

Cognitive Abilities in Swarm Robotics:
Developing a swarm that can collectively sequence tasks

Thesis presented by

Lorenzo GARATTONI

in fulfilment of the requirements of the PhD Degree in

Docteur en Sciences de l'Ingénieur et technologie

Supervisor:

Professor Mauro BIRATTARI

Academic year 2020-2021

At bottom, robotics is about us. It is the discipline of emulating our lives,
of wondering how we work.

Rod Grupen

The thesis

Can robots of a swarm cooperate to solve together a complex cognitive prob-
lem that none of them can solve alone? TS-Swarm is a robot swarm that
autonomously sequences tasks at run time and can therefore operate even if
the correct order of execution is unknown at design time. The ability to se-
quence tasks endows robot swarms with unprecedented autonomy and is an
important step towards the uptake of swarm robotics in a range of practical
applications.

Summary

The goal of this thesis is to demonstrate a robot swarm that displays complex cognitive
abilities, which are typical of systems that rely on deductive reasoning and planning.
One of the main challenges in swarm robotics is to design the behavior of the individual
robots so that a desired collective mission can be achieved. The research community
has so far been able to demonstrate robot swarms able to perform missions that require
mechanical/geometrical abilities and very simple cognitive abilities. Moreover, most
of the work relies on the assumption that the order of execution of the tasks that the
individual robots should perform to achieve the mission is known (or can be deduced)
at design time. However, this assumption often does not hold once the robot swarm
has been deployed. Indeed, the real world is dynamic and typically difficult to predict,
and thus requires the ability to formulate and adapt courses of action at operation
time. Although it might seem impossible to develop robot swarms with such ability,
as robots in a swarm act by reacting to contingencies without planning nor reasoning
about their actions, in this thesis we propose a novel view: simple forms of planning
can emerge at the collective level out of the reactive behaviors of individual robots.

We present TS-Swarm, a robot swarm that sequences a set of tasks autonomously
at operation time. While the task-sequencing ability is displayed by the swarm as
a whole, the individual robots simply react to contingencies and are unaware of the
task-sequencing problem being solved. The task-sequencing ability allows TS-Swarm
to operate even when the correct order of execution of the tasks is unknown at design
time. The autonomy and adaptivity of TS-Swarm are unprecedented. We perform
an analysis based on a large number of experimental runs to demonstrate its task-
sequencing ability in a wide range of settings. In particular, we show that TS-Swarm
is scalable and robust to the variation of the total number of robots in the swarm.

TS-Swarm represents a first attempt to endow robot swarms with complex cognitive
abilities typical of systems that plan their actions. Much work is still needed to develop
robot swarms that can define their courses of action in complete autonomy. This will
be crucial to promote the application of robotic swarms in real-world missions.

vii

viii

Original contributions

The following is a summary of the original contributions in this thesis:

Critical review of the state of the art in swarm robotics: We provide an overview
of the state of the art in the design of robot swarms, a description of the most im-
portant collective behaviors that have been demonstrated and a discussion of a set of
notable systems that have been presented. We then reckon that (i) research has mostly
focused on the emergence of geometrical/spatial properties and mechanical abilities,
and (ii) most of the previous studies are based on the assumption that the order of
execution of the tasks to be performed by the swarm is known at design time.

The original idea: We argue that robot swarms require cognitive abilities in order to
autonomously perform missions in the real world. Besides mechanical and geometrical
abilities, we wish to develop the emergence of complex cognitive abilities, which would
endow robot swarm with unprecedented autonomy and flexibility.

Introduction of TS-Swarm: We introduce TS-Swarm, a robot swarm that sequences
tasks autonomously at run time. TS-Swarm can therefore operate even if the correct
order of execution is unknown at design time. A characterizing feature of TS-Swarm is
that some of the robots position themselves to form a chain that fulfills two functions:
(i) assist the navigation between the task areas; and (ii) identify/encode the order in
which tasks must be performed.

Chaining behavior as an instance of planning: We acknowledge chaining as a path
planning method and we generalize it to planning task sequences. So far, in the swarm
robotics literature, chains of robots have been conceived as sequences of robots that
landmark the physical space and act as waypoints for other robots that need to navigate
from one end of the chain to the other. We generalize this picture to include robots
that, in a sense, “align” in the abstract space of the tasks, one after the other, creating
a precedence relation between the tasks themselves: one task must be performed after

ix

x

the other. These robots, in a sense, “landmark” the abstract space of the tasks and
act as logical waypoints for other robots that need to perform the tasks in the order
encoded by the chain. The chain that the robots create in TS-Swarm accomplishes the
double role of guiding robots in the physical space and in the abstract space of the
tasks.

Design using formal software engineering tools: We thoroughly describe the im-
plementation of the robot control software. We use formal methods borrowed from
software engineering such as UML diagrams to describe behaviors and interaction pro-
tocols between individuals.

Hardware and software architectures: We implement TS-Swarm on e-puck robots
and we use TAMs (task abstraction modules) to abstract tasks. We enhanced the
abilities of the e-puck with extension boards. The TAM is a custom-made device that
allows us to abstract from the details of task execution and only focus on the task-
sequencing problem. We created a software architecture to easily design and perform
experiments with both devices. The software architecture is publicly available for the
entire research community.

Statement

This thesis presents an original work that has never been submitted to Université libre
de Bruxelles or any other institution for the award of a doctoral degree. Some parts of
this thesis are based on a number of peer-reviewed articles that the author, together
with other co-workers, has published in the scientific literature.

The review and the critique of the literature presented in Chapter 2 is based on:

• Garattoni, L. and Birattari, M. (2016). Swarm robotics. In Webster, J.G.,
Editor, Wiley Encyclopedia of Electrical and Electronics Engineering. John Wiley
& Sons, 1–19.

The presentation of the systems and the experiments in Chapter 3 and Chapter 4 are
based on:

• Garattoni, L. and Birattari, M. (2018). Autonomous task sequencing in a robot
swarm. Science Robotics, 3(20):eaat0430.

The hardware and software infrastructure developed for this thesis and described in
Appendix A were presented in:

• Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M.,
and Birattari, M. (2015). The TAM: abstracting complex tasks in swarm robotics
research. Swarm Intelligence, 9(1):1–22.

• Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., and Birattari, M.
(2015). Software infrastructure for e-puck (and TAM). Tech. Report 2015-004,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

xi

xii

Acknowledgments

I acknowledge support from the project DEMIURGE, funded by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681872).

I wish to express a special thanks to my supervisor Prof. Mauro Birattari. It has
been an honor to work with him. Mauro has taught me so many things in so many
different aspects of research and work. He gave me incredibly precious advices on
how to formulate and deliver a message, how to write it, present it and defend it.
His energy and passion for our research kept me going in many difficult moments.
Mauro supported me in many manual activities such as soldering, repairing robots
and building arenas. Our (mostly his) hexagonal arena with gates for the TAMs is a
masterpiece of carpentry. But what I value the most of his supervision is the fact that
he never underestimated the human factor: during this period I went through several
complicated personal moments, and in those moments Mauro was always there for me,
either with practical and useful advices or with kind words of encouragement, many
times with both. So for all this Mauro, I will never tell you enough: Thank you!

I’m also particularly grateful to Prof. Marco Dorigo for letting me start my research
in his department, first at the time of my Master thesis and immediately after for this
PhD. Marco always provided me very insightful comments about my research and in
this way he contributed to improve my project and my ways of presenting its message.
Two special mentions are for Prof. Carlo Pinciroli and Dr. Manuele Brambilla, two kind
persons and brilliant scientists. Carlo was my supervisor during the Master thesis, and
besides teaching me many technical skills, he introduced me to the research world and
with his passion he showed me how rewarding research can be. Manuele was very
supportive and his advices were extremely valuable especially in the first phases of
my PhD. I wish to express a special thank you also to Prof. Thomas Stützle, who
contributed with his comments to better shape the message of my research. Thomas
never denies you a warm smile and contributes to the friendly and inspiring atmosphere
in IRIDIA.

I wish to thank all the other researchers who worked with me in these years and my

xiii

xiv

co-authors: Dr. Gianpiero Francesca, Dr. Arne Brutschy, Roman Miletitch, Dr. Gaë-
tan Podevijn, Dr. Andreagiovanni Reina, Dr. Touraj Soleymani, Mattia Salvaro, and
Dr. Giovanni Pini. A big “thank you!” to all the other researchers and friends of
IRIDIA, who shared with me some of these years. With your passion, your amazing
ideas, your different views and cultures, you all made me a better person.

Last but not least, my noisy friend Dr. Gianpiero Francesca. Gianpiero might have
many defects, but he was the first who made me feel at home in Brussels. If I am
still here today in the process of getting my PhD is for a big part thanks to him, to
our discussions, to our fights, to our intense football matches, to our friendship. He
also introduced me to my next work family in Toyota Motor Europe. I wish to thank
Kobori-san for being a great boss, and the rest of the team for simply being an amazing
team: Sven, Luca, Jugesh, Mark, Fabien.

Finally I wish to thank my family. There are no words to describe how important
you all are for me. I know, I do not tell you this enough, but I am sure you all know it.
So thank you so much for all your support and love to my mother Wilma, my father
Bruno, my brother Matteo and my sister-in-law Linda. My thanks also extend to my
grandmas, cousins, aunts and uncle. You all have a special place in my heart.

Last words are of course for my partner, Asako. Right now you are far away, but
you brought a lot of happiness in my life and you cancelled a very dark period. Despite
your shyness, you showed me how brave you are and you gave me so much strength in
these months. Thank you very much for all this. I hope and I am sure we will soon be
reunited to continue our life together.

Lorenzo

Contents

Abstract vii

Acknowledgments xiii

Contents xvi

1 Introduction 1

2 State of the art 9
2.1 Swarm robotics . 10
2.2 Design . 12

2.2.1 Manual design . 12
2.2.2 Automatic design . 18

2.3 Collective behaviors . 21
2.3.1 Spatially-organizing behaviors 21
2.3.2 Navigation behaviors . 26
2.3.3 Interaction with humans . 28

2.4 Notable robot swarms . 29
2.5 Cognition . 31

2.5.1 Cognition and planning in robotics 34
2.5.2 Cognition in swarm robotics . 40

3 TS-Swarm Mark I 47
3.1 Distributed task-sequencing algorithm 48
3.2 Platforms . 50

3.2.1 The e-puck . 51
3.2.2 The TAM . 52
3.2.3 ARGoS . 53

3.3 Description of Mark Im . 53
3.4 Experiments with Mark I . 70

xv

xvi CONTENTS

3.4.1 Experimental design . 70
3.4.2 Robot experiments . 72
3.4.3 Assessment of the simulator . 74
3.4.4 Scalability study . 74
3.4.5 Robustness study . 75
3.4.6 Experiments with Mark I4 . 78

3.5 Limitations and possible improvements 81

4 TS-Swarm Mark II 85
4.1 Description of Mark II . 85

4.1.1 Mark II3 . 86
4.1.2 Mark II4 . 91

4.2 Experiments with Mark II . 91
4.2.1 Experimental design . 91
4.2.2 Experiments with Mark II3 . 92
4.2.3 Experiments with Mark II4 . 95

4.3 Possible improvements . 98

5 Conclusions 101

A Appendix 105
A.1 Introduction . 105
A.2 E-puck . 106

A.2.1 E-puck firmware architecture . 106
A.2.2 E-puck in ARGoS . 108

A.3 Range and bearing . 111
A.3.1 Range and bearing firmware . 111
A.3.2 Range and bearing in ARGoS 112

A.4 TAM . 115
A.4.1 TAM architecture . 115
A.4.2 TAM in ARGoS . 117

Bibliography 120

List of Figures

1.1 Example of mission that requires sequencing tasks. Image from Garat-
toni and Birattari (2018) . 4

1.2 Simple robots form a chain gang to solve complex problems.
Still from the video produced and published by Science 6

2.1 Virtual physics-based design. 15
2.2 Notable robot swarms. (A) Swarm-bot – Previously unreleased

photo. Copyright: Marco Dorigo. (B) Swarmanoid – Still from the
video: Swarmanoid, movie. Copyright: Mauro Birattari et al. Reprinted
by permission. (C) TERMES – Still from the video: Designing col-
lective behavior in a termite-inspired robotic construction team. Copy-
right: Justin Werfel et al. Reprinted by permission. (D) Thousand-
robot Swarm – Still from the video: Programmable self-assembly in a
thousand-robot swarm. Copyright: Michael Rubenstein et al. Reprinted
by permission. (E) CoCoRo – Still from the video: TYOC#52/52:
Final Demonstrator. Copyright: Thomas Schmickl et al. Reprinted
by permission. (F) BioMachines Lab’s Aquatic Robot Swarm –
Still from the video” A Sea of Robots. Copyright: BioMachines Lab.
Reprinted by permission. 32

2.3 Hybrid system architecture for single robot. 38
2.4 Hybrid system architecture for multi-robot systems with a cen-

tral planner. 39
2.5 Hybrid system architecture for multi-robot systems with dis-

tributed planner. 39

3.1 From task-sequencing missions to TS-Swarm. Image from Garat-
toni and Birattari (2018). 48

3.2 State machine of TS-Swarm. 54
3.3 Encoding of the range-and-bearing message in Mark Im. 55

xvii

xviii LIST OF FIGURES

3.4 Guardians. 56
3.5 State machine of a guardian. 57
3.6 Guardian protocol (G protocol), sequence diagram. 58
3.7 Motion of a link. 60
3.8 Tail. 62
3.9 Tail protocol (T protocol), sequence diagram. 63
3.10 Construction and motion of a branch of chain. 66
3.11 Runners. 67
3.12 Trajectory followed by the runners around the chain. 68
3.13 Motion of a runner along a branch of the chain. 69
3.14 Experimental setting. 72
3.15 Overhead snapshots of robot experiments. Images from Garattoni

and Birattari (2018) . 75
3.16 Overhead snapshots, Mark Im in simulation. Images from Garat-

toni and Birattari (2018) . 76
3.17 Empirical assessments of Mark I3. 77
3.18 Scalability and robustness analysis, the arenas. Image from Garat-

toni and Birattari (2018) . 78
3.19 Scalability and robustness of Mark I3. 79
3.20 Number of chain members in Mark I3. 80
3.21 Empirical assessment of Mark I4. 80
3.22 Scalability and robustness of Mark I4. 82

4.1 The chain in Mark II3 and Mark II4. 87
4.2 Exploration of the space of possible sequences in Mark II3. . . 88
4.3 Exploration of the sequence space in Mark II3, as seen by the

guardian of the green task. Image from Garattoni and Birattari (2018) 88
4.4 Encoding of the range-and-bearing message in Mark II3. 90
4.5 Exploration of the space of possible sequences in Mark II4. . . 91
4.6 Overhead snapshots, Mark IIm in simulation. Images from Garat-

toni and Birattari (2018) . 93
4.7 Empirical assessment of Mark II. 94
4.8 Scalability and robustness of Mark II3. 96
4.9 Comparison between Mark II3 (blue) and Mark II4 (red). 97
4.10 Comparison between Mark II3 and Mark II4. 97
4.11 Scalability and robustness of Mark II4. 99

LIST OF FIGURES xix

A.1 E-puck extended with range and bearing, Linux extension board
and omni-directional camera. 107

A.2 Steps of a cycle of control of the e-puck software architecture. 108
A.3 The architecture of the real e-puck package integrated in AR-

GoS.. Image inspired by Pinciroli et al. (2012) 109
A.4 The architecture of the e-puck simulation package. Image in-

spired by Pinciroli et al. (2012) . 110
A.5 Measurements for calculation of noise on range perceived. . . . 115
A.6 Conceptual and real TAM. Image in A from Brutschy et al. (2015),

image in B from Garattoni and Birattari (2018) 116
A.7 TAM software architecture. 118

xx LIST OF FIGURES

Chapter 1

Introduction

In the last decades, robots have taken over several repetitive and dangerous activities
from humans. The automation process has been particularly successful in industry,
where the controlled environments and the predictable nature of the conditions sim-
plify the operation of robots. Examples of successful industrial automation can be
found in factories along the production lines, where robots perform tasks such as as-
sembling, welding, handling and cleaning materials, and in large warehouses, where
robots autonomously organize, sort, and stock items.

More recently, the adoption of robots in other areas of activity has been accelerated
by important advancements in some core robotic technologies such as sensors and ac-
tuators, manipulators, control systems, materials, batteries, and artificial intelligence.
Today, robots work alongside human operators in smart factories to speed up pro-
cesses, help sorting packages and route them towards their shipment destination, and
oftentimes even deliver the packages themselves, hold conversations with humans and
answer their questions, assist surgeons during delicate operations, autonomously drive
vehicles on crowded streets.

Automation is expected to pervade our society even further in the next decades.
The ultimate goal of the automation process is to create a safer and more fulfilling so-
ciety, in which every person can express themselves fully, without the burden of having
to perform dangerous, repetitive and alienating tasks. To achieve this ambitious goal,
several technological steps are still required. Some tasks are by nature very challeng-
ing to automate, as they have to be performed in unstructured/unknown/hazardous
environments, where the working conditions are particularly difficult to predict or can
change quickly during the operations. These conditions often penalize rigid systems
that require centralized infrastructures to work. On the other hand, they promote sys-
tems that are flexible, fault tolerant, and able to quickly adapt their behavior to the
contingencies they encounter. Swarm robotics (Beni, 2005; Şahin, 2005; Dorigo et al.,

1

2 CHAPTER 1. INTRODUCTION

2014; Yang et al., 2018) is an approach to robotics whose goal is to create systems
deemed to perform in such conditions. Swarm robotics takes inspiration from collec-
tive behaviors of social animals to develop multi-robot systems that, as their natural
counterparts, are flexible, robust, and autonomous (Camazine et al., 2001).

In swarm robotics, a mission is entrusted to a large group of robots, the robot swarm.
A robot swarm is a highly redundant system that operates in an autonomous and self-
organized way, without the need of centralized coordination or external infrastructures.
A robot swarm comprises a large number of robots with limited capabilities. The
interaction of the robots with each other and with the environment engenders emergent
properties: collectively, the swarm displays abilities that a single robot does not possess.

Despite their promising potential, designing robot swarms to perform desired mis-
sions is particularly challenging because of their distributed and self-organized nature:
While the goal mission is set for the robot swarm as a whole, the designer usually works
at a lower level by implementing the behavior of the individual robots that compose the
swarm. The designer thus implements the individual behavior so that the interactions
between all the individuals and their environment will engender a collective behavior
capable of performing the desired mission. For the time being, no general methodology
exists for the design of robot swarms. Currently, the design is mostly carried out by
hand using a trial-and-error process. In recent years, some principled design methods
and a few tools have been proposed to support the design of robot swarms for specific
classes of missions under specific assumptions (Hamann and Wörn, 2008; Kazadi, 2009;
Berman et al., 2011; Brambilla et al., 2014; Reina et al., 2015b; Lopes et al., 2016). A
few automatic (and semi-automatic) design methods have been proposed, but they also
operate under various assumptions (see Francesca and Birattari (2016) and Bredeche
et al. (2018) for in-depth discussions). Both principled and automatic design are not a
reality yet, and more research is needed to make them reliable and generally applicable.

Because of the lack of a general design methodology and of the challenges posed
by the design of complex collective behaviors, research has focused mainly on simple
classes of missions. In particular, the focus has been mostly on the emergence of geo-
metrical/spatial properties and mechanical abilities: for example, aggregating (Gauci
et al., 2014b; Silva et al., 2017), covering space (Schwager et al., 2006; Duarte et al.,
2016), forming shapes (Rubenstein et al., 2014b; Mathews et al., 2017), moving coordi-
nately (Virágh et al., 2014), overcoming obstacles (O’Grady et al., 2010), transporting
objects (Rubenstein et al., 2013), clustering objects (Gauci et al., 2014a), or assem-
bling structures (Werfel et al., 2014). Less work has been devoted to the emergence
of simple cognitive abilities: for example, selecting an aggregation area (Halloy et al.,
2007; Garnier et al., 2009; Ozdemir et al., 2018), a behavior (Pini et al., 2011; Castello

3

et al., 2016), a foraging source (Gutiérrez et al., 2010; Valentini et al., 2016b), or a
path (Schmickl and Crailsheim, 2008; Montes de Oca et al., 2011; Reina et al., 2015b;
Scheidler et al., 2016) between (typically two) alternatives.

Some studies have been already devoted to designing swarms that, inspired by
mechanisms of division of labor observed in insect societies (Wilson, 1980; Seeley,
1996; Bonabeau et al., 1998), perform multiple tasks transitioning from one to an-
other (Krieger et al., 2000; Nouyan et al., 2009; Schmickl et al., 2011; Duarte et al.,
2016). Nonetheless, one assumption that all previous works share is that the tasks
that an individual robot must perform for the desired collective ability to emerge was
known at design time. Often in these works, the conditions for transitioning from task
to task were also known at design time. The designers of these robot swarms could thus
devise and hard-code in the robots’ behavior the rules that trigger the transition from
task to task. If on the one hand these assumptions simplify the design process, on the
other hand they limit the autonomy and the flexibility of the resulting robot swarms:
Unfortunately, in most real-world missions, the order of task execution is unknown at
design time and it is instead necessary to figure it out at operation time.

In this thesis, we present task sequencing swarm (TS-Swarm), a robot swarm that
sequences tasks autonomously at operation time. The task-sequencing ability of TS-
Swarm is a cognitive ability that allows the robot swarm to operate even if the correct
order of execution of the tasks is unknown at design time. TS-Swarm addresses the
case in which m tasks must be performed in a specific order (without repetitions) by
an individual robot of the swarm. Each task must be performed in a certain area, and
the correct order is unknown at design time. The sequence of tasks must be repeated
multiple times by the same or by other robots. Consider, as an example, a swarm of
fruit-picking robots (Fig. 1.1). Three tasks must be performed in a specific order by
an individual robot: Get a crate at the shed, fill the crate with fruit at the orchard,
and finally load the crate onto the truck at the yard. The correct sequence must be
repeated multiple times to fully load the truck. The robots initially ignore the correct
order of execution. They learn collectively from successes and failures; for example, a
robot faces a failure if it reaches the orchard without a crate to fill or the truck with
an empty one. Each task must be performed in a specific area: shed, orchard, or yard.
Robots travel between these areas to perform the tasks. Multiple robots can operate in
parallel: at a given moment in time, some get a crate, some fill their crate, some load
the truck, and some other travel from area to area.

The characterizing feature of TS-Swarm is that some of the robots position them-
selves to form a chain that fulfills two functions: 1. to assist the navigation between the
relevant areas where tasks are to be performed and 2. to identify/encode the order in

4 CHAPTER 1. INTRODUCTION

go to shed

go to
 yard

go to orchard

shed: get crate

orchard: �ll crate

yard: load truck

Figure 1.1: Example of mission that requires sequencing tasks.

which tasks must be performed. The chain enables robots with limited capabilities to
accomplish a complex mission. Individually, the robots of TS-Swarm would be unable
to navigate reliably from area to area or to perform the tasks in the correct order.
They have a limited range of perception, are unaware of the position of the areas, and
are unable to localize themselves in the environment. Moreover, the robots are not
programmed to individually sequence tasks by reasoning symbolically on their order of
execution.

Chaining has been previously explored in swarm robotics as a means to search the
environment and assist navigation (Goss and Deneubourg, 1992; Drogoul and Ferber,
1992; Werger and Matarić, 1996; Nouyan and Dorigo, 2006; Nouyan et al., 2008, 2009;
Sperati et al., 2011; Ducatelle et al., 2011a; Dorigo et al., 2013). Nonetheless, to the
best of our knowledge, the concept of robot chain has never been associated with path
planning nor with planning in general. In this thesis, we acknowledge chaining as a path
planning method and we generalize it to planning task sequences. Generally speaking,
in the context of swarm robotics, a chain is a group of robots that align in space thus
creating a precedence relation: one robot is positioned after the other. So far, in the
swarm robotics literature, chains of robots have been conceived as sequences of robots
that landmark the physical space and act as waypoints for other robots that need to
navigate from one end of the chain to the other. In TS-Swarm, we generalize this
picture to include robots that, in a sense, “align” in the abstract space of the tasks, one
after the other, creating a precedence relation between the tasks themselves: one task

5

must be performed after the other. These robots, in a sense, “landmark” the abstract
space of the tasks and act as logical waypoints for other robots that need to perform the
tasks in the order encoded by the chain. The chain that the robots create in TS-Swarm
accomplishes the double role of guiding robots in the physical space and in the abstract
space of the tasks. It could be considered as a chain that develops in the physical
space augmented with the abstract space of the tasks. In the physical subspace, the
chain encodes the information needed for navigating from area to area; in the abstract
space of the tasks, it encodes the order in which tasks themselves must be performed.
By following the information provided by the chain, other robots navigate between the
areas where the tasks are to be performed and perform those tasks in the order encoded.

In this thesis, we present two versions of TS-Swarm: Mark Im and Mark IIm, where
m is the number of tasks to be sequenced. Mark Im assumes that a robot receives
negative feedback as soon as it performs a task in an incorrect order and positive feed-
back otherwise. A robot receives feedback in the sense that, after performing a task,
it becomes immediately aware of whether the task was performed in the correct order
or not. After demonstrating the task-sequencing ability of Mark Im and studying its
performance both in a simulated environment and with robots, we make the sequenc-
ing problem harder and we introduce Mark IIm: Mark IIm assumes that a robot must
perform a complete sequence before receiving any feedback on whether the sequence is
correct or not. We measure the performance of both versions of the system with m = 3

(Mark I3 and Mark II3) and m = 4 (Mark I4 and Mark II4). The results that we provide
show that TS-Swarm is indeed able to sequence tasks autonomously at operation time.

Because sequencing tasks is an albeit simple form of planning, TS-Swarm provides
a new perspective on one of the most pivotal debates in the history of artificial in-
telligence: the debate on planning in robotics. This debate opposes two competing,
antithetical paradigms: the deliberative and reactive (Murphy, 2000). According to
the former, an intelligent robot should necessarily plan a course of action by reasoning
on a model (Nilsson, 1984). According to the latter, a robot is more effective in dealing
with the world by simply reacting to contingencies, without relying on reasoning and
representation (Brooks, 1991). Although hybrid systems have been proposed, they con-
ceptually juxtapose the two paradigms: deliberative and reactive instances—operating
sequentially or in parallel—interact but remain logically distinct (Arkin, 1990; Saffiotti
et al., 1995). By contrast, TS-Swarm associates the two paradigms in a novel and
particular way: the ability to plan emerges at the collective level from the interaction
of robots that, at the individual level, behave reactively without relying on reasoning
and representation. TS-Swarm thus overturns traditional wisdom that robots can only
either plan ahead using deductive reasoning or react to contingencies following pre-

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Simple robots form a chain gang to solve complex problems. Still from
the video produced and published by Science. To watch the video, either click on the QR
code in the bottom-right corner or scan it through the camera of a mobile device.

programmed rules. This message was disseminated also by Science, the world’s leading
outlet for scientific news, through a news article (Sutton, 2018) and a video about our
work that was published on their YouTube channel. Fig. 1.2 shows a still extracted
from the video and a QR code that links to it.

The rest of the thesis is organized as follows: In Chapter 2, we provide an overview
of the domain of swarm robotics from an engineering perspective. We present the
different approaches that researchers have adopted to address the challenges of designing
robot swarms. We describe the most common collective behaviors that have been
developed in the literature, mostly devoted to the emergence of geometrical/spatial
properties and mechanical abilities. We discuss some notable systems that can be
identified as milestones in the history of swarm robotics. Finally, we provide a discussion
on cognition, focusing on both the way it has been pursued in artificial intelligence in
general, and in swarm robotics more in particular.

In Chapter 3, we present the ideas at the basis of TS-Swarm and the implementation
of the first version of the system: Mark I. We describe in details the different roles that
the robots can assume at operation time, providing insight into how the system is
ultimately able to autonomously sequence tasks. We then present our experimental
setup and we analyze the results obtained by Mark I3 and Mark I4. Finally, we discuss
some possible future improvements.

In Chapter 4, we make the task-sequencing problem harder and we present the

https://youtu.be/hkVc5uNE5Gw

7

second version of the system: Mark II. While in Mark I a robot receives a feedback
as soon as it performs a task, in Mark II a robot must perform a complete sequence
before receiving any feedback on whether the sequence is correct. We first discuss
the implications of this change on the complexity of the problem: because of the lack
of an immediate feedback, the problem faced by Mark IIm is combinatorial and its
computational complexity is O(m!). Then, we describe the differences between the
implementations of Mark I and Mark II. Finally, we present the experiments performed
on Mark II, we analyze the results, we compare them with those of Mark I, and we draw
some conclusions. Also in the case of Mark II, we discuss some possible improvements
to the system.

In Chapter 5, we conclude the thesis. We provide a summary of the contributions
and we discuss their relevance to the fields of swarm robotics and artificial intelligence.
Finally, we suggest and discuss some future research directions.

8 CHAPTER 1. INTRODUCTION

Chapter 2

State of the art

This chapter presents the swarm robotics literature providing an overview of its most
important contributions. Particular focus is on the problem of designing robot swarms
that are capable of accomplishing a given mission in autonomy. This requires robot
swarms to possess both practical abilities to solve the mission at hand, and cognitive
abilities to autonomously make decisions based on the unpredictable circumstances en-
countered. An in-depth discussion on the problem of cognition in artificial intelligence,
and in swarm robotics in particular, is developed in Section 2.5.

Additionally, the chapter describes a set of collective behaviors that have been
demonstrated in the literature and few particularly notable robot swarms that serve as
concrete examples of the recent achievements in the field of swarm robotics.

A complete review of swarm robotics from an engineering perspective can be found
in Brambilla et al. (2013). Other articles have previously reviewed the swarm robotics
literature: Şahin (2005) was the first to formally define the basic concepts of swarm
robotics and to provide a survey of the literature. Bayindir and Şahin (2007) presented
the literature via five taxonomies: modeling, behavior design, communication, analytic
studies and problems. Iocchi et al. (2001) classified multi-robot systems depending on
their degree of awareness, coordination, and decentralization and dedicates a section
to applications of multi-robot systems. Gazi and Fidan (2007) surveyed the literature
from a control-theory perspective, focusing on the problems of modeling the dynamics
of a robot swarm, and presenting approaches for its control and coordination. Finally,
Schranz et al. (2020) presented a complete survey of the latest collective behaviors
developed and described a set of prospective applications for robot swarms.

This chapter of the thesis is organized as follows: Section 2.1 introduces the field
of swarm robotics; Section 2.2 presents the most common approaches used to design
collective behaviors for robot swarms; Section 2.3 describes a number of collective
behaviors that have been realized and discussed in the literature; Section 2.4 describes

9

10 CHAPTER 2. STATE OF THE ART

six notable robot swarms that have been demonstrated. Section 2.5 discusses the
problem of endowing robots with cognitive abilities and describes how the problem has
been tackled so far by the swarm robotics community.

2.1 Swarm robotics

Swarm robotics is an approach to robotics in which a mission is entrusted to a large
group of robots, a so called robot swarm. A robot swarm operates in an autonomous
and self-organized way. A swarm does not rely on any centralized entity for making
decisions and for coordinating its activities. In particular, a swarm does not rely on
a leader robot or on external infrastructures: the collective behavior of the swarm is
the result of the interactions between the individual robots and between robots and
environment.

A characteristic of robot swarms is locality of interaction: each robot has a limited
range of communication and perception. As a consequence, at any moment in time,
each robot directly interacts only with the other (relatively few) robots that happen to
be in its neighborhood.

In a typical swarm robotics application, robots operate in parallel on multiple tasks.
They switch from task to task according to contingencies. Coherently with what has
been stated above, task allocation is autonomous, self-organized, and based only on
locally available information.

Autonomy, self-organization, redundancy, locality, and parallel execution are highly
appreciated characteristics of a robot swarm as they are commonly deemed to promote
fault tolerance, scalability, and flexibility.

Fault tolerance: high redundancy and the lack of a single point of failure (no
leader robot, no external infrastructure) promote the realization of a system that is
robust to failures of individual robots.

Scalability: locality of interaction promotes the realization of a system in which
the addition (or removal) of robots does not qualitatively change the behavior of the
system and therefore does not require modifying the behavior of the individual robots—
provided that robot density is not dramatically altered.

Flexibility: parallel execution and autonomous task allocation promote the re-
alization of a system that reacts and adapts to contingencies, modifications of the
environment, and variations of the working conditions.

Swarm robotics juxtaposes itself to the single-robot approach (Nilsson, 1984) and to
classical multi-robot approaches (Dudek et al., 1996; Parker, 2000; Iocchi et al., 2001).

In the single-robot approach, a mission to be performed is entrusted to a single,

2.1. SWARM ROBOTICS 11

monolithic robot, for example, a humanoid robot. With respect to the classical sin-
gle robot approach, swarm robotics appears to be more promising in applications in
which fault tolerance, scalability, and flexibility are particularly desirable. Moreover,
each of the individual robots composing a swarm is mechanically simpler than a single
monolithic robot whose capabilities are comparable to the one of the swarm. As a
consequence, it should be expected that the cost of hardware design is reduced in the
case of swarm robotics.

On the other hand, designing the individual robot behavior that, through robot-
robot and robot-environment interactions, would produce the desired collective behav-
ior is more complex than designing the behavior of a single, monolithic robot. In the
classical multi-robot approaches, the mission of interest is entrusted to a relatively small
team of robots (Gerkey and Matarić, 2004; Dudek et al., 1996), smaller than a typical
swarm. Usually, the team behaviors are tailored to the specific team size and thus need
to be adjusted as the team size varies. In the classical multi-robot approaches, each
team member has a role that is defined at design time. Also the patterns of interaction
are defined at design time and are typically more rigid than those that characterize a
robot swarm. As a consequence, a classical multi-robot system is not as fault tolerant,
scalable, and flexible as a robot swarm. On the other hand, the interaction protocols
of a classical multi-robot system are typically simpler to define than those of a robot
swarm, as interactions are well defined and predictable and all relevant information is
available at design time.

Beside being a promising engineering approach to the development of complex
robotics systems, swarm robotics can be a powerful tool for studying social behav-
iors in biology as it is attested by a significant body of literature (Mitri et al., 2013).
When swarm robotics is used as a tool to study social behaviors, the robots are pro-
grammed to reproduce as faithfully as possible the behavior observed in the biological
system under analysis.

This thesis presents swarm robotics from an engineering perspective with the ulti-
mate goal of adopting robot swarms in real-world applications.

When swarm robotics is intended as a field of engineering, social behaviors of in-
sects, birds, and mammals are often a valuable source of inspiration for the designer.
Nonetheless, as the goal of a designer is the pragmatic one of producing a system that
accomplishes a given mission, the source of inspiration is loose and the designer is ready
to depart from the biological system should this be needed to meet the requirements.
In an engineering perspective, the biological plausibility of the final result is not a value
in itself.

12 CHAPTER 2. STATE OF THE ART

2.2 Design

Designing a robot swarm that is able to accomplish a given mission is a difficult en-
deavor. Usually, requirements on the mission are expressed at the swarm level, the so
called macroscopic level, while the designer works at a lower level by implementing the
behavior of the individual robots that compose the swarm, the so called microscopic
level. The interaction of the individuals gives rise to a collective behavior that should
satisfy the swarm-level requirements. In particular, the resulting collective behavior
should allow the swarm to accomplish the given mission. To date, no general formal
method exists to derive the individual behavior from the swarm-level requirements.
The problem of designing robot swarms is tackled either manually or via automatic
methods.

2.2.1 Manual design

In manual design, the designer of the swarm develops, by hand, the behavior of the
individual robots that yields the desired collective behavior. In swarm robotics, the
behavior of the individual robots is typically reactive—that is, robots act in response
to contingencies (possibly influenced by their memory), without planning their future
actions nor reasoning on their effects. The software architecture that is most broadly
adopted is a particular class of finite state machines, the probabilistic finite state ma-
chine (Rabin, 1963).

Although most robot swarms are still developed through trial and error, in recent
years principled design approaches have been proposed. The following two sections
are devoted to the trial-and-error design approach and to some of the most promising
principled design approaches.

Trial-and-error design

Designing a robot swarm by trial and error is more of an art than a science. The designer
operates in an unstructured way with little scientific basis and technical tools: the
designer searches for an individual-level behavior that, through the complex interaction
of a large number of robots, would result in the desired collective behavior. The search
process is performed via educated guesses that rely solely on the expertise and the
ingenuity of the designer.

The designer starts by defining a first implementation of the individual robot be-
havior. The designer then tests the behavior, usually by means of computer-based
simulations, and iteratively adjusts it until the resulting collective behavior meets the
swarm-level requirements.

2.2. DESIGN 13

Often, the designer takes inspiration from biological systems: when the goal is to
design a robot swarm whose swarm-level behavior is similar to the one of a biological
system (e.g., a swarm of insects, a flock of birds, or a herd of mammals), the designer
might find convenient to design the behavior of the individual robot by mimicking the
one of the individual member of the biological system.

The relationship between the microscopic and the macroscopic levels poses chal-
lenging issues to the trial-and-error design approach. In particular, the behavior of the
individual robot cannot be evaluated directly and per se: it must be evaluated indi-
rectly by observing the collective behavior of a swarm composed by a large number of
individual robots that execute the behavior under analysis.

Notwithstanding its limitations, the trial-and-error approach has been and still is the
most successful approach to designing complex collective behaviors for robot swarms.
Some examples of collective behaviors obtained by trial and error include aggrega-
tion (Şahin, 2005), chain formation (Nouyan et al., 2009), and task allocation (Liu and
Winfield, 2010). These behaviors are described in more detail in Section 2.3.

Principled design

Although a general engineering framework for designing robot swarms is not available
yet, a number of promising principled design methods have been proposed. These
methods borrow concepts and tools from different disciplines and address different
issues.

In virtual physics-based design (Spears et al., 2004) each robot is considered as
a virtual particle that exerts forces on other particles—that is, other robots. Each
robot is thus immersed in a field of forces that depends on the presence and distance
of neighboring robots. The virtual force acting on each robot is f =

∑k
i=1 fi(di)e

jθi ,
where j denotes the imaginary unit, di and θi are the distance and the direction of the
ith neighboring robot, and the function fi(di)is the derivative of an artificial potential
function. The Lennard-Jones potential (Jones, 1924) (Figure 2.1A) is commonly used
in this context (e.g., Spears et al., 2004; Spears and Spears, 2012; Pinciroli et al.,
2008). Figure 2.1B,C,D shows three examples of the virtual force that acts on a robot
depending on the position of its neighboring peers. The designer can associate virtual
repulsive forces to obstacles and other objects in the environment to prevent collisions.

Each robot estimates the virtual forces that act on it and translates them into
motion commands. The main benefit of virtual physics-based design is that it allows
the designer to formally prove properties of swarm-level behaviors including stabil-
ity, convergence, and robustness. An extension of virtual physics-based design is the
Hamiltonian method (Kazadi, 2009). Starting from a mathematical description of the

14 CHAPTER 2. STATE OF THE ART

swarm at the macroscopic level, the Hamiltonian method derives the microscopic be-
havior that minimizes or maximizes the value of a relevant quantity (e.g., the virtual
potential energy of the state of the swarm). The major drawback of virtual physics-
based design and of the Hamiltonian method is that they are suitable only for designing
spatially-organizing collective behaviors (see Section 2.3.1).

Control theory is the theoretical framework of a few principled design methods
that have been proposed. Some of these methods combine virtual physics with sliding
mode control to design robot swarms that perform aggregation, foraging, and pattern
formation (Gazi, 2005; Gazi and Passino, 2004b) (see Section 2.3). Other methods
use kinematic equations to model the motion of robots and a set of control-Lyapunov
functions to develop an individual behavior for pattern formation (Ögren et al., 2001;
Egerstedt and Hu, 2001) (see Section 2.3). The main advantage of methods based on
control theory is that some properties of the resulting robot swarms (e.g., stability and
robustness) can be proved using theoretical tools such as Lyapunov stability theory.
However, the application of control theory typically relies on assumptions—such as
deterministic behavior, global communication, and full synchronization—that are often
unrealistic in swarm robotics.

Defining a general link between the desired swarm-level (macroscopic) behavior and
the individual (microscopic) behavior is the key issue in the principled design of robot
swarms. Some studies showed that, under a series of assumptions, a microscopic im-
plementation can be derived from a macroscopic model (Berman et al., 2009, 2011).
Through analytical means, the parameters of a macroscopic model described by a set
of advection-diffusion-reaction partial differential equations are mapped onto the indi-
vidual behavior.

This method was successfully used to design robot swarms that perform task alloca-
tion and area coverage. However, the underlying assumptions—such as infinite number
of robots and global communication—are often violated in swarm robotics. As a result,
the macroscopic model often fails in predicting the performance of the final system, as
shown by a comparative experimental analysis (Mermoud et al., 2014).

Another study proposed a method to design the individual switching probabilities
in task allocation under soft deadlines (Khaluf et al., 2014). The total amount of work
performed by the swarm is described as a Poisson process. Via formal means, the
proposed method derives off-line the switching probabilities—that is, the parameters
of a Markov chain that describes the individual behavior. The method is based on the
assumption that the size and the deadline of the target tasks are all known at design
time.

A formal method borrowed from supervisory control theory has been used to design

2.2. DESIGN 15

B

d (distance)

v(
d
)
(p
ot
en
ti
al
)

Lennard-Jones potential functionA

C D

Figure 2.1: Virtual physics-based design. (A) The Lennard-Jones potential function.
The potential v depends on the current distance d between two robots. σ is the desired
distance between the robots. ε is a parameter called well depth and corresponds to the depth
of the potential function. In this example, σ = 0.2 and ε = 2.5. B, C, and D are examples
of the virtual force that acts on a robot (gray-filled circle) depending on the position of two
neighboring robots (white-filled circles). In B, the two neighboring robots are farther than
the desired distance σ. Therefore, the robot is attracted by the two neighbors with forces that
are determined by the derivative of the Lennard-Jones potential function at the point given
by the distance of the neighbors. The resulting force is the sum of the individual forces. In C,
the two neighboring robots are closer than the desired distance σ and hence exert repulsive
forces on the robot. In D, one neighbor is at a distance d1 < σ and thus exert a repulsive
force on the robot, while the other neighbor is at a distance d2 > σ and thus attracts the
robot.

16 CHAPTER 2. STATE OF THE ART

a segregation behavior (Lopes et al., 2014). The method is intended to be platform
independent: the behavior produced was shown to successfully accomplish the mission
both when executed by a swarm of e-pucks (Mondada et al., 2009) and when executed by
a swarm of kilobots (Rubenstein et al., 2014a). Supervisory control theory is a method
largely applied in manufacturing for automatically synthesizing control software that
drives the behavior of a plant so that specifications are met. In its adaptation to
swarm robotics, the method uses a description of the swarm-level requirements and
a set of specifications for the behavior of individual robots to generate the individual
control logic. In particular, the method requires that the designer specifies the set
of possible events that may occur and the corresponding responses of the individual
robots necessary to engender the desired collective behavior. In other terms, the rules
that trigger the transition from task to task in the individual robot’s behavior must
be known at design time. Therefore, this method does not support the designer in
the most crucial step: devising the appropriate individual behavior that generates the
desired swarm-level behavior.

Another principled design method is property-driven design (Brambilla et al., 2014).
Property-driven design was introduced with the ultimate goal of deriving an individual
behavior from swarm-level requirements. The method is based on prescriptive modeling
and model checking. The design process is composed of four phases: First, the designer
defines a set of desired properties that the swarm should meet. Second, the designer
produces a prescriptive model of the swarm and uses model checking to verify that the
model complies with the specified properties. Third, the designer implements a simu-
lated version of the robot swarm using the prescriptive model as a blueprint. Fourth,
the designer implements the final robot swarm and validates the previous steps. Models
are described by means of Markov chains and properties are defined by statements in
probabilistic computation tree logic, a probabilistic temporal logic that captures well
both temporal and stochastic aspects. Property-driven design is a structured design
process supported by formal tools. However, the step from the prescriptive macroscopic
model and the correspondent microscopic implementation is not yet automatic, and it
is still reliant on the intuition of the designer.

Rather than defining a unifying framework to obtain any possible collective be-
havior, a number of works have proposed the idea of defining a catalogue of design
patterns (Babaoglu et al., 2006; Gardelli et al., 2007; Reina et al., 2015a). In the con-
text of swarm robotics, a design pattern is a collection of guidelines to obtaining a
specific collective behavior. It must provide: i) a macroscopic model that describes
the swarm-level requirements, ii) a description of the microscopic behavior, and iii) a
mapping from the parameters of the macroscopic model to those of the microscopic

2.2. DESIGN 17

behavior. A first example of a design pattern for collective decision-making has been
proposed and successfully used to design a collective foraging behavior (Reina et al.,
2015b).

An interesting design method has been proposed to obtain self-assembly (Ruben-
stein et al., 2014b) (see also Section 2.3) and construction (Werfel et al., 2014) (see also
Section 2.3 and Section 2.4). The method promotes the decomposition of the design
problem (Nagpal, 2002): First, the user provides a global description of the desired ag-
gregate/structure (e.g., the shape of the aggregate, the height of the structure). Second,
the method defines a set of steps necessary to build the desired aggregate/structure.
Third, the method maps these steps onto individual rules (e.g., rules of motion along
the border of the aggregate or over the structure). The method enables the validation
of some properties of the final system, such as correctness and convergence. It has been
applied successfully to self-assembly and construction. Unfortunately, its applicability
is limited to a restricted set of missions.

Finally, although programming and scripting languages cannot be considered as
design methods on their own, they can significantly ease the principled design of
robot swarms. Two prominent examples are Protoswarm (Bachrach et al., 2010) and
Buzz (Pinciroli et al., 2015). Protoswarm (Bachrach et al., 2010) is a scripting lan-
guage based on the abstraction of an amorphous computational medium (Beal, 2004).
The amorphous computational medium assumes that the environment is filled with
entities that can compute and communicate locally with each other. Protoswarm en-
ables the definition of behaviors for the individual robots by writing scripts at the level
of the swarm. The scripting language features swarm-level primitives that deal both
with space and time. These primitives are translated approximately into individual
robot behaviors by a runtime library. The idea of languages based on manipulations of
computational mediums has received increasing attentions from the research commu-
nity.. New languages have been proposed for the creation of swarm-level programs with
a sound mapping between the swarm-level and the individual-level primitives (Viroli
et al., 2013; Beal and Viroli, 2015).

On the other hand, Buzz (Pinciroli et al., 2015) is a programming language for
heterogeneous robot swarms. Buzz offers primitives to work either at the individual
level or at the swarm level. For the time being, the swarm-level primitives mostly serve
to create different teams and assign robots to each team. Moreover, Buzz provides
mechanisms to share information locally and globally, thanks to a virtual stigmergy
mechanism based on a distributed tuple space. One of the prominent features of Buzz
is its modularity: primitives can be combined or defined anew to create modules that
can be tested, compared, and reused.

18 CHAPTER 2. STATE OF THE ART

Finally, some work has been devoted to proposing new constructs for well-established
modeling languages. In Cavalcanti et al. (2018), the authors propose an extension of
RoboChart (a UML-based language for single-robot systems) for modelling and verify-
ing swarms of interacting robots.

2.2.2 Automatic design

In automatic design methods, the individual behavior of the robots that compose the
swarm is generated automatically through an optimization process. The burden of
searching for the individual behavior that results in the desired collective behavior
moves from the designer to a computer program. The majority of work on automatic
design of control software for robot swarms has been produced within the evolutionary
robotics domain. A few alternative methods have been proposed.

Evolutionary robotics

Evolutionary robotics (Nolfi and Floreano, 2000) takes inspiration from the Darwinian
principles of natural selection and evolution to automatically design control software
for single and multi-robot systems. In evolutionary robotics, the design process starts
typically from a population of behaviors generated at random. At each iteration, the
behaviors are evaluated over a set of experiments, typically via computer-based simu-
lations. The same behavior is used as control software for all the robots of the swarm.
The evaluation is performed by a fitness function that measures the performance of the
swarm. The best scoring behaviors are used to produce the next generation by means
of genetic operators: cross-over, which mixes treats from parent solutions to produce a
child behavior from them, and/or mutation, which alters small treats of single behav-
iors. The process terminates when a time limit or a certain performance threshold are
attained or when the fitness function stops improving.

The individual behavior can be represented in several ways, but the most common
one is via an artificial neural network. The evolutionary process searches the parameters
of a neural network which, when used as control software on all the robots, maximizes
the performance of the swarm.

Despite the large number of works that showed the effectiveness of evolutionary
techniques, an engineering methodology for the application of evolutionary robotics is
still unavailable (Trianni and Nolfi, 2011; Silva et al., 2016). The main issues are that
the evolutionary process does not give any guarantee of convergence and the neural
networks that result from the design process are black-boxes: they are difficult to ana-
lyze and understand. Moreover, the challenge for the designer is often simply shifted:
from devising the desired individual behavior to devising the right fitness function

2.2. DESIGN 19

which would guide the optimization algorithm towards the desired individual behav-
ior. For these reasons, most of the behaviors produced so far via evolutionary robotics
are relatively simple and thus easily obtainable via manual design. Some promising
ideas have been proposed that could contribute to the development of an engineering
methodology for evolutionary robotics. Multi-objectivization is deemed to improve the
effectiveness of the design process by guiding the evolutionary search in rugged fitness
landscapes (Trianni and López-Ibáñez, 2015). Novelty search (Lehman and Stanley,
2011) is deemed to promote diversity among candidate behaviors and improve the ex-
ploration of the search space (Gomes et al., 2013). Finally, the hierarchical decomposi-
tion of the control software into modules is deemed to ease the design process (Duarte
et al., 2014a,b). Some efforts have also been devoted to evolving collective behaviors
directly on the robots (Jones et al., 2019), rather than in simulation. In this work, a
distributed evolutionary algorithm (island model distributed evolutionary algorithm)
running on the physical swarm was used to automatically design a foraging behavior.
Besides the onboard evolution, this work also attempted to make the final behaviors
human-understandable by using behavior trees as the controller architecture. For a
comprehensive review and critical discussion of the evolutionary robotics literature,
see (Trianni, 2014; Silva et al., 2016).

Reinforcement learning

In reinforcement learning, agents try to select the course of action that maximizes
a cumulative reward through repeated interactions with their environment. At each
interaction, agents may receive a positive or negative feedback (reward) for their ac-
tions. Reinforcement learning is widely adopted in robotics. It has been elegantly
defined and successfully used in single-robot scenarios (Kaelbling et al., 1996; Sutton
and Barto, 1998). The multi-robot case has been considered only by few works with
limited scope (Panait and Luke, 2005; Bušoniu et al., 2010). Swarm robotics appears
to pose major problems to reinforcement learning and only a very limited number of
studies have been proposed (Matarić, 1997, 1998). The main problem is the decomposi-
tion of the collective reward into the rewards that should be assigned to the individual
robots: How does a particular action performed by an individual affect the collective
behavior of a complex system such as a robot swarm? Moreover, the complexity that
arises from the great number of interactions between robots in a swarm leads to the
explosion of the state space size. For these reasons, the results are limited to specific
tasks and have been demonstrated in experiments with only few robots.

A form of reinforcement learning that seems more promising for facing the problems
posed by the design of robot swarms is team learning (Panait and Luke, 2005; Buşoniu

20 CHAPTER 2. STATE OF THE ART

et al., 2008). In team learning, the learning process takes place at the collective level
rather than at the individual one. As the learning process is a single one, team learning
can use standard single-agent machine learning techniques. However, the major prob-
lem remains the explosion of the state space size due to the large number of interactions
between individuals.

More recent approaches to reinforcement learning use deep neural networks and
explore techniques of transfer learning between robots and between tasks to mitigate
the problems discussed (Devin et al., 2017). The preliminary results in simulation
are promising but more extensive tests with real robots and swarms of larger size are
required.

Other methods

Because of the limitations of evolutionary robotics (Trianni and Nolfi, 2011; Trianni,
2014), other automatic design methods for robot swarms have been proposed in the
recent years.

A number of studies focused on on-line adaptation in multi-robot systems. In these
studies, the execution of population-based algorithms is distributed over a group of
robots (Watson et al., 2002). In this form of embodied evolution the robots are used as
computation nodes. Several works have tested the feasibility of this approach, proposing
different solutions, including open-ended and task-dependent evolution and the use of
finite state machines (Bredeche et al., 2012; Haasdijk et al., 2014; König and Mostaghim,
2009). The implementation of distributed evolutionary algorithms in robot swarms has
been tested in other variants: some study explored the idea of cultural evolution in
robot swarms using an imitation-based algorithm (Winfield and Erbas, 2011). The
particle swarm optimization algorithm was compared to genetic algorithms for on-line
adaptation and proven to provide a higher degree of diversity in the robot swarm (Pugh
and Martinoli, 2007; Di Mario and Martinoli, 2014).

Another promising and effective approach that has been proposed adopts a fixed
control architecture and focuses on tuning only a small set of parameters. Genetic algo-
rithms and evolutionary strategies were used to optimize the parameters of finite state
machines for a cooperative foraging and object clustering (Hecker et al., 2012; Gauci
et al., 2014a). Exhaustive search was used to determine the optimal parameters for
self-organized aggregation (Gauci et al., 2014b). A similar approach combines evolu-
tionary computation with virtual-physics based design to learn off-line the parameters
for the Lennard-Jones potential function in a navigation task (Hettiarachchi, 2007).

Another promising approach to the automatic design of control software for robot
swarms is AutoMoDe (Francesca et al., 2014). In AutoMoDe, the control software is

2.3. COLLECTIVE BEHAVIORS 21

automatically designed in the form of a probabilistic finite state machine. The design
process works by combining and fine-tuning preexisting modules, which have param-
eters that regulate their functioning. A search algorithm optimizes these parameters
along with the topology of the probabilistic finite state machines to maximize a task-
dependent performance measure. This design method was proven effective in overcom-
ing the reality-gap and in subsequent studies was shown to outperform human designers
in designing control software for five different missions (Francesca et al., 2015).

For a complete discussion and review of the achievements in the automatic design
of robot swarm we refer to Francesca and Birattari (2016) and Bredeche et al. (2018).
A manifesto of the current status of research and future challenges can be found in Bi-
rattari et al. (2019). Finally, Birattari et al. (2020) divided optimization-based design
methods into two categories: semi-automatic design, in which the human designer ac-
tively guides the design process; and fully-automatic design, in which the design process
does not involve any human intervention.

2.3 Collective behaviors

Collective behaviors are basic behavioral units of robot swarms that can be combined
to obtain robot swarms that are able to perform complex missions. In particular,
here we describe the collective behaviors that display geometrical/spatial properties
and mechanical abilities. These are the behaviors on which most of the research has
focused so far. We divide these collective behaviors into three categories: spatially-
organizing behaviors, navigation behaviors, and interaction with humans. Another
section (Section 2.5.2) is entirely devoted to the description of collective behaviors that
display simple cognitive abilities.

2.3.1 Spatially-organizing behaviors

Spatially-organizing behaviors are collective behaviors that focus on how the robots
distribute and organize in space.

Aggregation

The goal of aggregation is to group the robots in a region of the environment. Ag-
gregation is a useful building block for many complex behaviors as it allows robots to
gather and thus to interact with each other. The implementation of aggregation in
robot swarms is often inspired by similar behaviors observed in natural systems such
as bacteria, bees, and cockroaches. Aggregation has been obtained with either manual
or automatic design methods.

22 CHAPTER 2. STATE OF THE ART

Manual design methods typically adopt a simple probabilistic finite state machine:
the robots wander in the environment and, when they find other robots, they decide
stochastically whether to stay in their proximity or depart from them. Typically, robots
join an aggregate (or leave it) with a probability that is a function of the size of
the aggregate itself: the larger the aggregate, the higher the probability of staying.
This favors the formation of a single, large aggregate, as small aggregates tend to
disband. This basic behavior can be adapted and tuned to obtain either static or
moving aggregates (Garnier et al., 2005; Soysal and Şahin, 2005). A later study (Firat
et al., 2020) showed how these aggregation mechanisms can be guided by introducing
in the swarm a small portion of informed robots—that is, robots that stop only on
the designer pre-defined site/s for aggregation. Aggregation has been obtained also
via a principled design method based on control theory (Gazi, 2005) (see Section 2.2).
Automatic design methods mostly use artificial evolution to find the parameters of a
neural network that produces the desired aggregation behavior. Either static or moving
aggregates can be obtained with this approach (Trianni et al., 2003; Soysal et al., 2007).
Other automatic design approaches work on a fixed control architecture and tune a
small set of parameters. This approach successfully produced an aggregation behavior
with memoryless robots that are equipped only with a single binary sensor (Gauci et al.,
2014b).

Aggregation can be modeled using different modeling techniques. Rate equations
are particularly suited because of their ability to describe the evolution in time of the
portion of robots in a particular state (the aggregate) (O’Grady et al., 2009b). Other
modeling methods used in the literature are based on Langevin and Fokker-Planck
equations (Hamann and Wörn, 2008; Schmickl et al., 2009), on Markov chains (Soysal
et al., 2007; Correll and Martinoli, 2011), and on control and stability theory (Gazi and
Passino, 2003, 2004a).

Pattern formation

Pattern formation is a behavior that aims at positioning robots in space according
to a certain, well defined, pattern. Pattern formation can be useful for a number of
purposes such as covering an area, achieving a certain network topology and forming
the initial configuration for coordinated motion (see Section 2.3.2). Examples of pattern
formation that often inspire research in swarm robotics can be found both in biology
(e.g., the chromatic patterns on some animal’s coat) and physics (e.g., crystal formation
and Bénard cells).

Pattern formation in robot swarms is typically obtained using virtual physics-based
design. As already mentioned in Section 2.2, in virtual physics-based design robots are

2.3. COLLECTIVE BEHAVIORS 23

considered immersed in the virtual potential field generated by the neighboring robots.
Motion commands are computed by each robot based on the sum of the virtual forces
exerted by its neighbors.

If all the robots exert the same force, this simple mechanism yields an hexagonal
lattice (Spears et al., 2004). By dividing the swarm in two groups with different attrac-
tion/repulsion thresholds, it is possible to obtain a square lattice (Spears and Spears,
2012; Pinciroli et al., 2008). Virtual physics can be combined with tools borrowed
from control theory. In this case, the stability of the resulting formation can be proved
analytically (Gazi, 2005; Egerstedt and Hu, 2001) (see Section 2.2).

Virtual springs can be used alternatively to compute the forces of attraction and
repulsion. Combined with different interaction rules (e.g., full connectivity, nearest
neighbor, K-nearest neighbors), they can produce different patterns (Shucker and Ben-
nett, 2007; Shucker et al., 2008).

Notably, a pattern formation behavior with a thousand robots has been demon-
strated (Rubenstein et al., 2014b). Few robots act as the seed of the pattern and define
the origin and orientation of the coordinate system that is used to build the desired
shape. Starting from the seed robots and using also an internal representation of the
target pattern, other robots of the swarm gradually join the pattern. Robots localize
themselves with respect to the initial seed using an information gradient. The thousand
robots have been shown to successfully form different shapes.

Another work showed how it is possible to define a simple local behavior that enables
the swarm to eventually arrange in a global desired pattern (Coppola et al., 2019). The
behavior was designed with the twofold goal of guaranteeing convergence to the desired
patter while assuring safety (collision avoidance and coherence in the swarm).

An important application of pattern formation is area coverage: when the number
of robots is limited, a lattice formation of equally-spaced robots optimizes the coverage
of the space (Howard et al., 2002). Area coverage is often modeled using differential
equations: two examples of differential equations used to model area coverage are a set
of advection–diffusion–reaction partial differential equations (Berman et al., 2011) and
the Fokker–Planck equations (Prorok et al., 2011). In the latter example, the accuracy
of four models based on Fokker-Planck equations was tested by comparing their pre-
dictions with the results of computer-based simulations and real-robot experiments. A
solution for area coverage applicable to extremely simple robots (e.g., robots that lack
computational power and/or storage) was recently demonstrated with a swarm of 25
e-pucks (Özdemir et al., 2019).

24 CHAPTER 2. STATE OF THE ART

Chain formation

In chain formation, robots arrange themselves in the environment to create a chain
that connects two locations. The chain is then used by other robots as a navigation
aid (see Section 2.3.2). This behavior is inspired by Argentine ants, which form chains
of individuals that connect their nest to foraging sites (Deneubourg et al., 1990).

Chain formation can be developed using different design methods. Typically it is
obtained by manually designing control software in the form of a probabilistic finite
state machine. The chain is built incrementally from the starting location. The robots
that find a growing chain follow it until the end and join it in the last position with
a certain probability. The last robot in the chain can always leave the chain with a
certain probability. This prevents the chain from becoming entrapped in dead ends
and allows an effective exploration of the environment. When the chain reaches the
target location, it becomes stable. The robots in the chain might use a tricolor-pattern
to indicate the direction of the chain (Nouyan et al., 2008, 2009). A variant of this
solution is based on a probabilistic finite state machine and network routing. The
result is a chain of moving robots (Ducatelle et al., 2011b).

Virtual physics-based design and automatic design methods can also be used to
design chain formation. In virtual physics, virtual forces are used to maintain a desired
distance between robots in the chain and between robots and walls in order to create
chains that strongly depends on the shape of the environment (Maxim et al., 2009).
Concerning automatic design, artificial evolution has been shown able to produce chains
of moving robots (Sperati et al., 2010).

Self-assembly and morphogenesis

Self-assembly is the process in which robots physically connect to each other. Self-
assembly can be useful, for example, to increase mechanical stability and ease navigation
on rough terrains. When the connected robots form a pattern or shape, the process
is called morphogenesis. Morphogenesis is used when a particular structure allows the
swarm to perform a specific task. For instance, a line of connected robots can navigate
over a hole whereas a single robot would fall into it. Several natural systems show
self-assembly and morphogenesis behaviors: ants are able to create bridges, rafts and
walls to perform specific tasks; cells self-organize structures to form tissues and organs.

Self-assembly and morphogenesis can be designed in several ways. These behaviors
pose many challenges to the design process: When and how should the assembly process
start? Which robots should connect to each other? Which shape should be formed?
Each of these challenges can be addressed in different ways.

Robots can trigger the self-assembly process when they encounter obstacles or ad-

2.3. COLLECTIVE BEHAVIORS 25

versities that they are not able to overcome on their own. Empirical studies showed
that connected robots are able to navigate in hazardous terrains better than individual
robots (O’Grady et al., 2010), they can overcome obstacles that a single robot cannot
overcome (Mondada et al., 2005), and they can transport heavy objects faster and for
longer distances (Groß and Dorigo, 2009). Robot swarms have also been demonstrate
capable of creating 3D structures through self-assembly (Levi and Kernbach, 2010).

Homogeneous robots can self-organize the assembly process by signaling the docking
points in different locations of their bodies. Other robots can then connect stochasti-
cally to those docking points. In this way the robots can form different structures, such
as lines, stars and circles (O’Grady et al., 2009a). Alternatively, the capabilities of het-
erogeneous robots can ease the process of self-assembly. For example, aerial robots can
recognize the task to perform and indicate to the ground robots which robots should
self-assemble and what structure they should create to perform the task (Mathews
et al., 2012, 2019).

Self-assembly and morphogenesis have not been modeled often in the literature. A
study showed that a self-assembly behavior that allows robots to form lines can be mod-
eled using a set of chemical reactions (Evans et al., 2010). This set of chemical reactions
was then abstracted by a set of differential equations, solved approximately by means
of stochastic simulations (e.g., Gillespie algorithm), and compared to computer-based
simulations. Other work uses bottom-up approaches to morphogenesis inspired by ob-
served patterns in biological systems during embryogenesis (Slavkov et al., 2018). On
top of this, subsequent work focused on enhancing the controllability of morphogenesis
and showed how to produce richer shapes (Carrillo-Zapata et al., 2019).

Object clustering and assembling

Object clustering and assembling refer to behaviors in which the robots create aggre-
gates of objects. The difference between object clustering and assembling is that in
the former the aggregates are clusters of unconnected objects, whereas in the latter the
objects must be connected by some kind of physical link. These two behaviors are at
the basis of any swarm construction system. For the design of object clustering and
assembling, researchers often take inspiration from social insects: brood clustering has
been observed in ants, termites can build mounds that are orders of magnitude larger
than the single individuals.

Object clustering is usually obtained using a probabilistic finite state machine. The
robots explore randomly the environment and react with appropriate responses when
they find an object or partially formed clusters. In the simplest form of object cluster-
ing, a robot picks up an object and deposit it with a probability that is proportional

26 CHAPTER 2. STATE OF THE ART

to the number of other objects perceived (Beckers et al., 2000). The final position of
the clusters can be controlled by marking the ground with colors or using other sig-
nals recognizable by the robots (Melhuish et al., 1999b; Stewart and Russell, 2006).
Object clustering can also be obtained via automatic design methods. A clustering
behavior for extremely simple robots was successfully developed through evolutionary
robotics (Gauci et al., 2014a): the robots are not capable of arithmetic computation
and are only able to detect the presence of an object or another robot in their direct
line of sight. Despite these limitations, the swarm is able to successfully create clusters
of objects within a limited amount of time. Object clustering was modeled in a seminal
work on the use of rate equations in swarm robotics (Martinoli et al., 1999).

Concerning assembling, a prominent work demonstrated a behavior that enables
the creation of arbitrary 3D structures (Werfel et al., 2014). This solution generates
off-line a set of traffic rules and assigns them to the robots, together with a static
representation of the target structure. Respecting the traffic rules, a group of climbing
robots builds the structure by placing a building block at a time. More details on this
work can be found in Section 2.4.

2.3.2 Navigation behaviors

Navigation behaviors are collective behaviors that aim at coordinating the movements
of a robot swarm.

Collective exploration

Collective exploration includes behaviors whose goal is to explore an environment, or
interesting portions of it. Work on collective exploration takes frequently inspiration
from behaviors observed in natural systems. Control software for collective exploration
is typically implemented in the form of probabilistic finite state machines. Often the
swarm relies on static robots that act as waypoints to guide the navigation of moving
robots. To do that, the static robots can form either physical or virtual structures.

Physical structures are usually the result of pattern formation and chain formation
(see Section 2.3.1). Once the physical structure is formed, the moving robots can follow
it, waypoint after waypoint, to navigate in the environment. In virtual structures, the
static robots are not necessarily close to each other, but they are connected by a virtual
medium. For example, pre-deployed robots can create a virtual structure between two
locations by exchanging messages. Moving robots can exploit these messages for navi-
gation (Payton et al., 2001; Di Caro et al., 2009). Similarly, a network of pre-deployed
sensors can be used by the robots to navigate towards their goal location (O’Hara and
Balch, 2007). The navigation route is calculated by the robots via a distributed variant

2.3. COLLECTIVE BEHAVIORS 27

of the Bellman-Ford algorithm. An hybrid solution was developed in the Swarmanoid
project (Stirling and Floreano, 2010) (see also Section 2.4). In this solution, a set of
aerial robots deploy sequentially to form a chain, using the position of the previously
deployed robots to determine their target position. Once deployed, the robots establish
also a virtual structure by acting as communication relays.

Lastly, a solution has been proposed in which the robots of a swarm both navigate
and guide the navigation of others, simultaneously (Ducatelle et al., 2014). While
moving, the robots share navigation information between them and hence cooperatively
guide each other towards a target location. The advantage of this solution is that it
does not bind any robots to a specific location. All the robots can thus move and be
involved in other tasks, possibly unrelated to navigation.

Coordinated motion

In coordinated motion, also known as flocking, the robots move in formation through
the environment, similarly to flocks of birds or schools of fish.

In nature, coordinated motion is used by many animals to reduce energy consump-
tion and increase the chance they survive attacks of predators. Flocking can be ob-
tained with either manual or automatic design methods. The most common design
method uses virtual physics. Virtual forces of attraction and repulsion maintain a
desired constant distance between the robots and a uniform alignment during the mo-
tion (Reynolds, 1987). The robots are capable of coordinated motion even in absence
of a common goal, thanks to the sole knowledge of heading and distance of their neigh-
bors (Turgut et al., 2008a). Under this configuration, it is sufficient to insert few
“informed” robots to direct the movement of the other “uninformed” robots, and hence
of the whole swarm, toward a goal (Çelikkanat and Şahin, 2010). Further works showed
that this behavior does not require an explicit alignment rule, and thus robots do not
need to perceive the orientation of their neighbors. The swarm is still able to navigate
with and without the presence of informed robots (Ferrante et al., 2012). Flocking of
a swarm of aerial robots was obtained through evolutionary robotics (Hauert et al.,
2009). Without relying on any external infrastructure, the aerial robots establish and
maintain a wireless communication network to connect a base station and a user station
that are located on the ground.

In the literature, flocking is typically modeled using differential equations. An ex-
ample is the application of a method based on a Fokker-Planck equation (Hamann
and Wörn, 2008). In another study, researchers performed preliminary steps towards
linking the models of flocking produced in statistical physics with the studies produced
in swarm robotics (Turgut et al., 2008b). The authors focused on the alignment of

28 CHAPTER 2. STATE OF THE ART

robots and verified the existence of a phase transition between order and disorder that
depends on the level of noise and on the neighborhood size. The results were validated
using computer-based simulations.

Collective transport

Collective transport refers to a set of behaviors in which the goal of the swarm is to
cooperatively move objects from one location to another. The objects are too heavy
for a single robot, thus cooperation is necessary. Collective transport can be observed
in ant colonies. To achieve collective transport, ants use a trial-and-error process in
order to determine the right pulling/pushing direction (Kube and Bonabeau, 2000).

Collective transport is usually designed via manual methods or artificial evolution.
Different strategies can be employed for transporting the object: robots can connect di-
rectly to the object and move it, they can connect to each other and then to the object,
or they can surround the object and push it with their movement (Groß and Dorigo,
2009; Wilson et al., 2014). Consensus on the direction of movement and cooperation
are achieved either through direct or indirect communication. For example, when direct
communication is used, robots can agree on a common direction of movement by aver-
aging their individual desired directions (Campo et al., 2006). When communication is
indirect, robots can position themselves around the object depending on the position
already taken by other robots (Wilson et al., 2014), or depending on an estimation of
the forces applied by other robots on the object or on their own chassis (Baldassarre
et al., 2006).

As an alternative to reaching consensus on the direction on movement, some robots
can form a chain to connect the source and the destination of the objects (see Sec-
tion 2.3.1). The chain is then used as navigation aid by other robots that transport
the objects (Nouyan et al., 2006).

2.3.3 Interaction with humans

Robot swarms are designed to work autonomously and to act in a distributed way.
These characteristics limit the degree of control that a human operator can exercise on
the system. However, there are several cases in which forms of human control over the
swarm could be necessary. Human-swarm interaction studies how a human operator
can control a robot swarm and receive feedback from it. Studies in this field can be
categorized on the basis of the nature of interactions that they propose.

The most common approach relies on an intermediate modeling layer between the
operator and the swarm. Usually, the modeling layer produces an abstract representa-
tion of the robots and their environment that is then displayed to the operator through

2.4. NOTABLE ROBOT SWARMS 29

a graphical user interface. By acting on the GUI, the operator can select robots and
send them commands. The selection can contain single robots (Bashyal and Venayag-
amoorthy, 2008), or a group of robots, which can be selected, for instance, by drawing
a rectangular zone that contains the robots in the GUI (Kolling et al., 2013). A robot
controlled by a human operator is perceived by the swarm as just another robot, and
thus the influence of the operator is very limited. This problem can be solved partially
by a hierarchical communication architecture in which the operator sends orders to the
selected robot, which is called “the sergeant” (Bruemmer et al., 2001).

Other studies focus on the use of augmented reality. Part of the studies that use
augmented reality propose solutions only for the visualization of feedback from the
robots to the operator. For instance, an optical see-through head-worn device receives
robots’ messages, analyses them and augments the environment with their represen-
tation (Daily et al., 2003). Similarly, firefighters are helped in their mission by a
robot swarm, which gives them direction information displayed by augmented hel-
mets (Naghsh et al., 2008). Other works provide bi-directional communication solu-
tions: through a device that display the augmented environment, the operator can also
give commands to the robots by acting on the real-time video stream (Ghiringhelli
et al., 2014).

Finally, there are studies that aim at realizing a direct interaction, without relying
on intermediate modeling levels. In fact, creating and maintaining an updated model
of the robots and their environment is a demanding task. It often requires ad-hoc
infrastructures and it becomes intractable in dynamic (real) environments or when
the number of robots is greater than few units. For these reasons, techniques of direct
interaction based on gestures recognition, face engagement and speech recognition have
been proposed. Combinations of such techniques are possible (Couture-Beil et al., 2010;
Pourmehr et al., 2013; Nagi et al., 2014). Performing gesture recognition directly on the
robots might lead to mismatches, and thus requires distributed consensus algorithms in
order to reach an agreement of all the robots on the same gesture (Giusti et al., 2012).
Other works proposed the use of external sensors, such as the Microsoft Kinetic sensor
to give commands through gestures to a robot swarm (Podevijn et al., 2013).

2.4 Notable robot swarms

Within the vast production of fundamental research work in swarm robotics, a few
systems have been shown to be able to perform complex missions. In the following, we
describe a selection of six notable systems.

Swarm-bot (Nouyan et al., 2009) is a robot swarm composed of relatively simple

30 CHAPTER 2. STATE OF THE ART

robots, the s-bots, that are able to attach to each other—see Figure 2.2A. The ability
to self-assemble, along with control algorithms inspired by self-organized behaviors
of social insects, allow the swarm-bot to effectively adapt to its environment. For
example, by self-assembling in different shapes, the swarm-bot can navigate through
rough terrains and drag objects that are too heavy for single s-bots. The swarm-bot
has been shown to be able to find a target, heavy object and retrieve it. In the first
phase, the s-bots form a chain between the object and the nest (see chain formation in
Section 2.3). In the second phase, a group of s-bots surround the object, self-assemble,
and drag the object to the nest along the path described by the chain.

Swarmanoid (Dorigo et al., 2013) is a heterogeneous swarm composed of three
types of robots: eye-bots, hand-bots, and foot-bots—see Figure 2.2B. Eye-bots are
flying robots specialized in sensing the environment and providing an overview to foot-
bots and hand-bots. Hand-bots can climb walls or other vertical surfaces and grab
objects, but they cannot move on the ground without the help of other robots. Foot-
bots are specialized in moving on the ground and transporting either objects or other
robots. The Swarmanoid has been shown to be able to explore an unknown indoor
environment, locate a target object (a book), and retrieve it. First, the eye-bots explore
the environment, find the book on a shelf, and highlight the path to it. Then, the foot-
bots transport a hand-bot to the shelf following the path indicated by the eye-bots. At
this point, the hand-bot climbs the shelf, grabs the object, and returns to the ground
where the foot-bots transport it back to the initial location.

TERMES (Werfel et al., 2014) is a robot swarm inspired by how termites construct
mounds—see Figure 2.2C. TERMES allows a user to specify a high level representation
of the target 3D structure. From the specified structure, an off-line software generates
a set of traffic rules that direct the flow of robots over the growing structure and
regulate the building activity. Essentially, this set of rules, called structpath, is a 2D
representation of the structure in which each stack is annotated with its height and a
travel direction between each adjacent pair of stacks. Thanks to the structpath and
to a static internal representation of the target structure, a group of custom-designed
climbing robots proceeds autonomously to the construction process by depositing one
brick at a time. The effectiveness of the system has been shown both in simulation and
with a real-world implementation.

Thousand-robot Swarm (Rubenstein et al., 2014b) is a robot swarm composed of
1 024 Kilobots—see Figure 2.2D. The Kilobot is a small, low-cost robot equipped only
with vibration motors for movement and an infrared transceiver for communication and
distance sensing. A swarm of 1 024 Kilobots was demonstrated capable of forming dif-
ferent user-specified patterns. The pattern is built gradually, starting from few central

2.5. COGNITION 31

robots that act as a seed. The other robots travel along the edge of the pattern under
formation and stop in a proper position, according to an internal representation of the
target pattern. The thousand-robot swarm is the largest robot swarm demonstrated so
far.

CoCoRo (Schmickl et al., 2011) is a heterogeneous swarm of underwater robots—
see Figure 2.2E. The swarm is composed of a base station and two types of robots:
Jeff robots and Lily robots. Jeff robots are fast searching robots, Lily robots are slow
information carriers. A CoCoRo can monitor, search, maintain, explore and harvest
resources in underwater habitats. The CoCoRo was shown able to locate an object and
guide the base station to its position. The Jeff robots search the seabed, until one of
them finds the target object and starts recruiting more Jeff robots. At this point the
Lily robots start to build a relay chain between the base station and the cluster of Jeff
robots. The base station can then navigate to the object location using the information
carried by the chain.

BioMachines Lab’s Aquatic Robot Swarm (Duarte et al., 2015; Christensen
et al., 2015; Duarte et al., 2014c) is a swarm of 10 aquatic surface robots—see Fig-
ure 2.2F. The robots are equipped with few sensors and actuators and thus are rela-
tively inexpensive. The control software was designed automatically using evolutionary
robotics (see Section 2.2). Four collective behaviors were developed to perform four
different tasks: flocking, clustering, dispersion, and area coverage. By combining these
collective behaviors, the swarm was shown able to perform a complex mission of en-
vironmental monitoring: the robot swarm collectively navigates towards an area of
interest, optimizes the coverage of the area, monitors the water temperature in the
area, clusters, and finally heads back to the base.

2.5 Cognition

The robot swarms that we have described so far in this chapter share two common
characteristics: i) at the collective level, they display spatial/geometrical properties or
mechanical abilities, and ii) the tasks that the individuals must perform to obtain such
collective abilities and the order in which they must be performed were known at design
time. The designers could thus devise and implement, either by hand or by means of
automatic techniques, the individual rules that would result in the desired collective
abilities.

Hard coding the tasks and their order of execution in the robot’s control software
limits the autonomy and the flexibility of the resulting robot swarm: the real world
is dynamic and unpredictable by nature, therefore it is impossible to foresee at design

32 CHAPTER 2. STATE OF THE ART

Figure 2.2: Notable robot swarms. (A) Swarm-bot – Previously unreleased photo. (B)
Swarmanoid – Still from the video: Swarmanoid, movie. (C) TERMES – Still from
the video: Designing collective behavior in a termite-inspired robotic construction team. (D)
Thousand-robot Swarm – Still from the video: Programmable self-assembly in a thousand-
robot swarm. (E) CoCoRo – Still from the video: TYOC#52/52: Final Demonstrator. (F)
BioMachines Lab’s Aquatic Robot Swarm – Still from the video” A Sea of Robots. Each
picture contains a QR code in the bottom-right corner. To watch a video, either click on the
corresponding QR code, or scan it through the camera of a mobile device.

https://youtu.be/8kN3lSsWJNo
https://youtu.be/LFwk303p0zY
https://youtu.be/WjDeFzAGJSs
https://youtu.be/M2nn1X9Xlps
https://youtu.be/xK54Bu9HFRw
https://youtu.be/JBrkszUnms8

2.5. COGNITION 33

time all the contingencies that the robots will face at operation time and the required
countermeasures. The idea that we propose in this thesis is that robot swarms should be
endowed with cognitive abilities, which allow them to modify and adapt their behavior
at operation time depending on the contingencies encountered.

The problem of endowing artificial systems with cognitive abilities is not new. Stud-
ies about the origins of intelligence and attempts to artificially produce intelligence were
carried out long before the birth of artificial intelligence and robotics.

Indeed, understanding the mind and the origins of intelligence has been one of the
first objectives of philosophers and psychologists. The different schools of thought
and ideas of important thinkers inspired engineers and scientists in the attempt to
produce machine intelligence. In this respect, one of the most influential thinkers was
surely Descartes, prominent responsible for the theoretical duality of mind and body.
Sensation requires the physicality of the body; human reason and judgment require the
autonomy of the soul. Human beings may have no choice about how the world appears
to them, but they can step back from appearances, and allow reflection and judgment.

The Cartesian view strongly influenced other disciplines and approaches to the study
of intelligence, among which the cognitivism approach and, subsequently, the classical
artificial intelligence approach. Cognitivism is a theoretical framework for understand-
ing the mind. Its first tenet is that the central function of mind consists of discrete,
internal mental states (representations or symbols) manipulated by rule-based trans-
formations. Classical artificial intelligence can be defined as the attempt to produce
machine intelligence by methods that reflect Cartesian and cognitivist attitudes, first
and foremost the centrality of the concept of representation. Following these principles,
the first attempts to develop intelligent machines were strongly based on planning and
symbolic manipulation.

The failure of the classical approach in developing machines that could cope with
the real world brought a gradual shift in focus, from Descartes’ mind-body duality to
a view of intelligence as embodied and situated. The new view suggests that thinking
beings should be considered first as beings acting in their environments. This shift
gave rise to a new approach to robotics, characterized by fully reactive robots and the
absence of symbolic reasoning, the so called reactive robotics (Brooks, 1999). Since
then, reactive robotics and planning have always been considered as two antithetical
ways of developing robotics systems. In the remainder of this chapter, we will present
in more detail the pioneering works in the history of planning and robotics and finally
we will describe some of the works that have attempted to endow robot swarms with
simple, cognitive abilities.

34 CHAPTER 2. STATE OF THE ART

2.5.1 Cognition and planning in robotics

The 1950s were a key decade for both artificial intelligence and robotics. In 1956,
two important meetings were organized that marked the affirmation of artificial intel-
ligence. During the Symposium of Information Theory, Newell and Simon (Newell and
Simon, 1956) presented a program that could demonstrate theorems in logic, while the
Dartmouth Conference led to the definition of the “brain-computer metaphor”: the pro-
cesses of the mind were considered completely logical and thus they could be simulated
by a well defined program. It became natural to think of human beings as systems
that receive input from the environment (sense), process the information by creating
a model (model) and reasoning on it (plan), and act depending on the decision for-
mulated (act). This paradigm, inspired by the Cartesian and cognitivist views, gave
importance to mental states only, claiming that every behavior is the result of a plan-
ning activity. Robotics, which until then had been limited to the cybernetics approach
of reproducing animal behaviors using control theory and statistical information the-
ory (Walter, 1951), was strongly influenced by the new sense-model-plan-act paradigm.
Robots became machines that reason on a symbolic representation of their world to
produce a plan to be executed. This approach is at the basis of two prominent projects
developed at the beginning of the 70s, which influenced the research in robotics and
artificial intelligence for the following 20 years.

The first project was carried out at MIT and called The MIT Robot (Winston,
1972). In this work, a vision system and a robotic arm were programmed to perceive
the arrangement of a set of blocks and to build a copy of the structure with additional
blocks. The main focus of the project was on computer vision and the goal was to show
that a complete three-dimensional description of the world could be extracted from an
image. The role of AI was to take this description of the world and manipulate it to
formulate plans using rules that describe how the world works.

The second project was carried out at the Stanford Research Institute and called
Shakey the robot (Nilsson, 1984). Shakey was placed in an environment consisting
of a set of rooms. The primary sensor of Shakey was an on-board black-and-white
television camera. An off-board computer analyzed the images captured by the camera
and merged descriptions of what was seen into an existing, symbolic model of the world.
A planning algorithm, STRIPS (Fikes and Nilsson, 1972), operated on those symbolic
descriptions of the world to generate a sequence of actions for Shakey. Depending
on the goal given, Shakey would navigate around obstacles consisting of large painted
blocks, push them out of the way, or push them to some desired location.

Even though both projects showed promising results, they were successful only
thanks to a carefully engineered setup: the solutions adopted by the MIT robot were

2.5. COGNITION 35

very specific to the world of blocks with rectangular sides and would not have worked
in the presence of simple curved objects or under different light conditions. Similar
issues affected Shakey, which operated in empty rooms except for the large colored
blocks, with walls of a uniform color and carefully lighted. Moreover, in both exper-
iments the environment was mostly static and the result of the actions completely
predictable. These issues, and in general the inability of these systems to cope with
real-world (unpredictable) scenarios, brought soon the attention of the AI community
to the fundamental problems of the classical approach: the frame problem and the
symbol grounding problem.

The frame problem (Dennett, 2006) arises from the inability to consider all possible
side effects of the execution of a certain action. This stems from the assumption in logic
that in the modeled system everything stays unchanged but the direct consequences
of the action performed. A possible solution would be to consider all implications of
any action before performing it. However, this would not be a viable solution in the
real world, as the environment would change while the robot is busy considering all
the (infinite) cascade of implications of a certain action. Thus, the frame problem
highlights the difficulty of symbolic systems to take into account all changes in the
environment and consequently update the model: the more the environment is dynamic
and unpredictable, the more the model will fail in tracing changes in it.

The second problem of classical systems is even deeper and harder to address: the
symbol grounding problem. In order to be effective in the real-world, a symbolic sys-
tem that reasons must have an understanding of what it is reasoning about. How-
ever, symbolic systems reason using only syntactic rules, while ignoring the semantics.
Therefore, understanding does not pertain to such systems: the rules of reasoning used
by symbolic systems were formulated by human beings, observers who already have
those symbols grounded—i.e., given a real-world meaning. For a complete discussion
on symbol grounding and other issues related to symbolic systems we refer to Anderson
(2003).

Due to numerous problems of the classical approach, different researchers began,
around the mid-80s, to rethink the origin of intelligence. They all identified the main
issue of classical systems in the lack of ability to promptly react to contingencies due to
the over-commitment to reasoning and planning. Kaelbling and Rosenschein proposed
the concept of situated automata (Kaelbling, 1987; Kaelbling and Rosenschein, 1990).
The architecture of an agent is divided in two components: the perception component
produces the model of the world in input to the action component, which in turn maps
this information to action. The action component is specified as a set of pairs of the type
condition-action. The idea is not to wait until a plan has been completely formulated,

36 CHAPTER 2. STATE OF THE ART

but rather get the information produced at every cycle and map it directly into action.
Schoppers introduced the concept of universal plans (Schoppers, 1987). The novelty
respect to the classical approach stands in the fact that the representation used specifies
appropriate reactions for every possible situation in a given domain. In this way there
is no commitment to a particular course of actions. At design time, the offline planner
partitions the set of possible situations on the basis of the reaction that every situation
requires. At operation time, the actual situation is classified and the response planned
for that class is performed. Sanborn and Hendler (Sanborn and Hendler, 1988) proposed
a system equipped with a reactive subsystem that was designed to keep the reasoner
out of trouble. The reactive subsystem keeps a reduced database of facts that are
relevant only for the near future of the agent. A component called monitor repeatedly
evaluates some aspect of the immediate actual situation and determine whether there
is a discrepancy within the current short term database. If a discrepancy is detected,
the monitor fires inhibiting or enabling different actions of the agent. Instead, as long
as the short term database is stabilized and holds, the actions are selected by the long-
term reasoner. Georgeff and Lansky attempted to merge a classical planner with a
reactive system able to guarantee the survival of the agents in highly dynamic worlds
with a system called procedural reasoning system (Georgeff and Lansky, 1987). The
procedural reasoning system is similar to a traditional planner but it provides reactivity
to dynamic changes of the environment. The system chooses the best procedure to
execute in the particular moment, but during the execution new information about the
world can be produced that changes the goal of the agent and causes the reassessment
by the system of the best procedure to execute.

These works showed a first transition from systems completely committed to plan-
ning and symbolic reasoning towards systems with reactive components. The real
revolution, however, began with Brooks (Brooks, 1991, 1986, 1999). Brooks introduced
a new approach characterized by fully reactive robots and the complete absence of
symbolic reasoning. Given the problems expressed by the classical approach, different
researchers seemed to agree on the solutions: shorter plans, more frequent attention
to the environment, and selective representation. Brooks pushed these solutions to the
extreme: the logical end of shorter plans is not to have a plan; likewise, the limit of
more frequent attention to the environment is constant attention. Finally, selective
representation leads to closing the gap between perception and action. Brooks’ ideas
led to the so called reactive robotics. Research in reactive robotics does not seek to
produce a human-like thinking process. Instead of focusing on machines that can think
intelligently, the emphasis is on the creation of machines that can act intelligently. In
order to act, the robots continuously refer to their actual perception of the environment

2.5. COGNITION 37

rather than to an internal model of the world. Two key concepts in reactive robotics are
situatedness and embodiment. Situatedness refers to the fact that robots are immersed
in their world, which can be directly perceived through their sensors (sense), without
the need of any modeling stage. This solves modeling problems such as the frame
problem. Embodiment refers to the fact that robots act in the world (act). Through
their actions, robots modify the world and the feedback that they will receive from it.
Brooks claimed that this tight coupling between the robots and their world provides a
starting point to ground concepts, that is, to give concepts a real-world meaning. In his
view, a symbol can acquire meaning only if grounded by the experience of the world.
Therefore, embodiment solves the symbol grounding problem through the interaction
of the robot with its environment.

The new reactive approach produced immediately striking results and the work
adopting the new paradigm flourished. However, the first critics came soon. Maes
(1990) recognized a shared idea in these new architectures, the concept of “emerging
functionality” from the interaction of the robots with their environment. An important
implication of this property is that it is not possible to directly tell the robots how to
achieve a goal. Instead, it is necessary to find a dynamics, or interaction loop, that
involves the system and its environment which will eventually converge toward the
desired goal. This solution requires the designer to hard-code or pre-compile the action
selection, as the robots lack explicit goals and goal handling capabilities. The author
proposed to merge the advantages of classical and reactive approaches in order to obtain
a robust, flexible and fast action selection. The interesting aspect is that the approach
used to achieve planning abilities is completely different from the classical one: action
selection is achieved in an implicit fashion. It emerges in a distributed way by parallel
interactions between a set of simple modules that exchange a virtual form of energy
through different types of links: successor links, predecessors and conflict links. The
energy spreads through the network starting from the current situation (actions are
given energy if they match the current situation) or from the goal if an action achieves
a goal. Similar critics to the complete absence of representation and a similar approach
to Maes’ one were raised by Mataric and Brooks (1990) and Mataric (1992) to obtain
a representation of a map from the interactions of reactive behaviors of a single robot.
The authors also showed how, with the same mechanism, it was possible to obtain a
path to follow on that map representation.

Excluding the works by Maes and Mataric, who tried to deeply combine the two ap-
proaches, the rest of the robotics community has since then considered the classical and
the reactive paradigm as two antithetical ways of developing robotics systems. Even
though examples of hybrid models exist (Arkin, 1990; Saffiotti et al., 1995), the two

38 CHAPTER 2. STATE OF THE ART

			Environment	

Deliberative		
control	

Reactive		
control	

Planner	

Sensors	 Actuators	

Plans	 State	

Figure 2.3: Hybrid system architecture for single robot. A planner module receives
the state of the environment as perceived by the sensors. It formulates long-terms plans and
passes them to a deliberative control subsystem. The deliberative control subsystem, together
with the reactive control subsystem, selects the behavior of the robot.

aspects remain clearly distinct from the logical point of view. A robot that adopts an
hybrid model, in fact, alternates phases in which it plans the next sequence of actions,
with phases in which it performs these actions while possibly reacting to contingencies.
The two phases are clearly separated at the level of the robot control software architec-
ture (see Figure 2.3): A reactive component drives the robot and deals with short-term
decisions, while on a higher level a planner reasons about long-term goals and selects,
through different mechanisms and policies, the appropriate reactive behavior to exe-
cute. The same distinction and the same principles were applied to multi-robot systems,
starting from the late 90s. Some system uses a central planner to compute the different
subplans that each robot should perform (Jensen and Veloso, 1998) while in fully dis-
tributed systems each robot is equipped with its own planner (Matellán and Borrajo,
1998; Guzmán-Alvarez et al., 2013; Goldberg et al., 2003; Magnenat et al., 2009; Spaan
et al., 2006). In both cases, an additional phase of coordination and synchronization
among the robots is required in order to avoid failures and keep plans and execution
consistent.

Figure 2.4 shows a system with a central planner, Figure 2.5 a system with dis-
tributed planning abilities.

After Brooks, nobody has tried to propose a new paradigm for developing robotics
systems. All the works carried out since the late 90s have focused on slightly improv-

2.5. COGNITION 39

		Environment	

Deliberative		
control	

Reactive		
control	

Planner	

Deliberative		
control	

Reactive		
control	

Deliberative		
control	

Reactive		
control	

…	

Robot	1	 Robot	2	 Robot	n	

Figure 2.4: Hybrid system architecture for multi-robot systems with a central
planner. The central planner formulates the long-term plans for all the robots.

Robot	n	Robot	2	

		Environment	

Planner	

Reactive		
control	

Planner	

Reactive		
control	

Planner	

Reactive		
control	

…	
Plans	 Plans	

Coordination/Synchronization	

Robot	1	

Figure 2.5: Hybrid system architecture for multi-robot systems with distributed
planner. Every robot has its own planning subsystem. The robots need to coordinate and
synchronize their plans in order to work towards the same goal.

40 CHAPTER 2. STATE OF THE ART

ing one or few aspects of the same architecture. Some focused the attention on the
planning technique, proposing fuzzy techniques (Saffiotti et al., 1995) rather than hier-
archical planning (Magnenat et al., 2009) or techniques based on decentralized partially
observable Markov decision processes (Spaan et al., 2006). Some others gave different
roles to the robots, dividing them in planner robots and executor robots (Guzmán-
Alvarez et al., 2013). Other works focused on different solutions for the coordination
of the robots, like for instance marked-based approaches for the allocation of subtasks
to different robots (Gerkey and Mataric, 2002).

The idea that we formulate in this thesis is that deliberative (sense-model-plan-act)
and reactive (sense-act) approaches can coexist in a particular way: the ability to plan
can emerges at the collective level from the interaction of reactive individuals.

2.5.2 Cognition in swarm robotics

In swarm robotics, each robot complies to the reactive paradigm (sense-act): at each
control cycle, the robot senses the environment and acts accordingly, without relying
on representations of the environment or symbolic reasoning. Complex collective be-
haviors of the swarm emerge from large number of individual-individual and individual-
environment interactions.

Designing individuals so that their cooperation will engender the desired collective
behavior is a difficult endeavor (see Section 2.2). For this reason, most research has so
far produced robot swarms that display spatial/geometrical properties or mechanical
abilities. However, a few studies have been devoted also to the emergence of simple
cognitive abilities. The remainder of this section is devoted to the description of these
latter robot swarm.

Fault detection

In collective fault detection, the swarm recognizes faulty robots and initiates appro-
priate responses. Despite being robust to individual robot failures, there might be
situations in which robot swarms need to be aware of the presence of faulty robots and
react properly. We consider fault detection a cognitive ability because it involves a
form of introspection and understanding of a swarm’s own property (i.e., the presence
of faulty robots).

In a pioneering work on collective fault detection, the robots use an algorithm in-
spired by firefly synchronization (Christensen et al., 2009). The robots emit a periodic
signal and eventually synchronize with each other using a model of pulse-coupled os-
cillators (Izhikevich, 1999). If a robot does not synchronize with its neighbors, it is
assumed to be faulty and a response can be triggered. A more recent approach takes

2.5. COGNITION 41

inspiration from the functioning of cells of the immune system to develop a robust
fault-detection algorithm (Tarapore et al., 2017). The authors then demonstrated the
effectiveness of their approach in a set of physical-robot experiments (Tarapore et al.,
2019).

Fault detection and fault tolerance are particularly critical when the target mission
of the swarm requires extensive communication between the robots. In these cases,
even the presence of a few Byzantine robots—that is, faulty or malicious robots—may
be sufficient to make the entire mission fail. A novel approach proposes the use of
blockchain technology to address the security issue produced by the presence of Byzan-
tine robots (Strobel et al., 2018). The approach was tested on a decision-making task
in which the robots have to reach a consensus on the most present tile color in an
environment in which the floor is covered with black and white tiles. The results show
that the blockchain-based approach is able to effectively detect and exclude Byzantine
robots and thus greatly improves the overall fault tolerance of the swarm.

Group size regulation

Group size regulation requires a similar form of introspection to that of fault detection.
In group size regulation, the robots have the ability to estimate and regulate their num-
ber in a group. This ability is useful, for example, when an excessive number of robots
in a group lowers the performance of the swarm. One of the first solutions proposed
to estimate the number of robots in a group takes inspiration from the behavior of
fireflies (Melhuish et al., 1999a): the robots emit a signal at random times and count
the number of signals perceived over a period. This number is used to estimate and
tune the size of the group. An improvement of this algorithm based on a more strict
signaling order can obtain more reliable group size estimates (Brambilla et al., 2009).
In other studies a set of flying robots aids the aggregation of ground robots (Pinciroli
et al., 2010). The aerial robots estimate the size of the aggregate and communicate to
the ground robots the accordingly adjusted probabilities of joining or leaving the aggre-
gate. Through this mechanism, the ground robots are able to form groups of different
sizes. Finally, a study proposed an algorithm inspired by cockroaches aggregation un-
der shelters that is able to partition the swarm in groups of different sizes (Pinciroli
et al., 2013). The aggregation in different groups develops in parallel, therefore the
convergence time of the algorithm is independent of the number of groups.

Collective perception

In collective perception, the robot swarm leverages its redundancy to acquire informa-
tion on one or more characteristics of the environment.

42 CHAPTER 2. STATE OF THE ART

One of the first work towards collective perception used evolutionary algorithms
to synthesize a robot swarm able to determine the density of black spots on the
ground (Morlino et al., 2012).

A more recent work compared different strategies (majority rule, voter model, and
direct comparison) to develop a robot swarm able to determine the prevalent color of
the ground (between two alternatives) (Valentini et al., 2016a). Experiments were run
with a swarm of up to 20 e-puck robots.

Collective decision-making

Collective decision making focuses on how a robot swarm can make decisions. Differ-
ent categories of situations can require a swarm to make a choice: The first category
comprises situations in which the robots need to reach a consensus on a single choice
among a set of possible alternatives. The behaviors that aim at solving these prob-
lems are called consensus achievement. Often, consensus achievement requires forms of
collective perception to then make a decision based on the perceived environmental fea-
tures. The second category comprises problems in which the robots have to distribute
themselves among a set of possible tasks and operate in parallel on those tasks in order
to maximize the performance of the system. This process is called task allocation. The
last category we consider in this thesis comprises problems in which the robots need
to decide in which order to perform a set of given tasks. This process is called task
sequencing.

A comprehensive survey on the most effective models and methodologies used to
obtain collective decision making can be found in (Hamann, 2018).

Consensus achievement Consensus achievement behaviors allow a robot swarm to
converge on a single choice among a set of alternatives. The choice is usually the one
that maximizes the performance of the system. Consensus achievement can be observed
in many insect species; for example, ants can determine the shortest of different paths
using pheromone (Camazine et al., 2001) and bees collectively choose the best nest
location among several alternatives (Couzin et al., 2005).

The robots of a swarm can reach consensus using either direct or indirect com-
munication. Several strategies have been proposed in the literature. By mimicking
a form of consensus achievement used by cockroaches, it is possible to develop robot
swarms that choose a single aggregation zone using indirect communication (Garnier
et al., 2005)—that is, decisions are taken using indirect clues, such as the density of
neighbors. Consensus achievement can be achieved via quorum sensing, an algorithm
inspired by the choice of the best over N alternatives in ants and bees (Parker and

2.5. COGNITION 43

Hong, 2011).

The algorithm is based on direct communication: robots evaluate alternatives and
advertise them through recruiting messages that are broadcast with a frequency pro-
portional to their perceived quality. This allows the swarm to eventually converge on
the best alternative. The nest-site selection in honeybee colonies inspired other work:
a thorough study of its analytical model and the identification of the parameters that
determine its working regime enabled the definition of guidelines for the implementa-
tion of the individual robot behavior. This approach was applied to the shortest path
selection problem (Reina et al., 2015a).

Consensus achievement has been used also to let the robots agree on a common ref-
erence orientation (Navarro and Matía, 2012). The algorithm, which uses only relative
positioning and local communication, can be used as a preliminary step for collective
motion.

Two novel strategies were proposed: the first is based on a weighted voter model
and ensures a high decision accuracy and robustness to noisy assessments of alterna-
tives (Valentini et al., 2014); the second couples a mechanism of time-modulation with
individual robots’ decisions based on the majority rule and has been shown to speed up
the decision process considerably (Montes de Oca et al., 2011; Valentini et al., 2015b,a).
A later work (Scheidler et al., 2016) introduced the k-unanimity rule, which extends
the control structure of the majority rule with differential latency: A robot using the k-
unanimity rule changes its current opinion to a different option only after consecutively
encountering k other robots all favoring that other option. This model was studied
with up to 3 options. Another work focused on the adaptability of decision-making
strategies to abrupt changes in the qualities of the options (Prasetyo et al., 2019). The
work compares two adaptation mechanisms called stubborn agents and spontaneous
opinion switching. With the aid of modeling techniques and computer simulations, the
authors show that both strategies can achieve adaptability to dynamic environments,
and identify the parameters that regulate the level and the speed of adaptation of the
robot swarm. Consensus achievement has been used to allow a robot swarm to decide
when it is time to switch the the next task of a known sequence of tasks (Parker and
Zhang, 2010). The problem of deciding whether to switch to the next task is a binary
decision-making problem whose options are “task complete” or “task incomplete”.

A pioneering work (Strobel et al., 2018) proposed the use of blockchain technology
to increase robustness of consensus-achievement strategies to the presence of Byzantine
robots—that is, faulty or deliberately malicious robots that may cause the entire swarm
to fail its mission.

Consensus achievement is typically modeled using Markov chains (Valentini et al.,

44 CHAPTER 2. STATE OF THE ART

2013; Valentini and Hamann, 2015; Hamann, 2013; Valentini and Hamann, 2015).
Another modeling technique used to model consensus achievement is based on Bio-
PEPA (Massink et al., 2013), a process algebra originally introduced for modeling
biochemical systems. From a formal specification of the system in Bio-PEPA, the au-
thors were able to analyze the behavior of a swarm that had to identify the shortest
path between two possible choices.

For a comprehensive review of the literature on consensus achievement we refer
to Valentini et al. (2017).

Task allocation Task allocation behaviors deal with the distribution of robots over a
set of different tasks. The allocation is usually dynamic and aims at maximizing the
overall performance of the swarm. Ants and bees use task allocation. For example,
while some individuals are foraging, a number of other individuals are in charge of
looking after the larvae. Task allocation is usually obtained through manual design
methods. In the first works on task allocation the choice of the robots was limited
to whether to engage in a foraging task or remain in the nest, resting. The robots
would choose on the basis of the level of energy in the nest (level raised by the preys
collected and consumed by robots resting) (Krieger and Billeter, 2000), or on the basis
of individual observation of the environment and of other robots (Agassounon and
Martinoli, 2002). A similar approach is used in other works to design task allocation
for two sequentially interdependent tasks (Pini et al., 2013; Brutschy et al., 2014).
The process is based on individual observations of the environment and of the current
performance of the swarm, and hence it does not require direct communication between
robots. Other works focus on whether, when, and how the robots should perform the
overall task or partition it and allocate themselves to one of the subtasks (Pini et al.,
2011). For example, a robot could choose whether to carry a prey from the source to
the nest or store it in a cache (Brutschy et al., 2015). In the latter case, the prey would
then be collected by robots waiting on the other side of the cache and carried to the
nest. The choice is made on the basis of the estimation of the costs involved.

Some attempts have been made to design task allocation via automatic methods.
A study demonstrated how self-organized task allocation can be obtained through evo-
lutionary robotics (Ferrante et al., 2015). Differently from the previous attempts that
used artificial neural networks (Tuci, 2014; Nitschke et al., 2012b,a), the authors used
a method of grammatical evolution to automatically design task allocation strategies.
This method was proven more effective, and was able to successfully design task allo-
cation both when provided with few behavioral building blocks and when the strategy
had to be defined anew.

2.5. COGNITION 45

Task allocation is usually tested on foraging. However, there are examples of ap-
plication of task allocation to other practical problems. The allocation of robots to
different operations on a construction site (Yun et al., 2011) and a stick-pulling prob-
lem (Halász et al., 2013) are two further examples of application.

Often, task allocation is used as a testbed for modeling techniques. A set of
advection-diffusion-reaction partial differential equations was used to model and de-
sign a behavior for task allocation (Berman et al., 2009). Delay differential equations
were used to model task allocation and verify the stability of the system obtained (Hsieh
et al., 2008). A population dynamics model was used to determine some parameters
of the individual behavior and the optimal distribution of robots in two task-allocation
scenarios (Correll, 2008). Finally, a Poisson process was used to describe the perfor-
mance of a swarm performing a set of tasks and to design the individual switching
probabilities for task allocation (Khaluf et al., 2014).

Task sequencing

Although the composition and sequencing of tasks to create more complex behaviors has
been widely adopted in the single-robot case (Arkin, 1998; Mataric, 1998; Belta et al.,
2007), only few works have attempted to use the same approach for robot swarms.

Parker and Zhang (2010) proposed a consensus-achievement algorithm to let the
swarm take an autonomous decision on when to swicth to the next task. This work is
limited by the fact that the robots decide when to switch and not what to do next—i.e.
the correct sequence of the tasks is known at design time and is hard coded in the
robots’ control software.

A step towards task sequencing in robot swarms was performed in Nagavalli et al.
(2017): An off-line algorithm is used for sequencing the set of collective behaviors
(selected from a larger set of known and well-defined possible behaviors) that will lead
the robot swarm from an initial state to a goal state. The switch between behaviors can
occur only at particular decision points and between two decision points all the robots
of the swarm execute the same set of rules. This means also that the individual rules
that the single robots execute are pre-defined so that the selected collective behavior
can emerge. The algorithm is proven complete and optimal, but the execution times
are too high for real-time control of a real robot swarm. The algorithm was applied
to a navigation scenario, in which the swarm has to navigate between a starting and
a goal position while avoiding obstacles, and an area-coverage scenario. Experiments
were executed in static environments and simulation only.

In the remainder of this thesis, we present a robot swarm with the ability to sequence
task autonomously at operation time.

46 CHAPTER 2. STATE OF THE ART

Chapter 3

TS-Swarm Mark I

In this chapter, we present TS-Swarm (Fig. 3.1). Differently from most of the robot
swarms that have been demonstrated in the literature, TS-Swarm displays a complex
cognitive ability: the ability of sequencing tasks. It does so despite the fact that the
individual robots of the swarm act by reacting to contingencies and are not aware of the
task-sequencing problem being solved. Although the reactive paradigm was shown to
be more effective for implementing the behavior of individual robots (Brooks, 1991), we
argue that robot swarms require complex cognitive abilities to solve the unpredictable
problems posed by real-world applications. The robots of TS-Swarm thus optimize
online their collective behavior to solve the task-sequencing problem that allows them
to accomplish the given mission.

To sequence tasks while individually behaving reactively, the robots of TS-Swarm
form a chain structure that ultimately serves two purposes: (i) assisting the navigation
of other robots between tasks; and (ii) encoding the order in which tasks must be
performed.

The order in which the tasks must be performed is discovered collectively by the
robot swarm via a trial-and-error process: when a robot acquires additional information
about the order of execution of a task, it shares this information locally with the chain
member near the location where the task is performed. From then on, the chain member
will use this information to assit other nearby robots in performing the task in the
correct order.

In this chapter, we present the first version of the system: TS-Swarm Mark I
(Mark I)1. In Mark I, a robot acquires more information about the correct order of
execution of a task by executing it and immediately receiving a negative feedback if
it was performed in the wrong order, positive feedback otherwise. A robot receives

1The word mark, followed by number, is a method of designating a version of a product. See https:
//en.wikipedia.org/wiki/Mark_(designation)

47

https://en.wikipedia.org/wiki/Mark_(designation)
https://en.wikipedia.org/wiki/Mark_(designation)

48 CHAPTER 3. TS-Swarm Mark I

D

C

y s y o s o

s y o y o s

o s y

y

o

s

s
y

o orchard:
shed:
yard:

�ll crate
get crate

load truck

legend:

a priori unknown
correct sequence

B

go to shed

go to
 yard

go to orchard

shed: get crate

orchard: �ll crate

yard: load truck

A

Figure 3.1: From task-sequencing missions to TS-Swarm. (A) The example of task-
sequencing mission presented in Fig. 1.1, a fruit-picking robot swarm. The correct sequence
of the three tasks must be repeated multiple times to fully load the truck with fruit. (B)
Formal representation of the solution space. (C) An e-puck and a TAM (see Fig. 3.2 and
Appendix A). (D) TS-Swarm in its arena with three TAMs.

feedback in the sense that, after performing a task, it becomes immediately aware of
whether the task was performed in the correct order or not.

The rest of the chapter is organized as follows: First, in Section 3.1, we describe
the abstract task-sequencing algorithm at the base of Mark I. Then, in Section 3.2, we
introduce the hardware and software platforms on which we implement this algorithm.
In Section 3.3, we describe the details of the implementation of Mark I, focusing mostly
on the case in which the tasks to sequence are three (Mark I3), and then presenting
the minor modifications that we made to obtain a system able to sequence four tasks
(Mark I4). In Section 3.4, we present the experiments that we performed to demonstrate
the task-sequencing ability of Mark I and we analyze the results obtained. Finally, in
Section 3.5, we discuss some possible improvements to the system.

3.1 Distributed task-sequencing algorithm

In this section, we describe the task-sequencing algorithm at the base of Mark I. To
do so, we consider the case in which the tasks to be sequenced are three, but all the
considerations we make here are general and applicable to the case in which the tasks
are m. The three (m) tasks must be performed in a specific order (without repetitions)
by an individual robot of the swarm. Each task must be performed in a certain area, and
the correct order is unknown at design time. The sequence of tasks must be repeated
multiple times by the same or by other robots.

3.1. DISTRIBUTED TASK-SEQUENCING ALGORITHM 49

In TS-Swarm, all robots follow the same reactive rules but autonomously assume
different roles depending on the contingencies they encounter. A robot can be a runner,
guardian, tail, or link. We will collectively refer to guardians, links, and tail as chain
members. Initially, all robots are runners and move randomly in the arena. Upon
encountering a task, a runner performs it and then positions itself in the proximity of
the task, becoming its guardian. From then on, no other runner will perform the task,
unless directed to do so by its guardian. Eventually, three robots are the guardians of
the three tasks. Two of them received negative feedback, as their task is not the first of
the sequence. The other guardian received positive feedback: its task is the first one.

Consider the fruit-picking example described in Chapter 1 and illustrated in Fig. 1.1
and Fig. 3.1. The robots composing the fruit-picking swarm are pre-programmed to
perform the individual tasks—i.e., pick up a crate, fill the crate with fruit, load the
crate onto the truck—but initially ignore the correct order of execution of the tasks and
the location of the area where each task must be performed. The first robot reaching
the area where a task must be performed attempts to perform it. In this example,
the first robot that reaches the shed reacts to the presence of crates by trying to pick
up a crate. This will result in a success (positive feedback), as the robot did not have
anything in its hands. On the other hand, the first robot that reaches the orchard reacts
to the presence of fruit on the trees by trying to pick the fruit and place it in a crate.
This will result in a failure (negative feedback), as the robot does not yet have a crate
to fill with fruit. Lastly, the first robot that reaches the yard reacts to the presence of
the truck but fails to load it (negative feedback), as it reached the yard empty-handed.
After attempting to perform the task, each of these three robots positions itself in the
proximity of the task and becomes its guardian.

The guardian that succeeded in performing its task—i.e., received positive feedback—
initiates the construction of the chain. Runners that encounter the chain being built
can contribute to its extension by positioning themselves at its end, one after the other.
We refer to the last robot in the chain as the tail and to the others as the links. Tail and
links align and keep a target distance between themselves so that the chain is stretched
and straight. If the chain reaches a wall, it turns, sweeping the environment. By
extending and turning repeatedly, the chain eventually encounters another guardian.
When this happens, the tail transfers its role to the guardian and becomes a link. The
guardian initiates the construction of a new branch of the chain to ultimately include
all the guardians. Robots that have not become chain members remain runners and
navigate the environment following the chain. When a runner reaches a guardian, it
performs the guarded task if so directed.

Guardians learn to direct runners via trial and error. As mentioned, a guardian

50 CHAPTER 3. TS-Swarm Mark I

received positive or negative feedback, depending on whether its task is the first to
be performed or not, respectively. The guardian that received positive feedback will
direct to its task the runners that have not yet performed any task. The other two
guardians learn the correct policy with the help of the runners. The first time they
are reached by a runner that has performed exactly one task (in our example, a runner
that has already picked up a crate), they ask it to perform their task and wait to be
informed of the feedback. If the feedback notified by the runner is positive, from then
on the guardian will direct to its task the runners that have performed one task. In
our example, this is what happens at the orchard, where a runner with an empty crate
successfully fills it with fruit and informs the guardian of the positive feedback received.
If the feedback notified by the runner is negative, the guardian will direct to its task
the runners that have performed two tasks. This is what happens at the yard, where
a runner fails to load the truck, as its crate is still empty, and notifies the guardian of
the negative feedback received. From then on, the guardian at the yard will direct to
its task only runners that have already performed two tasks—i.e, pick up a crate and
fill it with fruit.

Finally, the swarm has autonomously found the correct sequence. All the runners
will now be able to reliably navigate between the areas using the chain and will be
directed by the guardians to perform the three tasks in the correct order. The sequence
of tasks will be repeated multiple times by the runners of the swarm to ultimately
complete the mission.

3.2 Platforms

We implemented TS-Swarm on e-puck robots (Mondada et al., 2009) and we use
a custom-designed device called TAM (task abstraction module) to abstract tasks
(Brutschy et al., 2015). As a development environment and robot simulator we used
ARGoS (Pinciroli et al., 2012). Here we provide an overview of these platforms. The
work carried out for this thesis produced a major contribution to their development.
In particular, we re-designed and implemented the e-puck software architecture, and
implemented the robot-TAM communication system on the TAM. The implementa-
tion of the simulated version of both platforms in ARGoS was also carried out during
this work. Overall, the work on the platforms required about one year. The detailed
descrition of the contributions and the final platforms is given in Appendix A.

3.2. PLATFORMS 51

3.2.1 The e-puck

The e-puck is a mobile two-wheeled differential-drive robot designed for education and
research (Mondada et al., 2009). It is cylindrical in shape, with a diameter of 70 mm

and a height of 50 mm. Its basic version is equipped with a PIC microcontroller and
several sensors and actuators. The sensors are: 8 infra-red transceivers, which can be
used to sense the presence of obstacles or measure the intensity of ambient light; a col
[B] or camera at the front of the robot; a microphone; and a 3-axis accelerometer. The
actuators are: two stepper motors, which control the motion of the robot by differential
steering (one motor for the left wheel and one for the right wheel); a ring of 8 red LEDs;
and a speaker.

The e-puck can be enhanced by the addition of various extension boards. For the
research presented in this thesis, we extended the basic version of the e-puck with a
range-and-bearing board (Gutiérrez et al., 2009), an omnivision module, and a Gumstix
Overo board (Figure 3.1C, left). The range-and-bearing board enables local commu-
nication between e-pucks via infra-red signals. It comprises 12 emitters and 12 re-
ceivers placed all around the body of the e-puck. The range-and-bearing board allows
e-pucks to send and receive four-byte messages at a rate of about 30 messages per sec-
ond. Upon reception of a message, the board computes the distance (range) and angle
(bearing) of the peer e-puck that sent the message. The omnivision module comprises
an omni-directional camera and 3 RGB LEDs and enhances the perception and local
communication capabilities of the e-puck. Through the camera, an e-puck can see its
neighboring peers and the TAMs. Moreover, it can perceive the color coded status
that the neighboring peers might display using their RGB LEDs. The Gumstix Overo
board increases the computational capabilities of the e-puck and provides the flexibility
and potential of a computer running Linux. It allows running C++ code, which is not
possible on the PIC micro-controller of the basic version of the e-puck.

The basic version of the e-puck is powered by a rechargeable lithium-ion battery
with 5 W h capacity. The omnivision module houses a second battery with the same
capacity to cope with the higher energy requirements of the extended e-puck. In a
typical experiment, the full battery charge of an extended e-puck lasts about 40 minutes.
Indeed, we have observed that after about 45 minutes of continuous operation, the
charge of the batteries is low. This negatively affects the behavior of the robots and
in particular their ability to successfully transmit and receive messages through the
range-and-bearing board.

52 CHAPTER 3. TS-Swarm Mark I

3.2.2 The TAM

The TAM (Brutschy et al., 2015), task abstraction module, is a device conceived for
facilitating laboratory experiments with e-puck robots. A TAM represents an abstract
task to be performed by an e-puck. The goal of the TAM is to abstract from task-
specific details that are irrelevant to the objectives of an experiment. The TAM is
particularly useful in experiments that focus on group dynamics rather than on the
specific tasks performed by the individuals.

The TAM is a booth that an e-puck can enter. For an e-puck, being into a TAM
for a given time span amounts to performing the task abstracted by the TAM itself.
The TAM has a cubical shape with sides of 120 mm (Figure 3.1C, right). The TAM
is controlled by a microcontroller (ATmega-1284p, 16 MHz), and is equipped with two
light barriers, three RGB LEDs, and an IR transceiver for short-range communication.
Each TAM is powered by a rechargeable lithium-ion battery of 5 W h capacity, the same
battery used by the e-puck. In a typical experiment, a full battery charge lasts for over
10 hours. Each TAM is equipped also with an XBee mesh networking module, which
enables communication and coordination with a central computer and with other TAMs.
A group of TAMs can be therefore programmed to represent complex relationships
between tasks. For example, a task could become activated only upon completion of
another one or a group of tasks could be performed successfully only in a specific order.
The experimenter implements the logic that defines the relationship between tasks on
a central computer. The computer dispatches commands to the TAMs to realize the
relationships programmed by the experimenter. The TAMs and the central computer
communicate wirelessly via the XBee mesh networking module.

An e-puck perceives the colored LEDs of the TAM using its omni-directional cam-
era. Different tasks are signaled by using different LED colors. An e-puck can decide to
perform the task represented by a TAM by moving into it. The TAM detects the pres-
ence of the e-puck by means of its light barriers and reacts according to a logic defined
by the experimenter. For example, upon the detection of an e-puck, the TAM could
change the color of its LEDs or start communicating with the e-puck itself. The TAM
and the e-puck communicate with each other through their infra-red transceivers. Com-
munication between e-pucks and TAMs enables experiments in which e-pucks receive
individual feedback for the tasks they perform.

In the framework of this thesis, we contributed to the development of the TAM by
designing and implementing the robot-TAM communication subsytem, and by imple-
menting the coordination software running on the central computer.

3.3. DESCRIPTION OF Mark IM 53

3.2.3 ARGoS

ARGoS (Pinciroli et al., 2012) is a modular multi-robot simulator and development en-
vironment conceived for being flexible and efficient. ARGoS provides a straightforward
way to port control software developed in simulation to the robots, without requiring
any modification. To achieve this result, each sensor and actuator presents an inter-
face with two back-end implementations: one for simulation and one for the robot.
The control software of the robot directly interacts with this interface without having
knowledge of which back-end implementation is being used. At link time, ARGoS takes
care that the appropriate back-end implementation is executed, depending on whether
the execution is to take place in simulation or on the robot. ARGoS provides a number
of physics engines. Some of them are kinematic engines that favor performance over
realism, others are dynamics engines, in two or three dimensions, that require more
computation but that produce more realistic simulations. As realism plays an impor-
tant role in our simulations and the system we propose comprises only robots that
move on the ground, we use a dynamics engine in two dimensions in all the simulated
experiments.

In the framework of this thesis, we contributed to the development of ARGoS by
extendeding the basic model of the e-puck with models of the range-and-bearing board,
the omnivision module, and the Linux board (Garattoni et al., 2015). The extended
e-puck plugin for ARGoS was made available to the research community and it has
already been used by several research teams around the world. We also created the
model of the TAM, which was not originally provided by ARGoS. We refer the reader
to Appendix A for a complete description of the platforms and their development for
this thesis.

3.3 Description of Mark Im

Mark Im assumes that a robot receives feedback on the order of execution of a task
immediately after executing it. In the following of this section, we describe the im-
plementation of the system. Although all the robots of the swarm execute the same
control software, they assume different roles at runtime. Roles are not pre-assigned,
but are rather taken autonomously by the robots on the basis of their interactions with
peers and environment. We describe each role that the robot can take at runtime—i.e.,
guardian, link, tail, and runner—providing details of their implementation on e-puck
robots.

The control software of the robots is realized as a probabilistic finite state machine
in which the control cycle has period of 100 ms. A high-level representation of the

54 CHAPTER 3. TS-Swarm Mark I

Follow
chain

Random
walk

Receive
guardian
indication

Become
new tail

Random
walk

Tail

Link

Guardian

Runner

unattended
task

task found

new tail

failure

tail found

do not
perform task

guardian found

chain
found

chain
lost perform task

Random
walk

Perform
task

success

Figure 3.2: State machine of TS-Swarm. High-level description of the robots’ behavior.

probabilistic finite state machine is given in Figure 3.2.
At every control cycle, all chain members broadcast a four-byte message via their

range-and-bearing board. On the other hand, runners broadcast a four-byte range-and-
bearing message only in specific situations, as it will be detailed in the following. The
general scheme of the message encoding is given in Figure 3.3. Details will be provided
on a per-role basis in the following of this section.

In the remainder of this section, we detail the implementation of the four robot roles
of Mark Im for the extended e-puck platform.

Guardian

The guardians are robots that position themselves right in front of a task to signal its
presence and to indicate whether a runner should perform it or not. They announce
their role by displaying the color cyan through their RGB LEDs (Figure 3.4). The
guardians also act as end points of the branches of the chain. In particular, they are
in charge of starting the construction of a branch when: (i) the task they guard is the
first to be performed, or (ii) they are reached by the chain being built (provided that
the whole chain is not completed, yet).

Before becoming a guardian, a robot is a runner that explores the environment
performing a random walk. A runner becomes a guardian when it encounters an unat-
tended task, performs it, and eventually stand in front of it. After performing the task
of which it becomes a guardian, a robot receives positive feedback if the task is the

3.3. DESCRIPTION OF Mark IM 55

GUA CLR CND/CNTDATA[3]: —

7 6 5 4 3 2 1 0

EST INCHN LNK_NODATA[2]: CONF

7 6 5 4 3 2 1 0

BRN DIR/
FEEDDATA[1]: INHBT TAIL REQ/

RES—

7 6 5 4 3 2 1 0

IDDATA[0]:

7 6 5 4 3 2 1 0

Figure 3.3: Encoding of the range-and-bearing message in Mark Im. Guardians iden-
tify their messages by setting DATA[3][6]. Each guardian locally broadcasts its CND and
CONF (see Section 3.3-Guardian) by setting DATA[3][2:0] and DATA[2][7], respectively. Ad-
ditionally, a guardian indicates the color of the guarded task (DATA[3][5:3]), whether it
is in chain or isolated (DATA[2][5]), and whether the nearby runners should be inhibited
(DATA[1][3])—except the one that initiated the inhibition and whose ID is indicated in
DATA[0][7:0]. When it is reached by a branch of chain, a guardian also sets DATA[2][6]
to indicate that the branch has been established and increments by 1 the value of BRN
(DATA[1][6:4]) received from that branch. BRN enumerates the branches of chain that have
been established; it is used to identify each branch and to determine when all the tasks have
been connected by the chain. The links along a branch relay the value of BRN indicated by
the guardian that initiates the branch. Links indicate also their position within the branch
(DATA[2][4:0]) and whether the branch is established or still being built (DATA[2][6]). The
tail identifies its messages by setting DATA[1][2]. To indicate the sector in which a new
tail can join the chain, the tail sends, only in that sector, a message in which DATA[1][1] is
set. To respond to a request for becoming a new tail, the tail sends a response by setting
DATA[1][0] and inserting the ID of the selected requesting runner in DATA[0][7:0] (see Sec-
tion 3.3-Tail and Figure 3.9). Runners’ messages are characterized by the value 0 in the fields
GUA, TAIL, and LNK_NO. Runners can send a request to join the chain as the new tail
by setting DATA[1][0]. They notify a guardian of the success/failure of a task execution by
indicating their value of CNT in DATA[3][2:0] and the feedback received in DATA[1][1] (see
Section 3.3-Guardian and Figure 3.6). Finally, a runner can inhibit other neighboring runners
while communicating with a guardian or performing a task by sending a message in which
DATA[1][3] is set (see Section 3.3-Guardian and Section 3.3-Runner).

56 CHAPTER 3. TS-Swarm Mark I

C Y CYYY

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Figure 3.4: Guardians. The guardians are the chain members that are at the two ends of
each branch. They are identified by the color cyan. They place themselves right in front of a
task and instruct other robots on whether they should perform it or not.

first one to be performed and a negative one otherwise. More precisely, to act as a
guardian, a robot positions itself so that the TAM of the guarded task is right behind
its back. Indeed, after performing the task, and before assuming the role of guardian,
the robot exits the TAM moving forward and in a straight line for about 0.25 m. As
a result, when the robot stops and takes the role of the guardian, the guarded task is
behind its back.

The guardian can be in four different states, depending on the feedback received
after performing the guarded task and on the state of chain construction.

• If the feedback is positive and the chain does not exist yet, the guardian is isolated
in front of the first task. In this case, the guardian acts also as the tail of the
chain to recruit chain members and form the first branch of the chain.

• If the feedback is negative and the chain is not perceived in the neighborhood,
the guardian is isolated in front of either the second or third task. In this case,
the guardian waits to be reached by the chain. In the meantime, it indicates that
runners that have not performed any task should not perform the one it guards.

• If the feedback is negative and the branch of chain being built has arrived in
the vicinity, the guardian joins the chain and completes the construction of the
branch. If the construction of the chain is not complete, that is, if some tasks
have not been reached yet, the guardian takes also the role of tail and initiates
the construction of a further branch.

• Independently of the feedback originally received, after joining the chain and
after being relieved from the duties of tail, the guardian limits itself to instruct
the runners on the execution of the task guarded.

The transition between these four states is graphically described in Figure 3.5.

3.3. DESCRIPTION OF Mark IM 57

Tail &
Guardian

Guardian

isolated

Guardian

in chain

branch
established

[else]

new tail

new tail

[all tasks
in chain]

[feedback==1]

[feedback==0]

Tail &
Guardian

Figure 3.5: State machine of a guardian. The four states in which a guardian can be,
with respect to the construction of the chain.

When acting as a tail, the guardian initiates the construction of a branch of chain
on its right-hand side—the guarded task being behind its back. The goal is to construct
a branch that departs from the right-hand side of the task and then sweeps the space
anticlockwise when its tail reaches a wall. In all other respects, the guardian acts as
any other tail—see Section 3.3-Tail.

The primary goal of a guardian is to guide runners in the execution of tasks. We
will refer to the communication protocol between runners and guardians as guardian
protocol (G protocol). The G protocol works as follows—see Figure 3.6 for an example
of message exchange and Table 3.1 for a description of the messages. Every guardian
locally broadcasts a range-and-bearing message (G_ADV) that contains information
about the guarded task. The message contains two pieces of information: (i) the number
CND of tasks that a runner must have performed to qualify for performing the guarded
one; and (ii) the Boolean CONF, which states whether the guardian is confident about
the value indicated in CND. CND and CONF are respectively encoded as DATA[3][2:0]

and DATA[2][7]—see Figure 3.3.

As mentioned above, a runner that encounters an unattended task performs it and
becomes its guardian. As a guardian, if the feedback received after performing the task
was positive, it will broadcast CND = 0 and CONF = 1. This means that a runner
that has not performed any task will be positively instructed to perform the guarded
one. On the other hand, if the feedback was negative, the task is not the first to be
performed but the information available is insufficient to tell whether the task is the
second or the third of the sequence. In this case, the guardian will broadcast CND = 1

58 CHAPTER 3. TS-Swarm Mark I

Guardian Runner

G_ADV CND CONF=1

CND CONF=1

LeavePerform

G_NTF CNT FEED=1

CNT == CND CNT != CND

A B

Guardian Runner

G_ADV CND CONF=0

CND CONF=0

LeavePerform

G_NTF CNT FEED=1

CNT >= CND CNT < CND

CND=CNT+1
CONF=0

CND=CNT-1
CONF=1

CNT CNT

FEED==1 FEED==0

CNT=CNT+1

success failure

G_NTF CNT FEED=0

CNT=CNT+1

C C

C C

Figure 3.6: Guardian protocol (G protocol), sequence diagram. A runner that receives
a G_ADV message performs the guarded task depending on whether the guardian is confident
(CONF) about the value of CND. (A) If the guardian is confident about the value of CND,
the runner performs the task provided that CNT = CND. (B) If the guardian is not confident
about the value of CND, the runner performs the task provided that CNT >= CND. In the
latter case, the guardian uses the feedback notified by the runner through a G_NTF message
to update CND and CONF: If the runner has successfully performed the task in the correct
order, the guardian sets CONF = 1 and CND = CNT− 1; otherwise, the guardian confirms
CONF = 0 and sets CND = CNT + 1.

Table 3.1: Guardian protocol (G protocol), description of messages.

message full name description

G_ADV advertisement message

Message locally broadcast by a guardian for
nearby runners; it provides the conditions
under which the task should be performed
and the confidence of the guardian; it con-
tains CND and CONF

G_NTF notification message

Message sent by a runner to a guardian after
executing its task; it notifies the guardian
of the feedback received upon execution; it
contains CNT and FEED (which is 1 if the
execution was successful, 0 otherwise)

3.3. DESCRIPTION OF Mark IM 59

and CONF = 0. This means that a runner needs to have performed at least one task
to qualify for performing the guarded task. Though, this condition is not sufficient for
guaranteeing that the execution will be successful (CONF = 0).

The guardian is notified by every runner that performs the guarded task through a
range-and-bearing message (G_NTF). Specifically, after performing the task, a runner
communicates whether the execution was successful (DATA[1][1], see Figure 3.3) and
the number CNT (DATA[3][2:0]) of tasks that it has so far successfully performed in
the right order—including the guarded one, in case its execution was successful. If the
guardian was not confident about the condition CND, that is, if CONF = 0, it updates
its G_ADV as follows. If the runner has successfully performed the task in the correct
order, the guardian sets CONF = 1 and CND = CNT − 1; otherwise, the guardian
confirms CONF = 0 and sets CND = CNT + 1. The rationale is that, if the execution
was unsuccessful, the runner failed to perform its task number CNT + 1 in the correct
sequence. This means that the task guarded by the guardian is not the number CNT+1

in the sequence. At the same time, as the runner has already performed CNT tasks,
the one guarded by the guardian is not among the first CNT of the sequence, otherwise
the guardian would have been previously notified of a success and would have already
set CONF. All in all, this means that the guarded task must be at least in position
CNT + 2 of the correct sequence. As a consequence, the guardian will indicate that a
runner must have performed at least CNT + 1 tasks before it qualifies for performing
the one at hand.

A further duty of a guardian is to relay inhibition messages produced by the runners
to avoid that they crowd around a task—see Section 3.3-Runner for the details.

Link

The chaining behavior we implemented for TS-Swarm is loosely inspired by previous
work (Nouyan et al., 2008, 2009). Instead of the polychromatic cyclic pattern previously
used to indicate the sense in which the chain should be followed, the links in TS-Swarm
adopt a monochromatic pattern. This is because in TS-Swarm LED colors are used both
to identify the different roles that the robot can assume, and to signal the presence of
tasks. Additionally, e-pucks can display and recognize only a relatively limited variety
of colors. Therefore, all the links indicate their role and mark their position in space by
displaying the color yellow through their RGB LEDs. This means that runners move
along the chain always in the same sense—that is, keeping the chain always on their
left-hand side (see 3.3-Runner).

The goal of the chain is to assist the navigation of runners and ultimately lead them
to the guardians of the tasks. To facilitate the navigation of runners, each link positions

60 CHAPTER 3. TS-Swarm Mark I

A

B

Y

Y

Y Y

Y

Y

Figure 3.7: Motion of a link. Every movement of a link consists of two components:
distance adjustment and alignment. The two components are computed with respect to the
two closest neighboring chain members that the link perceives. The alignment component
lies in the direction given by the mean (γ) of the angles under which the link perceives the
following chain member (α), and the preceding one (β). Angles are measured with respect
to the heading of the link, which is indicated by the black triangle and the dashed line. The
distance adjustment component lies in the direction of the neighboring chain member whose
distance is the farthest from the target spacing distance between chain members. (A) If the
neighboring chain member is too far, the distance adjustment component is oriented towards
it. (B) If the neighboring chain member is too close, the distance adjustment component is
oriented in the opposite sense.

itself and aligns properly with respect to its two neighboring chain members: the one
that precedes and the one that follows in the chain. At every control step, each link
adjusts its position through displacements that consist of two components: distance
adjustment and alignment (Figure 3.7).

The direction of the distance adjustment component is defined by the line connecting
the link itself and the neighboring chain member that is the farthest away (in absolute
value) from a target distance of 0.15 m. The distance adjustment component is oriented
towards this neighboring chain member if the latter is farther that the target distance
(Figure 3.7A). Otherwise, it is oriented in the opposite sense (Figure 3.7B).

The direction of the alignment component is given by the mean of the angles α

3.3. DESCRIPTION OF Mark IM 61

and β under which the preceding and following chain members are seen. Formally, the
angle γ between the heading of a link and its alignment component is:

γ =

arctan
(

sin(α)+sin(β)
cos(α)+cos(β)

)
, if cos(α) + cos(β) > 0;

arctan
(

sin(α)+sin(β)
cos(α)+cos(β)

)
+ π, if cos(α) + cos(β) < 0 and sin(α) + sin(β) ≥ 0;

arctan
(

sin(α)+sin(β)
cos(α)+cos(β)

)
− π, if cos(α) + cos(β) < 0 and sin(α) + sin(β) < 0;

+π
2
, if cos(α) + cos(β) = 0 and sin(α) + sin(β) > 0;

−π
2
, if cos(α) + cos(β) = 0 and sin(α) + sin(β) < 0;

undefined, if cos(α) + cos(β) = 0 and sin(α) + sin(β) = 0.

To avoid oscillations, a link does not adjust its distance or alignment if its position
with respect to its neighboring chain members is sufficiently close to the ideal one. The
tolerance on the distance is ±0.05 m and the one on the alignment angle is ±10°.

A link stops in its current position, halting the adjustment of its alignment and
spacing, upon being notified that the branch it composes is established. The notification
(encoded in DATA[2][6]—see Figure 3.3) is sent by the guardian that has established
the branch upon becoming the new tail of the chain; it is then relayed by the links.

Tail

The tail marks the position that the chain has reached and the point from which
the construction should proceed. To announce its role and location, the tail uses a
unique color for its RGB LEDs: magenta (Figure 3.8). In addition, the tail locally
broadcasts, through its range-and-bearing board, a message that announces its role by
setting DATA[1][2]—see Figure 3.3. The runners that navigate along the chain are thus
informed when they approach the end of the chain and can attempt to join it to take
the role of the new tail. Joining the chain is a critical process that must be robust
to failure, promote the formation of a well-organized chain, and prevent inconsistent
states. In particular, the process must guarantee that the chain has always one and only
one tail. This is achieved via a communication protocol that regulates the interaction
between the incumbent tail and the prospective one. The communication is performed
via the range-and-bearing board. We call the protocol tail protocol (T protocol). The
T protocol works as follows—see Figure 3.9 for an example of message exchange and
Table 3.2 for a description of the messages.

The tail first makes sure to be at the right distance from the preceding chain mem-

62 CHAPTER 3. TS-Swarm Mark I

A

B

C

MC Y Cno see

C Y Y Y M
see C

C Y Y Y Y C

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Figure 3.8: Tail. (A) The tail marks the position that the chain has reached at a given
moment in time during its construction. It is identified by the color magenta. (B) When the
tail sees a guardian in its vicinity, it halts the construction of the current branch of the chain.
(C) The tail becomes a link and transfers its role of tail to the guardian.

3.3. DESCRIPTION OF Mark IM 63

Tail

Runner
R1

Runner
R2

T_REQ ID=R1

T_DIR

T_REQ ID=R2

T_DIR

T_RES ID=R1

T_ACK ID=R1

Become tail

Leave

Timeout

Become link

Figure 3.9: Tail protocol (T protocol), sequence diagram. The tail broadcasts a T_DIR
message in the circular sector in which a new tail should join the chain. Both runners R1 and
R2 receive this message and request to join as the new tail through a T_REQ. The T_REQ
contains the ID of the runner that is sending the request. The tail selects the first request
received, in the example, the one of runner R1. Then, the tail answers by sending a T_RES
that contains the ID of the request selected, in this case, R1. After receiving the T_RES
containing its own ID, R1 acknowledges the tail with a T_ACK message and becomes the
new tail. When the tail receives the T_ACK of R1, it becomes a link. In the meantime, the
request of R2 expires without a response and runner R2 leaves.

Table 3.2: Tail protocol (T protocol), description of messages.

message full name description

T_DIR directional message

Message broadcast by a tail only in the cir-
cular sector in which a new tail should place
itself; it indicates to a runner that it is in the
right position to join the chain as the new tail

T_REQ request message
Message sent by a runner to the tail; it rep-
resents the request to become the new tail;
it contains the unique ID of the runner

T_RES response message

Message sent by the tail to a runner that pre-
viously sent a request; it represents for the
runner the confirmation of being the selected
one to become the new tail; it contains the
unique ID of the runner selected as the new
tail

T_ACK acknowledgment message

Message sent by the selected runner to the
tail; it represents the acknowledgment of the
response message and the acquisition of the
role of tail; it contains the ID of the runner,
which is now the tail

64 CHAPTER 3. TS-Swarm Mark I

ber. Then, the tail starts broadcasting a directional message T_DIR (DATA[1][1], see
Figure 3.3). Through this message, the tail indicates the circular sector in which the
new tail should position itself. The ideal direction along which the new tail should
position itself is computed by extending the segment connecting the tail with the pre-
ceding chain member: as a result, the new tail will be already correctly aligned. If a
runner receives the directional message, it is because it is in the intended circular sector.
In this case, the runner stops in place and sends the tail a request message T_REQ

(DATA[1][0]). The request message carries the unique ID of the runner (DATA[0][7:0]).
The tail might receive multiple requests from different runners. Requests are handled
following a first-come-first-served policy. The tail responds with a T_RES (DATA[1][0])
that contains the ID of the runner selected as the new tail (DATA[0][7:0]). Upon re-
ception of a response containing its own ID, the selected runner becomes the new tail
and closes the communication via an acknowledgment message T_ACK (DATA[1][2] is
set and its own ID is inserted in DATA[0][7:0]). The tail transfers its role to the runner
after either receiving a T_ACK or detecting another robot that displays the magenta
tail color.

Besides managing the communication with runners that attempt to join the chain,
the tail is also in charge of searching for a guardian. When a guardian is found, the
tail includes it in the branch of chain being built to complete its construction. To
search for a guardian, the tail drives the branch of chain being built so that it sweeps
the environment in an anticlockwise motion. The tail slowly moves perpendicularly to
the direction along which the branch is being built, on the left-hand side of the latter
(Figure 3.10C). As links react by adjusting spacing and alignment, the movement of
the tail creates a domino effect: the whole branch turns pivoting around the guardian
from which the branch originates, which stays still in its position in front of its task.
As we have seen in Section 3.3, a branch departs from its originating guardian on its
right-hand side—with the TAM on the back of the guardian (Figure 3.10B). During
its construction, a branch reaches the wall of the arena, which prevents its further
extension (Figure 3.10C). Thanks to the sweeping motion generated by the movement
of the tail, the branch being built disentangles from the wall and allows further runners
to join and extend it (Figure 3.10D).

To decide when it should start to move and trigger the sweeping motion of the
branch, the tail cannot rely on its ability to detect the wall of the arena in its vicinity.
This is due to the limited range of the proximity sensors and to the noise that affects
their readings. As an alternative, the tail measures the amount of time during which
no robot attempts to join the branch. Past a predefined threshold, the tail assumes
that the branch being built is stuck against a wall and triggers the sweeping motion.

3.3. DESCRIPTION OF Mark IM 65

Once triggered, the sweeping motion is interleaved with pauses to allow links to align
and, possibly, new members to join.

When the tail spots a guardian (Figure 3.10E), the sweeping motion stops and the
tail aligns with the guardian and the preceding chain member. The guardian and the
tail then establish the branch of the chain: the tail becomes a link and transfers its
role of tail to the guardian (Figure 3.10F). The guardian then broadcasts a notification
(DATA[2][6]—see Figure 3.3) for the links that compose the branch. Upon receiving this
notification, the links halt the adjustment of their alignment and spacing, stopping in
place. A new branch of the chain can now depart from the guardian. This mechanism
eventually allows the swarm to form a chain that connects all the tasks, under the
assumptions that the arena is convex, the tasks are located along its perimeter, and
there are no obstacles in the environment (Figure 3.10).

Runner

Runners are all the robots that are not part of the chain. When the system is deployed,
all the robots of the swarm start as runners. At runtime, they might assume the role of
chain members—i.e., guardians, links, or tail—depending on the interactions they have
with peers and environment. Runners do not adopt any color to announce their role.
Indeed, their goal is not to landmark the space nor to provide information about task
execution, but rather to follow the indications provided by the chain (Figure 3.11).

A runner might become a guardian if, while performing a random walk, it encounters
an unattended task. This typically happens at the beginning of the lifetime of the
system. The number of runners that become guardians equals the number of tasks to
be performed.

The other runners continue to explore the environment by performing a random
walk. If they encounter a chain, they follow it. Runners perceive the position of chain
members via their omnivision module. Runners navigate along the chain by keeping
it on their left. This generates an anticlockwise movement of the runners around the
chain. The traffic of runners flows neatly along a branch of the chain in both senses
without interfering: the runners that travel in one sense remain on one side of the
chain, those that travel in the other sense remain on the other (Figure 3.12).

At every control step, a runner that follows a chain considers up to two neighboring
chain members to define its direction of motion. The direction is given by the sum
of a radial and a tangential component. The radial component keeps the robot at a
target distance d̄ from the chain while the tangential component allows the robot to
proceed along it. The two components refer to a circle centered in a reference point.
If the runner perceives only one chain member, the reference point is the position

66 CHAPTER 3. TS-Swarm Mark I

Y M

Ø

Y M

Ø

Y

M

Y Ø

see
 branch

established

A B

C D

E F

C

CC

C

C

C C

C

Y

Y

Y

Y

Y

Y

Y

Y

M

CC

CC

CC

Ø

Ø
Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø
Ø

Ø

Ø

ØØ

Ø
Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø
Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Figure 3.10: Construction and motion of a branch of chain. (A) Three robots become
guardians of the three tasks. (B) The one that receives positive feedback after performing
its guarded task initiates the construction of a branch of chain on its right-hand side. (C)
The branch extends until it reaches the wall of the arena, which prevents other runners from
joining it. The tail then moves perpendicularly to the direction of the branch, on the left-
hand side of the latter. (D) The movement of the tail triggers a sweeping motion of the whole
branch, which disentangles the branch from the wall and enables its further extension. (E)
The process is repeated until the tail spots the guardian of a task. (F) The tail transfers its
role to the guardian and completes the construction of the branch.

3.3. DESCRIPTION OF Mark IM 67

A

B

C

Ø

MC Y Y Y

Ø

C CYYYY

Ø

CC Y Y Y Y

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Figure 3.11: Runners. Runners are not identified by a color. (A) If a runner navigates
along a branch of chain that has not been completed yet, it eventually encounters the tail and
attempts to join the chain as the new tail. (B) If a runner navigates along a branch of chain
that is complete, it eventually encounters a guardian. The guardian might indicate that the
runner must (B) perform the task, or (C) skip it.

68 CHAPTER 3. TS-Swarm Mark I

C

CC YYYY

Y

Y

Y

Y

Ø

Ø

ØØ

Ø

Ø

Ø

Ø

Ø

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

Figure 3.12: Trajectory followed by the runners around the chain. Runners navigate
along the chain by keeping it on their left.

of the chain member perceived (Figure 3.13A,B). If the runner perceives two chain
members, the reference point is the intersection between the line passing through the
two chain members perceived and its perpendicular passing through the runner itself
(Figure 3.13C,D).

Runners are led by the chain towards a guardian. When a runner reaches a guardian,
it is instructed on whether to perform the guarded task—see Section 3.3-Guardian and
Figure 3.6. In particular, upon receiving a G_ADV message, a runner evaluates the
information provided in light of the number CNT of tasks it has already performed in
the correct order. The runner performs the task either if (i) CONF = 1 and CND =

CNT; or if (ii) CONF = 0 and CND <= CNT. Otherwise, the runner skips the
task signaled by the guardian. After performing the task—or skipping it—the runner
revolves anticlockwise around the guardian until it finds a branch of the chain to follow.
If the task was performed, while revolving around it, the runner notifies the guardian of
the feedback received upon task execution—see also Section 3.3. The runner notifies the
guardian via a G_NTF in which it encodes its (possibly incremented) value of CNT as
DATA[3][2:0] and the feedback received as DATA[1][1]—see Figure 3.3. Eventually, the
chain leads each runner through all the tasks. By using the indication provided by the
guardians, runners are able to perform the tasks along the chain in the correct order.
When a runner completes the execution of a full sequence, it starts a new execution,
in a cyclic manner.

To avoid overcrowding around the guardians and to enable an ordered execution of

3.3. DESCRIPTION OF Mark IM 69

B

Y

Ø

C D

Ø

Y Y

Ø

Y Y

A

Y

Ø

Figure 3.13: Motion of a runner along a branch of the chain. The direction of motion
is given by the sum of a radial and a tangential component that refer to a circle (dashed gray
line) centered in a reference point. (A, B) When only one chain member is perceived, the
reference point is the position of that chain member. (C, D) When two chain members are
perceived, the reference point is the intersection between the line passing through those chain
members and its perpendicular passing through the runner itself. (A, C) If the runner is too
far from the reference point (d > d̄), the radial component is oriented towards it. (B, D) If
it is too close (d < d̄), the radial component is oriented in the opposite sense.

70 CHAPTER 3. TS-Swarm Mark I

the tasks, runners adopt a mechanism of inhibition. When a runner starts approaching
a task, it broadcasts an inhibition message through its range-and-bearing board. The
inhibition message is echoed by the guardian of the task, if present. The nearby run-
ners that perceive the inhibition message transition to an inhibition state or, with a
certain probability, leave the area. Inhibited runners clear the way in front of the task
to avoid hindering other robots’ movement. After a certain period of time elapsed with-
out receiving any inhibition message, an inhibited runner transitions back to normal
operation.

3.4 Experiments with Mark I

In this section we describe the experiments that we performed to demonstrate the task-
sequencing ability of Mark I, we analyze the results obtained, and we propose a set of
possible improvements to the system.

3.4.1 Experimental design

The goal of the experiments we describe is to demonstrate Mark I and provide evidence
that it is able to successfully sequence tasks in an autonomous and distributed way.
First, we demonstrate Mark I3 both in reality with a swarm of 20 e-puck robots and in
simulation (Section 3.4.2). Besides showing the effectiveness of Mark I3, this first set
of experiments provides an assessment of the simulator (Section 3.4.3). After having
shown that the simulator satisfactorily predicts the behavior of TS-Swarm on the e-
puck robots, we adopt the simulator to perform a number of studies that we would
be unable to perform with real robots. These studies either involve a large number
of robots (more than those that we have available) or last longer than the battery life
of the robots. In particular, we perform a study in which we assess the scalability of
Mark I3 by running experiments in which the number of robots ranges from 20 to 80
and the surface of the arena in which they operate ranges from 2.10 m2 to 33.67 m2

(Section 3.4.4). We also perform a study in which we assess the robustness of Mark I3
to the number of robots comprised in the swarm (Section 3.4.5, and Table 3.4). We then
perform a set of experiments to demonstrate the task-sequencing ability of Mark I4, its
scalability and its robustness (Section 3.4.6). Finally, in Section 3.5, we analyze the
limitations of the currents implementation of Mark I and we propose some ideas for
future improvements.

In these experiments we consider abstract tasks represented by TAMs (see Sec-
tion 3.2.2). Robots operate in a bounded arena delimited by walls, which are 42 mm

high. The arena is a regular hexagon when the tasks to be sequenced are three and

3.4. EXPERIMENTS WITH Mark I 71

a regular octagon when the tasks are four. The TAMs abstracting the tasks are dis-
tributed along the perimeter of the arena and are positioned in the middle of alternate
sides. Each task is associated with a color. When the tasks are three, the colors
are red (R), green (G), and blue (B). When they are four, the fourth color is orange
(O). In each experimental run, the initial position of the robots, the correct sequence,
and the relative position of the tasks are decided randomly. In all the supplementary
movies (Garattoni and Birattari, 2020), for clarity, the correct sequence is always RGB
when the tasks are three and RGBO when they are four.

In all experiments, the final goal of TS-Swarm is to perform the correct sequence
of tasks ten times within a given time cap. As a performance measure, we consider
the time required to complete one, five, and ten executions of the correct sequence.
The first execution indicates that TS-Swarm has been able to solve the task-sequencing
problem. The tenth execution determines the final success of the system and therefore
the end of the experiment. The fifth execution represents the mid point of the previous
two measures and provides visual information on whether the execution time grows
linearly with the number of correct sequences performed or not.

Statistics

We report the performance of TS-Swarm via its empirical run-time distribution. Given:
(a) one of the variants of TS-Swarm—i.e., Mark I3, Mark I4; (b) a specific experimental
setting—e.g., a setting characterized by the number of robots, the surface of the arena,
and the time cap; and (c) a target objective—i.e., the execution of one, five, or ten
correct sequences, we perform k independent runs and we observe, for each run, the
time required to attain the target objective. The empirical run-time distribution is the
empirical distribution of these observations.

Formally, let TC be the time cap of each run, j ∈ {1, . . . , k} be the index of
a run, rj be the run-time of run j, and k′ ≤ k be the number of successful runs,
that is, those runs j : rj < TC. The empirical run-time distribution is defined as
RTD(t) , P̂s(τ ≤ t) = #{j | rj ≤ t}/k. Here, P̂s(τ ≤ t) is an estimate of the
probability that the system attains its target objective in an amount of time τ that is
less than or equal to t. In other words, the empirical distribution RTD(t) , P̂s(τ ≤ t)

is an estimate of the probability of success of the system over time (up to TC). For
a given target objective and in a given experimental setting, the success ratio of the
system within the time cap TC is STC , k′/k.

72 CHAPTER 3. TS-Swarm Mark I

Figure 3.14: Experimental setting. The hexagonal arena, 3 TAMs, and 20 e-pucks. The
setting includes also an overhead camera for filming experiments and a workstation for coor-
dinating the TAMs and gathering data.

3.4.2 Robot experiments

We run Mark I3 10 times with 20 e-pucks. The experiments are performed in a controlled
environment with a flat surface and uniform light conditions. The arena where the
robots operate is a regular hexagon with sides of 0.9 m. A camera operating at about 3
frames per second is mounted on the ceiling with its axis lying on the vertical line passing
through the center of the arena. The experimental setting is pictured in Figure 3.14.

We present the results of 10 consecutive runs. The performance of Mark I3 in each
of these 10 runs concurs to the statistics presented: no observed result is discarded for
any reason whatsoever. Once a run starts, it is accounted for in the statistics. The
statistics include therefore also the failures. In Table 3.3, we report the lab notebook,
which includes the record of all the information that we collected during each of the 10
runs. A run is terminated either at the tenth execution of the correct sequence or at a
time cap of 40 minutes (2,400 s). A typical run of Mark I3 on the robots is displayed in
movie S1 of the online supplementary material Garattoni and Birattari (2020). All the
supplementary movies feature overlays to illustrate the different robot roles and clarify
how TS-Swarm solves the task-sequencing problem. The complete results of the robot
experiments are reported in Figure 3.17A.

Concerning the experiments with the robots, Mark I3 was able to complete ten
sequences before the time cap on 9 runs out of 10. In the remaining run, it was

3.4. EXPERIMENTS WITH Mark I 73
T
ab

le
3.
3:

L
ab

or
at

or
y

n
ot

eb
oo

k.
R
es
ul
ts

of
10

co
ns
ec
ut
iv
e
ru
ns

of
M
ar
k
I 3

on
20

e-
pu

ck
ro
bo

ts
op

er
at
in
g
in

an
he
xa

go
na

la
re
a
of

2.
10

m
2
.
R
ec
or
d
of

al
lt
he

in
fo
rm

at
io
n
th
at

w
e
co
lle
ct
ed

du
ri
ng

ea
ch

of
th
e
10

ru
ns
.

tim
e

to
co

m
pl

et
io

n
of

ru
n

da
te

be
gi

n
en

d
e-

pu
ck

fa
ilu

re
s

ch
ai

n
1

se
q

5
se

q
10

se
q

no
te

s

1
O

ct
11

,2
01

6
1:

26
pm

1:
45

pm
R

un
ne

r
fa

ils
at

3
7
0
s

w
ith

ou
t

ca
us

-
in

g
pr

ob
le

m
s

2
9
0
s

4
1
0
s

7
5
8
s

1
,1
9
8
s

C
ha

in
fu

nc
tio

na
la

nd
bu

ilt
qu

ic
kl

y;
sm

oo
th

ex
ec

ut
io

n
of

10
se

qu
en

ce
s

2
O

ct
11

,2
01

6
3:

57
pm

4:
23

pm
R

un
ne

r
fa

ils
ne

ar
th

e
ch

ai
n

at
1
,1
2
0
s

w
ith

ou
tc

au
si

ng
pr

ob
le

m
s

5
6
5
s

5
9
9
s

9
1
6
s

1
,5
0
6
s

C
ha

in
fu

nc
tio

na
l

bu
t

to
o

sp
ac

ed
ne

ar
th

e
la

st
gu

ar
di

an
;

th
is

sl
ow

s
th

e
ex

ec
ut

io
n

3
O

ct
12

,2
01

6
11

:4
3

am
12

:0
6

pm
N

o
fa

ilu
re

s
4
9
0
s

5
9
0
s

8
9
0
s

1
,2
5
0
s

C
ha

in
hi

gh
ly

fu
nc

tio
na

l
th

an
ks

to
th

e
tw

o
br

an
ch

es
ra

th
er

op
en

;
sm

oo
th

ex
ec

ut
io

n
of

10
se

qu
en

ce
s

4
O

ct
12

,2
01

6
2:

40
pm

3:
18

pm
N

o
fa

ilu
re

s
5
9
5
s

9
0
9
s

1
,4
2
0
s

2
,2
4
8
s

C
om

m
un

ic
at

io
n

pr
ob

le
m

s
in

ch
ai

n
co

ns
tr

uc
tio

n,
bu

t
co

ns
tr

uc
tio

n
co

m
pl

et
es

;
sl

ow
ex

ec
ut

io
n

du
e

to
a

gu
ar

di
an

to
o

fa
rf

ro
m

TA
M

(b
lu

e)

5
O

ct
13

,2
01

6
11

:0
9

am
11

:2
7

am
N

o
fa

ilu
re

s
3
0
2
s

3
4
0
s

6
8
0
s

1
,0
7
0
s

C
ha

in
st

ra
ig

ht
an

d
fu

nc
tio

na
l;

sm
oo

th
ex

ec
ut

io
n

of
10

se
-

qu
en

ce
s

6
O

ct
13

,2
01

6
2:

48
pm

3:
24

pm
N

o
fa

ilu
re

s
3
5
0
s

4
9
5
s

7
7
2
s

1
,4
1
0
s

C
ha

in
ov

er
cr

ow
de

d
bu

tf
un

ct
io

na
l,

fir
st

br
an

ch
no

t
pe

rfe
ct

ly
al

ig
ne

d;
sm

oo
th

ex
ec

ut
io

n
of

10
se

qu
en

ce
s

7
O

ct
14

,2
01

6
11

:1
3

am
11

:3
3

am
R

un
ne

r
fa

ils
at

6
0
0
s

w
ith

ou
t

ca
us

-
in

g
pr

ob
le

m
s

3
2
0
s

3
6
2
s

5
6
4
s

9
2
3
s

C
ha

in
w

el
la

lig
ne

d
an

d
fu

nc
tio

na
l;

sm
oo

th
ex

ec
ut

io
n

of
10

se
qu

en
ce

s

8
O

ct
14

,2
01

6
2:

40
pm

3:
06

pm

R
un

ne
r

fa
ils

at
6
0
0
s

ne
ar

a
TA

M
hi

nd
er

in
g

ot
he

r
ru

nn
er

s.
C

om
m

un
i-

ca
tio

n
pr

ob
le

m
s

in
th

e
co

ns
tr

uc
tio

n
of

th
e

fir
st

br
an

ch
.

R
un

ne
rs

ha
ve

pr
ob

le
m

s
to

en
te

rt
he

bl
ue

TA
M

4
2
5
s

4
5
5
s

1
,1
2
5
s

1
,6
0
0
s

C
om

m
un

ic
at

io
n

pr
ob

le
m

s
in

th
e

co
ns

tr
uc

tio
n

of
th

e
fir

st
br

an
ch

;
a

ru
nn

er
fa

ils
an

d
hi

nd
er

s
ot

he
r

ru
n-

ne
rs

sl
ow

in
g

th
e

ex
ec

ut
io

n

9
O

ct
18

,2
01

6
10

:2
8

am
11

:0
8

am
R

un
ne

rf
ai

ls
at

1
,8
5
0
s

w
ith

ou
tc

au
s-

in
g

pr
ob

le
m

s
6
0
5
s

9
8
8
s

1
,5
5
3
s

tim
e

ca
p

C
ha

in
ov

er
cr

ow
de

d
an

d
po

or
ly

al
ig

ne
d

ne
ar

th
e

gu
ar

di
an

s;
th

is
sl

ow
s

th
e

ex
ec

ut
io

n;
at

tim
e

ca
p,

9
se

qu
en

ce
s

pe
rfo

rm
ed

10
O

ct
18

,2
01

6
1:

26
pm

1:
54

pm
Tw

o
ru

nn
er

s
fa

il
(a

t
5
3
0
s

an
d

1
,4
6
0
s)

w
ith

ou
tc

au
si

ng
pr

ob
le

m
s

3
1
9
s

4
1
1
s

8
1
0
s

1
,6
5
6
s

C
ha

in
fu

nc
tio

na
l

de
sp

ite
th

e
fir

st
br

an
ch

is
sp

ar
se

;
sm

oo
th

ex
ec

u-
tio

n
of

10
se

qu
en

ce
s

74 CHAPTER 3. TS-Swarm Mark I

nonetheless able to determine the correct order of the tasks and to perform 9 sequences
before the time cap. In the laboratory notebook (Table 3.3), we report the record of
all the information we collected during the 10 runs with the robots. Movie S1 of the
online supplementary material (Garattoni and Birattari, 2020) shows a typical run on
Mark I3 with the robots.

3.4.3 Assessment of the simulator

Alongside the experiments with the robots, we perform similar experiments in simula-
tion using ARGoS, with the idea of producing an assessment of the simulation envi-
ronment. The control software used in the two sets of experiments is the same: after
performing the robot experiments, we port the control software back to the simulated
environment without any modification. Because performing experiments in the sim-
ulated environment is much less time consuming than performing them in reality, we
gather results on 30 simulated runs. Moreover, because battery life is not a concern
in simulation, we extended the duration of runs beyond the time cap of 40 minutes.
Results are reported in Figure 3.17B, while a set of overhead snapshots of robot exper-
iments is shown in Figure 3.15.

Concerning the simulated experiments, Mark I3 achieved a success ratio of 90%: in
27 runs out of 30, Mark I3 was able to complete ten sequences before the time cap.
Figure 3.16A shows an overhead snapshot of a simulated experiment with Mark I3. On
its right, a QR that links to the online video.

All in all, the results show that Mark I3 is able to sequence and perform the three
given tasks both on the robots and in simulation. Moreover, they indicate that the
simulation environment we adopted allows us to predict the performance of the robots.
Movie S2 in the online supplementary material (Garattoni and Birattari, 2020) shows
a typical run in simulation, side by side with one on the robots.

3.4.4 Scalability study

We perform simulated experiments in five experimental settings. In each setting, we
double the surface of the arena with respect to the previous one. We also increase the
number of robots by a factor of

√
2. The rationale is that, by increasing the surface

of the arena by a factor 2, the distance between the TAMs increases by a factor
√

2.
We therefore expect the number of robots that become chain members to grow roughly
by the same factor. By increasing the swarm size by a factor

√
2, we expect that the

robots will be sufficiently many to connect all the TAMs. The control software adopted
in the scalability study is exactly the same in all the settings. The parameters that
characterize the five settings are given in Table 3.4. We ran Mark I3 30 times in each

3.4. EXPERIMENTS WITH Mark I 75

Figure 3.15: Overhead snapshots of robot experiments. (A-E) Mark I3, robot ex-
periments (Movie S1). Supplementary movies can be found in the online supplementary
material (Garattoni and Birattari, 2020). To watch the video, either click on the QR code at
the bottom right or scan it with the camera of a mobile device.

of the five settings (Figure 3.18A). Movie S3 of the supplementary material (Garattoni
and Birattari, 2020) shows the highlights of the scalability study.

In Figure 3.19(A to E), we present the results of the scalability study by reporting
the empirical run-time distributions for each setting. They comprise curves for the
successful execution of one, five, and ten correct sequences. The results show that
Mark I3 scales well with the size of the arena and the number of robots. They also
confirm our hypothesis that by increasing the number of robots by the same factor of
the arena’s side, the robots are sufficiently many to connect all the TAMs. This is made
explicit by the plot presented in Figure 3.20.

3.4.5 Robustness study

We use the same five experimental settings considered in the scalability study. For
each of the five settings, we vary the number of robots with respect to the one adopted
in the scalability study. We consider both a smaller (−10% and −20%) and a larger
number of robots (+20%, +40%, +60%, +80%, and +100%). For each experimental
setting and each number of robots tested, we report the run time distribution for the

https://iridia.ulb.ac.be/supp/IridiaSupp2020-001/videos/Movie_S1.mp4

76 CHAPTER 3. TS-Swarm Mark I

Figure 3.16: Overhead snapshots, Mark Im in simulation. (A) Mark I3, simulation
(Movie S2, side-by-side with a run on the robots). (B) Mark I4, simulation (Movie S4).
Supplementary movies can be found in the online supplementary material (Garattoni and
Birattari, 2020). To watch one of the videos, either click on the corresponding QR code or
scan it with the camera of a mobile device.

successful execution of ten sequences and the empirical distribution of the number of
robots in the chain. We ran Mark I3 30 times for each number of robots considered in
each of the five settings (Table 3.4 and Figure 3.18A).

In Figure 3.19(F to J), we present the results of the robustness study in which we
analyze the robustness of Mark I3 to the variation of the number of robots w.r.t. the
default. The run-time distributions in Figure 3.19(F to J) confirm that Mark I3 is in
general robust to the variation of the number of robots. Increasing slightly the number
of robots is even beneficial to the performance in all the settings, while decreasing it
quickly degrades the performance, as there are no longer enough robots to reliably
connect the three TAMs. The distributions of the number of chain members as a
function of the total number of robots—reported in Figure 3.19(K to O)—show that,
given the size of the arena, Mark I3 places roughly the same number of robots to connect
the three TAMs, independently of the total number of robots that the swarm comprises.

https://iridia.ulb.ac.be/supp/IridiaSupp2020-001/videos/Movie_S2.mp4
https://iridia.ulb.ac.be/supp/IridiaSupp2020-001/videos/Movie_S4.mp4

3.4. EXPERIMENTS WITH Mark I 77

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

time (s)
102 103 104

0
0.

25
0.

5
0.

75
1

TC
=
 2

,4
00

time (s)
102 103 104

0
0.

25
0.

5
0.

75
1

TC
=
 2

,4
00

A B

Figure 3.17: Empirical assessments of Mark I3. Empirical run-time distributions for the
execution of 1 (dotted lines), 5 (dot-dash lines), and 10 (solid lines) sequences. (A) Mark I3,
robot experiments. (B) Mark I3, simulation.

Table 3.4: Parameters of the scalability and robustness studies on Mark I. We report
the parameters that characterize each experimental setting in which Mark Im is studied. The
scalability study is performed using the default number of robots in each setting. Between
one setting and the following one, we double the surface of the arena in which the robots
operate. The robustness study is performed varying the number of robots between -20% and
+100% with respect to the default number of each setting.

number of robots
setting arena’s side arena’s area

-20% -10% default +20% +40% +60% +80% +100%
time cap

M
ar

k
I 3

0 0.90m 2.10m2 16 18 20 24 28 32 36 40 2,400 s

1 1.27m 4.21m2 23 25 28 34 39 45 50 56 3,400 s

2 1.80m 8.42m2 32 36 40 48 56 64 72 80 4,800 s

3 2.55m 16.84m2 45 51 57 68 80 91 103 114 6,800 s

4 3.60m 33.67m2 64 72 80 96 112 128 144 160 9,600 s

M
ar

k
I 4

0 0.66m 2.10m2 18 20 22 26 31 35 40 44 100,000 s

1 0.93m 4.21m2 25 28 31 37 43 50 56 62 100,000 s

2 1.32m 8.42m2 35 40 44 53 62 70 79 88 100,000 s

3 1.87m 16.84m2 50 56 62 74 87 99 112 124 100,000 s

4 2.64m 33.67m2 70 79 88 106 123 141 158 176 100,000 s

78 CHAPTER 3. TS-Swarm Mark I

2.10 m2

4.21 m2

8.42 m2

16.84 m2

33.67 m2

2.10 m2

4.21 m2

8.42 m2

16.84 m2

33.67 m2A B

Figure 3.18: Scalability and robustness analysis, the arenas. Shape and size of the
arenas considered for the scalability and robustness study of (A) Mark I3 and (B) Mark I4.

3.4.6 Experiments with Mark I4

To complete a sequence, a robot must perform four tasks in a specific order, which is
a priori unknown. The arena is a regular octagon with sides of 0.66 m. To connect
the four TAMs, Mark I4 needs to establish three branches of chain: one more than the
two that Mark I3 needs to establish. For this reason, we consider here a swarm of 22
robots, rather than 20 as we did for Mark I3. We also increase the time cap to 100,000 s

(i.e., about 28 h). We run Mark I4 30 times in simulation. A typical run is displayed in
movie S4 of the supplementary material (Garattoni and Birattari, 2020). Figure 3.16B
shows an overhead snapshot of a simulated experiment with Mark I4. On its right, a
QR that links to the online video. Finally, we study the scalability and the robustness
of Mark I4 (summary of experimental settings in Table 3.4 and Figure 3.18B). Results
are reported in Figure 3.21 and Figure 3.22.

The results in Figure 3.21 indicate that TS-Swarm can successfully sequence and
perform more that three tasks without being subject to substantial modifications.

As it should have been expected, it takes slightly longer to sequence four task than
three, but the success ratio is the same obtained by Mark I3: 27/30.

The scalability study reported in Figure 3.22(A to E) indicates that Mark I4 scales
well with the size of the arena and the number of robots. Figure 3.22(F to J) confirm
that Mark I4 is also robust to the variation of the number of robots. Slight increases
of the number of robots are mostly beneficial to the performance in all the settings,

3.4. EXPERIMENTS WITH Mark I 79

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

0
0

.5
1

T
C

 =
2

,4
0

0

A F
p

ro
b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

0
0

.5
1

T
C

 =
3

,4
0

0

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

0
0

.5
1

T
C

 =
4

,8
0

0

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

0
0

.5
1

T
C

 =
6

,8
0

0

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

0
0

.5
1

T
C

 =
9

,6
0

0

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

K

B G L

C H M

D I N

E J O

Number of robots

-20% +80%+40%+20%default-10% +60% +100%

Figure 3.19: Scalability and robustness of Mark I3. (A-E) Scalability study using the
default number of robots in five arenas of different size (see Table 3.4). Empirical run-time
distribution for the execution of one (dotted), five (dot-dash), and ten (solid) sequences. (F-J)
Robustness to the variation of the number of robots between -20% and +100% of the default
number (see Table 3.4). Empirical run-time distribution for the execution of ten sequences.
(K-O) Empirical distribution of the number of robots in the chain as a function of the total
number of robots. Arena’s area: (A, F, K) 2.10 m2. (B, G, L) 4.21 m2. (C, H, M) 8.42 m2.
(D, I, N) 16.84 m2. (E, J, O) 33.67 m2.

80 CHAPTER 3. TS-Swarm Mark I

●

●

●

●

●

N
um

be
r

of
 r

ob
ot

s

0.90 1.27 1.80 2.55 3.60

Arena's side (m)

0
20

40
60

80

●
●
●●
●
●
●●
●●●●
●●●●●●
●
●
●●●●
●
●●

●●●
●
●
●●●●●●
●●
●
●●●
●
●●
●●●
●
●
●
●

●
●
●●
●●
●●●
●●●
●●●
●●●
●
●●●

●●●●
●
●●
●
●●●●
●●
●●
●
●
●●
●
●

●●●
●
●
●

●
●●
●●
●

●●
●

●
●●●
●●
●●●●

total

in chain

Figure 3.20: Number of chain members in Mark I3. Chain members in the scalability
study presented in Figure 3.19. The plot confirms that the number of chain members grows
linearly with the side of the arena, as we assumed.

p
ro

b
a

b
ili

ty
 o

f
s
u

c
c
e

s
s

time (s)

102 103 104
105

0
0

.2
5

0
.5

0
.7

5
1

T
C

=
 1

E
5

Figure 3.21: Empirical assessment of Mark I4. Empirical run-time distributions for the
execution of 1 (dotted lines), 5 (dot-dash lines), and 10 (solid lines) sequences. Mark I4,
simulation.

3.5. LIMITATIONS AND POSSIBLE IMPROVEMENTS 81

whereas decreases degrade the performance due to a lack of a sufficient number of robots
to reliably connect the four TAMs. Differently from Mark I3, drastically increasing the
number of robots w.r.t. the default also produces a lower performance. This is probably
due to the fact that, when the density is too high, robots might interfere with each other
or hinder each other’s movements. The distributions of the number of robots in chain
as a function of the total number of robots—reported in Figure 3.22(K to O)—confirm
the observations made for Mark I3: given the size of the arena, Mark I4 uses roughly the
same number of robots to connect the four TAMs, independently of the total number
of robots that the swarm comprises. In all the settings, for at least 50% of the runs
the number of chain members is independent of the total number of robots—with the
exception of the -20% and -10% cases in which the number of robots is apparently
insufficient for establishing a chain reliably.

3.5 Limitations and possible improvements

In the following, we list and describe a series of limitations in our implementation of
Mark I. For each limitation we also propose a possible future improvement.

Transmission of robot IDs limits scalability. The scalability of Mark I is limited
by the fact that robots include their identifier in the range-and-bearing messages they
broadcast (see Figure 3.3). For this thesis, we ran experiments with up to 216 robots.
A single byte is therefore sufficient to encode a globally-unique identifier for each robot.
Indeed, with one byte, up to 256 robots can be uniquely identified. With two bytes, we
would be able to uniquely identify up to 65,536 robots. Should the number of robots be
even larger, globally-unique identifiers could be too demanding on the communication.

Possible improvement: as a possible alternative, we could adopt locally-unique iden-
tifiers, that is, identifiers that are unique within the range of communication of each
robot. Locally-unique identifiers have been successfully demonstrated with a swarm of
one thousand robots (Rubenstein et al., 2014b).

The number of tasks must be known at design time. Mark Im assumes that the
number of tasks to be sequenced (m) is known at design time. This limits the autonomy
of the system, as the designer must input or hard code the value of m in the robot’s
behavior.

Possible improvement: we could let the swarm determine the number of tasks au-
tonomously at run time. A possible solution would be to let the swarm continue to
build branches of chain until the chain forms a closed loop. At that point, the number
of tasks would just be equal to the number of branches (which is maintained during the

82 CHAPTER 3. TS-Swarm Mark I

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

A F K

B G L

C H M

D I N

E J O

Number of robots

-20% +80%+40%+20%default-10% +60% +100%

Figure 3.22: Scalability and robustness of Mark I4. (A-E) Scalability study using the
default number of robots in five arenas of different size (see Table 3.4). Empirical run-time
distribution for the execution of one (dotted), five (dot-dash), and ten (solid) sequences. (F-J)
Robustness to the variation of the number of robots between -20% and +100% of the default
number (see Table 3.4). Empirical run-time distribution for the execution of ten sequences.
(K-O) Empirical distribution of the number of robots in the chain as a function of the total
number of robots. Arena’s area: (A, F, K) 2.10 m2. (B, G, L) 4.21 m2. (C, H, M) 8.42 m2.
(D, I, N) 16.84 m2. (E, J, O) 33.67 m2.

3.5. LIMITATIONS AND POSSIBLE IMPROVEMENTS 83

construction of the chain), and this value could be propagated to all the robots along
the chain.

Chains might overstep guardians. In some cases, the branch of chain being built
fails to locate the guardian it is supposed to reach. This may be due to several factors,
including (i) the lack of a sufficient number of robots to extend the branch up to the
guardian; (ii) a temporary fault in the omnivision module of the tail. These factors
cause the branch to overstep the guardian and eventually reach another branch of chain
or the guardian from which the branch itself originates. As a result, the branch being
built merges with another branch or collapses on itself. In both cases, the system fails.

Possible improvement: the tail could implement a mechanism to detect whether it
is approaching another branch of chain, or the originating guardian of its own branch.
Should this happen, the tail could invert the sense in which the branch sweeps around
its originating guardian. By alternating clockwise and anticlockwise sweeps, the branch
being built would explore the environment more effectively and increase the chance to
spot the guardian it is supposed to reach.

Robots’ movement is unsophisticated. Chain members and runners move in a sim-
ple and unsophisticated way. For simplicity, we implemented the links so that they
stop moving upon being notified that the branch they form is established. If a runner
bumps into a link pushing and it away from the correct position, the continuity of the
chain is broken and the functionality of the whole system is compromised. This is more
likely to occur when the swarm is comprised by a large number of robots and the arena
is large. In these cases, the branches are long and need to be functional for a long time.

Possible improvement: More refined movement mechanisms could be implemented
in order to make the motion of chain members and runners more precise and reliable.
Links could keep adjusting alignment and spacing even after their branch is established.
In particular, they could benefit from a mechanism to regain their original position,
should they detect that the functionality of their branch is compromised.

Chaining rests on restrictive assumptions. The chaining behavior works under the
assumptions that (i) the arena is convex, (ii) the tasks are located along its perimeter,
and (iii) there are no obstacles.

Possible improvement: we could relax these assumptions if the path between guard-
ians were obtained by first covering the space with a lattice-like formation, and then
selecting the shortest path on this lattice. Robots that are not on the shortest path
could leave; those that are on the shortest path would remain to act as way-points. An

84 CHAPTER 3. TS-Swarm Mark I

approach to select the shortest path on a lattice has been demonstrated with a swarm
of e-pucks (Campo et al., 2010). This approach is based on artificial pheromone.

Single points of failure, the guardians. In the current implementation of Mark Im,
guardians fullfil a crucial role for the system, as they signal the presence of tasks and
instruct runners to execute the tasks in the right order. If one of them fails, the
system is not able to continue the execution and thus the task-sequencing mission is
not completed.

Possible improvement: we could leverage the redundancy of the robot swarm to
recover from guardian failures. The chain members in the vicinities of guardians could
actuate mechanisms of error recovery. For instance, the chain member that precedes a
guardian could detect the failure and replace the guardian.

Chapter 4

TS-Swarm Mark II

The version of TS-Swarm presented in the previous chapter (Mark I) relies on a strong
assumption: runners receive feedback after performing each single task. Under this
assumption, a runner is notified that the sequence being performed is wrong as soon
as it performs the first task that departs from the correct sequence. In this chapter,
we remove this assumption by considering the case in which a runner has to perform
an entire sequence before receiving any feedback. We present and describe TS-Swarm
Mark II, hereafter Mark II, a robot swarm that can solve this new, more challenging,
task-sequencing problem.

4.1 Description of Mark II

The lack of feedback immediately after performing a task makes the sequencing problem
harder. This new task-sequencing problem is a combinatorial problem whose computa-
tional complexity is O(m!), where m is the number of tasks. Moreover, the immediate
feedback received after the execution of their task allowed the guardians of Mark I to
break the symmetry among themselves and thus start the construction of the chain
from a single point. This is not possible in Mark II, as guardians do not receive any
feedback after performing their respective task.

In the following of this section, we describe the modifications that we made to
Mark I to produce Mark II, a robot swarm that can sequence tasks in the case in which
robots have to perform an entire sequence before knowing whether the sequence itself
is correct or not. The platforms that we used to develop Mark II are the same used
for Mark I—i.e., e-puck robots, TAMs to abstract the execution of tasks, and ARGoS
as development environment and robotic simulator. A description of the platforms is
given in Section 3.2 and in Appendix A.

85

86 CHAPTER 4. TS-Swarm Mark II

4.1.1 Mark II3

TS-Swarm Mark II3, hereafter Mark II3, assumes that a runner has to perform an entire
sequence of three tasks before knowing whether the sequence itself is correct or not.
Here, we only describe the differences between Mark I3 and Mark II3, as in all other
respects, the two systems are identical and thus we refer the reader to Chapter 3 for
the other implementation details. Mark II3 differs from Mark I3 in the following main
points:

• All guardians initiate the construction of a branch of the chain in parallel. When
all the branches are complete, the chain is a closed loop that connects all the
guardians. The guardians use the closed-loop chain to exchange information and
to establish an initial sequence of the tasks.

• Once the initial sequence is established, the guardians direct the runners so that
the initial sequence and all its permutations are tested, one after the other. The
swarm collectively explores the tree of the permutations of the initial sequence.
Each robot (guardians, links, and runners) contributes to the collective exploration
by acting reactively, relying only on partial knowledge of the sequences being
tested.

• After completing a sequence, a runner receives feedback on whether the sequence
is correct or not. It notifies the feedback to the guardian of the last task, which
then shares it with all other guardians via the closed-loop chain. If the sequence
is correct, from then on all runners are instructed so as to perform it. Otherwise,
the following sequence in the depth-first search is tested.

All guardians initiate the construction of a branch because, after executing a task for
the first time, they do not have any way to break the symmetry among themselves.
Indeed, in Mark I3 (and Mark I4), after executing their respective tasks, one of the
guardians receives positive feedback while the others a negative one. The one that
receives the positive feedback is the one associated with the first task to be performed
in the sequence. This is the guardian that initiates the construction of the chain. In
Mark II3, no guardian receives any feedback so the above mechanism cannot be used
to break the symmetry at this moment of the system’s lifetime. As an alternative,
all guardians initiate the construction of a branch. When all branches are complete
and the chain is closed (Figure 4.1A), the guardians communicate via range-and-bearing
messages that are relayed by the chain members. The guardians use the communication
medium that they have established to break the symmetry and order themselves. The
order of the guardians (and therefore of the tasks they guard) defines the initial sequence
to be tested and eventually the whole permutation tree that will be then searched.

4.1. DESCRIPTION OF Mark II 87

A B

C

C

C Y Y Y Y

Y

Y

Y

YY

Y

Y

Y

Ø

Ø

Ø

ØØ

Ø

Ø

Ø

Ø

Ø

Task Guardian Link Tail

Legend

M Ø

Runner

C Y

CC

C

C

Y

Y

Y

Y

Y

YY

Y

Y

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Y

Y

Y

Ø

Ø

Figure 4.1: The chain in Mark II3 and Mark II4. The guardians do not have any way to
break the symmetry among themselves after performing their guarded task. Therefore, they
all initiate the construction of a branch of the chain. When all branches are complete, the
chain forms a closed loop that the guardians use for communicating. (A) The chain built by
Mark II3; and (B) the one built by Mark II4.

The guardians order themselves using a leader-election algorithm (Chang and Roberts,
1979) through which they assign the label c to the one of them with the largest ID.
Guardian c sends a message that is relayed clockwise along the closed-loop chain. The
first guardian that receives the message is assigned the label b and the following the
label a.

Mark II3 explores the space of the possible sequences by traversing the tree of the
permutations of 〈a, b, c〉 (Figure 4.2). The tree is explored via depth-first search. In
practice, the guardians coordinate themselves to direct the runners so that they test
the possible sequences one after the other. As a first step, the guardians address the
runners to the tasks guarded by a, b, and c, in this order; as a second step, to the tasks
guarded by a, c, and b; as a third step to the tasks guarded by b, a, and c, and so on.
The exploration of the permutation tree is distributed. At any moment in time, each
guardian has only partial knowledge about the sequence being tested. To clarify this,
consider the example in Figure 4.3, in which the guardian standing in front of the green
task is assigned the label b via the election mechanism described above.

The transition between a step and the following one is triggered by a failure reported
by a runner. When a runner that has performed all the three tasks in the order
prescribed at that step receives negative feedback, it reports the failure to the guardian

88 CHAPTER 4. TS-Swarm Mark II

0:

2:

1:

5:

A B

3:

4:

UPI

Figure 4.2: Exploration of the space of possible sequences in Mark II3. (A) Permu-
tation tree. (B) List of sequences explored via a depth-first search of the permutation tree.
UPI is the unique permutation identifier : the sequence with UPI = 0 is the initial sequence
defined via the election algorithm. UPI = 1 is its first permutation encountered by searching
the permutation tree via depth-first search; UPI = 2 is the second one, and so on.

sequence
0:

1:

2:

3:

4:

5:

?

?

?

?

?

?

?

?

?

?

?

?

(b)

(c)

(a)

(b)

(a)

(c)

(c)

(a)

(c)

(a)

(b)

(b)

(a)

(b)

(b)

(c)

(c)

(a)

B

?

?

?

?

?

? ? ?

? ?

A

(a)

(b)

(c)

(c) (a) (c) (a) (b)

(b) (c) (a) (b) (a)

(b) (c)

Figure 4.3: Exploration of the sequence space in Mark II3, as seen by the guardian
of the green task. In this example, the green task is the second of the initial sequence. Its
guardian ignores the colors of the first and last tasks; it only knows that its label is b, and
therefore, its task is second. More precisely, this guardian is in the state in which it directs
to its task the runners that have performed exactly one task. This guardian (as the others)
directs the runners throughout the search process without knowing the sequence that is tested
at each step. At the first step, its task is second—it directs to its task the runners that have
performed exactly one task. At the following step, its task is third—it directs to its task the
runners that have performed exactly two tasks. Then, its task is first—it directs to its task
runners that have not yet performed any task and so on. (A) Permutation tree generated by
the guardian of the green task on the basis of its partial knowledge of the initial sequence.
(B) Sequences explored through depth-first search of the permutation tree.

4.1. DESCRIPTION OF Mark II 89

of the last task performed. This guardian initiates the transition to the following step by
sending a range-and-bearing message that is relayed along the closed-loop chain. The
guardians that receive the message transition to the following step. The exploration
of the permutation tree is thus reactive: guardians transition from one sequence to
the following one in response to the notification of a failure from a runner or from the
closed-loop chain.

As they approach a guardian, the runners are notified of the transition and start
from scratch the execution of the new sequence, as directed by the guardians.

Eventually, the search of the permutation tree leads the swarm to hit the correct
sequence. When the first runner receives positive feedback after performing the three
tasks in the correct order, it reports the success to the guardian of the last task per-
formed. This guardian communicates the event to the other guardians via the closed-
loop chain. The search process terminates and the guardians continue directing the
runners following the policy that produced the correct sequence.

To summarize: in Mark II3, the search process relies on the cooperation of guardians,
links, and runners. Each robot acts reactively and no robot has complete knowledge of
the sequence being performed: (i) runners navigate the environment following the chain
and perform tasks if directed to do so by the guardians; (ii) links relay information;
(iii) guardians transition from state to state on the basis of the feedback reported by the
runners. In this context, the state of a guardian is “direct to the guarded task runners
that have already performed X tasks”. The sequence of states through which each
guardian transitions is uniquely determined by its position in the initial sequence, as
determined by the election process. At no moment in time, a guardian has knowledge of
the whole sequence being performed by the runners. Also in the absence of immediate
feedback, TS-Swarm collectively converges to the correct sequence without relying on
representations of the environment or symbolic reasoning. The ability to sequence the
given tasks emerges from the interaction of individual robots that act reactively.

Implementation details. The range-and-bearing message that the guardians exchange
to transition from a step of the search to the following one contains a 2 bit field M4PI,
modulo 4 permutation identifier. M4PI is an integer ranging from 0 to 3. Its value
is M4PI = UPI mod 4, where UPI is the unique permutation identifier, of the new
permutation to be tested (Figure 4.2B). The general scheme of the range-and-bearing
message encoding in Mark II3 is given in Figure 4.4.

90 CHAPTER 4. TS-Swarm Mark II

SOURCE_IDDATA[3]:

7 6 5 4 3 2 1 0

EST CNDDATA[2]: GUA CLR

7 6 5 4 3 2 1 0

M4PI/LNK_NO DIR/
FEEDDATA[1]: IS_FEED TAIL REQ/

RESELEC INHBT

7 6 5 4 3 2 1 0

IDDATA[0]:

7 6 5 4 3 2 1 0

Figure 4.4: Encoding of the range-and-bearing message in Mark II3. Guardians
identify their messages by setting DATA[2][7]. When the closed-loop chain is complete, the
guardians use a leader-election algorithm to break the symmetry among themselves. In the
messages exchanged during the phase of leader election, the guardians set DATA[1][7]. Once
a first order among themselves has been established, the guardians start to test the possible
sequences of the tasks. By setting DATA[1][4:3], each guardian broadcasts locally the counter
M4PI (modulo 4 permutation identifier). Its value is M4PI = UPI mod 4, where UPI is the
unique permutation identifier associated with the permutation of the initial sequence that
is currently being tested—see Figure 4.2. Each guardian broadcasts locally also the number
CND of tasks that a runner must have performed to qualify for performing the guarded one.
This is done by setting DATA[2][2:0]. Runners notify the guardians of the success/failure
of the sequence being tested by setting DATA[1][6] and inserting the feedback received in
DATA[1][1]. If the feedback is negative, the guardian that receives the notification switches
to the next sequence and sends a message to the other guardians, which in turn complete the
transition to the next sequence. In all the messages that they send along the closed-loop chain,
guardians insert their ID in both DATA[0][7:0] (ID) and DATA[3][7:0] (SOURCE_ID). This
enables a guardian that receives a message from the chain to identify the source guardian that
sent it by reading the field SOURCE_ID. The field ID is instead overwritten by every link
that relays the message along the chain. The fields that are not described here are equivalent
to the ones used in Mark I3 (and Mark I4)—see Figure 3.3.

4.2. EXPERIMENTS WITH Mark II 91

0:

2:

1:

A B

...

UPI

3:

22:

23:

Figure 4.5: Exploration of the space of possible sequences in Mark II4. (A) Permuta-
tion tree. (B) List of sequences determined by exploring the permutation tree via depth-first
search. UPI is defined in the caption of Figure 4.2.

4.1.2 Mark II4

TS-Swarm Mark II4, hereafter Mark II4, sequences four tasks under the assumption that
a runner has to perform an entire sequence before knowing whether the sequence itself
is correct or not. Mark II4 is based on Mark II3, the only difference being that the task
counter of the robots counts up to four. In all other respects, the two systems are
identical: the implementations, the values of all the parameters, and the encoding of
the range-and-bearing messages (Figure 4.4) are the same.

In Mark II4, four robots take the role of guardian, one per task, and the chain is a
closed loop that comprises four branches (Figure 4.1B). The tree of permutations and
the list of sequences explored by Mark II4 is given in Figure 4.5.

4.2 Experiments with Mark II

In this section, we describe the experiments that we performed to demonstrate the
task-sequencing ability of Mark II. The problem solved by Mark II is combinatorial
and more complex (O(m!)) than that solved by Mark I, as runners have to complete a
full sequence of tasks before being notified of whether the order of execution is correct
or not.

As for Mark I, we analyze the results obtained in each set of experiments and finally
we propose a set of possible improvements to the system.

4.2.1 Experimental design

The experimental design we adopted for Mark II is similar to the one used for Mark I.

92 CHAPTER 4. TS-Swarm Mark II

Having shown that the simulator successfully predicts the behavior of TS-Swarm on
e-puck robots (see Section 3.4.3), we perform a number of experiments in simulation
to demonstrate Mark II. In particular, we perform a study in which we assess the
scalability of Mark II3 by running experiments in which the number of robots ranges
from 25 to 100 and the surface of the arena in which they operate ranges from 2.10 m2

to 33.67 m2. We also perform a study in which we assess the robustness of Mark II3 to
the number of robots comprised in the swarm (Section 4.2.2, and Table 4.1). We then
perform a set of experiments to demonstrate that also Mark II can sequence a greater
number of tasks. We show the task-sequencing ability of Mark II4, its scalability and
its robustness (Section 4.2.3). Finally, in Section 4.3, we analyze the limitations of the
currents implementation of Mark II and we propose some ideas for future improvements.
In these studies, each run of the system lasts 100,000 s (i.e., about 28 h), which is much
longer than the battery life of the e-puck robot. These studies would thus be impossible
to perform on real e-pucks.

Similarly to the settings we used with Mark I, in all these experiments we abstract
tasks using TAMs (see Section 3.2.2). Robots operate in a bounded arena delimited
by walls, which are 42 mm high. The arena has the shape of a regular hexagon when
the tasks to be sequenced are three and a regular octagon when the tasks are four.
The TAMs are positioned in the middle of alternate sides of the arena. Each task is
associated with a color. When the tasks are three, the colors are red (R), green (G),
and blue (B). When they are four, the fourth color is orange (O). In each experimental
run, the initial position of the robots, the correct sequence, and the assignment tasks-
TAMs are decided randomly. In all the supplementary movies Garattoni and Birattari
(2020), for clarity, the correct sequence is always RGB when the tasks are three and
RGBO when they are four.

The final goal of TS-Swarm is to perform the correct sequence of tasks ten times
within a given time cap. As a performance measure, we consider the time required to
complete one, five, and ten executions of the correct sequence. We report the perfor-
mance of the system via its empirical run-time distribution (see Section 3.4.1).

4.2.2 Experiments with Mark II3

We consider a scenario in which a robot needs to complete an entire sequence of tasks
before being notified of a possible error. The tasks to be sequenced are three. The
correct sequence is a priori unknown. The arena is the same of the experiments with
Mark I3: a regular hexagon with sides of 0.9 m. As Mark II3 needs to build a closed-loop
chain, the number of robots it requires is larger than the one required by Mark I3. We
consider here a swarm of 25 robots rather than the 20 of the experiments performed

4.2. EXPERIMENTS WITH Mark II 93

Figure 4.6: Overhead snapshots, Mark IIm in simulation. (A) Mark II3, simulation
(Movie S5). (B) Mark II4, simulation (Movie S6). Supplementary movies can be found in the
online supplementary material (Garattoni and Birattari, 2020). To watch one of the videos,
either click on the corresponding QR code or scan it with the camera of a mobile device.

with Mark I3. As Mark II3 must explore a relatively large space of solutions, we in-
crease the time cap to 100,000 s. We run Mark II3 30 times in simulation. A typical
run is displayed in movie S5 of the online supplementary material Garattoni and Bi-
rattari (2020). Figure 4.6A shows an overhead snapshot of a simulated experiment
with Mark II3. On its right, a QR that links to the online video. Finally, we study
the scalability and the robustness of Mark II3 (Table 4.1 and Figure 3.18). Results are
reported in Figure 4.7A and Figure 4.8.

The performance of Mark II3 is only slightly lower than the one of Mark I3 but
remains above the 75% line. In 24 out of the 30 runs, Mark II3 successfully performs
ten correct sequences within the time cap. This shows that TS-Swarm can cope with
a sequencing problem in which the feedback is received only at the end of a sequence
of tasks. The slightly lower success ratio with respect to Mark I3 is possibly due to the
challenge of building three branches of chain in parallel. Indeed, when the branches are
built in parallel they risk to interfere or even merge with each other. The scalability
study—reported in Figure 4.8(A to E)—indicates that Mark II3 scales less well than
Mark Im, although the success ratio remains close to 50% even in the largest setting. A

https://iridia.ulb.ac.be/supp/IridiaSupp2020-001/videos/Movie_S5.mp4
https://iridia.ulb.ac.be/supp/IridiaSupp2020-001/videos/Movie_S6.mp4

94 CHAPTER 4. TS-Swarm Mark II

Table 4.1: Parameters of the scalability and robustness studies on Mark II. We
report the parameters that characterize each experimental setting in which Mark IIm is stud-
ied. The scalability study is performed using the default number of robots in each setting.
Between one setting and the following one, we double the surface of the arena in which the
robots operate. The robustness study is performed varying the number of robots between
-20% and +100% with respect to the default number of each setting.

number of robots
setting arena’s side arena’s area

-20% -10% default +20% +40% +60% +80% +100%
time cap

M
ar

k
II 3

0 0.90m 2.10m2 20 22 25 30 35 40 45 50 100,000 s

1 1.27m 4.21m2 28 31 35 42 49 56 63 70 100,000 s

2 1.80m 8.42m2 40 45 50 60 70 80 90 100 100,000 s

3 2.55m 16.84m2 56 63 70 84 98 112 126 140 100,000 s

4 3.60m 33.67m2 80 90 100 120 140 160 180 200 100,000 s

M
ar

k
II 4

0 0.66m 2.10m2 22 24 27 32 38 43 49 54 100,000 s

1 0.93m 4.21m2 30 34 38 46 53 61 68 76 100,000 s

2 1.32m 8.42m2 43 49 54 65 76 86 97 108 100,000 s

3 1.87m 16.84m2 61 68 76 91 106 122 137 152 100,000 s

4 2.64m 33.67m2 86 97 108 130 151 173 194 216 100,000 s

A B

p
ro

b
a

b
ili

ty
 o

f
s
u

c
c
e

s
s

time (s)

102 103 104
105

0
0

.2
5

0
.5

0
.7

5
1

T
C

=
 1

E
5

time (s)

102 103 104
105

0
0

.2
5

0
.5

0
.7

5
1

T
C

=
 1

E
5

Figure 4.7: Empirical assessment of Mark II. Empirical run-time distributions for the
execution of 1 (dotted lines), 5 (dot-dash lines), and 10 (solid lines) sequences. (A) Mark II3,
robot experiments. (B) Mark II4, simulation.

4.2. EXPERIMENTS WITH Mark II 95

factor that might impact negatively the performance of Mark II3 is that links no longer
adjust their position after their branch is established—see Section ?? for a detailed
description of the robot control software and Section 4.3 for possible improvements. As
a result, if a runner bumps into a link and pushes it away from the ideal position, the
chain might be interrupted and the system might become unable to complete its mission.
This is more likely to happen when the swarm comprises many robots and the arena
is large. The possible improvement discussed under the heading “Robots’ movement is
unsophisticated” could contribute to increase the scalability of Mark II3. The robustness
study—reported in Figure 4.8(F to J)—indicates that, compared to Mark I3, Mark II3
is also less robust to variations of the number of robots, again possibly because these
variations affect the chain construction process. Also in this case, we expect that the
improvements to the chain construction and robots’ movement that we propose could
affect positively the performance of Mark II3 in large arenas, when the number of robots
departs from an ideal value. The distributions of the number of chain members as a
function of the total number of robots—reported in Figure 4.8(K to O)—indicate that,
in the successful runs, the number of robots that are used to connect the three TAMs
is not affected by the total number of robots.

4.2.3 Experiments with Mark II4

We consider a scenario similar to the one considered for Mark II3, with the only differ-
ence that the tasks to be sequenced are four. The arena is the same of the experiments
with Mark I4: a regular octagon with sides of 0.66 m. We consider here a swarm of 27
robots: more than those considered in the experiments with Mark I4 because Mark II4
needs to build a closed-loop chain. Also in this case, the time cap is at 100,000 s. We
run Mark II4 30 times in simulation. A typical run is shown is movie S6 Garattoni and
Birattari (2020). Figure 4.6B shows an overhead snapshot of a simulated experiment
with Mark II4. On its right, a QR that links to the online video. Finally, we study
the scalability and the robustness of Mark II4 (Table 4.1 and Figure 3.18). Results are
reported in Figure 4.7B and Figure 4.11.

As it should have been expected, the success ratio of Mark II4 is lower than the one
of Mark II3. Nonetheless, in 20 out of the 30 runs, Mark II4 successfully sequences the
four given tasks and performs ten correct sequences within the time cap. A comparison
of the run-time distributions also shows that the time required by Mark II4 to perform
ten sequences of four tasks is longer than the one required by Mark II3 to perform ten
sequences of three tasks. Indeed, in 50% of the runs Mark II3 performs ten correct
sequences in less than 2,000 s. On the other hand, Mark II4 reaches the 50% mark after
8,000 s.

96 CHAPTER 4. TS-Swarm Mark II

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

A F K

B G L

C H M

D I N

E J O

Figure 4.8: Scalability and robustness of Mark II3. (A-E) Scalability study using the
default number of robots in five arenas of different size (see Table 3.4). Empirical run-time
distribution for the execution of one (dotted), five (dot-dash), and ten (solid) sequences. (F-J)
Robustness to the variation of the number of robots between -20% and +100% of the default
number (see Table 3.4). Empirical run-time distribution for the execution of ten sequences.
(K-O) Empirical distribution of the number of robots in the chain as a function of the total
number of robots. Arena’s area: (A, F, K) 2.10 m2. (B, G, L) 4.21 m2. (C, H, M) 8.42 m2.
(D, I, N) 16.84 m2. (E, J, O) 33.67 m2.

4.2. EXPERIMENTS WITH Mark II 97

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Time (s)

1E2 1E3 1E4 1E5

0
.2

5
.5

.7
5

1

T
C

 =
 1

00
,0

00

a

Figure 4.9: Comparison between Mark II3 (blue) and Mark II4 (red). Empirical run-
time distributions for the construction of the chain (dashed line) and the successful execution
of the first sequence (dotted line).

●

●
●●

●

●

●

●

●●

Mark II3 Mark II4

2
4

6
8

10

N
um

be
r

of
 r

ob
ot

s
pe

r
br

an
ch

b

Figure 4.10: Comparison between Mark II3 (blue) and Mark II4 (red). Number of
robots comprised in each branch of the chain.

98 CHAPTER 4. TS-Swarm Mark II

Figure 4.9 shows that Mark II3 and Mark II4 require roughly the same time to con-
struct the closed-loop chain. Actually, Mark II4 is slightly faster. This is explained by
the fact that in Mark II4, the number of robots comprised in each branch of the chain is
lower than in Mark II3 (Figure 4.10). On the other hand, the time needed by Mark II4
to perform the first sequence—that is, to solve the sequencing problem—is larger than
the one needed by Mark II3. Two factors contribute to this difference: (i) it takes longer
to a runner to test a sequence in Mark II4 than in Mark II3 (4 tasks to perform vs. 3);
and (ii) the space of the possible sequences explored by Mark II4 is larger than the
one explored by Mark II3 (4! = 24 sequences searched by Mark II4 vs. 3! = 6 searched
by Mark II3). The longer duration of a run in Mark II4 with respect to Mark II3—in
particular, the longer time needed to explore the space of the possible sequences—is
likely the reason why Mark II4 achieves a lower success ratio than Mark II3. Indeed,
the longer the time needed to explore the space of the sequences, the longer the sys-
tem (particularly the chain) needs to remain functional, and eventually, the higher the
chance that something goes wrong. For example, the runners might push the links
and/or the guardians out of position thus breaking the continuity of the chain—see
Section 4.3 for a description of possible improvements.

The results shown in Figure 4.11 support the observations drawn so far. The chal-
lenges of constructing m branches of chain in parallel prevent Mark IIm from achiev-
ing a success ratio similar to the one of Mark Im. It also lowers its scalability and
robustness properties—Figure 4.11(A to E) and Figure 4.11(F to J). However, when
Mark IIm completes the chain and solves the task-sequencing problem (execution of
the first sequence), it reliably executes ten correct sequences. When this happens, the
number of chain members is independent of the total number of robots in the swarm—
Figure 4.11(K to O).

4.3 Possible improvements

In the following, we list and describe a series of limitation in our implementation of
Mark II. Some limitations originate directly from the implementation of Mark I. In fact,
all the limitations that are discussed in Section 3.5 for Mark I are inherited by Mark II.
Some of them are repeated here because Mark II is affected by them in a different
way or because the possible improvement suggested differs from the one discussed for
Mark I. Other limitations are specific to the implementation of Mark II.

Transmission of robot IDs limits scalability. As in Mark I, the scalability of Mark II
is limited by the fact that robots include their identifier in the range-and-bearing mes-
sages they broadcast (see Figure 4.4). Also, in Mark II guardians use their identifier in

4.3. POSSIBLE IMPROVEMENTS 99

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

p
ro

b
.

o
f

s
u

c
c
e

s
s

time (s)
102 103 104

105

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

fr
a

c
tio

n
 o

f
ru

n
s

robots in chain
0 50 100 150

0
0

.5
1

A F K

B G L

C H M

D I N

E J O

Number of robots

-20% +80%+40%+20%default-10% +60% +100%

Figure 4.11: Scalability and robustness of Mark II4. (A-E) Scalability study using the
default number of robots in five arenas of different size (see Table 3.4). Empirical run-time
distribution for the execution of one (dotted), five (dot-dash), and ten (solid) sequences. (F-J)
Robustness to the variation of the number of robots between -20% and +100% of the default
number (see Table 3.4). Empirical run-time distribution for the execution of ten sequences.
(K-O) Empirical distribution of the number of robots in the chain as a function of the total
number of robots. Arena’s area: (A, F, K) 2.10 m2. (B, G, L) 4.21 m2. (C, H, M) 8.42 m2.
(D, I, N) 16.84 m2. (E, J, O) 33.67 m2.

100 CHAPTER 4. TS-Swarm Mark II

the leader-election process.
Possible improvement: we could adopt locally-unique identifiers, which have been

successfully demonstrated with a swarm of one thousand robots (Rubenstein et al.,
2014b).

The number of tasks must be known at design time. All variants of TS-Swarm
assume that the number of tasks to be sequenced is known at design time.

Possible improvement: we could let the swarm determine the number of tasks au-
tonomously at run time. This would be straightforward in Mark IIm: when the closed-
loop chain is established and the guardians order themselves using a leader-election
algorithm, the information on the number of tasks discovered by the swarm in the
environment is readily available to all the guardians.

The search strategy in Mark IIm is sub-optimal. All runners execute the same
candidate sequence during the exploration of the tree of possible sequences. While the
correct sequence has not yet been identified, this approach is not optimal, as only the
first runner completes the current candidate sequence and receives a feedback. At that
point, if the feedback is negative, all other runners abort their execution and transition
to the next candidate sequence, guided by the chain.

Possible improvement: Different runners could be guided by the chain to explore
different candidate sequences, in parallel. This would leverage the redundancy of the
robot swarm to speed up considerably the exploration of the search space.

Chapter 5

Conclusions

In this thesis we have presented TS-Swarm, a robot swarm with the ability of au-
tonomously executing a set of tasks in the right order, when the right order is unknown
at design time.

We began by analyzing the literature in depth and by acknowledging that: i) a
general methodology for designing the individual behavior of the robots starting from
the swarm-level requirements does not exist yet, ii) most of previous work focuses on
the emergence, at the swarm level, of simple mechanical/geometrical properties, and
iii) most of the robot swarms demonstrated so far operate under the assumption that
the sequence of tasks that the individuals should perform is known (or is deducible) at
design time.

We then argued that, for being truly autonomous and operating in the real world,
robot swarms should posses more complex cognitive abilities. Among these abilities, a
prominent one is autonomous task sequencing—that is, the ability to autonomously find
out, at operation time, the correct order of execution of a set of tasks to accomplish the
goal mission. With this ability, a robot swarm would be able to operate even when the
correct order of execution is unknown at design time. The task-sequencing ability would
emerge at the swarm level out of the interactions between robots, which individually
would act by reacting to contingencies without being aware of the task-sequencing
problem being solved.

To develop a robot swarm with the ability to sequence tasks, we started from ob-
serving that a few works from the literature could be associated with a form of path
planning. In these works, a sub-group of the robots of the swarm align in space to
create a chain-like structure. The robots of the chain landmark the space and act as
waypoints for other robots that need to navigate from one end of the chain to the other.
For the first time in this thesis, we have acknowledged chaining as a method of path
planning and we have performed a step further: in TS-Swarm, we generalize chaining

101

102 CHAPTER 5. CONCLUSIONS

to planning task sequences. In fact, the chain formed by a sub-group of the robots of
TS-Swarm fulfills two functions: 1. it assists the navigation between the relevant areas
where tasks are to be performed and 2. it identifies/encodes the order in which tasks
must be performed. Thus, in a sense, the chain members of TS-Swarm “landmark”
the abstract space of the tasks, creating a precedence relation between the tasks them-
selves. By following the information provided by the chain, other robots can navigate
between the areas where tasks are to be performed and perform those tasks in the order
encoded.

We have detailed the implementation of two versions of TS-Swarm, which differ from
each other for the underlying assumptions: Mark I assumes that, as soon as it performs
a task, a robot becomes immediately aware of whether the task was performed in the
correct order. Through a large number of experiments with robots and in simulation,
we demonstrated that Mark I can successfully sequence three and four tasks. We then
made the sequencing problem harder and introduced a new version of the system,
which is able to address it: Mark II. Mark II assumes that a robot must perform an
entire sequence of tasks before becoming aware of whether that sequence is correct or
not. Because of this lack of immediate feedback, the problem solved by Mark II is
more complex than that solve by Mark I. In particular, the swarm in Mark II must
search the correct order of execution by traversing the tree of all possible permutations
of the m tasks. The computational complexity of the problem is thus O(m!). Also
for Mark II, we ran a large number of experiments to demonstrate that it is able to
correctly sequence three and four tasks. Finally, we showed that both Mark I and
Mark II are scalable to the number of robots and the size of the environment in which
the system must operate. Both systems are also robust to the variation of the total
number of robots that the swarm comprises. After presenting Mark I and Mark II and
analyzing their results in the experiments we performed, we discussed a set of possible
improvements and extensions that could optimize the performance of each one of them.

Another important contribution of this work is the development of an integrated in-
frastructure for performing experiments in swarm robotics. The infrastructure includes
the hardware and software platforms on which we then implemented TS-Swarm. The
infrastructure provides researchers with the tools for implementing their solutions in
a simulated environment faithful to reality and then port those solutions smoothly to
the real devices. The infrastructure was made available to the swarm robotics research
community.

Besides representing an important step towards fully autonomous robot swarms that
are able to operate in the real world, TS-Swarm provides a new perspective on one of the
historical debates in artificial intelligence: deliberative versus reactive approach. On

103

the one hand, in the deliberative approach, robots are designed as planning machines
that create a course of actions by reasoning on a model. On the other hand, in the
reactive approach, robots simply react to contingencies. TS-Swarm combines the two
approaches in a novel way: a simple form of planning (task sequencing) emerges at the
collective level from the interactions of reactive robots. Thus, the individuals themselves
preserve the simplicity and agility typical of reactive systems, while the swarm as a
whole displays abilities that are typical of planning systems. These complex cognitive
abilities can endow the robot swarm with unprecedented autonomy and adaptability.

The process of learning task sequences by TS-Swarm bears some resemblance to
other learning processes described in the multi-robot and multi-agent literature (Haynes
and Sen, 1996; Sałustowicz et al., 1998; Quinn et al., 2003). TS-Swarm learns the
correct sequence based on binary rewards: failures and successes experienced after
performing tasks. No example of correct behavior is provided to the robots. In this
sense, the learning process performed by TS-Swarm can be classified as reinforcement
learning (Sutton and Barto, 1998). More precisely, as no value function is explicitly
learned (Sutton, 1988; Watkins and Dayan, 1988), the learning process of TS-Swarm
could be seen as a form of direct policy search (Baird and Moore, 1999; Baxter and
Bartlett, 2000; Anderson, 2000; Rosenstein and Barto, 2001). In Mark Im, feedback is
received immediately after the execution of each single task. On the other hand, in
Mark IIm feedback is delayed and is received only after the execution of a complete
sequence. As a result, the sequencing problem presents a combinatorial nature: the
resulting learning process is much more challenging. The robots learn collectively the
correct sequence and the path to reach the areas where the task must be performed.
A single learning process takes place, as opposed to collective systems in which each
agent/robot learns individually a behavior. In this sense, we can qualify the learning
process of TS-Swarm as team learning (Panait and Luke, 2005; Buşoniu et al., 2008).
More precisely, as the behavior that is collectively learned is the same for all robots—the
behavior that each robot (runner) must execute to perform the same correct sequence—
the learning process can be qualified as a form of homogeneous team learning (Haynes
and Sen, 1996; Sałustowicz et al., 1998; Quinn et al., 2003). Nonetheless, TS-Swarm
differs from typical team learning systems (Stone and Veloso, 2000; Parker, 2012; Girard
and Emami, 2015) in the fact that the single learning entity is indeed the swarm as
a whole, which has an immaterial and distributed nature: the robots operate in an
independent manner and no central entity exists that performs the learning process
having a global view of the state of the system. Learning takes place at the collective
level of the swarm: it is the swarm as a whole that searches the space of possible
solutions. Moreover, once the correct solution is identified, the policy to produce is

104 CHAPTER 5. CONCLUSIONS

eventually encoded by the chain in a collective and distributed way: each guardian
stores the part of policy that concerns the execution of its guarded task. Each runner
implements the policy encoded by the chain on the basis of its own state, which is
defined by the number of tasks performed and by which guardian is in its proximity, if
any.

The system presented in this thesis offers several potential directions for future work.
One direction is to improve the performance on task sequencing and test more complex
scenarios, such as scenarios with larger numbers of tasks, environments with obstacles or
non-convex environments. Another interesting direction would be to empirically study
the behavior of the system more deeply and identify some critical parameters—e.g., the
minimum number of robots required to successfully accomplish the mission given the
size of the environment. Creating a mathematical model that describes the behavior
of the system would help proving and ensuring its convergence and other properties—
e.g., time of convergence. Finally, the chain formation algorithm could be improved
and other types of physical formations could be tested as a base for the distributed
task-sequencing algorithm: for instance, chains of moving robots could speed up the
execution of tasks as none of the robots would only act as a landmark, lattice or grid
formations could improve the exploration of the environment.

This work is a first attempt to endow robot swarms with cognitive abilities that
allow them to formulate and adapt their strategies of action online, at operation time.
These abilities can contribute to making robot swarms fully autonomous and able to
operate in dynamic environments, which are crucial requirements in several real-world
applications. We believe this work could open the way to new studies in this direction
and promote the development of systems with more complex cognitive abilities, such
as more advanced forms of planning and scheduling of tasks.

Appendix A

Appendix

A.1 Introduction

To conduct the research described in this thesis, we developed an infrastructure that
provides researchers with an integrated environment for swarm robotics experiments.
The infrastructure includes both a simulation framework in which researchers can create
and develop their experiments and the physical devices on which those experiments are
finally deployed.

When designing a swarm robotics system, the main problem that researchers must
face is the definition of individual rules that will result in the expected collective be-
havior. As deriving the individual rules from the collective requirements is difficult
and time-consuming, researchers generally use simulation tools to perform this task.
The design of the appropriate control software for robots leverages a simulated envi-
ronment through a trial-and-error process or through automatic design techniques (see
Section 2.2). One of the most widespread swarm robotics simulators is ARGoS (Pin-
ciroli et al., 2012). ARGoS offers a modular architecture that is easy to extend and a
really efficient simulation, even with large groups of robots.

Once the user is satisfied with the results obtained in the simulated environment,
the goal is finally to deploy the solution on the robots with little effort. ARGoS provides
the tools to upload and execute the same control software directly on the robots.

The infrastructure developed for this thesis is composed by the e-puck robot (Mon-
dada et al., 2009) and a device for task abstraction called TAM (Brutschy et al., 2015).
The two platforms have been designed, customized, programmed, and integrated in the
simulation of ARGoS. The infrastructure was made available to the community so that
other researchers can leverage this fully integrated environment for the development of
swarm robotics experiments.

105

106 APPENDIX A. APPENDIX

A.2 E-puck

The e-puck (Mondada et al., 2009) is a small wheeled robot developed as an open
tool for education and research purposes. Its main advantage over the competitors is
the relatively low cost and thus a broad community of users. The base version of the
e-puck features a limited set of sensors and actuators. Around the circular body of
the robot 8 infra-red transceivers are positioned to perceive the presence of obstacles
or the intensity of the environmental light. Other sensors are a color camera at the
front of the robot, a microphone and a 3-axis accelerometer. The actuators of the
base e-puck are the motors of the two wheels, which can be set to produce a speed
between 0 and 18 cm/s, a ring of 8 red LEDs and a speaker. Additionally, the e-puck
features a bright LED at the front. Given the very limited capabilities of the basic
model, the e-pucks can be enhanced with extension boards. In this thesis, each e-
puck features a ground sensor, which allows the robots to perceive the gray-scale color
of the ground on which they navigate, a range and bearing device that enables local
communications between robots (see Section A.3), an omni-directional camera that
provides a 360° view of the surroundings, and an embedded computer running Linux
that enhances the computational power. The Linux extension board1 features an ARM2

processor and adds all the potentials of a computer running Linux, among which the
possibility of using a USB dongle to connect to a Wifi network and the opportunity
to add an additional board that integrates 3 RGB LEDs. Figure A.1 shows the final
configuration of the e-puck. The complete software model of the e-puck for ARGoS can
be downloaded from https://github.com/demiurge-project/argos3-epuck.

A.2.1 E-puck firmware architecture

The addition of extension devices required a re-design of the software running on the e-
pucks. Because of the hardware configuration, the sensors and actuators included in the
basic model of the e-puck are controlled by a PIC micro-controller (dsPIC 30F6014A),
which is programmed in the C language, while the additional sensors and actuators
can be controlled directly from the Linux embedded computer. The ARM processor of
the Linux board can access the ground sensor and the range and bearing via I2C serial
bus, while the omni-directional camera is accessed as a USB device. The PIC and the
ARM processor are connected through a UART serial bus.

The goal of the re-design was to create a completely integrated infrastructure with
ARGoS. Thanks to this infrastructure, researchers can develop control software for

1http://www.gctronic.com/doc/index.php/Overo_Extension
2http://www.arm.com/

https://github.com/demiurge-project/argos3-epuck

A.2. E-PUCK 107

Figure A.1: E-puck extended with range and bearing, Linux extension board and
omni-directional camera.

e-pucks in a simulated environment and then execute the same code, without modi-
fications, on the physical robots. For this reason the software running on the Linux
embedded computer was written in C++, which is the language used to program the
core of ARGoS as well as the control software for robots. Another requirement in the
design of the e-puck software architecture was that, just like in ARGoS, the control
of the robot must be performed in a loop composed of three phases, executed in se-
quence: sense, control, and act. In the sense phase the sensors’ readings are gathered
and made available for the control phase, when a step of the control logic defined by
the researcher is executed. The result of the control phase is a set of new values for the
robot actuators, which are finally maneuvered in the act phase.

The resulting software architecture is shown in Figure A.2. Its implementation can
be found in the real-robot package of the e-puck model for ARGoS.

The software architecture is divided in two main components: the low-level loop
(written in C) executed on the PIC of the e-puck, and the main loop (real e-puck main
written in C++) that encapsulates the user-defined control software and is executed on
the ARM processor of the Linux board. The two software components communicate
with each other through a UART serial link. A complete cycle of control is composed
of these steps:

1. The Linux board reads the sensors directly accessible (omni-directional camera,
range and bearing sensor, ground sensor).

2. The PIC reads the value of every sensor directly connected (8 proximity sensors/-
light sensors, microphone, accelerometer).

108 APPENDIX A. APPENDIX

Read added sensors

Receive sensor values

Control step

Send actuator values

Maneuver added actuators

Read e-puck sensors

Send sensor values

Receive actuator values

Maneuver e-puck actuators

Main loop (Linux board) E-puck loop (PIC)Serial comm

Range and bearing actuator

Ground sensors

RGB LEDs

Range and bearing sensor

Omni-directional camera

Wheels

Accelerometer

LEDs

Proximity/light sensors

Microphone

Speaker

2
3

1

4 5

67

Figure A.2: Steps of a cycle of control of the e-puck software architecture.

3. The PIC sends the read sensor values to the Linux board through the serial link.

4. Once the values of every sensor is available, the control passes to the control step
defined by the user. Depending on input values and the logic defined in the control
step, new values for the actuators are set.

5. The Linux board communicates back to the PIC the new values for maneuvering
the actuators of the basic e-puck (wheels, 8 red LEDs, speaker).

6. The PIC maneuvers the robot according to the new values.

7. The Linux board uses the new values to maneuver the actuators directly connected
(range and bearing actuator, RGB LEDs).

These steps are repeated in the main loop every 100 ms, which is the default time step
duration in ARGoS. The main loop also sends the start and the end commands to the
PIC. By keeping track of the state of the communication, the main loop can also handle
and recover possible malfunctions.

A.2.2 E-puck in ARGoS

The hardware and software details described in the previous section have been made
completely transparent to the user, who must simply use an abstract control interface
to access sensors and actuators. The same control interface is implemented by both
the simulated and the real robot packages.

A.2. E-PUCK 109

Figure A.3: The architecture of the real e-puck package integrated in ARGoS.

Real-robot package In the real e-puck package the control interface is implemented to
hide the low-level details of the hardware and make them transparent to the user. Each
sensor and actuator has its own implementation. In particular, sensors can be divided
in two categories: the ones directly accessible from the Linux board and the ones
accessible only through the PIC. In the former case, sensors are directly read and the
data can be post-processed before being made available to the user control software (e.g.
the images acquired from the omni-directional camera are processed to extract areas of
neighboring pixels in the same range of color spectrum, these areas are aggregated in
structures called blobs, and the blobs are provided to the user with information about
relative position, size and color). For the latter type of sensors the data is acquired
by the PIC and then insert in a data structure (real epuck base) that is sent back
to the main loop through the serial bus. Once the communication is completed, the
module that implements each sensor can read its own data from the received structure.
Figure A.3 shows the e-puck software architecture integrate in ARGoS.

The real e-puck package requires to be compiled for the specific hardware architec-
ture before being transferred on the robot from a personal computer. Information and
a step-by-step installation guide can be found in the documentation folder of the e-puck
model for ARGoS.

Simulation package In the simulation package, the control interface is implemented to
read and modify the simulated 3D space created by ARGoS. The simulated 3D space
is composed by a set of data structures that contains the complete state of the simula-
tion (position and orientation of robots and obstacles, for instance). The state of the

110 APPENDIX A. APPENDIX

Figure A.4: The architecture of the e-puck simulation package.

different functional components of the robots, i.e. the state of the range and bearing
device (RAB), is also stored in this set of data structures. ARGoS keeps the simulated
3D space organized in items called entities. Different components’ states are stored in
different specialized entities (e.g. RAB-equipped entity).

Sensors and actuators are plug-ins that access the state of the simulated 3D space.
Sensors have read-only access to the space, while actuators can modify it. Sensors and
actuators are designed to only access the necessary specialized entities. A diagram of
the e-puck simulation package in ARGoS is reported in Figure A.4.

The simulation of sensors and actuators can be tuned by means of several parameters
that the user can specify in the ARGoS configuration file of an experiment. Sensors
and actuators can be used in an ideal version or in more realistic versions—that is, by
adding noise or assigning realistic values to other parameters that modify the behavior
of the specific sensor/actuator.

Calibration One of the most delicate aspect to consider when passing from simulation to
the physical robots is the difference between sensors. Every detector is different from the
others, sensor readings can be more or less noisy depending on environment conditions
and other factors that are impossible to model in a simulated world. For these reasons,
users can perform a preliminary step called calibration before executing their control
software on the physical robots. The goals of the calibration phase are (i) reducing
the effect of differences between sensors; (ii) normalizing the raw values given by the
sensors in such a way that they are consistent to the ones used in simulation; and
(iii) adjusting the ranges of normalization depending on the environmental conditions

A.3. RANGE AND BEARING 111

chosen for the particular experiment.
We implemented a calibration controller for the e-puck model in ARGoS. When

given the name of the sensor to calibrate and executed, the controller prints all the
instructions that the user must follow in order to proceed with the calibration.

The execution produces a xml calibration file containing the values needed to convert
raw sensor readings to calibrated during the experiments. When using a sensor in their
experiments, users must specify whether they want to use its calibrated version (by
specifying the calibration file produced by the calibration controller) or the raw version.
This can be done in the xml configuration file of the experiment.

A.3 Range and bearing

Among the devices of the e-puck, one of the most powerful is certainly the range
and bearing (RAB) (Gutiérrez et al., 2009). The range and bearing enables local
communication between the robots. The device is equipped with 12 infra-red emitters
and 12 infra-red receivers through which it can send and receive messages. Upon
reception of a message, the range and bearing is able to measure the relative distance
(range) and direction (bearing) of the robot emitter.

A.3.1 Range and bearing firmware

To create the carrier of the emission module, the range and bearing firmware starts a
pulse-width modulation (PWM) timer with a period of 1.09 µs. The timer generates
an interrupt every 100 µs. The interrupt handler takes the buffered data and sends
it to the hardware gates for its transmission. A Manchester code is implemented to
allow any data sent at a certain distance to be received with the same intensity by
the receiver. The transmission module can be configured in order to send the same or
different data from different emitters (single emitters can be disabled as well). Once
a transmission request is sent by a master to the device, the communication module
decomposes the data for the different emitters with a preamble (6 bits), the payload
(16 bits in the original version) and a CRC (4 bits).

The reception module continuously listens if a message arrives. When it detects the
preamble of a frame in one of the receivers, the module receives the payload and CRC.
If the CRC check passes, the frame is stored in a buffer. If peak detectors of different
sensors receive the same signal at the same time, the information is used to calculate
the relative direction and distance to the emitter. These two values are also stored in
a buffer available to the master.

The interface between the master and the device is given by registers that the

112 APPENDIX A. APPENDIX

master can write in order to send commands, parameters or data to the board, or read
to receive responses or data back from the board.

The original firmware only supports messages with a fixed payload size of 16 bits.
In many applications this may represent an important constraint, as 16 bits may be
too many or too few. To meet the requirements for this thesis, and to prevent the need
of implementing costly communication protocols, the range and bearing firmware was
upgraded to support extended and parametric payload sizes. The available payload
sizes are now 8, 16, 24 and 32 bits. The modification involved the extension of the data
structures that store the data to send and receive. Additionally, we implemented a run-
time allocation of this structures and management of the indexes over the structures,
depending on the payload size sent by the master to the board. An additional register
was added to the interface to let the master set the chosen payload size. Four other
registers were added to read or write the two additional bytes of payload.

A.3.2 Range and bearing in ARGoS

The integration of the e-puck range and bearing in ARGoS follows the same principles
described in Section A.2.2. Because of its importance and its many different functions, it
is worth describing both the implementation for the physical robots and the simulation.

Real-robot package The implementation of the range and bearing device for the
real e-puck had the goal of creating an interface between the user-defined control logic
and the firmware of the device described in the previous section. As the range and
bearing is both an emitter and receiver of messages, both an actuator and a sensor
were implemented.

To realize a bidirectional communication, the user must add the range and bearing in
both actuators and sensors subtrees of the xml configuration file of their experiment.
Among the parameters that can be assigned to the range and bearing in the xml
configuration file, the data_size sets the payload size that the device will use, expressed
in bytes. The value of this parameter must match for the actuator and the sensor and is
sent to the range and bearing firmware at initialization time by writing the designated
register.

To minimize the probability of message loss, the sensor starts a thread whose task
is to regularly poll the range and bearing device asking for new messages received.
Messages are added to a buffer that is read by the main loop once every control step
(along with the distance and the direction of emission). Indeed, the main loop is busy
handling the communication with the e-puck PIC for the most part of the 100 ms cycle
of control. Limiting the reception of messages to the remaining part of the control

A.3. RANGE AND BEARING 113

cycle would compromise the performance by increasing the number of lost messages.
The raw value of range given by the device represents a measure of signal strength
between 0 and 4096. In the sensor module, we implemented a conversion to return a
more meaningful value, i.e. a value of distance is centimeters. The conversion function,
which was derived from experimental data, is reported below:

distance = gain ∗ eα+(β∗strength) (A.1)

Where α = 9.06422, β = −0.00565 and gain = 0.08674.
Similar considerations can be done regarding the actuator. Once the control logic

defines a message to send, the message should be available to the other robots for the
longer time-span possible, until a new message is set. Therefore, the actuator should
keep invoking the range and bearing for the whole duration of the control cycle (one
request to the range and bearing corresponds to a single emission of the message).
This was achieved with a separated thread, which requests the emission of the message
set by the control logic once every 20 ms (different periods were tested, with shorter
periods causing an overload on the I2C bus). The actuator module is also responsible
of keeping track of the state and the data assigned to the different emitters. The
control logic might perform multiple data-emitter assignments during a control step,
sometimes conflicting with each other. The actuator uses only the resulting final state
of the emitters and, depending on this state, optimizes the number of operations on the
I2C bus to control the range and bearing device. For instance, setting the same payload
to each individual emitter would produce 12 write operations on the bus. By recognizing
that the same data has been set for all emitters, the actuator module produces instead
a single operation on the bus that requests the emission of a payload from all emitters.

Simulation package The simulated range and bearing allows e-pucks to perform sit-
uated communication in the simulated environment created by ARGoS. As explained
in Section A.2.2, the implementation of sensors and actuators provides an interface
between the user-defined control logic and the simulated 3D space of ARGoS. Exactly
like on the robots, the simulated range and bearing comprises both a sensor and an
actuator. The implementation of the range and bearing is associated to the range-and-
bearing medium. In ARGoS, media are entities responsible of dispatching messages or
other information from one equipped entity to one or multiple others. To be able to
use the range and bearing, it is hence required to add a range-and-bearing medium to
the media of the experiment.

Regarding the range-and-bearing actuator, besides the aforementioned data size, it
is possible to tune the range of transmission by assigning the desired value, in meters,

114 APPENDIX A. APPENDIX

to the range parameter in the configuration file.
The behavior of the sensor is instead more complex and configurable. If the user

does not specify any additional parameter, the behavior of the sensor will be ideal: it
will receive any message sent by robots in its range at a given time-step and it will
be able to measure precisely the value of distance and bearing of each message. To
simulate more accurately the behavior of the physical range and bearing device, several
parameters are available. The number of messages that can be received in a single
control cycle can be limited to the value of the max_packets parameter. Gaussian
noise can be added to the values of range and bearing, with a standard deviation
specified by the noise_std_dev parameter. The loss of packets can be simulated, by
setting the loss probability to loss_probability. Finally, given the very noisy nature
of distance measure when using physical robots, it is possible to specify whether to
reproduce this noise in simulation by activating real_range_noise.

When real_range_noise is activated, the measures performed on physical robots
are used to produce noise on the value of distance. The procedure adopted was as
follows:

1. The distribution of signal strength values was calculated for several fixed distances
on physical robots. The distribution of these values was approximated by a log-
normal distribution for each distance. In the sensor, a look-up table contains the µ
and σ parameters for the log-normal distribution corresponding to each distance.
Figure A.5B shows the log-normal distributions for the 9 distances.

2. The parameters µ and σ are calculated by interpolating the actual distance mea-
sured in ARGoS with the physical-robot data stored in the look-up table.

3. The simulated value of signal strength is calculated by drawing a number from
the log-normal distribution obtained from the previous point.

4. The value of signal strength is converted in distance with Equation A.1. The
boxplots in Figure A.5A show the distribution of final sensed distance in function
of the actual distance between the robots in the simulation.

Calibration The calibration of the range and bearing device can be done with the
same calibration controller provided in the testing folder of the e-puck model for AR-
GoS. For the time being, only the value of distance read by the sensor can be calibrated.
The calibration requires two robots placed at a distance of 20 cm between each other,
running the same calibration controller. The robots make an average of the signal
strength received over 100 messages. Thanks to this value, they calculate the correct
gain parameter for the function reported in Equation A.1 when distance = 20 cm.

A.4. TAM 115

80 60 45 30 15 10 5 2 0
Actual Distance [cm]

0

20

40

60

80

S
e
n
se

d
 D

is
ta

n
ce

 [
cm

]

0 500 1000 1500 2000 2500 3000 3500 4000
Signal strength

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

D
e
n
si

ty

80

60

45

30

15

10

5

2
0

A B

Figure A.5: Measurements for calculation of noise on range perceived. In B, boxplot
distributions of sensed distance against actual distance when real-range noise is active. In A
the log-normal distributions for 9 fixed distances.

The gain obtained will be used to convert (through Equation A.1) the values of signal
strength detected by the range and bearing sensor during robot experiments.

A.4 TAM

The infrastructure realized for simulated and physical-robot experiments comprises
another device, the task abstraction module (TAM) (Brutschy et al., 2015). The TAM
represents single-robot, stationary tasks to be performed by an e-puck. The goal of the
TAM is to abstract from details specific to task execution that are not the focus of an
experiment. The TAM allows researchers to omit details on task execution and focus
on the relevant properties of the tasks such as their logical interrelationships. Complex
multi-robot tasks can be abstracted by groups of TAMs. First, a complex task is
modeled as the set of its constituent single-robot subtasks and their interrelationships.
Second, each single-robot subtask is abstracted by a single TAM and the behavior of
the TAMs is coordinated such that it reflects the interrelationships identified by the
model.

In the remainder of this section we describe the physical implementation of the
TAM, the control framework, and finally the integration with ARGoS.

A.4.1 TAM architecture

A TAM has the shape of a booth, into which an e-puck can enter. The length of every
dimension of the TAM is 12 cm. The TAM is equipped with two light barriers, three
RGB LEDs, and an IR transceiver for communication.

116 APPENDIX A. APPENDIX

A B

Figure A.6: Conceptual and real TAM. The conceptual drawing of the TAM (A) and its
physical realization next to an e-puck (B).

The TAM announces the task it abstracts by using its colored LEDs. An e-puck can
perceive the LEDs of a TAM using its omni-directional camera. If the e-puck decides
to perform the task represented by the TAM, it moves into the TAM by following
the colored LEDs. The TAM can detect the presence of the robot by using its light
barriers. Upon detection of the robot, the TAM reacts according to a user-defined logic;
for example, by changing the color of its LEDs or by communicating with the robot.
Communication between the TAM and the e-puck is realized using the IR transceiver.
This communication enables experiments in which the behavior of the TAMs depends
on the specific robots working on their tasks. Figure A.6 shows a conceptual drawing
of the TAM, and a real TAM with an e-puck robot.

The TAM features an XBee mesh networking module, which allows researchers
to synchronize the behavior of multiple TAMs, enabling the representation of complex
relationships between tasks and cooperative behaviors between robots. The XBee mod-
ule can be configured to work on 4 different wireless channels, which allows up to four
parallel experiments.

The TAM is open source under the Creative Commons Attribution-Share-Alike 3.0
Unported License.

The firmware of the TAM is based on Arduino, an open-source platform using an
Atmel AVR micro-controller as central processor. The advantages of Arduino are the
wide availability, large community, and relative ease of development compared to other
embedded development platforms.

The goal in the design of the TAM’s control framework was to create a centralized
framework to control groups of TAMs. In this way, the TAM can be remotely controlled
by a central computer, it can be used by the computer to gather experimental data,
and it operates without being physically connected to the computer.

The control framework of the TAM is composed of two parts: the firmware based on

A.4. TAM 117

Arduino running on each TAM, and the coordinator, running on the central computer.
The latter is the software component that handles the wireless communication with
all the TAMs connected, keeps the status of every TAM updated, and manages the
relationships between the behavior of different TAMs. The firmware notifies all events
and changes in sensory readings to the coordinator, and executes all commands that
it receives in return. Commands and notifications are relayed using the wireless mesh
network modules of the TAMs. The coordinator handles this exchange of command-
s/notifications and makes it transparent to the user, who can focus on the definition of
the logic that controls the behavior of the TAMs.

The software that composes the coordinator is programmed in Java to ensure the
maximum simplicity and portability. To set up an experiment, the user is required to
define two Java classes: a controller and an experiment. The former is the software
that the coordinator uses to control a single TAM. One instance of controller must be
attached to each individual TAM. Similarly to a robot control cycle, the coordinator
executes in a loop the controller step function, which at every execution takes the state
of the TAM as input and produces commands for the same TAM depending on the
user-defined logic. In the experiment, the user must attach a controller to each TAM
and handle the logical interrelationships between TAMs.

A.4.2 TAM in ARGoS

The software infrastructure would not be complete without the integration of the TAM
in ARGoS. Because the coordinator and the control software are programmed in Java,
there are some differences between the implementation of the TAM and the imple-
mentation of the robots in ARGoS. First, there is no real-robot implementation of the
TAM directly in ARGoS, as the TAM’s main loop of control is handled by coordinator,
experiments and controllers, which are programmed in Java as described in the previ-
ous section. Second, to ensure the direct portability of the same control software from
simulation to physical TAM, the simulation package provides a C++ wrapper for the
Java code used on the physical device.

Simulation package The goal of the simulated package is to wrap the Java software
architecture of the real TAM in C++ entities that can be added to the ARGoS simulated
3D space. In this way, the user can create and test an experiment in simulation by
implementing control software for e-pucks in C++ and control software for TAMs in
Java. The burden of integrating everything in the same simulated world is handled by
ARGoS. Once the user is satisfied with the results, the control software for both robots
and TAMs can be executed on the real devices without modifications. The architecture

118 APPENDIX A. APPENDIX

of the TAM simulated package and its interactions with the physical TAM software
architecture are shown in Figure A.7.

1..*

1

1 1..*

1..*

1

TAM Interface

TAM TAM

Controller

Experiment

Coordinator

Physical TAM

TAMs Controllable
Entity

TAM Entity

1

1..*

ARGoS
C++

Real TAM
Java

Figure A.7: TAM software architecture. On the left side the Java classes for the real
TAM. On the right side the C++ classes in ARGoS. The bold connections are the ones that
realize the C++ wrapper in ARGoS

Two Java classes TAM implement the same TAM interface, one used for the real
TAM and the other one for the integration in ARGoS. When invoked by the controller,
the TAM class used for the real TAM, on the left in Figure A.7, relays commands to the
coordinator or reads the state reported by the coordinator from the physical TAM. The
implementation of TAM for ARGoS, on the other hand, simply keeps the internal state
of the TAM and returns it or modifies it depending on the requests of the controller.
The most important class for the integration with ARGoS, i.e. the one the realizes
the wrapper for the Java code in C++, is TAMs Controllable Entity. This class is
responsible of creating the experiment, instantiating a TAM object and a controller for
each TAM added by the user to the experiment and binding each instance of controller
to the right TAM. The interactions between the C++ code of TAMs controllable entity
and the Java code of the TAM software infrastructure are realized through the JNI
library. The TAMs Controllable Entity is also responsible of managing the timing of
the experiment by calling in a loop the step functions of experiment and controllers.
Finally, after each iteration, the TAMs Controllable Entity takes the state of each
TAM instance (which has just been modified by the step function of its controller)
and updates the state of each corresponding TAM entity accordingly. The state of the
TAM entities is used to materialize the TAMs in the 3D simulated space of ARGoS.

A.4. TAM 119

The effects of events that change the state of a TAM entity in the simulation (a robot
entering the TAM, for instance) are immediately reported to the corresponding TAM
object’s state, which will be used by the next step function call.

From the user’s perspective, all these details are hidden. The user can focus on
the implementation of the control logic for the TAMs by defining experiments and
controllers.

120 APPENDIX A. APPENDIX

Bibliography

Agassounon, W. and Martinoli, A. (2002). Efficiency and robustness of threshold-based
distributed allocation algorithms in multi-agent systems. In Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
pages 1090–1097. IFAAMAS, Richland, SC, USA.

Anderson, C. W. (2000). Approximating a policy can be easier than approximating a
value function. Technical Report CS-00-101, Colorado State University, Fort Collins,
CO.

Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence,
149(1):91–130.

Arkin, R. C. (1990). Integrating behavioral, perceptual, and world knowledge in reactive
navigation. Robotics and Autonomous Systems, 6:105–122.

Arkin, R. C. (1998). Behavior-based Robotics. MIT Press, Cambridge, MA.

Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G. A., Ducatelle, F., Gambardella,
L. M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., and Urnes, T.
(2006). Design patterns from biology for distributed computing. ACM Transactions
on Autonomous and Adaptive Systems, 1(1):26–66.

Bachrach, J., Beal, J., and McLurkin, J. (2010). Composable continuous-space pro-
grams for robotic swarms. Neural Computing and Applications, 19(6):825–847.

Baird, L. and Moore, A. (1999). Gradient descent for general reinforcement learning.
In NIPS 11, Proceedings, pages 968–974. MIT Press, Cambridge, MA.

Baldassarre, G., Parisi, D., and Nolfi, S. (2006). Distributed coordination of simulated
robots based on self-organization. Artificial Life, 12(3):289–311.

Bashyal, S. and Venayagamoorthy, G. K. (2008). Human swarm interaction for radi-
ation source search and localization. In Swarm Intelligence Symposium, 2008. SIS
2008. IEEE, pages 1–8. IEEE Press, Piscataway, NJ, USA.

121

122 BIBLIOGRAPHY

Baxter, J. and Bartlett, P. L. (2000). Reinforcement learning in POMDPs via direct
gradient ascent. In ICML’00, Proceedings, pages 41–48. Morgan Kaufmann Publishers
Inc., San Francisco, CA.

Bayindir, L. and Şahin, E. (2007). A review of studies in swarm robotics. Turkish
Journal of Electrical Engineering and Computer Sciences, 15(2):115–147.

Beal, J. (2004). Programming an amorphous computational medium. In Proceedings
of the International Workshop on Unconventional Programming Paradigms (UPP),
volume 3566 of LNCS, pages 97–97. Springer, Berlin, Germany.

Beal, J. and Viroli, M. (2015). Space–time programming. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2046).

Beckers, R., Holland, O., and Deneubourg, J.-L. (2000). From local actions to global
tasks: stigmergy and collective robotics. In Cruse, H. et al., editors, Prerational
Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic,
Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the
Behavior of Natural and Artificial Systems, Volume 3, volume 26 of Studies in Cog-
nitive Systems, pages 1008–1022. Springer, Netherlands.

Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., and Pappas, G. J. (2007).
Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE
Robotics Automation Magazine, 14(1):61–70.

Beni, G. (2005). From swarm intelligence to swarm robotics. In Swarm Robotics,
volume 3342 of LNCS, pages 1–9. Springer, Berlin, Germany.

Berman, S., Halász, Á. M., Hsieh, M. A., and Kumar, V. (2009). Optimized stochastic
policies for task allocation in swarms of robots. IEEE Transactions on Robotics,
25(4):927–937.

Berman, S., Kumar, V., and Nagpal, R. (2011). Design of control policies for spatially
inhomogeneous robot swarms with application to commercial pollination. In IEEE
International Conference on Robotics and Automation (ICRA 2011), pages 378–385.
IEEE Press, Piscataway, NJ, USA.

Birattari, M., Ligot, A., Bozhinoski, D., Brambilla, M., Francesca, G., Garattoni, L.,
Garzón Ramos, D., Hasselmann, K., Kegeleirs, M., Kuckling, J., Pagnozzi, F., Roli,
A., Salman, M., and Stützle, T. (2019). Automatic off-line design of robot swarms:
a manifesto. Frontiers in Robotics and AI, 6:59.

BIBLIOGRAPHY 123

Birattari, M., Ligot, A., and Hasselmann, K. (2020). Disentangling automatic and
semi-automatic approaches to the optimization-based design of control software for
robot swarms. Nature Machine Intelligence, 2(9):494–499.

Bonabeau, E., Theraulaz, G., and Deneubourg, J.-L. (1998). Fixed response thresholds
and the regulation of division of labor in insect societies. Bulletin of Mathematical
Biology, 60(4):753–807.

Brambilla, M., Brutschy, A., Dorigo, M., and Birattari, M. (2014). Property-driven
design for swarm robotics: A design method based on prescriptive modeling and
model checking. ACM Transactions on Autonomous and Adaptive Systems, 9(4):17.1–
28.

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41.

Brambilla, M., Pinciroli, C., Birattari, M., and Dorigo, M. (2009). A reliable distributed
algorithm for group size estimation with minimal communication requirements. In
Fourteenth International Conference on Advanced Robotics – ICAR 2009, page 6.
Proceedings on CD-ROM, paper ID 137.

Bredeche, N., Haasdijk, E., and Prieto, A. (2018). Embodied evolution in collective
robotics: A review. Frontiers in Robotics and AI, 5:12.

Bredeche, N., Montanier, J.-M., Liu, W., and Winfield, A. F. (2012). Environment-
driven distributed evolutionary adaptation in a population of autonomous robotic
agents. Mathematical and Computer Modelling of Dynamical Systems, 18(1):101–
129.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal
on Robotics and Automation, 2(1):14–23.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence,
47:139–159.

Brooks, R. A. (1999). Cambrian intelligence: the early history of the new AI. MIT
Press, Cambridge, MA.

Bruemmer, D. J., Dudenhoeffer, D. D., and Marble, J. L. (2001). Mixed-initiative
remote characterization using a distributed team of small robots. Technical Report
WS-01-01/WS01-01-005, AAAI.

124 BIBLIOGRAPHY

Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M., and Bi-
rattari, M. (2015). The TAM: abstracting complex tasks in swarm robotics research.
Swarm Intelligence, 9(1):1–22.

Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., and Dorigo, M. (2014). Self-organized
task allocation to sequentially interdependent tasks in swarm robotics. Autonomous
Agents and Multi-Agent Systems, 28(1):101–125.

Buşoniu, L., Babuška, R., and De Schutter, B. (2008). A comprehensive survey of multi-
agent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C, 38(2):156–172.

Bušoniu, L., Babuška, R., and De Schutter, B. (2010). Multi-agent reinforcement
learning: an overview. In Srinivasan, D. and Jain, L., editors, Innovations in Multi-
Agent Systems and Applications - 1, volume 310 of SCI, pages 183–221. Springer,
Berlin, Germany.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., and
Bonabeau, E. (2001). Self-organization in Biological Systems. Princeton Univ. Press,
Princeton, NJ.

Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S., and
Dorigo, M. (2010). Artificial pheromone for path selection by a foraging swarm of
robots. Biological Cybernetics, 103(5):339–352.

Campo, A., Nouyan, S., Birattari, M., Groß, R., and Dorigo, M. (2006). Negotiation of
goal direction for cooperative transport. In Dorigo, M. et al., editors, Ant Colony Op-
timization and Swarm Intelligence, volume 4150 of LNCS, pages 191–202. Springer,
Berlin, Germany.

Carrillo-Zapata, D., Sharpe, J., Winfield, A. F. T., Giuggioli, L., and Hauert, S. (2019).
Toward controllable morphogenesis in large robot swarms. IEEE Robotics and Au-
tomation Letters, 4(4):3386–3393.

Castello, E., Yamamoto, T., Liu, W., Winfield, A. F., Nakamura, Y., and Ishiguro,
H. (2016). Adaptive foraging for simulated and real robotic swarms: The dynamical
response threshold approach. Swarm Intelligence, 10(1):1–31.

Cavalcanti, A., Miyazawa, A., Sampaio, A., Li, W., Ribeiro, P., and Timmis, J. (2018).
Modelling and verification for swarm robotics. In Furia, C. A. and Winter, K., editors,
Integrated Formal Methods, pages 1–19. Springer International Publishing, Cham.

BIBLIOGRAPHY 125

Çelikkanat, H. and Şahin, E. (2010). Steering self-organized robot flocks through ex-
ternally guided individuals. Neural Computing and Applications, 19(6):849–865.

Chang, E. and Roberts, R. (1979). An improved algorithm for decentralized extrema-
finding in circular configurations of processes. Communications of the ACM,
22(5):281–283.

Christensen, A. L., O’Grady, R., and Dorigo, M. (2009). From fireflies to fault-tolerant
swarms of robots. IEEE Transactions on Evolutionary Computation, 13(4):754–766.

Christensen, A. L., Oliveira, S. M., Postolache, O., de Oliveira, M. J., Sargento, S.,
Santana, P., Nunes, L., Velez, F., Sebastiao, P., Costa, V., Duarte, M., Gomes,
J., Rodrigues, T., and Silva, F. (2015). Design of communication and control for
swarms of aquatic surface drones. In Proceedings of the International Conference on
Agents and Artificial Intelligence (ICAART), pages 548–555. SCITEPRESS, Setúbal,
Portugal.

Coppola, M., Guo, J., Gill, E., and de Croon, G. C. H. E. (2019). Provable self-
organizing pattern formation by a swarm of robots with limited knowledge. Swarm
Intelligence, 13(1):59–94.

Correll, N. (2008). Parameter estimation and optimal control of swarm-robotic systems:
A case study in distributed task allocation. In IEEE International Conference on
Robotics and Automation (ICRA 2008), pages 3302–3307. IEEE Press, Piscataway,
NJ, USA.

Correll, N. and Martinoli, A. (2011). Modeling and designing self-organized aggregation
in a swarm of miniature robots. The International Journal of Robotics Research,
30(5):615–626.

Couture-Beil, A., Vaughan, R. T., and Mori, G. (2010). Selecting and commanding
individual robots in a multi-robot system. In Computer and Robot Vision (CRV),
2010 Canadian Conference on Computer and Robot Vision (CRV), pages 159–166.
IEEE Press, Piscataway, NJ, USA.

Couzin, I. D., Krause, J., Franks, N. R., and Levin, S. A. (2005). Effective leadership
and decision-making in animal groups on the move. Nature, 433(7025):513–516.

Şahin, E. (2005). Swarm robotics: from sources of inspiration to domains of application.
In Swarm Robotics, volume 3342 of LNCS, pages 10–20. Springer, Berlin, Germany.

Daily, M., Cho, Y., Martin, K., and Payton, D. (2003). World embedded interfaces
for human-robot interaction. In Proceedings of the 36th Annual Hawaii International

126 BIBLIOGRAPHY

Conference on System Sciences, 2003, pages 125–130. IEEE Press, Piscataway, NJ,
USA.

Deneubourg, J.-L., Aron, S., Goss, S., and Pasteels, J. M. (1990). The self-organizing
exploratory pattern of the argentine ant. Journal of Insect Behavior, 3(2):159–168.

Dennett, D. C. (2006). The frame problem of ai. Philosophy of Psychology: Contem-
porary Readings, page 433.

Devin, C., Gupta, A., Darrell, T., Abbeel, P., and Levine, S. (2017). Learning modu-
lar neural network policies for multi-task and multi-robot transfer. In ICRA 2017,
Proceedings, pages 2169–2176. IEEE Press, Piscataway, NJ.

Di Caro, G. A., Ducatelle, F., and Gambardella, L. M. (2009). Wireless communi-
cations for distributed navigation in robot swarms. In Applications of Evolutionary
Computing, volume 5484 of LNCS, pages 21–30. Springer, Berlin, Germany.

Di Mario, E. and Martinoli, A. (2014). Distributed particle swarm optimization for
limited-time adaptation with real robots. Robotica, 32(2):193–208.

Dorigo, M., Birattari, M., and Brambilla, M. (2014). Swarm robotics. Scholarpedia,
9(1):1463.

Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura,
T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo,
A., Christensen, A. L., Decugnière, A., Di Caro, G. A., Ducatelle, F., Ferrante,
E., Förster, A., Guzzi, J., Longchamp, V., Magnenat, S., Martinez Gonzales, J.,
Mathews, N., Montes de Oca, M. A., O’Grady, R., Pinciroli, C., Pini, G., Rétornaz,
P., Roberts, J., Sperati, V., Stirling, T., Stranieri, A., Stützle, T., Trianni, V., Tuci,
E., Turgut, A. E., and Vaussard, F. (2013). Swarmanoid: a novel concept for the
study of heterogeneous robotic swarms. IEEE Robotics and Automation Magazine,
20(4):60–71.

Drogoul, A. and Ferber, J. (1992). From Tom Thumb to the dockers: Some experiments
with foraging robots. In From Animals to Animats 2, pages 451–459. MIT Press,
Cambridge, MA.

Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S. M., and Chris-
tensen, A. L. (2016). Evolution of collective behaviors for a real swarm of aquatic
surface robots. PLOS ONE, 11(3):1–25.

BIBLIOGRAPHY 127

Duarte, M., Costa, V., Gomes, J. C., Rodrigues, T., Silva, F., Oliveira, S. M., and
Christensen, A. L. (2015). Evolution of collective behaviors for a real swarm of
aquatic surface robots. arXiv–CoRR, abs/1511.03154.

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014a). Evolution of hierarchical
controllers for multirobot systems. In Sayama, H. et al., editors, Artificial Life 14:
Proceedings of the International Conference on the Synthesis and Simulation of Living
Systems, pages 657–664. MIT Press, Cambridge, MA, USA.

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014b). Evolution of hybrid
robotic controllers for complex tasks. Journal of Intelligent and Robotic Systems,
78(3-4):463–484.

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014c). Hybrid control for large
swarms of aquatic drones. In Proceedings of the International Conference on the
Synthesis and Simulation of Living Systems (ALIFE), pages 785–792. MIT Press,
Cambridge, MA, USA.

Ducatelle, F., Caro, G. A. D., Pinciroli, C., Mondada, F., and Gambardella, L. (2011a).
Communication assisted navigation in robotic swarms: Self-organization and coop-
eration. In IROS 2011, Proceedings, pages 4981–4988. IEEE Press, Piscataway, NJ.

Ducatelle, F., Di Caro, G. A., Förster, A., Bonani, M., Dorigo, M., Magnenat, S.,
Mondada, F., O’Grady, R., Pinciroli, C., Rétornaz, P., et al. (2014). Cooperative
navigation in robotic swarms. Swarm Intelligence, 8(1):1–33.

Ducatelle, F., Di Caro, G. A., Pinciroli, C., Mondada, F., and Gambardella, L. M.
(2011b). Communication assisted navigation in robotic swarms: self-organization and
cooperation. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2011), pages 4981–4988. IEEE Computer Society Press,
Los Alamitos, CA, USA.

Dudek, G., Jenkin, M. R. M., Milios, E., and Wilkes, D. (1996). A taxonomy for
multi-agent robotics. Autonomous Robots, 3(4):375–397.

Egerstedt, M. and Hu, X. (2001). Formation constrained multi-agent control. IEEE
Transactions on Robotics and Automation, 17(6):947–951.

Evans, W. C., Mermoud, G., and Martinoli, A. (2010). Comparing and modeling
distributed control strategies for miniature self-assembling robots. In IEEE Inter-
national Conference on Robotics and Automation (ICRA 2010), pages 1438–1445.
IEEE Press, Piscataway, NJ, USA.

128 BIBLIOGRAPHY

Ferrante, E., Turgut, A. E., Duéñez-Guzmán, E., Dorigo, M., and Wenseleers, T.
(2015). Evolution of self-organized task specialization in robot swarms. PLOS Com-
putational Biology, 11(8):e1004273.

Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., and Dorigo, M.
(2012). Self-organized flocking with a mobile robot swarm: a novel motion control
method. Adaptive Behavior, 20(6):460–477.

Fikes, R. E. and Nilsson, N. J. (1972). Strips: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3):189–208.

Firat, Z., Ferrante, E., Gillet, Y., and Tuci, E. (2020). On self-organised aggrega-
tion dynamics in swarms of robots with informed robots. Neural Computing and
Applications, 32(17):13825–13841.

Francesca, G. and Birattari, M. (2016). Automatic design of robot swarms: achieve-
ments and challenges. Frontiers in Robotics and AI, 3:29.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G.,
Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V., and
Birattari, M. (2015). Automode-chocolate: automatic design of control software for
robot swarms. Swarm Intelligence, 9(2-3):125–152.

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M. (2014).
AutoMoDe: A novel approach to the automatic design of control software for robot
swarms. Swarm Intelligence, 8(2):89–112.

Garattoni, L. and Birattari, M. (2018). Autonomous task sequencing in a robot swarm.
Science Robotics, 3(20):eaat0430.

Garattoni, L. and Birattari, M. (2020). Supplementary material for the thesis: Cogni-
tive abilities in swarm robotics: developing a swarm that can collectively sequence
tasks. Available at http://iridia.ulb.ac.be/supp/IridiaSupp2020-001/.

Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., and Birattari, M. (2015).
Software infrastructure for e-puck (and TAM). Technical Report TR/IRIDIA/2015-
004, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

Gardelli, L., Viroli, M., and Omicini, A. (2007). Design patterns for self-organising
systems. In Burkhard, H.-D. et al., editors, Multi-Agent Systems and Applications
V, volume 4696 of LNCS, pages 123–132. Springer, Berlin, Germany.

http://iridia.ulb.ac.be/supp/IridiaSupp2020-001/

BIBLIOGRAPHY 129

Garnier, S., Gautrais, J., Asadpour, M., Jost, C., and Theraulaz, G. (2009). Self-
organized aggregation triggers collective decision making in a group of cockroach-like
robots. Adaptive Behavior, 17(2):109–133.

Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., and Ther-
aulaz, G. (2005). Aggregation behaviour as a source of collective decision in a group
of cockroach-like robots. In Advances in Artificial Life, volume 3630 of LNAI, pages
169–178. Springer, Berlin, Germany.

Gauci, M., Chen, J., Li, W., Dodd, T., and Groß, R. (2014a). Clustering objects
with robots that do not compute. In AAMAS 2014, Proceedings, pages 421–428.
IFAAMAS, Richland, SC.

Gauci, M., Chen, J., Li, W., Dodd, T., and Groß, R. (2014b). Self-organized aggregation
without computation. The International Journal of Robotics Research, 33(8):1145–
1161.

Gazi, V. (2005). Swarm aggregations using artificial potentials and sliding-mode con-
trol. IEEE Transactions on Robotics, 21(6):1208–1214.

Gazi, V. and Fidan, B. (2007). Coordination and control of multi-agent dynamic
systems: models and approaches. In Swarm Robotics, volume 4433 of LNCS, pages
71–102. Springer, Berlin, Germany.

Gazi, V. and Passino, K. M. (2003). Stability analysis of swarms. IEEE Transactions
on Automatic Control, 48(4):692–696.

Gazi, V. and Passino, K. M. (2004a). A class of attractions/repulsion functions for
stable swarm aggregations. International Journal of Control, 77(18):1567–1579.

Gazi, V. and Passino, K. M. (2004b). Stability analysis of social foraging swarms. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 34(1):539–557.

Georgeff, M. P. and Lansky, A. L. (1987). Reactive reasoning and planning. In AAAI,
volume 87, pages 677–682.

Gerkey, B. P. and Mataric, M. J. (2002). Sold!: Auction methods for multirobot
coordination. IEEE Transactions on Robotics and Automation, 18(5):758–768.

Gerkey, B. P. and Matarić, M. J. (2004). A formal analysis and taxonomy of task
allocation in multi-robot systems. The International Journal of Robotics Research,
23(9):939–954.

130 BIBLIOGRAPHY

Ghiringhelli, F., Guzzi, J., Di Caro, G. A., Caglioti, V., Gambardella, L. M., and
Giusti, A. (2014). Interactive augmented reality for understanding and analyzing
multi-robot systems. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2014), pages 1195–1201. IEEE Press, Piscataway, NJ,
USA.

Girard, J. and Emami, M. R. (2015). Concurrent markov decision processes for robot
team learning. Eng. Appl. Artif. Intell., 39(Supplement C):223–234.

Giusti, A., Nagi, J., Gambardella, L. M., and Di Caro, G. A. (2012). Cooperative sens-
ing and recognition by a swarm of mobile robots. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2012), pages 551–558. IEEE
Press, Piscataway, NJ, USA.

Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S., and Stentz, A. (2003).
Market-based multi-robot planning in a distributed layered architecture. In Multi-
robot systems: From swarms to intelligent automata: Proceedings from the 2003
international workshop on multi-robot systems, volume 2, pages 27–38.

Gomes, J., Urbano, P., and Christensen, A. L. (2013). Evolution of swarm robotics
systems with novelty search. Swarm Intelligence, 7(2-3):115–144.

Goss, S. and Deneubourg, J.-L. (1992). Harvesting by a group of robots. In Towards a
Practice of Autonomous Systems, pages 195–204. MIT Press, Cambridge, MA.

Groß, R. and Dorigo, M. (2009). Towards group transport by swarms of robots. Inter-
national Journal of Bio-Inspired Computation, 1(1–2):1–13.

Gutiérrez, A., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., and Mag-
dalena, L. (2009). Open e-puck range & bearing miniaturized board for local com-
munication in swarm robotics. In ICRA 2009, Proceedings, pages 3111–3116. IEEE
Press, Piscataway, NJ.

Gutiérrez, Á., Campo, A., Monasterio-Huelin, F., Magdalena, L., and Dorigo, M.
(2010). Collective decision-making based on social odometry. Neural Computing
and Applications, 19(6):807–823.

Guzmán-Alvarez, C., Castejon, P., Onaindia, E., and Frank, J. (2013). Multi-agent
reactive planning for solving plan failures. In Hybrid Artificial Intelligent Systems,
pages 530–539. Springer.

BIBLIOGRAPHY 131

Haasdijk, E., Bredeche, N., and Eiben, A. E. (2014). Combining environment-driven
adaptation and task-driven optimisation in evolutionary robotics. PLoS ONE,
9(6):e98466.

Halász, Á. M., Liang, Y., Hsieh, M. A., and Lai, H.-J. (2013). Emergence of specializa-
tion in a swarm of robots. In Martinoli, A. et al., editors, Distributed Autonomous
Robotic Systems, volume 83 of STAR, pages 403–416. Springer, Berlin, Germany.

Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Saïd, I.,
Durier, V., Canonge, S., Amé, J. M., Detrain, C., Correll, N., Martinoli, A., Mon-
dada, F., Siegwart, R., and Deneubourg, J. L. (2007). Social integration of robots
into groups of cockroaches to control self-organized choices. Science, 318(5853):1155–
1158.

Hamann, H. (2013). Towards swarm calculus: Urn models of collective decisions and
universal properties of swarm performance. Swarm Intelligence, 7(2-3):145–172.

Hamann, H. (2018). Collective decision-making, pages 129–162. Springer International
Publishing, Cham.

Hamann, H. and Wörn, H. (2008). A framework of space-time continuous models for
algorithm design in swarm robotics. Swarm Intelligence, 2(2–4):209–239.

Hauert, S., Zufferey, J.-C., and Floreano, D. (2009). Evolved swarming without po-
sitioning information: an application in aerial communication relay. Autonomous
Robots, 26(1):21–32.

Haynes, T. and Sen, S. (1996). Evolving behavioral strategies in predators and prey.
In Adaption and Learning in Multi-Agent Systems: IJCAI 1995, Proceedings, pages
113–126. Springer, Berlin, Germany.

Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., and Moses, M. E. (2012).
Formica ex machina: ant swarm foraging from physical to virtual and back again. In
Dorigo, M. et al., editors, Swarm Intelligence, ANTS 2012, volume 7461 of LNCS,
pages 252–259. Springer, Berlin, Germany.

Hettiarachchi, S. D. (2007). Distributed evolution for swarm robotics. PhD thesis,
University of Wyoming, Laramie, WY.

Howard, A., Matarić, M. J., and Sukhatme, G. S. (2002). Mobile sensor network de-
ployment using potential fields: a distributed, scalable solution to the area coverage

132 BIBLIOGRAPHY

problem. In Proceedings of the 2002 International Symposium on Distributed Au-
tonomous Robotic Systems (DARS 2002), pages 299–308. IEEE Press, Piscataway,
NJ, USA.

Hsieh, M. A., Halász, Á., Berman, S., and Kumar, V. (2008). Biologically inspired
redistribution of a swarm of robots among multiple sites. Swarm Intelligence, 2(2–
4):121–141.

Iocchi, L., Nardi, D., and Salerno, M. (2001). Reactivity and deliberation: a survey on
multi-robot systems. In Balancing Reactivity and Social Deliberation in Multi-agent
Systems, volume 2103 of LNCS, pages 9–32. Springer, Berlin, Germany.

Izhikevich, E. M. (1999). Weakly pulse-coupled oscillators, fm interactions, synchro-
nization, and oscillatory associative memory. IEEE Transactions on Neural Networks,
10(3):508–526.

Jensen, R. and Veloso, M. (1998). Interleaving deliberative and reactive planning in
dynamic multi-agent domains. In Proceedings of the AAAI Fall Symposium on on
Integrated Planning for Autonomous Agent Architectures.

Jones, J. E. (1924). On the determination of molecular fields. ii. from the equation of
state of a gas. Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 106(738):463–477.

Jones, S., Winfield, A. F., Hauert, S., and Studley, M. (2019). Onboard evolution of
understandable swarm behaviors. Advanced Intelligent Systems, 1(6):1900031.

Kaelbling, L. P. (1987). An architecture for intelligent reactive systems. In Georgeff,
M. P. and Lansky, A. L., editors, Reasoning About Actions and Plans, pages 395–410.
Morgan Kaufmann.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: a
survey. Journal of Artificial Intelligence Research, 4:237–285.

Kaelbling, L. P. and Rosenschein, S. J. (1990). Action and planning in embedded
agents. Robotics and Autonomous Systems, 6(1):35–48.

Kazadi, S. (2009). Model independence in swarm robotics. International Journal of
Intelligent Computing and Cybernetics, 2(4):672–694.

Khaluf, Y., Birattari, M., and Hamann, H. (2014). A swarm robotics approach to task
allocation under soft deadlines and negligible switching costs. In del Pobil, A. P.
et al., editors, From Animals to Animats 13, volume 8575 of LNCS, pages 270–279.
Springer, Berlin, Germany.

BIBLIOGRAPHY 133

Kolling, A., Sycara, K., Nunnally, S., and Lewis, M. (2013). Human swarm interaction:
An experimental study of two types of interaction with foraging swarms. Journal of
Human-Robot Interaction, 2(2):103–128.

König, L. and Mostaghim, S. (2009). Decentralized evolution of robotic behavior using
finite state machines. International Journal of Intelligent Computing and Cybernetics,
2(4):695–723.

Krieger, M. J., Billeter, J. B., and Keller, L. (2000). Ant-like task allocation and
recruitment in cooperative robots. Nature, 406(6799):992–995.

Krieger, M. J. B. and Billeter, J.-B. (2000). The call of duty: self-organised task
allocation in a population of up to twelve mobile robots. Robotics and Autonomous
Systems, 30(1–2):65–84.

Kube, C. R. and Bonabeau, E. (2000). Cooperative transport by ants and robots.
Robotics and Autonomous Systems, 30(1–2):85–101.

Lehman, J. and Stanley, K. O. (2011). Abandoning objectives: evolution through the
search for novelty alone. Evolutionary Computation, 19(2):189–223.

Levi, P. and Kernbach, S. (2010). Symbiotic Multi-Robot Organisms: Reliability, Adapt-
ability, Evolution. Springer, 1st edition.

Liu, W. and Winfield, A. F. (2010). Modeling and optimization of adaptive foraging in
swarm robotic systems. The International Journal of Robotics Research, 29(14):1743–
1760.

Lopes, Y. K., Leal, A. B., Dodd, T. J., and Groß, R. (2014). Application of supervisory
control theory to swarms of e-puck and kilobot robots. In Dorigo, M. et al., edi-
tors, Swarm Intelligence, ANTS 2014, volume 8667 of LNCS, pages 62–73. Springer,
Berlin, Germany.

Lopes, Y. K., Trenkwalder, S. M., Leal, A. B., Dodd, T. J., and Groß, R. (2016).
Supervisory control theory applied to swarm robotics. Swarm Intelligence, 10(1):65–
97.

Maes, P. (1990). Situated agents can have goals. Robotics and Autonomous Systems,
6(1):49–70.

Magnenat, S., Voelkle, M., and Mondada, F. (2009). Planner9, a htn planner distributed
on groups of miniature mobile robots. In Intelligent Robotics and Applications, pages
1013–1022. Springer.

134 BIBLIOGRAPHY

Martinoli, A., Ijspeert, A. J., and Mondada, F. (1999). Understanding collective ag-
gregation mechanisms: from probabilistic modelling to experiments with real robots.
Robotics and Autonomous Systems, 29(1):51–63.

Massink, M., Brambilla, M., Latella, D., Dorigo, M., and Birattari, M. (2013). On the
use of bio-pepa for modelling and analysing collective behaviours in swarm robotics.
Swarm Intelligence, 7(2–3):201–228.

Mataric, M. J. (1992). Integration of representation into goal-driven behavior-based
robots. IEEE Transactions on Robotics and Automation, 8(3):304–312.

Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4(1):73–83.

Mataric, M. J. (1998). Behavior-based robotics as a tool for synthesis of artificial
behavior and analysis of natural behavior. Trends in Cognitive Sciences, 2:82–86.

Matarić, M. J. (1998). Using communication to reduce locality in distributed multi-
agent learning. Journal of Experimental and Theoretical Artificial Intelligence,
10(3):357–369.

Mataric, M. J. and Brooks, R. A. (1990). Learning a distributed map representation
based on navigation behaviors. In Proceedings of 1990 USA Japan Symposium on
Flexible Automation, pages 499–506.

Matellán, V. and Borrajo, D. (1998). Combining classical and reactive planning: The
abc2 model. In Bergmann, R. and Kott, A., editors, AIPS’98 Workshop: Integrating
Planning, Scheduling and Execution in Dynamic and Uncertain Environments, pages
121–126.

Mathews, N., Christensen, A., O’Grady, R., Mondada, F., and Dorigo, M. (2017).
Mergeable nervous systems for robots. Nat. Commun., 8(1):439.

Mathews, N., Christensen, A. L., Stranieri, A., Scheidler, A., and Dorigo, M. (2019). Su-
pervised morphogenesis: Exploiting morphological flexibility of self-assembling mul-
tirobot systems through cooperation with aerial robots. Robotics and Autonomous
Systems, 112:154–167.

Mathews, N., Stranieri, A., Scheidler, A., and Dorigo, M. (2012). Supervised morpho-
genesis – morphology control of ground-based self-assembling robots by aerial robots.
In Conitzer, V. et al., editors, Proceedings of 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2012), pages 97–104. IFAAMAS,
Richland, SC, USA.

BIBLIOGRAPHY 135

Maxim, P. M., Spears, W. M., and Spears, D. F. (2009). Robotic chain formations.
In Proceedings of the IFAC Workshop on Networked Robotics, pages 19–24. Elsevier,
Oxford, UK.

Melhuish, C., Holland, O., and Hoddell, S. (1999a). Convoying: using chorusing for the
formation of travelling groups of minimal agents. Robotics and Autonomous Systems,
28(2–3):207–216.

Melhuish, C., Welsby, J., and Edwards, C. (1999b). Using templates for defensive wall
building with autonomous mobile antlike robots. In Proceedings of Towards Intelligent
Mobile Robots (TIMR’99). The University of Manchester, Manchester, UK.

Mermoud, G., Upadhyay, U., Evans, W. C., and Martinoli, A. (2014). Top-down
vs. bottom-up model-based methodologies for distributed control: A comparative
experimental study. In Khatib, O. et al., editors, Experimental Robotics, volume 79
of STAR, pages 615–629. Springer, Berlin, Germany.

Mitri, S., Wischmann, S., Floreano, D., and Keller, L. (2013). Using robots to under-
stand social behaviour. Biological Reviews, 88(1):31–39.

Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., and Floreano, D.
(2005). Superlinear physical performances in a SWARM-BOT. In Proceedings of the
VIIIth European Conference on Artificial Life, volume 3630 of LNCS, pages 282–291.
Springer, Berlin, Germany.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009). The e-puck, a robot
designed for education in engineering. In Robotica 2009, Proceedings, pages 59–65.
IPCB, Castelo Branco, Portugal.

Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., and
Dorigo, M. (2011). Majority-rule opinion dynamics with differential latency: a mech-
anism for self-organized collective decision-making. Swarm Intelligence, 5(3-4):305–
327.

Morlino, G., Trianni, V., and Tuci, E. (2012). Evolution of collective perception in
a group of autonomous robots. In Madani, K., Dourado Correia, A., Rosa, A.,
and Filipe, J., editors, Computational Intelligence, pages 67–80. Springer, Berlin,
Germany.

Murphy, R. R. (2000). Introduction to AI Robotics. MIT Press, Cambridge, MA.

136 BIBLIOGRAPHY

Nagavalli, S., Chakraborty, N., and Sycara, K. (2017). Automated sequencing of swarm
behaviors for supervisory control of robotic swarms. In ICRA 2017, Proceedings,
pages 2674–2681. IEEE Press, Piscataway, NJ.

Naghsh, A. M., Gancet, J., Tanoto, A., and Roast, C. (2008). Analysis and design
of human-robot swarm interaction in firefighting. In Robot and Human Interactive
Communication, 2008. RO-MAN 2008. The 17th IEEE International Symposium on,
pages 255–260. IEEE press, Piscataway, NJ, USA.

Nagi, J., Giusti, A., Gambardella, L. M., and Di Caro, G. A. (2014). Human-swarm
interaction using spatial gestures. In Proceedings of the 27th IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3834–3841. IEEE Press,
Piscataway, NJ, USA.

Nagpal, R. (2002). Programmable self-assembly using biologically-inspired multiagent
control. In Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems: Part 1, AAMAS ’02, pages 418–425. ACM, New
York, NY, USA.

Navarro, I. and Matía, F. (2012). Distributed orientation agreement in a group of
robots. Autonomous Robots, 33(4):445–465.

Newell, A. and Simon, H. A. (1956). The logic theory machine–a complex information
processing system. IRE Transactions on Information Theory, 2(3):61–79.

Nilsson, N. J. (1984). Shakey the robot. Technical Report 323, SRI AI Center, Menlo
Park, CA.

Nitschke, G. S., Eiben, A. E., and Schut, M. C. (2012a). Evolving team behaviors with
specialization. Genetic Programming and Evolvable Machines, 13(4):493–536.

Nitschke, G. S., Schut, M. C., and Eiben, A. E. (2012b). Evolving behavioral specializa-
tion in robot teams to solve a collective construction task. Swarm and Evolutionary
Computation, 2:25–38.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics. Intelligent Robots and Au-
tonomous Agents. MIT Press, Cambridge, MA, USA.

Nouyan, S., Campo, A., and Dorigo, M. (2008). Path formation in a robot swarm:
self-organized strategies to find your way home. Swarm Intelligence, 2(1):1–23.

Nouyan, S. and Dorigo, M. (2006). Chain based path formation in swarms of robots.
In Ant colony optimization and swarm intelligence, Proceedings, pages 120–131.
Springer, Berlin, Germany.

BIBLIOGRAPHY 137

Nouyan, S., Groß, R., Bonani, M., Mondada, F., and Dorigo, M. (2009). Teamwork
in self-organized robot colonies. IEEE Transactions on Evolutionary Computation,
13(4):695–711.

Nouyan, S., Groß, R., Dorigo, M., Bonani, M., and Mondada, F. (2006). Group trans-
port along a robot chain in a self-organised robot colony. In Proceedings of the 9th
International Conference on Intelligent Autonomous Systems, pages 433–442. IOS
Press, Amsterdam, Netherlands.

O’Grady, R., Christensen, A. L., and Dorigo, M. (2009a). SWARMORPH: multi-
robot morphogenesis using directional self-assembly. IEEE Transactions on Robotics,
25(3):738–743.

O’Grady, R., Groß, R., Christensen, A. L., and Dorigo, M. (2010). Self-assembly
strategies in a group of autonomous mobile robots. Autonomous Robots, 28(4):439–
455.

O’Grady, R., Pinciroli, C., Christensen, A. L., and Dorigo, M. (2009b). Supervised
group size regulation in a heterogeneous robotic swarm. In 9th Conference on Au-
tonomous Robot Systems and Competitions, Robótica 2009, pages 113–119. IPCB-
Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal.

Ögren, P., Egerstedt, M., and Hu, X. (2001). A control lyapunov function approach to
multi-agent coordination. In Proceedings of the 40th IEEE Conference on Decision
and Control 2001, volume 2, pages 1150–1155. IEEE Press, Piscataway, NJ, USA.

O’Hara, K. J. and Balch, T. R. (2007). Pervasive sensor-less networks for coopera-
tive multi-robot tasks. In Alami, R. et al., editors, Distributed Autonomous Robotic
Systems 6, pages 305–314. Springer, Tokyo, Japan.

Ozdemir, A., Gauci, M., Bonnet, S., and Groß, R. (2018). Finding consensus without
computation. IEEE Robotics and Automation Letters, 3(3):1346–1353.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: the state of the art.
Autonomous Agents and Multi-Agent Systems, 11(3):387–434.

Parker, C. A. C. and Hong, Z. (2011). Biologically inspired collective comparisons by
robotic swarms. The International Journal of Robotics Research, 30(5):524–535.

Parker, C. A. C. and Zhang, H. (2010). Collective unary decision-making by decentral-
ized multiple-robot systems applied to the task-sequencing problem. Swarm Intelli-
gence, 4(3):199–220.

138 BIBLIOGRAPHY

Parker, L. E. (2000). Current state of the art in distributed autonomous mobile robotics.
In Parker, L. E. et al., editors, Distributed Autonomous Robotic Systems 4, pages 3–
12. Springer, Tokyo, Japan.

Parker, L. E. (2012). Decision making as optimization in multi-robot teams. In ICDCIT
2012, Proceedings, pages 35–49. Springer, Berlin, Germany.

Payton, D., Daily, M., Estowski, R., Howard, M., and Lee, C. (2001). Pheromone
robotics. Autonomous Robots, 11(3):319–324.

Pinciroli, C., Birattari, M., Tuci, E., Dorigo, M., del Rey, M., Vinko, T., and Izzo, D.
(2008). Lattice formation in space for a swarm of pico satellites. In Proceedings of the
Sixth International Conference on Ant Colony Optimization and Swarm Intelligence
(ANTS-2008), number 5217 in LNCS, pages 347–354. Springer, Berlin, Germany.

Pinciroli, C., Lee-Brown, A., and Beltrame, G. (2015). Buzz: an extensible program-
ming language for self-organizing heterogeneous robot swarms. Available online at
http://arxiv.org/abs/1507.05946.

Pinciroli, C., O’Grady, R., Christensen, A. L., Birattari, M., and Dorigo, M. (2013).
Parallel formation of differently sized groups in a robotic swarm. SICE Journal of
Control, Measurement, and System Integration, 52(3):213–226.

Pinciroli, C., O’Grady, R., Christensen, A. L., and Dorigo, M. (2010). Heterogeneous
swarms through minimal communication between homogeneous sub-swarms. In Pro-
ceedings of the Seventh International Conference on Ant Colony Optimization and
Swarm Intelligence (ANTS-2010), volume 6234 of LNCS, pages 558–559. Springer,
Berlin, Germany.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews,
N., Ferrante, E., Di Caro, G. A., Ducatelle, F., Birattari, M., Gambardella, L. M.,
and Dorigo, M. (2012). ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intelligence, 6(4):271–295.

Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., and Birattari, M. (2011). Task
partitioning in swarms of robots: an adaptive method for strategy selection. Swarm
Intelligence, 5(3–4):283–304.

Pini, G., Brutschy, A., Pinciroli, C., Dorigo, M., and Birattari, M. (2013). Autonomous
task partitioning in robot foraging: An approach based on cost estimation. Adaptive
Behavior, 21(2):117–135.

BIBLIOGRAPHY 139

Podevijn, G., O’Grady, R., Nashed, Y. S. G., and Dorigo, M. (2013). Gesturing at
subswarms: Towards direct human control of robot swarms. In Natraj, A. et al.,
editors, Towards Autonomous Robotic Systems - 14th Annual Conference, TAROS
2013, volume 8069 of LNCS, pages 390–403. Springer, Berlin, Germany.

Pourmehr, S., Monajjemi, V. M., Vaughan, R. T., and Mori, G. (2013). ”You two!
Take off! ": Creating, modifying and commanding groups of robots using face en-
gagement and indirect speech in voice commands. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2013), pages 137–142. IEEE
Press, Piscataway, NJ, USA.

Prasetyo, J., De Masi, G., and Ferrante, E. (2019). Collective decision making in
dynamic environments. Swarm Intelligence, 13(3):217–243.

Prorok, A., Correll, N., and Martinoli, A. (2011). Multi-level spatial modeling for
stochastic distributed robotic systems. The International Journal of Robotics Re-
search, 30(5):574–589.

Pugh, J. and Martinoli, A. (2007). Parallel learning in heterogeneous multi-robot
swarms. In Proceedings of the IEEE Congress on Evolutionary Computation, pages
3839–3846. IEEE press, Piscataway, NJ, USA.

Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2003). Evolving teamwork and
role-allocation with real robots. In ICAL 2003, Proceedings, pages 302–311. MIT
Press, Cambridge, MA.

Rabin, M. O. (1963). Probabilistic automata. Information and Control, 6(3):230–245.

Reina, A., Miletitch, R., Dorigo, M., and Trianni, V. (2015a). A quantitative mi-
cro–macro link for collective decisions: the shortest path discovery/selection example.
Swarm Intelligence, 9(2-3):75–102.

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., and Trianni, V. (2015b). A
design pattern for decentralised decision making. PLoS ONE, 10(10):e0140950.

Reynolds, C. W. (1987). Flocks, herds and schools: a distributed behavioral model.
Computers & Graphics, 21(4):25–34.

Rosenstein, M. T. and Barto, A. G. (2001). Robot weightlifting by direct policy search.
In IJCAI’01, Proceedings, pages 839–844. Morgan Kaufmann Publishers Inc., San
Francisco, CA.

140 BIBLIOGRAPHY

Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., and Nagpal, R. (2014a). Kilobot: A
low cost robot with scalable operations designed for collective behaviors. Robotics
and Autonomous Systems, 62(7):966–975.

Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., and Nagpal, R.
(2013). Collective transport of complex objects by simple robots: Theory and exper-
iments. In AAMAS 2013, Proceedings, pages 47–54. IFAAMAS, Richland, SC.

Rubenstein, M., Cornejo, A., and Nagpal, R. (2014b). Programmable self-assembly in
a thousand-robot swarm. Science, 345(6198):795–799.

Saffiotti, A., Konolige, K., and Ruspini, E. H. (1995). A multivalued logic approach to
integrating planning and control. Artificial Intelligence, 76:481–526.

Sałustowicz, R. P., Wiering, M. A., and Schmidhuber, J. (1998). Learning team strate-
gies: soccer case studies. Mach. Learn., 33(2):263–282.

Sanborn, J. C. and Hendler, J. A. (1988). A model of reaction for planning in dynamic
environments. Artificial Intelligence in Engineering, 3(2):95–102.

Scheidler, A., Brutschy, A., Ferrante, E., and Dorigo, M. (2016). The k-unanimity
rule for self-organized decision making in swarms of robots. IEEE Transactions on
Systems, Man, and Cybernetics, 46:1175–1188.

Schmickl, T. and Crailsheim, K. (2008). Trophallaxis within a robotic swarm: bio-
inspired communication among robots in a swarm. Autonomous Robots, 25(1):171–
188.

Schmickl, T., Hamann, H., Wörn, H., and Crailsheim, K. (2009). Two different ap-
proaches to a macroscopic model of a bio-inspired robotic swarm. Robotics and
Autonomous Systems, 57(9):913–921.

Schmickl, T., Thenius, R., Moslinger, C., Timmis, J., Tyrrell, A., Read, M., Hilder,
J., Halloy, J., Campo, A., Stefanini, C., Manfredi, L., Orofino, S., Kernbach, S.,
Dipper, T., and Sutantyo, D. (2011). CoCoRo – The self-aware underwater swarm.
In SASOW 2011, Proceedings, pages 120–126. IEEE Press, Piscataway, NJ.

Schoppers, M. (1987). Universal plans for reactive robots in unpredictable environ-
ments. In IJCAI, volume 87, pages 1039–1046.

Schranz, M., Umlauft, M., Sende, M., and Elmenreich, W. (2020). Swarm robotic
behaviors and current applications. Frontiers in Robotics and AI, 7:36.

BIBLIOGRAPHY 141

Schwager, M., McLurkin, J., and Rus, D. (2006). Distributed coverage control with sen-
sory feedback for networked robots. In Robotics: Science and Systems, Proceedings,
page 007. MIT Press, Cambridge, MA.

Seeley, T. D. (1996). The Wisdom of the Hive. Harvard Univ. Press, Cambridge, MA.

Shucker, B. and Bennett, J. K. (2007). Scalable control of distributed robotic macrosen-
sors. In Alami, R. et al., editors, Distributed Autonomous Robotic Systems 6, pages
379–388. Springer, Tokyo, Japan.

Shucker, B., Murphey, T. D., and Bennett, J. K. (2008). Convergence-preserving switch-
ing for topology-dependent decentralized systems. IEEE Transactions on Robotics,
24(6):1405–1415.

Silva, F., Correia, L., and Christensen, A. L. (2017). Evolutionary online behaviour
learning and adaptation in real robots. Royal Society Open Science, 4(7):160938.

Silva, F., Duarte, M., Correia, L., Oliveira, S. M., and Christensen, A. L. (2016). Open
issues in evolutionary robotics. Evolutionary Computation, 24(2):205–236.

Slavkov, I., Carrillo-Zapata, D., Carranza, N., Diego, X., Jansson, F., Kaandorp, J.,
Hauert, S., and Sharpe, J. (2018). Morphogenesis in robot swarms. Science Robotics,
3(25).

Soysal, O., Bahçeci, E., and Şahin, E. (2007). Aggregation in swarm robotic systems:
evolution and probabilistic control. Turkish Journal of Electrical Engineering and
Computer Sciences, 15(2):199–225.

Soysal, O. and Şahin, E. (2005). Probabilistic aggregation strategies in swarm robotic
systems. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 325–332.
IEEE Press, Piscataway, NJ, USA.

Spaan, M. T., Gordon, G. J., and Vlassis, N. (2006). Decentralized planning under
uncertainty for teams of communicating agents. In Proceedings of the fifth interna-
tional joint conference on Autonomous agents and multiagent systems, pages 249–256.
ACM.

Spears, W. M. and Spears, D. F. (2012). Physicomimetics: Physics-Based Swarm
Intelligence. Springer.

Spears, W. M., Spears, D. F., Hamann, J. C., and Heil, R. (2004). Distributed, physics-
based control of swarms of vehicles. Autonomous Robots, 17(2–3):137–162.

142 BIBLIOGRAPHY

Sperati, V., Trianni, V., and Nolfi, S. (2010). Evolution of self-organised path formation
in a swarm of robots. In Proceedings of the 7th International Conference on Swarm
Intelligence (ANTS 2010), volume 6234 of LNCS, pages 155–166. Springer, Berlin,
Germany.

Sperati, V., Trianni, V., and Nolfi, S. (2011). Self-organised path formation in a swarm
of robots. Swarm Intelligence, 5(2):97–119.

Stewart, R. L. and Russell, R. A. (2006). A distributed feedback mechanism to regulate
wall construction by a robotic swarm. Adaptive Behavior, 14(1):21–51.

Stirling, T. and Floreano, D. (2010). Energy efficient swarm deployment for search in
unknown environments. In Proceedings of the 7th International Conference on Swarm
Intelligence (ANTS 2010), LNCS, pages 562–563. Springer, Berlin, Germany.

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3):345–383.

Strobel, V., Castelló Ferrer, E., and Dorigo, M. (2018). Managing byzantine robots
via blockchain technology in a swarm robotics collective decision making scenario. In
AAMAS 2018, Proceedings, AAMAS ’18, pages 541–549. IFAAMAS, Richland, SC.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.
Machine Learning, 3:9–44.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA.

Sutton, S. (2018). Simple robots form a chain gang to solve complex problems. Science.

Tarapore, D., Christensen, A. L., and Timmis, J. (2017). Generic, scalable and decen-
tralized fault detection for robot swarms. PLoS ONE, 12(8):1–29.

Tarapore, D., Timmis, J., and Christensen, A. L. (2019). Fault detection in a swarm of
physical robots based on behavioral outlier detection. IEEE Transactions on Robotics,
35(6):1516–1522.

Trianni, V. (2014). Evolutionary robotics: model or design? Frontiers in Robotics and
AI, 1(13):1–6.

Trianni, V., Groß, R., Labella, T. H., Şahin, E., and Dorigo, M. (2003). Evolving
aggregation behaviors in a swarm of robots. In Advances in Artificial Life: 7th
European Conference – ECAL 2003, volume 2801 of LNAI, pages 865–874. Springer,
Berlin, Germany.

BIBLIOGRAPHY 143

Trianni, V. and López-Ibáñez, M. (2015). Advantages of task-specific multi-objective
optimisation in evolutionary robotics. PLoS ONE, 10(8):e0136406–27.

Trianni, V. and Nolfi, S. (2011). Engineering the evolution of self-organizing behaviors
in swarm robotics: a case study. Artificial Life, 17(3):183–202.

Tuci, E. (2014). Evolutionary swarm robotics: genetic diversity, task-allocation and
task-switching. In Dorigo, M. et al., editors, Swarm Intelligence, volume 8667 of
LNCS, pages 98–109. Springer, Berlin, Germany.

Turgut, A. E., Çelikkanat, H., Gökçe, F., and Şahin, E. (2008a). Self-organized flocking
in mobile robot swarms. Swarm Intelligence, 2(2–4):97–120.

Turgut, A. E., Huepe, C., Çelikkanat, H., Gökçe, F., and Şahin, E. (2008b). Modeling
phase transition in self-organized mobile robot flocks. In Proceedings of the 6th In-
ternational Conference on Ant Colony Optimization and Swarm Intelligence, ANTS
2008, volume 5217 of LNCS, pages 108–119. Springer, Berlin, Germany.

Valentini, G., Birattari, M., and Dorigo, M. (2013). Majority rule with differential
latency: an absorbing markov chain to model consensus. In Gilbert, T. et al., ed-
itors, Proceedings of the European Conference on Complex Systems 2012, Springer
Proceedings in Complexity, pages 651–658. Springer, Berlin, Germany.

Valentini, G., Brambilla, D., Hamann, H., and Dorigo, M. (2016a). Collective percep-
tion of environmental features in a robot swarm. In Dorigo, M., Birattari, M., Li, X.,
López-Ibáñez, M., Ohkura, K., Pinciroli, C., and Stützle, T., editors, Swarm Intelli-
gence, LNCS, pages 65–76. Springer International Publishing, Cham, Switzerland.

Valentini, G., Ferrante, E., and Dorigo, M. (2017). The best-of-n problem in robot
swarms: formalization, state of the art, and novel perspectives. Frontiers in Robotics
and AI, 4:9.

Valentini, G., Ferrante, E., Hamann, H., and Dorigo, M. (2015a). Collective decision
with 100 kilobots: speed versus accuracy in binary discrimination problems. JAA-
MAS, pages 1–28.

Valentini, G., Ferrante, E., Hamann, H., and Dorigo, M. (2016b). Collective deci-
sion with 100 kilobots: Speed versus accuracy in binary discrimination problems.
Autonomous Agents and Multi-Agent Systems, 30(3):553–580.

Valentini, G. and Hamann, H. (2015). Time-variant feedback processes in collective
decision-making systems: influence and effect of dynamic neighborhood sizes. Swarm
Intelligence, 8(2–3):153–176.

144 BIBLIOGRAPHY

Valentini, G., Hamann, H., and Dorigo, M. (2014). Self-organized collective decision
making: the weighted voter model. In Lomuscio, A. et al., editors, Proceedings of
the 13th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’14, pages 45–52. IFAAMAS, Richland, SC, USA.

Valentini, G., Hamann, H., and Dorigo, M. (2015b). Efficient decision-making in a self-
organizing robot swarm: on the speed versus accuracy trade-off. In Bordini, R. et al.,
editors, Proceedings of the 14th Int. Conf. on Autonomous Agents and Multiagent
Systems, AAMAS ’15, pages 1305–1314. IFAAMAS, Richland, SC, USA.

Viroli, M., Damiani, F., and Beal, J. (2013). A calculus of computational fields. In
Canal, C. and Villari, M., editors, Advances in Service-Oriented and Cloud Comput-
ing, volume 393 of CCIS, pages 114–128. Springer, Berlin, Germany.

Virágh, C., Vásárhelyi, G., Tarcai, N., Szörényi, T., Somorjai, G., Nepusz, T., and
Vicsek, T. (2014). Flocking algorithm for autonomous flying robots. Bioinspiration
Biomim., 9(2):025012.

Walter, W. G. (1951). A machine that learns. Scientific American, 185(2):60–63.

Watkins, C. J. C. H. and Dayan, P. (1988). Q-learning. Machine Learning, 8(3/4):279–
292.

Watson, R. A., Ficici, S. G., and Pollack, J. B. (2002). Embodied evolution: Distribut-
ing an evolutionary algorithm in a population of robots. Robotics and Autonomous
Systems, 39(1):1–18.

Werfel, J., Petersen, K., and Nagpal, R. (2014). Designing collective behavior in a
termite-inspired robot construction team. Science, 343(6172):754–758.

Werger, B. and Matarić, M. (1996). Robotic food chains: Externalization of state and
program for minimal-agent foraging. In From Animals to Animats 4, pages 625–634.
MIT Press, Cambridge, MA.

Wilson, E. O. (1980). Caste and division of labor in leaf-cutter ants (Hymenoptera:
Formicidae: Atta). Behav. Ecol. Sociobiol., 7(2):143–156.

Wilson, S., Pavlic, T. P., Kumar, G. P., Buffin, A., Pratt, S. C., and Berman, S. (2014).
Design of ant-inspired stochastic control policies for collective transport by robotic
swarms. Swarm Intelligence, 8(4):303–327.

Winfield, A. F. and Erbas, M. D. (2011). On embodied memetic evolution and the
emergence of behavioural traditions in robots. Memetic Computing, 3(4):261–270.

BIBLIOGRAPHY 145

Winston, P. H. (1972). The mit robot. Machine Intelligence, 7(1).

Yang, G.-Z., Bellingham, J., Dupont, P. E., Fischer, P., Floridi, L., Full, R., Jacobstein,
N., Kumar, V., McNutt, M., Merrifield, R., Nelson, B. J., Scassellati, B., Taddeo,
M., Taylor, R., Veloso, M., Wang, Z. L., and Wood, R. (2018). The grand challenges
of Science Robotics. Science Robotics, 3(14).

Yun, S.-K., Schwager, M., and Rus, D. (2011). Coordinating construction of truss
structures using distributed equal-mass partitioning. In Pradalier, C. et al., editors,
Robotics Research, volume 70 of STAR, pages 607–623. Springer, Berlin, Germany.

Özdemir, A., Gauci, M., Kolling, A., Hall, M. D., and Groß, R. (2019). Spatial cover-
age without computation. In International Conference on Robotics and Automation
(ICRA 2019), pages 9674–9680. IEEE Press, Piscataway, NJ, USA.

146 BIBLIOGRAPHY

	Abstract
	Acknowledgments
	Contents
	Introduction
	State of the art
	Swarm robotics
	Design
	Manual design
	Automatic design

	Collective behaviors
	Spatially-organizing behaviors
	Navigation behaviors
	Interaction with humans

	Notable robot swarms
	Cognition
	Cognition and planning in robotics
	Cognition in swarm robotics

	
	Distributed task-sequencing algorithm
	Platforms
	The e-puck
	The TAM
	ARGoS

	Description of [m]
	Experiments with
	Experimental design
	Robot experiments
	Assessment of the simulator
	Scalability study
	Robustness study
	Experiments with [4]

	Limitations and possible improvements

	
	Description of
	[3]
	[4]

	Experiments with
	Experimental design
	Experiments with [3]
	Experiments with [4]

	Possible improvements

	Conclusions
	Appendix
	Introduction
	E-puck
	E-puck firmware architecture
	E-puck in ARGoS

	Range and bearing
	Range and bearing firmware
	Range and bearing in ARGoS

	TAM
	TAM architecture
	TAM in ARGoS

	Bibliography

