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This technical document provides a complete proof of a theorem originally presented in Ligot et al. [1].
This theorem proposes a sampling strategy that minimizes the variance in the estimation of the real-world
performance of fully-automatic methods, which are meant to design control software for robot swarms to solve
a class of missions. Ganguli [2] and Marcuse [3] studied a formally identical problem applied to different
contexts, and they both reached similar conclusions as we do in this document. Birattari [4, 5] studied
the sampling strategy that is to be adopted when one desires to minimize the variance of the expected
performance of a design method when solving specific missions.

A sampling strategy for estimating the expected performance of a design method on a class of missions,
given that a maximum number N of executions can be performed, can be formally described by a triple
〈nm, nd, nx〉, with Ñ := nm ·nd ·nx ≤ N . The expected performance is estimated on the basis of nm missions,
nd design processes per mission (to generate nd instances of control software per mission), and nx executions
of each of them. We can assume that the cost (in abstract terms: time and resources) of running a design
process is negligible compared to the one of running robot experiments. We can also assume that sampling a
mission from a class of instances is inexpensive and that a sample of arbitrary size can be obtained. We also
assume that, before running a design process on a given mission, we do not have any prior information on
how well the control software we can generate automatically will perform and on what will be the variance
of the performance. It has to be noticed that any triple 〈nm, nd, nx〉 yields an unbiased estimate of the
expected performance. Yet, different triples might differ for what concerns the variance of the estimate they
yield.

Theorem 1 Under the assumptions made above, given that a maximum number N of executions can be
performed, the sampling strategy described by the triple E = 〈nm, nd, nx〉, with nm = N , nd = 1, and
nx = 1, is the one that minimizes the variance of the estimate.

The variance of the estimator µ̂ associated with the sampling strategy E is

E
[
(µ̂E − µ)2

]
=
σ2
AM

nm
+

σ̄2
AD

nm nd
+

σ̄2
WM

nm nd nx
, (1)

where σ2
AM is the across-mission variance and indicates how missions differ from one another, σ̄2

AD is the
expected across-design variance and indicates how designs differ from one another within a same mission
(averaged across all possible missions), and σ̄2

WM is the expected within-mission variance and indicates
how scores differ from one another within a same mission (averaged across all possible missions). Formal
definitions of these three variances are given in Section 1. Clearly, to minimize the variance of the estimator
the denominators need to be chosen so as to be as large as possible. It is straightforward to conclude that
this will happen when nm = N , nd = nx = 1, as nm · nd · nx ≤ N , which also implies that nm · nd ≤ N .

The remainder of this document is dedicated to deriving Equation 1.
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1 Definitions

A sampling strategy E = 〈nm, nd, nx〉 is a triplet of integers where nm denotes the number of missions, nd
the number of designs per mission (resulting in nd instances of control software), and nx the number of
executions on the robots of each instance of control software. The total number of executions on the robots
is denoted by N = nm · nd · nx.

The joint probability of having to solve mission m, producing the design d, and eventually observing the
score s is:

P (s, d,m) = PS(s|d,m)PD(d|m)PM (m),

where PM (m) is the probability of having to solve mission m; PD(d|m) is the conditional probability of
producing design d, having to solve mission m; and PS(s|d,m) is the conditional probability of observing
score s, while performing design d on mission m. The expected value of s with respect to this joint probability
is:

µ :=

∫
s dPM (m) dPD(d|m) dPS(s|d,m).

The expected value of the score within mission m and within design d for mission m are respectively:

µm :=

∫
s dPD(d|m) dPS(s|d,m) and µmd :=

∫
s dPS(s|d,m).

The variance within mission m is:

σ2
m :=

∫
(s− µm)2 dPD(d|m) dPS(s|d,m).

The expected within-mission variance provides information on how scores differ one from the other
within a same mission (averaged across all possible missions); it is defined as:

σ̄2
WM :=

∫
σ2
m dPM (m) =

∫
(s− µm)2 dPM (m) dPD(d|m) dPS(s|d,m).

The across-design variance within mission m is :

σ̄2
AD,m :=

∫
(µmd − µm)2 dPD(d|m).

The expected across-design variance provides information on how designs differ one from the other
within a same mission (averaged across all possible missions); it is defined as:

σ̄2
AD :=

∫
σ̄2
AD,m dPM (m) =

∫
(µm,d − µm)2 dPM (m) dPD(d|m).

The across-mission variance provides information on how missions differ one from the other; it is defined
as:

σ2
AM :=

∫
(µm − µ)2 dPM (m).

In the following, with the notation:
∫
f(v1, v2, . . . , vL)

⊙L
l=1dP (vl), we denote the sequence of nested inte-

grals
∫∫
· · ·
∫
f(v1, v2, . . . , vL) dP (v1) dP (v2) . . . dP (vL).
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2 Proof

The goal of this proof is to show that given the following estimator

µ̂E =
1

Ñ

nm∑

i=1

nd∑

j=1

nx∑

k=1

sijk,

where sijk is the score (or performance) observed in the execution xijk of the instance of control software
issued from the design dij on the mission mi, the variance of µ̂E is:

E
[
(µ̂E − µ)2

]
=
σ2
AM

nm
+

σ̄2
AD

nm nd
+

σ̄2
WM

nm nd nx
.

E[(µ̂E − µ)2] =

∫
(µ̂E − µ)2 dP (µ̂E) =∫ 

 1

Ñ

nm∑

i=1

nd∑

j=1

nx∑

k=1

sijk − µ




2
nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi) =

∫ 
 1

Ñ

nm∑

i=1

nd∑

j=1

nx∑

k=1

(sijk − µ)




2
nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi) =

1

Ñ2

∫ 


nm∑

i=1

nd∑

j=1

nx∑

k=1

(
sijk − µmi︸ ︷︷ ︸

a

+µmi − µ︸ ︷︷ ︸
b

)



2
nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi) =

1

Ñ2

∫
nm∑

i=1

nd∑

j=1

nx∑

k=1

nm∑

i′=1

nd∑

j′=1

nx∑

k′=1

(sijk − µmi
+ µmi

− µ)
(
si′j′k′ − µmi′ + µmi′ − µ

) nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

nm⊙

i′=1

dPM (mi′)

nd⊙

j′=1

dPD(di′j′ |mi′)

nx⊙

k′=1

dPS(si′j′k′ |di′j′ ,mi′) =

1

Ñ2

nm∑

i=1

nd∑

j=1

nx∑

k=1

nm∑

i′=1

nd∑

j′=1

nx∑

k′=1

∫
(sijk − µmi

+ µmi
− µ)

(
si′j′k′ − µmi′ + µmi′ − µ

) nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

nm⊙

i′=1

dPM (mi′)

nd⊙

j′=1

dPD(di′j′ |mi′)

nx⊙

k′=1

dPS(si′j′k′ |di′j′ ,mi′)
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Using (a+ b)2 = a2 + b2 + 2ab and the linearity of the integral we can break the last integral into three terms
which will be analyzed separately:

1

Ñ2

nm∑

i=1

nd∑

j=1

nx∑

k=1

nm∑

i′=1

nd∑

j′=1

nx∑

k′=1

∫ (
(sijk − µmi)(si′j′k′ − µmi′ )︸ ︷︷ ︸

a2

+ (µmi − µ)(µmi′ − µ)︸ ︷︷ ︸
b2

+

+ (sijk − µmi
)(µmi′ − µ) + (si′j′k′ − µmi′ )(µmi

− µ)︸ ︷︷ ︸
ab+ab

)

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

nm⊙

i′=1

dPM (mi′)

nd⊙

j′=1

dPD(di′j′ |mi′)

nx⊙

k′=1

dPS(si′j′k′ |di′j′ ,mi′) =

1

Ñ2

nm∑

i=1

nd∑

j=1

nx∑

k=1

nm∑

i′=1

nd∑

j′=1

nx∑

k′=1

∫ (
(sijk − µmi)(si′j′k′ − µmi′ )︸ ︷︷ ︸

a2

+ (µmi − µ)(µmi′ − µ)︸ ︷︷ ︸
b2

+

+ 2(sijk − µmi
)(µmi′ − µ)︸ ︷︷ ︸

2ab

)

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

nm⊙

i′=1

dPM (mi′)

nd⊙

j′=1

dPD(di′j′ |mi′)

nx⊙

k′=1

dPS(si′j′k′ |di′j′ ,mi′)

Summand I: a2

1

Ñ2

nm∑

i=1

nd∑

j=1

nx∑

k=1

nm∑

i′=1

nd∑

j′=1

nx∑

k′=1

∫
(sijk − µmi

)(si′j′k′ − µmi′ )

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

nm⊙

i′=1

dPM (mi′)

nd⊙

j′=1

dPD(di′j′ |mi′)

nx⊙

k′=1

dPS(si′j′k′ |di′j′ ,mi′).

At this point we will analyze Summand I for different indices.
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i 6= i′

Since (sijk − µmi
) and (si′j′k′ − µmi′ ) depend on different variables, any addend of Summand I with i 6= i′

can be rewritten as

1

Ñ2

∫
(sijk − µmi)(si′j′k′ − µmi′ )

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

nm⊙

i′=1

dPM (mi′)

nd⊙

j′=1

dPD(dij′ |mi)

nx⊙

k′=1

dPS(sijk′ |dij ,mi) =

1

Ñ2

∫
(sijk − µmi

)

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

·
∫

(si′j′k′ − µmi′ )

nm⊙

i′=1

dPM (mi′)

nd⊙

j′=1

dPD(di′j′ |mi′)

nx⊙

k′=1

dPS(si′j′k′ |di′j′ ,mi′) = 0 (by definition)

i = i′, j 6= j′

1

Ñ2

∫
(sijk − µmi

)(sij′k′ − µmi′ )

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

nm⊙

i′=1

dPM (mi′)

nd⊙

j′=1

dPD(dij′ |mi)

nx⊙

k′=1

dPS(sijk′ |dij ,mi) =

=
1

Ñ2

∫ 

∫

(sijk − µmi
)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)·

∫
(sij′k′ − µmi′ )

nd⊙

j′=1

dPD(dij′ |mi)

nx⊙

k′=1

dPS(sij′k′ |dij′ ,mi)




nm⊙

i=1

dPM (mi) = 0 (by definition)

i = i′, j = j′, k 6= k′

1

Ñ2

∫
(sijk − µmi

)(sijk′ − µmi′ )

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

nm⊙

i′=1

dPM (mi′)

nd⊙

j′=1

dPD(dij′ |mi)

nx⊙

k′=1

dPS(sijk′ |dij ,mi) =

=
1

Ñ2

∫ [∫
(sijk − µmi)

nx⊙

k=1

dPS(sijk|dij ,mi) ·
∫

(sijk′ − µmi)

nx⊙

k′=1

dPS(sijk′ |dij ,mi)

]

nd⊙

j=1

dPD(dij |mi)

nm⊙

i=1

dPM (mi) =
1

Ñ2

∫
(µmi,dj

− µmi
)2

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi) =
σ̄2
AD

Ñ2
,
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and therefore
nm∑

i=1

nd∑

j=1

nx∑

k=1

nx∑

k′=1

σ̄2
AD

Ñ2
=
nm nd n

2
x

Ñ2
σ̄2
AD =

σ̄2
AD

nm nd
.

i = i′, j = j′, k = k′

1

Ñ2

∫
(sijk − µmi

)(sijk − µmi
)

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi) =

=
1

Ñ2

∫
(sijk − µmi

)2
nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi) =
σ̄2
WM

Ñ2
,

and thus
nm∑

i=1

nd∑

j=1

nx∑

k=1

σ̄2
WM

Ñ2
=
nm nd nx

Ñ2
σ̄2
WM =

σ̄2
WM

nm nd nx
.

Gathering everything, Summand I amounts to

a2 =
σ̄2
AD

nm nd
+

σ̄2
WM

nm nd nx
.

Summand II: b2

1

Ñ2

nm∑

i=1

nd∑

j=1

nx∑

k=1

nm∑

i′=1

nd∑

j′=1

nx∑

k′=1

∫
(µmi

− µ)(µmi′ − µ)

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

nm⊙

i′=1

dPM (mi′)

nd⊙

j′=1

dPD(di′j′ |mi′)

nx⊙

k′=1

dPS(si′j′k′ |di′j′ ,mi′) =

n2d n
2
x

Ñ2

nm∑

i=1

nm∑

i′=1

∫
(µmi

− µ)(µmi′ − µ)

nm⊙

i=1

dPM (mi)

nm⊙

i′=1

dPM (mi′)

i 6= i′
∫

(µmi
− µ)

nm⊙

i=1

dPM (mi) ·
∫

(µmi′ − µ)

nm⊙

i′=1

dPM (mi′) = 0 (by definition)

i = i′ ∫
(µmi

− µ)2
nm⊙

i=1

dPM (mi) = σ2
AM ,

and therefore
n2d n

2
x

Ñ2

nm∑

i=1

σ2
AM =

σ2
AM

nm

Gathering everything Summand II adds to

b2 =
σ2
AM

nm
.
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Summand III: 2ab

2

Ñ2

nm∑

i=1

nd∑

j=1

nx∑

k=1

nm∑

i′=1

nd∑

j′=1

nx∑

k′=1

∫
(sijk − µmi

)(µmi′ − µ)

nm⊙

i=1

dPM (mi)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)

nm⊙

i′=1

dPM (mi′) =

=

∫ 
(µmi′ − µ)

∫
(sijk − µmi

)

nd⊙

j=1

dPD(dij |mi)

nx⊙

k=1

dPS(sijk|dij ,mi)




nm⊙

i=1

dPM (mi)

nm⊙

i′=1

dPM (mi′) = 0

(by definition the inmost integral is null)

Gathering all the nonzero terms yields:

E
[
(µ̂E − µ)2

]
=
σ2
AM

nm
+

σ̄2
AD

nm nd
+

σ̄2
WM

nm nd nx
.
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