi, I., Szpirer, J.,
Debeir, O., Garattoni, L., Francesca, G., and Birattari, M. (2024c). “Collective
perception for tracking people with a robot swarm”. In: 40th Anniversary of
the IEEE Conference on Robotics and Automation (ICRA@40), (accepted).

Kegeleirs, M., Garzón Ramos, D., Legarda Herranz, G., Gharbi, I., Szpirer, J., Has-
selmann, K., Garattoni, L., Francesca, G., and Birattari, M. (2024d). “Leveraging
swarm capabilities to assist other systems”. In: ICRA 2024 Breaking Swarm
Stereotypes Workshop. EU EIC project EMERGE.



BIBLIOGRAPHY 187

Kellogg, J., Bovais, C., Dahlburg, J., Foch, R. J., Gardner, J. H., Gordon, D. F.,
Hartley, R. L., Kamgar-Parsi, B., Mcfarlane, H., Pipitone, F., Ramamurti, R.,
Sciambi, A., Spears, W. M., Srull, D., and Sullivan, C. (2002). “The NRL
micro tactical expendable (MITE) air vehicle”. In: The Aeronautical Journal,
pp. 431–441.

Khaliq, A. A., Di Rocco, M., and Saffiotti, A. (2014). “Stigmergic algorithms for
multiple minimalistic robots on an RFID floor”. In: Swarm Intelligence 8.3,
pp. 199–225.

Khatib, O. (1986). “Real-time obstacle avoidance for manipulators and mobile
robots”. In: The International Journal of Robotics Research 5.1, pp. 90–98.

King, A. J., Portugal, S. J., Strömbom, D., Mann, R. P., Carrillo, J. A., Kalise,
D., Croon, G. de, Barnett, H., Scerri, P., Groß, R., Chadwick, D. R., and
Papadopoulou, M. (2023). “Biologically inspired herding of animal groups by
robots”. In: Methods in Ecology and Evolution 14.2, pp. 478–486.

Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P. (1983). “Optimization by
simulated annealing”. In: Science 220.4598, pp. 671–680.

Kolling, A., Walker, P., Chakraborty, N., Sycara, K., and Lewis, M. (2016). “Human
interaction with robot swarms: a survey”. In: IEEE Transactions on Human-
Machine Systems 46.1, pp. 9–26.

Koza, J. R. (1992). Genetic programming: on the programming of computers by
means of natural selection. MIT Press.

Krieger, M. J. B., Billeter, J.-B., and Keller, L. (2000). “Ant-like task allocation
and recruitment in cooperative robots”. In: Nature 406, pp. 992–995.

Kuckling, J., Ligot, A., Bozhinoski, D., and Birattari, M. (2018a). “Behavior trees
as a control architecture in the automatic modular design of robot swarms”.
In: Swarm Intelligence: 11th International Conference, ANTS 2018. Ed. by
M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. Reina, and V. Trianni.
Vol. 11172. Lecture Notes in Computer Science. Springer, pp. 30–43.

Kuckling, J., Ligot, A., Bozhinoski, D., and Birattari, M. (2018b). Search space for
AutoMoDe-Chocolate and AutoMoDe-Maple. Tech. rep. TR/IRIDIA/2018-012.
IRIDIA, Université Libre de Bruxelles.

Kuckling, J., Ubeda Arriaza, K., and Birattari, M. (2019). “Simulated annealing as
an optimization algorithm in the automatic modular design of robot swarms”.
In: Proceedings of the Reference AI & ML Conference for Belgium, Netherlands
& Luxemburg, BNAIC/BENELEARN 2019. Ed. by K. Beuls, B. Bogaerts, G.
Bontempi, P. Geurts, N. Harley, B. Lebichot, T. Lenaerts, G. Louppe, and
P. Van Eecke. Vol. 2491. CEUR Workshop Proceedings.



BIBLIOGRAPHY 188

Kuckling, J., Stützle, T., and Birattari, M. (2020a). “Iterative improvement in the
automatic modular design of robot swarms”. In: PeerJ Computer Science 6,
e322.

Kuckling, J., Ubeda Arriaza, K., and Birattari, M. (2020b). “AutoMoDe-IcePop:
automatic modular design of control software for robot swarms using simulated
annealing”. In: Artificial Intelligence and Machine Learning: BNAIC 2019,
BENELEARN 2019. Ed. by B. Bogaerts, G. Bontempi, P. Geurts, N. Harley, B.
Lebichot, T. Lenaerts, and G. Louppe. Vol. 1196. Communications in Computer
and Information Science. Springer, pp. 3–17.

Kuckling, J., Hasselmann, K., Pelt, V. van, Kiere, C., and Birattari, M. (2021a). Au-
toMoDe Editor: a visualization tool for AutoMoDe. Tech. rep. TR/IRIDIA/2021-
009. IRIDIA, Université Libre de Bruxelles.

Kuckling, J., Pelt, V. van, and Birattari, M. (2021b). “Automatic modular de-
sign of behavior trees for robot swarms with communication capabilities”.
In: Applications of Evolutionary Computation: 24th International Conference,
EvoApplications 2021. Ed. by P. A. Castillo and J. L. Jiménez Laredo. Vol. 12694.
Lecture Notes in Computer Science. Springer, pp. 130–145.

Kuckling, J., Pelt, V. van, and Birattari, M. (2022). “AutoMoDe-Cedrata: automatic
design of behavior trees for controlling a swarm of robots with communication
capabilities”. In: SN Computer Science 3, p. 136.

Kuckling, J., Luckey, R., Avrutin, V., Vardy, A., Reina, A., and Hamann, H. (2024).
“Do we run large-scale multi-Robot systems on the edge? More evidence for
two-phase performance in system size scaling”. In: 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp. 4562–4568.

Kuckling, J. (2023a). “Optimization in the automatic modular design ofcontrol
software for robot swarms”. PhD thesis. Université Libre de Bruxelles.

Kuckling, J. (2023b). “Recent trends in robot learning and evolution for swarm
robotics”. In: Frontiers in Robotics and AI 10, p. 1134841.

Labella, T. H., Dorigo, M., and Deneubourg, J.-L. (2006). “Division of labor in a
group of robots inspired by ants’ foraging behavior”. In: ACM Transactions on
Autonomous Adaptive Systems, pp. 4–25.

Lee, S., Milner, E., and Hauert, S. (2022). “A data-driven method for metric
extraction to detect faults in robot swarms”. In: IEEE Robotics and Automation
Letters 7.4, pp. 10746–10753.

Legarda Herranz, G., Garzón Ramos, D., Kuckling, J., Kegeleirs, M., and Birattari,
M. (2022). Tycho: a robust, ROS-based tracking system for robot swarms. Tech.
rep. TR/IRIDIA/2022-009. IRIDIA, Université Libre de Bruxelles.



BIBLIOGRAPHY 189

Lehman, J. and Stanley, K. O. (2011). “Abandoning objectives: evolution through
the search for novelty alone”. In: Evolutionary Computation 19.2, pp. 189–223.

Lerman, K., Galstyan, A., Martinoli, A., and Ijspeert, A. J. (2001). “A macroscopic
analytical model of collaboration in distributed robotic systems”. In: Artificial
Life 7.4, pp. 375–393.

Lerman, K. and Galstyan, A. (2002). “Mathematical model of foraging in a group
of robots: effect of interference”. In: Autonomous Robots 13.2, pp. 127–141.

Li, W., Gauci, M., and Groß, R. (2016). “Turing learning: a metric-free approach
to inferring behavior and its application to swarms”. In: Swarm Intelligence 10,
pp. 211–243.

Li, S., Batra, R., Brown, D., Chang, H.-D., Ranganathan, N., Hoberman, C., Rus,
D., and Lipson, H. (2019). “Particle robotics based on statistical mechanics of
loosely coupled components”. In: Nature 567.7748, pp. 361–365.

Licitra, R. A., Bell, Z. I., and Dixon, W. E. (2019). “Single-agent indirect herding of
multiple targets with uncertain dynamics”. In: IEEE Transactions on Robotics
35.4, pp. 847–860.

Lien, J.-M., Bayazit, O. B., Sowell, R. T., Rodríguez, S., and Amato, N. M. (2004).
“Shepherding behaviors”. In: 2004 IEEE International Conference on Robotics
and Automation (ICRA). Vol. 4. IEEE, pp. 4159–4164.

Ligot, A. and Birattari, M. (2020). “Simulation-only experiments to mimic the
effects of the reality gap in the automatic design of robot swarms”. In: Swarm
Intelligence 14, pp. 1–24.

Ligot, A., Hasselmann, K., and Birattari, M. (2020a). “AutoMoDe-Arlequin: neural
networks as behavioral modules for the automatic design of probabilistic finite
state machines”. In: Swarm Intelligence: 12th International Conference, ANTS
2020. Ed. by M. Dorigo, T. Stützle, M. J. Blesa, C. Blum, H. Hamann, M. K.
Heinrich, and V. Strobel. Vol. 12421. Lecture Notes in Computer Science.
Springer, pp. 109–122.

Ligot, A., Kuckling, J., Bozhinoski, D., and Birattari, M. (2020b). “Automatic
modular design of robot swarms using behavior trees as a control architecture”.
In: PeerJ Computer Science 6, e314.

Ligot, A. and Birattari, M. (2022). “On using simulation to predict the performance
of robot swarms”. In: Scientific Data 9, p. 788.

Ligot, A. (2023). “Assessing and forecasting the performance of optimization-
based design methods for robot swarms: experimental protocol & pseudo-reality
predictors”. PhD thesis. Université Libre de Bruxelles.



BIBLIOGRAPHY 190

Liu, W., Winfield, A., Sa, J., Chen, J., and Dou, L. (2007). “Towards energy
optimization: emergent task allocation in a swarm of foraging robots”. In:
Adaptive Behavior 15.3, pp. 289–305.

Lochmatter, T., Aydın Göl, E., Navarro, I., and Martinoli, A. (2013). “A plume
tracking algorithm based on crosswind formations”. In: Distributed Autonomous
Robotic Systems: The 10th International Symposium. Ed. by A. Martinoli, F.
Mondada, N. Correll, G. Mermoud, M. Egerstedt, M. A. Hsieh, L. E. Parker,
and K. Støy. Springer Tracts in Advanced Robotics. Springer, pp. 91–102.

Lopes, Y. K., Leal, A. B., Dodd, T. J., and Groß, R. (2014). “Application of
supervisory control theory to swarms of e-puck and Kilobot robots”. In: Swarm
Intelligence: 9th International Conference, ANTS 2014. Ed. by M. Dorigo, M.
Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, and T. Stützle.
Vol. 8667. Lecture Notes in Computer Science. Springer, pp. 62–73.

Lopes, Y. K., Trenkwalder, S. M., Leal, A. B., Dodd, T. J., and Groß, R. (2016).
“Supervisory control theory applied to swarm robotics”. In: Swarm Intelligence
10.1, pp. 65–97.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., and Stüt-
zle, T. (2016). “The irace package: iterated racing for automatic algorithm
configuration”. In: Operations Research Perspectives 3, pp. 43–58.

Lopes, Y. K., Trenkwalder, S. M., Leal, A. B., Dodd, T. J., and Groß, R. (2017).
“Probabilistic supervisory control theory (pSCT) applied to swarm robotics”.
In: AAMAS ’17: Proceedings of the 16th Conference on Autonomous Agents
and MultiAgent Systems. International Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS), pp. 1395–1403.

López-Ibáñez, M., Pérez Cáceres, L., Dubois-Lacoste, J., Stützle, T., and Birattari,
M. (2020). The irace package: user guide. IRIDIA, Université Libre de Bruxelles,
Brussels, Belgium.

Marocco, D. and Nolfi, S. (2007). “Emergence of communication in embodied agents
evolved for the ability to solve a collective navigation problem”. In: Connection
Science 19.1, pp. 53–74.

Marler, R. T. and Arora, J. S. (2010). “The weighted sum method for multi-objective
optimization: new insights”. In: Structural and Multidisciplinary Optimization
41.6, pp. 853–862.

Martinoli, A., Ijspeert, A. J., and Mondada, F. (1999). “Understanding collective
aggregation mechanisms: from probabilistic modelling to experiments with real
robots”. In: Robotics and Autonomous Systems 29, pp. 51–63.



BIBLIOGRAPHY 191

Mason, K. and Hauert, S. (2023). “Evolving multi-objective neural network con-
trollers for robot swarms”. In: 2023 Autonomous Robots and Multirobot Systems
Workshop. Ed. by N. Basilico, M. Sridharan, N. Agmon, F. Amigoni, J. Biswas,
A. Farinelli, M. Gini, G. A. Kaminka, and D. Nardi.

Mathews, N., Christensen, A. L., O’Grady, R., Mondada, F., and Dorigo, M. (2017).
“Mergeable nervous systems for robots”. In: Nature Communications 8.1, p. 439.

Mathews, N., Christensen, A. L., Stranieri, A., Scheidler, A., and Dorigo, M. (2019).
“Supervised morphogenesis: exploiting morphological flexibility of self-assembling
multirobot systems through cooperation with aerial robots”. In: Robotics and
Autonomous Systems 112, pp. 154–167.

Matarić, M. J. (1997). “Reinforcement learning in the multi-robot domain”. In:
Autonomous Robots 4.1, pp. 73–83.

Maxim, P. M., Spears, W. M., and Spears, D. (2009). “Robotic chain formations”.
In: IFAC Proceedings Volumes 42.22, pp. 19–24.

Mayet, R., Roberz, J., Schmickl, T., and Crailsheim, K. (2010). “Antbots: a feasible
visual emulation of pheromone trails for swarm robots”. In: Swarm Intelligence:
7th International Conference, ANTS 2010. Ed. by M. Dorigo, M. Birattari,
G. A. Di Caro, R. Doursat, A. P. Engelbrecht, D. Floreano, L. M. Gambardella,
R. Groß, E. Şahin, H. Sayama, and T. Stützle. Vol. 6234. Lecture Notes in
Computer Science. Springer, pp. 89–94.

Mendiburu, F. J., Garzón Ramos, D., Morais, M. R. A., Lima, A. M. N., and
Birattari, M. (2022). “AutoMoDe-Mate: automatic off-line design of spatially-
organizing behaviors for robot swarms”. In: Swarm and Evolutionary Computa-
tion 74, p. 101118.

Miettinen, K. (1998). Nonlinear Multiobjective Optimization. Springer.
Milner, E., Sooriyabandara, M., and Hauert, S. (2023). Swarm Performance In-

dicators: metrics for robustness, fault tolerance, scalability and adaptability.
https://arxiv.org/abs/2311.01944.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009). “The e-puck, a robot
designed for education in engineering”. In: ROBOTICA 2009: Proceedings of
the 9th Conference on Autonomous Robot Systems and Competitions. Ed. by
P. Gonçalves, P. Torres, and C. Alves. Instituto Politécnico de Castelo Branco,
pp. 59–65.

Mondada, F., Franzi, E., and Ienne, P. (1997). “Mobile robot miniaturisation:
a tool for investigation in control algorithms”. In: Experimental Robotics III:

https://arxiv.org/abs/2311.01944


BIBLIOGRAPHY 192

3rd International Symposium. Ed. by T. Yoshikawa and F. Miyazaki. Vol. 200.
Lecture Notes in Control and Information Sciences. Springer, pp. 501–513.

Na, S., Raoufi, M., Turgut, A. E., Krajník, T., and Arvin, F. (2019). “Extended
artificial pheromone system for swarm robotic applications”. In: ALIFE 2019:
The 2019 Conference on Artificial Life. MIT Press, pp. 608–615.

Na, S., Qiu, Y., Turgut, A. E., Ulrich, J., Krajník, T., Yue, S., Lennox, B., and
Arvin, F. (2020). “Bio-inspired artificial pheromone system for swarm robotics
applications”. In: Adaptive Behavior 29.4, pp. 395–415.

Na, S., Niu, H., Lennox, B., and Arvin, F. (2022). “Bio-inspired collision avoidance
in swarm systems via deep reinforcement learning”. In: IEEE Transactions on
Vehicular Technology 71.3, pp. 251–2526.

Nedjah, N. and Silva Junior, L. (2019). “Review of methodologies and tasks in swarm
robotics towards standardization”. In: Swarm and Evolutionary Computation
50, p. 100565.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence,
and Technology of Self-Organizing Machines. MIT Press.

Nouyan, S., Campo, A., and Dorigo, M. (2008). “Path formation in a robot swarm:
self-organized strategies to find your way home”. In: Swarm Intelligence 2.1,
pp. 1–23.

Nouyan, S., Groß, R., Bonani, M., Mondada, F., and Dorigo, M. (2009). “Team-
work in self-organized robot colonies”. In: IEEE Transactions on Evolutionary
Computation 13.4, pp. 695–711.

O’Grady, R., Christensen, A. L., and Dorigo, M. (2009). “SWARMORPH: multi-
robot morphogenesis using directional self-assembly”. In: IEEE Transactions
on Robotics 25.3, pp. 738–743.

O’Grady, R., Groß, R., Christensen, A. L., and Dorigo, M. (2010). “Self-assembly
strategies in a group of autonomous mobile robots”. In: Autonomous Robots
28.4, pp. 439–455.

O’Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Genetic Programming Series. Springer.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., and Peters, J.
(2018). “An algorithmic perspective on imitation learning”. In: Foundations and
Trends in Robotics 7.1–2, pp. 1–179.

Özdemir, A., Gauci, M., and Groß, R. (2017). “Shepherding with robots that do not
compute”. In: ECAL 2017, the Fourteenth European Conference on Artificial
Life. MIT Press, pp. 332–339.



BIBLIOGRAPHY 193

Pagnozzi, F. and Birattari, M. (2021). “Off-policy evaluation of the performance of
a robot swarm: importance sampling to assess potential modifications to the
finite-state machine that controls the robots”. In: Frontiers in Robotics and AI
8, p. 55.

Parker, L. E., Rus, D., and Sukhatme, G. S. (2016). “Multiple mobile robot systems”.
In: Springer Handbook of Robotics. Ed. by B. Siciliano and O. Khatib. Springer
Handbooks. Springer, pp. 1335–1384.

Payton, D., Daily, M., Estowski, R., Howard, M., and Lee, C. (2001). “Pheromone
robotics”. In: Autonomous Robots 11, pp. 319–324.

Pérez-Dattari, R., Della Santina, C., and Kober, J. (2024). “PUMA: deep metric
imitation learning for stable motion primitives”. In: Advanced Intelligent Systems
6.11, p. 2400144.

Pierson, A. and Schwager, M. (2018). “Controlling noncooperative herds with
robotic herders”. In: IEEE Transactions on Robotics 34.2, pp. 517–525.

Pinciroli, C., Birattari, M., Tuci, E., Dorigo, M., Rey Zapatero, M. del, Vinko, T.,
and Izzo, D. (2008a). “Lattice formation in space for a swarm of pico satel-
lites”. In: Ant Colony Optimization and Swarm Intelligence: 6th International
Conference, ANTS 2008. Ed. by M. Dorigo, M. Birattari, C. Blum, M. Clerc,
T. Stützle, and A. Winfield. Springer, pp. 347–354.

Pinciroli, C., Birattari, M., Tuci, E., Dorigo, M., Rey Zapatero, M. del, Vinko, T.,
and Izzo, D. (2008b). “Self-organizing and scalable shape formation for a swarm
of pico satellites”. In: 2008 NASA/ESA Conference on Adaptive Hardware and
Systems. IEEE, pp. 57–61.

Pinciroli, C., O’Grady, R., Christensen, A. L., and Dorigo, M. (2009). “Self-organised
recruitment in a heteregeneous swarm”. In: 2009 International Conference on
Advanced Robotics. IEEE, pp. 1–8.

Pini, G., Brutschy, A., Birattari, M., and Dorigo, M. (2011a). “Task partitioning
in swarms of robots: reducing performance losses due to interference at shared
resources”. In: Informatics in Control Automation and Robotics: Revised and
Selected Papers from the International Conference on Informatics in Control
Automation and Robotics 2009. Ed. by J. Andrade Cetto, J. Filipe, and J.-L.
Ferrier. Vol. 85. Lecture Notes in Electrical Engineering. Springer, pp. 217–228.

Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., and Birattari, M. (2011b).
“Task partitioning in swarms of robots: an adaptive method for strategy selec-
tion”. In: Swarm Intelligence 5.3–4, pp. 283–304.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Di Caro, G. A., Ducatelle, F., Birattari, M., Gambardella,



BIBLIOGRAPHY 194

L. M., and Dorigo, M. (2012). “ARGoS: a modular, parallel, multi-engine
simulator for multi-robot systems”. In: Swarm Intelligence 6.4, pp. 271–295.

Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., and Birattari, M. (2014). “Task
partitioning in a robot swarm: object retrieval as a sequence of subtasks with
direct object transfer”. In: Artificial Life 20.3, pp. 291–317.

Pinciroli, C. and Beltrame, G. (2016). “Buzz: a programming language for robot
swarms”. In: IEEE Software 33.4, pp. 97–100.

Pitonakova, L., Giuliani, M., Pipe, A., and Winfield, A. (2018). “Feature and
performance comparison of the V-REP, Gazebo and ARGoS robot simulators”.
In: Towards Autonomous Robotic Systems: 19th Annual Conference, TAROS
2018. Ed. by M. Giuliani, T. Assaf, and M. E. Giannaccini. Lecture Notes in
Computer Science. Springer, pp. 357–368.

Podevijn, G., O’Grady, R., and Dorigo, M. (2012). “Self-organised feedback in
human swarm interaction”. In: Proceedings of the workshop on robot feedback in
human-robot interaction: how to make a robot readable for a human interaction
partner, Ro-Man 2012.

Pugh, J., Martinoli, A., and Zhang, Y. (2005). “Particle swarm optimization for
unsupervised robotic learning”. In: 2005 IEEE Swarm Intelligence Symposium,
SIS 2005. IEEE, pp. 92–99.

Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2003). “Evolving controllers for
a homogeneous system of physical robots: structured cooperation with minimal
sensors”. In: Philosophical Transactions of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sciences 361.1811, pp. 2321–2343.

Reina, A., Miletitch, R., Dorigo, M., and Trianni, V. (2015a). “A quantitative
micro–macro link for collective decisions: the shortest path discovery/selection
example”. In: Swarm Intelligence 9.2–3, pp. 75–102.

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., and Trianni, V. (2015b).
“A design pattern for decentralised decision making”. In: PLOS ONE 10.10,
e0140950.

Reina, A., Cope, A. J., Nikolaidis, E., Marshall, J. A. R., and Sabo, C. (2017).
“ARK: augmented reality for Kilobots”. In: IEEE Robotics and Automation
Letters 2.3, pp. 1755–1761.

Reina, A., Zakir, R., De Masi, G., and Ferrante, E. (2023). “Cross-inhibition leads
to group consensus despite the presence of strongly opinionated minorities and
asocial behaviour”. In: Communications Physics 6, p. 236.



BIBLIOGRAPHY 195

Riedo, F., Chevalier MorganeMagnenat, S., and Mondada, F. (2013). “Thymio II:
a robot that grows wiser with children”. In: 2013 IEEE Workshop on Advanced
Robotics and its Social Impacts (ARSO). IEEE, pp. 187–193.

Rubenstein, M., Cornejo, A., and Nagpal, R. (2014). “Programmable self-assembly
in a thousand-robot swarm”. In: Science 345.6198, pp. 795–799.

Russell, R. A. (1997). “Heat trails as short-lived navigational markers for mobile
robots”. In: 1997 IEEE International Conference on Robotics and Automation
(ICRA97). Vol. 4. IEEE, pp. 3534–3539.

Russell, R. A. (1999). “Ant trails – an example for robots to follow?” In: 1999
IEEE International Conference on Robotics and Automation, ICRA’99. Vol. 4.
IEEE, pp. 2698–2703.
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