© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Managing Safety and Mission Completion via
Collective Run-time Adaptation

Darko Bozhinoski*, David Garlan®, Ivano Malavolta¥, Patrizio Pelliccione?,
*IRIDIA, Université Libre de Bruxelles, Belgium - darko.bozhinoski@ulb.ac.be
f Carnegie Mellon University, Pittsburgh, USA - garlan@cs.cmu.edu
1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands - i.malavolta@vu.nl
§ Chalmers University of Technology | University of Gothenburg, Gothenburg, Sweden - patrizio.pelliccione @gu.se

Abstract—Mobile Multi-Robot Systems (MMRSs) are an
emerging class of systems that are composed of a team of robots,
various devices (like movable cameras, sensors) which collaborate
with each other to accomplish defined missions. Moreover, these
systems must operate in dynamic and potentially uncontrollable
and unknown environments that might compromise the safety of
the system and the completion of the defined mission. A model of
the environment describing, e.g., obstacles, no-fly zones, wind and
weather conditions might be available, however, the assumption
that such a model is both correct and complete is often wrong. In
this paper, we describe an approach that supports execution of
missions at run time. It addresses collective adaptation problems
in a decentralized fashion, and enables the addition of new entities
in the system at any time. Moreover, it is based on two adaptation
resolution methods: one for (potentially partial) resolution of
mission-related issues and one for full resolution of safety-related
issues.

Keywords—collective run-time adaptation, ensembles, mission
completion, safety

I. INTRODUCTION

In the near future Mobile Multi-Robot Systems (MMRSs),
will be used extensively to perform missions in everyday life
and open new business and societal opportunities. MMRSs are
an emerging class of systems that can adapt their behavior at
run-time to achieve specific goals. They are represented by a
set of mobile robots operating as a team with other agents
(the term “agents” refers here to generic entities like cameras,
ground stations, or even humans) in a shared environment.
MMRSs should be able to operate under dynamic, uncon-
trollable and partially or fully unknown environments. That
introduces a set of uncertainties resulting from incomplete
knowledge of the run-time structure of a MMRS (e.g., number
of agents performing a particular task at a specific moment)
and the environment in which the MMRS operates. Incomplete
knowledge of the run-time structure of MMRS comes from its
openness. By “openness” we mean that new entities can join
or leave the system at run time. Incomplete knowledge of the
environment comes from its dynamics and uncontrollability
(e.g., a bird flying in the environment). The consideration of
the environment when specifying the system arises from the
fact that a mission is always associated with a physical context
within which it is happening, so how a system will perform a
mission strongly depends on the environment where it operates

(e.g., the system will operate differently in environments with
smooth vs. rough surface, environments with many static
obstacles vs. environments with a small number of obstacles).

Handling uncertainty up front is often unfeasible (or ex-
pensive). This implies that we need to deal with it when the
knowledge becomes available at run time. The construction
of MMRSs is significantly more challenging than traditional
systems due to their mission-criticality (meaning a loss of
resources can lead to possible reduction in mission effective-
ness) and their safety-criticality (meaning a failure or defective
design could cause risk to human life and the environment).
Commercialisation and adoption of MMRSs in dynamic en-
vironments will only occur if safety aspects are considered
and incorporated as first class concerns in the design of
the system. Certification bodies should assure some type of
safety certification that relies on a complete understanding
of the system. However, for mobile robots that operate in
dynamic environments it is quite challenging to consider all
variants of the overall system due to their adaptive behaviour.
Hence, having the ability to analyse and reason about safety
independently from the mission requires a clear separation of
concerns between safety and mission related issues.

System designers should be able to precisely specify dif-
ferent adaptation solutions with specific guarantees for the
different agents in MMRSs in order to ensure high operational
confidence. Moreover, they should be able to craft differ-
ent adaptation solutions that can be reused across missions,
projects, and organizations to minimize development cost.
However, researchers and practitioners have struggled with the
lack of approaches to perform different adaptation strategies.

State of the art approaches that support execution of mis-
sions in MMRSs enable description of the system behaviour
under the assumption that all the knowledge used to adapt a
system is fully specified at design time and is centrally con-
trolled by a specific component (e.g., [1] and [2]). Furthermore,
most of the proposed solutions do not consider safety aspects
separately from the functional behaviour of the robots making
the safety certification process more complex and difficult.
With our work, we address the aforementioned challenges by
proposing a generic approach that:

1) supports execution of missions in MMRSs by provid-
ing description of the run-time behaviour of different
agents in the system.

2) makes a clear separation between mission-related and

safety-related adaptation mechanisms. In our work, the
system should always satisfy all safety invariants, while
the mission can be partially satisfied. Thus, we present
two adaptation resolution methods: one for (potentially
partial) resolution of mission problems and one for full
resolution of safety problems.
3) ensures guarantees about the behaviour of the system.
The rest of the paper is organized as follows. Section
Il describes our motivating scenario of a carbon dioxide
monitoring system on which we base our approach. Section
IIT describes the framework for mission execution in details,
while Section III-A discusses the agent’s modular reusable
behaviours. Section IV defines a formal model for the problem
resolution process. Section V presents our mission problem
resolution process for (potentially partial) satisfaction of mis-
sion objectives, while Section VI shows our safety problem
resolution process for full satisfaction of safety objectives.
Finally, related work is examined in Section VIIL

II. MOTIVATING SCENARIO

In this section we describe a motivating scenario of a carbon
dioxide monitoring system (Figure 1), which will be used as a
running example to explain details of the approach. Figure 1
shows a single instance of a mission in which three drones
have to monitor the CO2 levels within a geographical area; the
team of drones has to sense the CO2 level of each geographical
point in a grid composed of cells of size 10x10 meters. The
upper part of Figure 1 represents the various mission and
context models, where the different colours in the red rectangle
represent the different levels of CO2 in the environment (red
is an area that has C02 over the treeshold, violet is an area
of region that has normal CO2 level, while yellow represents
a warning level of CO2 concentration in the environment that
is close to the treeshold). This single instance of a mission
is considered as successfully completed if the whole area
has been fully monitored. Starting from this very high-level
description of the mission, the configurations and flight plans
for the drones can be automatically generated using tools like
FLYAQ [3], [4]. Once configured, these drones perform the
mission by flying from their initial position to the border
of the monitoring area. Then, each drone starts monitoring
a specific sub-area so that the whole team can cover the entire
area in parallel. A sub-area can be decomposed in number of
blocks. A block is the smallest measurable unit for the mission
region. Each block is assigned a unique identifier. We represent
the size of an area using the number of blocks along each
dimension.

The bottom side of Figure 1 shows the mission execution
of three drones. Each drone is executing its corresponding be-
haviour to cover its part of the mission. The green region is the
region that has been already monitored by the corresponding
drones. The blue region represents the region that should be
monitored by the blue drone, the yellow region is the region
that should be monitored by the yellow drone and the violet
region is the region that should be monitored by the purple
drone.

Let us assume that a drone u, (the blue drone in Figure 1)
of the team U must reach a target geographical position b;

and it identifies an obstacle along its trajectory towards the
block by; if the obstacle is avoidable (e.g., a tree), then u,
adapts its trajectory to avoid the obstacle to reach bq; if the
obstacle cannot be easily avoided (e.g., the large gray object
in Figure 1, then the behaviours of u, and some other drones
in U are adapted so that the block b; is covered by another
drone u; € U and u, can cover some other points within the
area.

Mission and context models

7 7

Drone 3

< Sl <> o

~ Drone 1 Drone 2

SC N A ot #

Mission Execution

Figure 1: Motivating Scenario

III. FRAMEWORK FOR MISSION EXECUTION

Missions are specified at design-time by in-the-field opera-
tors. The operators are users that are non-expert in Information
and communications technology (ICT), but have specific ex-
pertise in the mission domain (like fire fighters, policemen,
etc.). Within the panorama of missions [5], mission scenarios
might concern: (i) Disaster Prevention and Management, like
damage assessment after earthquakes, searching for survivors
after airplane accidents and disasters; (ii) Homeland Security,
such as coastal surveillance, securing large public events; (iii)
Protection of Critical Infrastructure, such as monitoring oil and
gas pipelines, protecting maritime transportation from piracy,
observing traffic flows; (iv) Communications, like broadband
communication, telecommunication relays; (v) Environmental
Protection, such as pollution emission, protection of water
resources etc. This spectrum of mission requires MMRSs and
often they are both mission-critical and safety-critical systems.
The definition of missions at design-time include only the
information that is available at that time.

A proper management of the run-time phase is required
since environments in which these systems have to operate
are often unpredictable and unknown. A new plan for adap-
tation should be computed on-the-fly every time something
unexpected in the system or in the environment is observed.
However, there are few major challenges in performing adap-
tation on-the-fly, i.e., computing agents’ behaviours on-the-fly.
One challenge is to deal with the question of which part of the

system should be engaged in an adaptation. This is not trivial
at all, since solutions for the same problem may be generated
at different levels. For instance, an issue of a robot (i.e., a
drop of the battery level of a drone below a safety threshold)
can be resolved in the scope of its mission, by re-calculating
its navigation plan (isolated adaptation), or in the wider scope
with the engagement of other robots and supporting systems
(e.g., a drone trajectory manager) (collective adaptation). The
challenge here is to understand these levels and create a
mechanism that decides the right scope for an adaptation for a
given issue. The other challenge is to understand how multiple
entities in a collective adaptation can adapt altogether and
transactionally and what type of negotiation must take place
to decide the right behavioural changes that should be applied
on each side. Moreover, managing the execution of complex
missions requires a clear separation of concerns between safety
and mission issues. This way an operator can focus on the
mission functional specification, while a safety engineer can
only focus on safety-specific mechanisms that are generic and
independent from the functional behaviour of the system.

update (BM) Adaptation
trigger() manager
Behaviour Execution
manager |send(8M)| manager
Mission Safety
- manager manager
ROS

communication

Mission
fragments

Safety
fragments

R s 7

Mission/designer Safety engineer

ontroller

Figure 2: Overview of our approach

In this work, we propose a generic approach for supporting
execution of MMRSs missions. A possible design-time phase
for constructing the behaviour plans of the different agents can
be FLYAQ [3], [4]. FLYAQ is a platform for the specification
of missions of autonomous multicopters through a high-level
and graphical domain specific language tailored to the specific
application domains. In FLYAQ [3], [4] the tool generates
behaviour plans at design-time for each of the robots involved
in the mission according to the initial set of active robots and
the mission specification. The tool associates a robot r; with
a region R for each of the mission tasks ¢. The correctness of
the algorithms employed in the FLYAQ framework regarding
preserving safety is proved in [6].

Here we focus on the run-time phase. Most of the existing
works are based on the assumptions that the environment is
static and that each agent has either a global communication
range (can communicate with each other agent in the sys-
tem) or that each agent can obtain a full knowledge of the
system and the environment at any time. These assumptions,
however, do not usually hold in real-world scenarios [7]. In

our work, an adaptation is performed on-the-fly every time an
unexpected system or environmental feature is observed in a
part of the system. That being said, a new behavioural plan
is computed for one or a group of agents that are affected by
it. Our approach supports on-the-fly adaptation that enables
MMRSs to complete the defined mission while guaranteeing
the preservation of safety constraints. As shown in Figure 2 the
architecture of our approach consists of 3 main components:

e Behavior Manager: contains the behaviour model of the
mission. Here, behaviour plans are stored as behaviours
in a Behaviour Tree [8]. Each agent in the system is
assigned a Behaviour Tree. In the beginning of the
mission, the Behavior Manager contains all behaviours
that should be performed for completion of the mission.
During mission execution, the behaviour trees may be
updated as a result of violations in the behaviour plans
to one or more agents.

e Execution manager is in charge of: (i) receiving the
current Behaviour Model (BM) of the mission from the
Behaviour Manager, (ii) interacting with the controllers
both to send their part of mission to be executed and
to receive telemetry data, (iii) checking when some
conditions in the behaviour plans are violated in order to
trigger the Adaptation Manager, and (iv) to log mission
data.

e Adaptation Manager is a component where the adap-
tation happens. It receives from the Execution Manager
the conditions that are violated and depending on the
type of conditions that are violated it triggers one of its
subcomponents. If safety-related conditions are violated
the Safety Manager is always triggered. The Safety
Manager is a safety-specific adaptation component that
can manage only safety-related problems. If there isn’t
any violation of safety-related conditions and there are
mission-related conditions that are violated, the Mission
Manager is triggered in order to perform mission prob-
lem resolution.

Based on the different type of issues: mission related vs.
safety related the approach proposes different adaptation mech-
anisms which decide the right scope for an adaptation. Safety
is a first class concern in our missions as robots can collaborate
with humans to accomplish the mission. In this context, the
system should always satisfy all safety invariants, while the
mission can be partially satisfied. That is why distinguishing
between safety-related and mission-related issues is of most
importance in our approach. As the nature of the mission
objectives is different to the safety objectives, we propose
two different adaptation resolution methods: one for partial
satisfaction of mission objectives and one for full satisfaction
of safety objectives. In this work, a MMRS might need an
adaptation due to the following:

e the system cannot successfully complete the defined
mission (mission objective);

e agent(s) performing the current mission may physically
collide (safety objective).

The Safety Manager contains “safety” solvers which are algo-
rithms that generate a behavior for collision avoidance. These

are agent-specific and defined independently from mission def-
inition. The Mission Manager contains solvers which generate
a behavior for completing parts of the mission. These are
mission-specific and employed before the start of the mission.

In our approach we took in consideration the following types
of uncertainty that the system might face and can be a reason
for adaptation:

o Changing Availability of resources: The availability of
resources for an agent can change over time (e.g., the
battery level of a robot is less then a certain value, so
the robot cannot finish a task);

e Change of environment conditions: The environment
where the agents operate is dynamic (e.g., a dynamic
obstacle appears, so a robot cannot finish a task).

Even though the agents participating in the mission are
autonomous, they are able to dynamically form collaborative
groups, called ensembles [9] to gain benefits that otherwise
would not be possible. The example of such a collaborative
group is an ensemble of drones that cooperate in a carbon diox-
ide monitoring mission represented in the motivating scenario
in Figure 1. Multiple entities must follow certain rules in the
ensemble and in return the ensemble offers certain advantages
with respect to having single entities working independently.
Adherence to these collective rules temporarily reduces the
flexibility of collaborating entities, but has huge impact on a
particular quality of the system. We can consider what happens
if there is a fault on a drone and the drone can’t continue
with its behaviour. In this case, all the tasks that the drone
did not manage to complete need to be redistributed to other
entities for successful mission completion, while the faulty
drone needs to adapt its behaviour plan to safely exit the
mission. Another issue we can consider is a collision between
drones. In that case an immediate and collective reaction by a
group of drones is needed for a collision to be avoided. Here,
multiple entities must adapt altogether and transactionally to
perform a particular collision avoidance protocol. This shows
that in MMRSs two levels of adaptation are possible:

e [Isolated adaptation: change of a single agent’s behavior
with pre-defined behavior templates independently from
the rest of the system;

e Collective adaptation: collective change of the be-
haviour of a set of agent’s teamed up in an ensemble
working towards a particular goal.

In this work, we mostly focus on collective adaptation,
even though the approach has capabilities to perform isolated
adaptation by providing a simple solution to a specific issue.

Finally, our approach is based around the principle of
separation of concerns between mission-related vs. safety-
related issues.

In the following sections, we will describe how we model
the modular reusable behaviours and how agents adapt when
facing with mission and safety-critical issues.

A. Modeling modular behaviours

In FLYAQ [3], [4], at design-time safe behaviour plans are
generated for the agents involved in the mission according to

the initial set of active agents and the mission specification.
Our assumption is that the algorithms used by mission design-
ers at design-time to generate behaviour plans for the agents in
our system is correct as in FLYAQ. Now, we focus on the run-
time phase. During mission execution, at each point of time
the system can follow the state of the mission. We define a
mission state as follows.

Definition 1. A Mission State is a tuple MS = (M,C,A,)
where: M is the mission that should be performed, C is the
context under which is performed and A is the set of agents
part of the MMRS system performing it at time 7.

Furthermore, we focus on the execution of behaviour plans.
For each agent a; € A involved in a mission M we generate
a behaviour plan BP'. We define an execution of a behaviour
plan for an agent ag; as follows.

Definition 2 (Executing a Behaviour Plan). We define an
execution of a Behaviour Plan for an agent a; at time 7 as
a tuple EBP'. = (a;, BP.,S' |R,) where:
e g; €A is an agent;
e BP' is the behaviour plan performed by agent a;;
e S is the state of the behviour plan BP' at time T;
e R, :is the return status of the Behaviour Plan R, S, F (the
state region of S’), and can be equal to either Running
(R), Success (S), or Failure (F).

The behaviour plan state space for an agent is partitioned in
three partitions: success, failure, and running when an agent
a; is executing a behavior plan BP; (Figure 3). The return
status of the Behaviour Plan at time 7 reports the status of
the behaviour plan execution. The states defined in the success
partition describe that the behaviour plan has been successfully
completed. The states defined in the running partition describe
that the behaviour plan is correctly executing at time 7. The
states defined in the failure partition describe that the behavior
plan is failing at time 7. In that point the agent should perform
adaptation in order to continue executing the mission or just
safely exit the mission as described in [4]. In Figure 3 is
represented the behaviour plan state space for an agent g;
executing a behavior plan BP;. The behavioural plan execution
state transition (a — b — ¢ — d) represents a behaviour plan
state transition from an initial state Sy to a state in the success
region S7. That is only one possible state transition that could
happen. There are many other possible transitions which might
include failing into a state from the failure region from where
it should adapt.

To model the behaviour plans of an agent a; we will be using
the Behaviour Tree architecture because it provides a flexible
mechanism for an agent to switch between different behaviour
plans. From [8], a Behavior Tree is a formal tool that can
represent the behaviour of individual entities which change
states, make decisions, respond-to/cause events, and interact
by exchanging information and/or passing control. It is an
organizational execution structure that groups behaviours that
one agent should execute as part of its mission. Each behaviour
plan of an agent is modeled as a separate behavioural unit. A
Behaviour unit is one of the basic concepts around which we
define our approach. It’s an executing structure for explaining

Legend

[Success partition
[Running partition
[Failure Partition

O Behaviour Plan's

state

O Behaviour Plan's

initial state

—> state transitions

behavioural plan
execution
state transition

Figure 3: Partitioning behaviour plan state space

what a single agent in the system should do as part of a
mission. A behavioural unit is a modular and parametric
structure that can be used across missions, projects, and
organizations. We believe that modularity is important when
designing, testing, and reusing complex mission behaviour in
robotics. Individual behaviour units allow individual behavior
plans to be easily reused by other robots in other context,
without the need to specify how they relate to the whole
mission behavior [10].

In the following sections, we will discuss how our approach
manages mission and safety issues. We will present an iterative
collective adaptation resolution method for partial satisfaction
of mission objectives and full satisfaction of safety objectives.

IV. PROBLEM RESOLUTION MODEL

In this section, we discuss the general problem resolution
model which is the base of our approach to manage mission
and safety issues.

During normal conditions, each agent performs its behaviour
plan generated at design-time and finishes its part of the
mission, leading to full mission completion.

However, when an agent executes a behaviour plan and the
plan reaches a state in the failure region, it is not correctly
executing. When an agent is not “correctly executing” a
behaviour plan, a problem is triggered.

A problem is a generic structure that corresponds to different
critical situations that can happen to an agent when executing
a particular behaviour plan. It is generated as a result of
the inadequacy between the agent configuration model and
the model of its behaviour plan. It can represent situations
like a state of an agent that can’t cover a particular mission
region because of lack of resources or a state of an agent
that represents a situation of possible collision. Each problem
includes a set of parameters describing it. We discuss about
the problem space we are covering in more details in the next
sections. Now, we define a problem formally as follows.

Definition 3 (Problem). A Problem is a tuple P = (PS,f)
where

e PS is a generic type of problems;

e f : PSp — V is an assignment function that assigns
values v € V for the set of problems’ parameters p. This
function defines the boundaries of the problem.

A Solver is a structure that as input receives an instance of
a problem and produces a behaviour plan that is a solution to
a particular problem. Formally it is represented as:

Definition 4 (Solver). A Solver is a tuple S = (Pg, PS, SS, 6)
where:

e Py is the initial problem that should be solved;

e PS is the set of all possible Problems the solver is able
to solve;

e SS is the set of all possible solutions;

e 0 is a resolution function and (P;, B;) € 0 represents the
following:

o P; € PS is the problem that is addressed;
o B; € §S is the Behaviour Plan generated to solve
the Problem (solution).

The problem resolution can be performed by one or multi-
ple agents. When multiple agents participate in the mission
problem resolution we consider their collective behaviour.
Existing approaches typically deal with multi-agent adaptive
systems through isolated adaptation: each agent adapts itself
independently from each other. However, in our work we
consider isolated vs. collective adaptation. Run-time adaptation
raises an important issue, i.e., identifying which parts of the
system should be engaged in adaptation. This issue is not trivial
at all, since a problem may be solved at different scales.

In order to explain our problem resolution process we start
introducing the notions of entity and ensemble. Entities are
basic building blocks in the adaptation process representing
the different agents of the system (e.g., robots, ground stations,
etc.). An entity can be seen as a representation of an agent that
can play a role in the problem resolution process. Formally,
we define it as follows.

Definition 5 (Entity). An entity y = (a;,r) is defined by an
agent a; playing a role r.

A role represents the type of collaborative interaction a
particular agent can participate in. Collaboration consists in
managing problems and responding to problems raised. For-
mally, it is defined as follows.

Definition 6 (Role). A Role is a tuple R; = (P, S) where:

e P is a set of problems it can produce;
e Sis a set of solvers it provides.

The model of an entity is primarily determined by the ways
it collaborates with other entities as part of an ensemble. In
isolated adaptation the entity that triggered the problem is the
same as the one that provides a solution, but in collective
adaptation a solution is provided by other entities that are
part of an ensemble. An ensemble is primarily determined
by the entities that collaborate to solve a particular problem.
In collective adaptation, the ensemble facilitates cooperation
between entities by means of an information exchange at run-
time. The collaboration between two entities is possible only
if the entities can communicate between each other. Formally,
an ensemble is defined as follows.

Definition 7. An Ensemble is a dynamic run-time structure
represented as a tuple E = (A, R, \) where:

e A is a set of agents grouped together;

e R is a set of roles the agents are playing;

e A : A — R is an assignment function for which
the agents are assigned their respective roles (entity
definition).

Definition 8. A Problem Resolution is a tuple PR = (E;, P;, S;)
where E; is the ensemble solving a problem P; and coming
with a solution S;.

To verify the correctness and completness of our approach
using model-checking, we make the assumption that the max-
imum number of entities that can be part of one ensemble
during the problem resolution process is not larger than 16.
We consider that this is a reasonable assumption as in practical
sense it is difficult to imagine a larger ensemble that can
perform complex tasks and give positive outcomes due to
the communication overhead and unreliable connection links
between entities.

A. Representing the MAPE-K loop structure in an entity

In our approach each entity implements the MAPE-K loop
[11]. In Figure 4 is represented a run-time perspective of
the entity’s MAPE-K architecture. This perspective represents
how an entity manages the execution of the mission at run-
time while preserving safety constraints. In this section, we
will describe each of the MAPE-K loop components for
the individual entities. The MAPE-K loop comprises of 4
components operating over a Knowledge base. In order to
illustrate the separation of concerns between mission-related
and safety-related mechanisms for self-adaptation, there are
two sub-components at each stage of the loop, one managing
the mission, while the other the safety (Figure 4). While
both sub-components are running in parallel in the Monitor
and Analysis to either obtain or update information about the
system or the environment, only one subcomponent is running
in the Planning and the Executor stage of the loop. In the
decision of which component to run, safety has always a
precedence over mission completion.

In the Knowledge base we define three different types of
models that an entity contains. The first model is the Behaviour
Tree Model (BTM). The BTM contains all behaviour plans
associated with the mission. Each entity has a set of behaviour
plans defined at design-time, but only one behaviour plan
can be active in one point of time during mission execution
(depending on its priority). The second model is the current
configuration of the entity Conf. This model gives information
about the current resources of an entity containing information
like position of the robot in the map, current level of battery,
etc. The third model is a repository of the solvers it can provide
i.e. Mission Solvers and Safety Solvers.

Monitoring component: This component receives stimuli
from the environment and from the rest of the system (other
entities in the system) and it updates the current configuration
Conf and BTM. Then, it triggers the analysis component.
The stimuli are values associated with specific safety-related
or mission-related parameters. The Mission Monitor keeps
track of relevant mission-related information, while the Safety
Monitor keeps track of safety-related information.

Analysis component: This component makes analysis if the
active behaviour either failed, succeeded, or is running. It has
two sub-components Mission analyzer and Safety analyzer,
both running in parallel and each checking of the appropriate
conditions (mission related vs. safety related). Depending on
the analysis of the active behaviour it does the following:

1) Success: It references the active behaviour with the
“next” behaviour plan in the behaviour tree model.
Then, it triggers the execution component;

2) Failed: it triggers the planning component;

3) Running: it triggers the execution component.

Planning component: This component is triggered when
the active behaviour returns status failed. The component
starts the process of adaptation i.e. which as output generates
a behaviour plan that will allow the entity to continue its
mission execution or safely exit it. The planning component
consists of two subcomponents: Safety Planner and Mission
Planner. When the planning component is triggered, first it
gets information from the knowledge about the current config-
uration model Conf. Depending on the type of configuration
conditions that are violated it triggers one subcomponent or
the other. Safety has precedence over mission completion, so
if safety-related conditions are violated the Safety Planner
is always triggered. The Safety Planner is the safety-specific
adaptation component that manages only safety-related prob-
lems. If there isn’t any violation of safety-related conditions
and there are mission-related conditions that are violated,
the Mission Planner is triggered to perform mission problem
resolution.

More details about the problem resolution process will be
provided in the next section where we discuss the two problem
resolutions: mission problem resolution and safety problem
resolution. Each of these resolutions enables two types of
adaptation: (i) isolated adaptation: performed by the entity
itself or (ii) collective adaptation: performed by an ensemble
of entities. The behaviour plan that is generated at the end of
the adaptation process is updated in the BTM and then, the
execution component is triggered.

Executor component: This component receives the ac-
tive behaviour from the Behaviour Model (BM) and exe-
cutes (ticks) it i.e. issues commands to the entity’s effectors.
When the executor component is triggered, it first decides
which subcomponent should be activated. Depending on which
subcomponent performed the adaptation, it will activate one
of the executor subcomponent correspondingly. If the safety
planner was activated, the safety executor will be activated. If
the mission planner was activated the mission executor will
be activated. The mission executor performs mission-related
behaviours, while the safety executor performs safety-related
behaviours.

V. MISSION PROBLEM RESOLUTION

In an initial work [12], we provided a generic approach for
managing run-time adaptation with general types of problems
and solvers that can be triggered during mission execution.
In this work, we make distinction between mission related
vs. safety related problems and solvers. Each entity in the

Planner

Safety
Solvers

‘ Analyzer

Safety
Analyzer

Safety
Planner

BTM

Monitor Executor

Safety
Monitor

Sensors

Environment

Safety

Effectors

System

Executor

Figure 4: MAPE-K loop of an entity

system implements a Mission Planner that provides a solution
for mission-specific problems. The mission planner receives
information about the eligible mission related solvers in the
Knowledge base. These are mission-specific and defined before
the start of the mission. Mission-specific solvers have a set of
solver constraints (configuration parameters) that reduce the
space of acceptable problems (e.g., a solver for covering a
geographical area might require an entity to have an active
camera, enough level of battery etc. to be able to resolve a
particular problem). If an entity activates an eligible solver,
it generates a solution i.e. a behaviour plan to complete parts
of the mission. Here, the scope of mission specific problems
is related to the nature of our definition of mission. In order
to explain the mission problem resolution process, we frame
the scope of problems for isolated and collective adaptation.
An entity might perform isolated adaptation when facing with
a situation where its behaviour plan trajectory needs to pass
through a private residence. In this case, the entity might have
a solver that generates a behaviour plan for avoiding the region
of the private residence. Next, we will speak in more details
about collective adaptation.

A. Collective adaptation

At design time we assign the mission M to a set of agents
A. On Figure 5 the mission M is assigned to two agents a
and ay. Informally, a region is an area of the mission that is
decomposed in a number of blocks (e.g. b11, b12, b13, b14,
b15, b16, b17, b18 and b19 in Figure 5). For each block we
assign a unique identifier b;,j € Reg;. For each agent a; € A
involved in the mission M we generate a behaviour plan BP;
covering a region Reg; € M.

As mission-specific problems strongly depend on the type of
tasks the MMRS performs, in this context, we define a mission-
specific problem as: a coverage path planning problem for a
set of blocks in a region Reg; € M that a specific entity y; =
(a;, r) was assigned to cover, but was not able. The uncovered
region Reg € M is an instance of a problem. Accordingly,
we focus only on one type of mission-specific solvers which
represent strategies for covering a region. The mission-specific
solvers are formulated as algorithms solving a coverage path

Figure 5: Task assignment for two agents

planning problem, which depends on the type of the geometry
of the mission M. Example of a solver can be an algorithm
that generates a solution for covering a region with respect to
a specified grid of blocks as in Figure 5.

As we work particularly with regions, a mission related
problem can be decomposed on smaller problems (regions).
To be able to annotate the progress of mission execution, we
define a measure of satisfiability for a mission M that gives
information on the percentage of covered blocks. We indicate
that a mission M is completed if all blocks are covered. In
contrast, a mission is partially completed if there is a set of
blocks b;; that are not covered.

In collective adaptation, the Mission Manager of an entity
can decompose larger problems into smaller ones and can
provide a partial solution to the initial problem. The mission
manager receives information about the eligible mission related
solvers in the Knowledge base and generates a solution i.e. a
behaviour plan. The solution is a generated behaviour plan
that resolves part of the problem. Our definition of a solver
in this particular context allows partial solving of a particular
problem due to the fact that problems can be decomposed into
smaller ones. In this particular context, we define the size of
a problem space through the size (area) of the region that was
not covered by the agents.

In this context, the activity of Mission problem resolution
consists in reducing the problem space of a problem until the
problem space is empty or until a timeout occurs. We believe
that cooperation in emergent application scenarios requires a
new kind of problem resolution approach which is efficient in
terms of short delay; so we defined a time deadline until when
a solution should be found. If a full solution to the problem
is found before the deadline, the mission problem resolution
process doesn’t need to wait until the deadline is reached, but
it immediately returns the found solution. We formally define
a solution of the mission problem resolution as follows.

Definition 9. A solution in the mission problem resolution

PR is defined as: Sol = wma<x PR(E;, P;,d) where E; is the
<Pi<P,

ensemble solving a problem P;, Py is the initial problem that

should be solved, d is a time deadline and Sol is the best

solution found for that particular time deadline d.

To specify the model of the ensemble needed for problem
resolution of mission related problems in details, we will be us-
ing the declarative Ensemble Definition Language (EDL) [13].
The main section of the ensemble specification is the ensemble
membership which defines the structure of the ensemble. A
structure of an ensemble is defined through the ensemble roles
the agents can participate in. A partial EDL Specification for
the mission resolution ensembles is presented on Figure 6.

ensemble MissionResolution

1
2 id ensemble_id: Entity

3 membership

4 roles

5 Leader : Entity

6 Solver_Agent [1..n]: Entity

7 constraints

8 constraint Solver_Agent.hascommpath(Leader)==T
9 fitness sum Leader.solution.quality+Solver_Agent.

solution . quality

10 knowledge exchange

11 Solver_Agent.target = Leader.r_id

12 Solver_Agent.Problem = Leader.Problem
13 Leader.solution=Solver_Agent.solution

Figure 6: EDL specification for mission resolution ensembles

To identify the ensemble, we declare the id of the entity
playing the role Leader to be the id of the ensemble —
essentially saying that instances of this ensemble type cannot
be created without being associated with a unique entity
instance, which can be seen as a sort of coordinator of the
ensemble.

The ensemble membership function consists of three sec-
tions. First, the structure of the ensemble is defined by declar-
ing the ensemble roles that the entities can play. In our case,
an agent can play one of the following roles in the mission
resolution ensemble:

e Leader: an entity that triggers a problem P; and leads
the ensemble formation;

e Solver_Agent: an entity that participate in the solution
creation of the aforementioned problem Py.

An agent can play more then one role in the ensemble i.e.
it can be both a leader and a solver_agent (it can trigger a
problem, but at a same time it can provide a partial solution
to the problem it triggered).

Next, we place semantic constraints, represented by the
constraint expression. In our scenario a constraint for an entity
to be part of the ensemble specifies that there must be a
communication path between the corresponding entity and
its leader. What we mean by communication path is that if
the ensemble leader sends a message in the environment, the
information can be transferred from one entity to another,
and all entities that are able to receive the information are
in the communication path of the leader. In other words, each
entity in the ensemble should have a neighborhood region that
is overlapping with the neighborhood region of at least one
other entity from the same ensemble. Neighborhood NR is a
region of an entity e; that gives information with which other
entities can communicate in a particular point of time 7. At
any point of time during mission execution, each entity in the

system has partial view of the system that consists of a list of
entities neighbours that can communicate with. The third part
of the membership definition is the fitness function, specified
with a numeric expression. The fitness function provides
information about which aspect of the ensemble membership
should be optimized. That gives the framework a way to decide
which entities should participate in the ensemble formation.
More precisely, ensemble instances will be created in such
a way to maximize the fitness function. In our example, the
fitness function is calculated as a sum of the solution quality
provided by all entities in the communication range of the
leader. Finally, knowledge exchange is specified, creating an
information exchange between the members of the ensemble.
In our case, there is an exchange of three types of information:
First, the information on the entity that is the leader in the
ensemble (line 11), second each of the entities in the ensemble
has information about the problem that should be solved (line
12), and third, the solution that the leader obtains for each
entity in the ensemble (line 13).

B. Mission Problem Resolution Algorithm

We propose a best-effort approach for mission problem
resolution, which is efficient in terms of short delay and
which does not require knowledge of which and how many
entities (agents) are in the system in a particular point of
time. To realize our approach, we abstractly define a recursive
best-effort algorithm that covers the procedure for mission
problem resolution. The algorithm starts from an entity e;
that originally detected a Problem P; and expects to commit a
solution without a time deadline d. Further recursive calls are
propagated to other entities in the environment using events.

The algorithm consists of three phases: discover, construct,
and commit.

In the discover phase, the possible entities that can par-
ticipate in the mission problem resolution are found. Each of
the entities that can contribute with a solution to a specific
problem and have a communication path towards the leader
are discovered and links between each of the corresponding
entities is created. At any point of time during the mission
execution, each entity in the system has partial view of the
system that consists of a list of entities neighbours that
can communicate with. Neighborhood NR is a region of an
entity e; that gives information with which other entities can
communicate in a particular point of time 7. Each entity that
contains an active solver (solver for which the preconditions
for activation are fulfilled) can contribute towards a solution to
the mission-specific problem if it is in a communication range
with the entity that triggered the problem. In the discover
phase, those entities are found and a femporary ensemble
is formed. The temporary ensemble consists of all possible
entities that might participate in the resolution process.

In the construct phase, each discovered entity in the
temporary ensemble contributes towards the global solution
formation. Each of the entities in the communication range
contributes towards the global solution by resolving a par-
ticular sub-problem of the general problem, and produces a
solution with some specific quality ¢ until a specific deadline

d is reached. Hence, solutions are composed from multiple
solvers from different entities, the same way problems can be
decomposed on multiple sub-problems. In the end, the entity
that triggered the problem resolution process decides which is
the best solution and which part of the temporary ensemble
contributes towards it.

In the commit phase, the leader of the ensemble knows how
well each of the entities can solve a particular sub-problem so
it sends request to the entities that can contribute with the best
solution to commit their resources. Meanwhile, some of the
entities might leave the temporary ensemble due to a lack of
resources, because they have commitment for another problem
resolution process or because they are not anymore in the
neighborhood of the entity that triggered the problem. After
entities commit their resources for execution, a stable ensemble
is formed and the final solution is obtained. The ensemble that
provided the final solution is called stable ensemble. It is the
ensemble that provides guarantees about the proposed solution
i.e. if all behaviours from all entities in the final ensemble
execute correctly (according to the generated behaviour plan),
the final solution will be guaranteed.

For our algorithm to work we take in consideration the
following assumptions:

e All mission problems can be decomposed on sub-

problems;

e The entity that triggered the problem does not fail
between the time it triggers a problem and commits a
solution to an ensemble;

e There exists connectivity between the entity that trig-
gered the problem and at least one other entity in the
environment for an adaptation to happen (that entity can
be the same entity that triggered the problem);

e The maximum number of entities in one mission prob-
lem resolution is 16;

e There is not a noticeable difference in the resource
configuration for one entity between the time it proposes
a solution and commits its solution;

e There is not a noticeable difference in the connectivity
formation between entities that proposed solution and
commit their solutions;

e The last two assumptions are translated to the following
assumption: there isn’t a noticeable difference between
the solution quality the moment a solution is proposed
and the moment a solution is committed.

The decentralized mission manager for an entity r; € R
is shown in Figure 7 in the form of a state machine, which
is executed by each entity in the system. It is presented in
the form of pseudo-code that closely represents the syntax
of the P programming language. A P program comprises of
concurrently executing state machines communicating asyn-
chronously with each other using events accompanied by
typed data values. Each state machine has an input queue and
machine-local store for a collection of variables. Each state
has a set of event-handlers, which get executed on receiving
the corresponding event. The function send(ry, ev, d) is used to
send an event ev with payload data d to target machine r;. An
entity r; broadcasts event ev with payload d to all the robots
in its communication range using the function broadcast(ev,d)

(more details about the P programming language is available
at [14]).

machine MissionResolution{

1
2 start state Discover{

3 on TriggerMissionProblem (P;) do{
4 sol = callSolvers (P;);

5 timerV = new Timer (this);

6 StartTimer (timerV) ;

7 goto ConstructSolution;
s}

9 on ReqForSolver(P;, rj, d) do{

0 if (P;j ¢ P) then

11 sol = callSolver(P;);

12 if (sol Z0 At <d) then

13 P=PUP;

14 send (r;, solutionfound , sol);
Is end if

16 end if

17 }

18 on Commit(sol, rj){

19 sol=check (sol) ;

20 update (sol) ;

21 send (r;, confirm, (r;, sol))

2 }

3 }

24 state ConstructSolution{

25 defer ReqForSolver, Commit;

26 entry {

27 if (sol #0)

28 Target = r;;

29 S = sol;

30 P; = P; \ p(sol)

31 if (Pj==0) then

32 goto RequestCommit;

33 end if

34 else

35 broadcast (ReqForSolver, (P;, r));
36 end if

37

38 on SolutionFound (rj, sol) do{

39 Target = Target U r;

40 S = SUsol

41

42 on TIMEOUT push RequestCommit;
43

44 state RequestCommit{

45 entry {

46 < Sbest, Target > = find_best_solution (S,Target)
47 S=0;

48 Rrecy = 0;

49 foreach 7 € Tuarget

50 send (#, commit, (Sbest(t), r;))
51 end

52

53 on Confirm (r;, solution){

54 S = S U solution ;

55 Riecy = Ryecy U 15

56 if (sizeof(Rue) = |Target|) then
57 update (sol) ;

58 goto Discover;

59 end if

60 }

61 }

62 }

Figure 7: Mission problem resolution algorithm

Figure 7 shows the algorithm that encodes the mission-
problem resolution state machine. This state machine has
three states: Discover, ConstructSolution and RequestCommit.

It contains the following variables which are important for
understanding the code: r; - represents the id of the robot that
executes the state machine, P is the whole problem space for
which the entity has already proposed a solution, S is the global
solution that the leader obtains, timerV is a state machine
that is instantiated when a problem is triggered, sol is a local
solution provided by an entity in the ensemble.

The algorithm includes the following important steps:

Lines 2-8. The mission-resolution manager starts executing
in the Discover state. When a mission related problem is
triggered, the solver of the entity r; is invoked and a solu-
tion sol is calculated for the specific problem Pi. Function
callSolvers (line 4) is beyond the scope of this paper but may
generally exploit various mission-specific solvers and provide
corresponding full or partial solutions. After the solution is
calculated, the machine creates an instance of a Timer machine,
starts the timer and goes to ConstructSolution state.

Lines 24-43. Upon entering the ConstructSolution state, it
checks if the solution can fully or partially solve the triggered
problem P;. If we have full solution to the problem P;, the
state machine transits to state RequestCommit state (line 32).
If there is a partial solution, the problem space is reduced
to P; (line 30) and the agent broadcasts problem P; in its
neighborhood (communicates the problem P; with all entities
in its communication range).

The events ReqForSolver and SolutionFound are used for
ensemble formation. They create the links between the dif-
ferent ensemble participants that provide solution in the
resolution process. For each link, a corresponding problem
communication is derived. For each problem communication,
a combination of potential solutions is identified across all
reachable entities and returned. The entity that triggered the
Problem stays in the ConstructSolution state until the timeout
is reached. When the Timer machine sends the TIMEOUT
event to the entity that triggered the problem, the same entity
goes to RequestCommit state.

Lines 44-62. Upon entering the RequestCommit state, the
function find_best_solution is executed to identify the best
solution sbest and which combination of entities contributes to
sbest (line 46). The function find_best_solution is beyond the
scope of this paper but generally is a domain and application
specific. Finally, the leader sends the event commit to ask
the ensemble participants in the specific problem resolution
to commit their resources. It should be noted that in the time
between the solution is proposed and the solution is chosen,
some deviations of resources important for problem resolution
might be encountered. That is why the check function (line 19)
checks the change in the proposed and the current solution, it
updates the Behaviour Tree in the update() function (line 20)
with the current state of the local solution and sends confirma-
tion to the leader. When the leader receives confirmation from
all ensemble participants (line 53) it updates its Behaviour Tree
and transits to Discover State. The algorithm provided in Fig-
ure 7 is able to resolve only one problem resolution triggered
by one entity at one point of time without any recursion. Here,
all the members in the ensemble can directly communicate
with the leader. We propose an extension of the algorithm
for resolving multiple problems triggered by different entities

at a same time. Furthermore, sub-problems are recursively
triggered across different entities in the system in order to have
a larger range of possible solutions i.e. a leader can obtain a
solution from an entity that can’t directly communicate with it,
but through another entity in the ensemble that is in its com-
munication range. We define a data type MissionResolution =
(PI, Ei, Si, ES, deadline, parent, PO, FE, FS), which is a tuple
that contains information about one problem resolution (one
ensemble) in which the entity participates. It contains the
following variables:

e PO is the initial problem that is triggered by the entity. It
can be sent by another entity that requests collaborators
for resolution of a larger problem or it can be generated
as a result of the inadequacy between the entity config-
uration model and the model of its behaviour plan.

e parent gives information from where the initial problem
originates. If it is generated by the same entity then the
parent receives the id of the entity r;.

e Pl is a reduced version of the problem that is obtained
after the entity proposes some solution. We use the value
of PI for identifying the different resolution processes in
which the entity participates.

e Fi stores the information about which are the entities
that participate in the temporary ensemble formation.

e Si is the solution proposed by the temporary ensemble.

e ES is a matrix, which gives information about which
entity proposed which solution.

e deadline is a timer machine that is instantiated when a
problem is triggered and decides until which period of
time an ensemble formation is allowed.

e FE is the stable ensemble which is obtained after com-
mitment.

e FS is the final solution proposed by the stable ensemble.

We can represent each instance of the resolution process as

a tree, which we will call problem resolution tree (Figure 8).
On top of the tree, there is an entity that triggered the general
problem PO, while each node in the lower levels in the tree
represents an entity that decomposes the problem of its father
entity and provides a partial/full solution. In the end, we have
a resolution tree consisting of nodes representing the entities in
one possible instance of the problem resolution process. We
define a hierarchical order in the resolution tree depending
on the communication range of the entities. The order of
an entity in the tree is defined through the hop counter that
refers to the number of intermediate entities through which
an information must pass between the entity and the leader in
the ensemble. For example in Figure 8, the leader el might
not be able to communicate its problem P1 with the entities
eb, ...,el10, which are the leafs in the resolution tree because
of the limitation in its communication range, but it might need
few entities from the ensemble that are able to transit the
information to the leafs (like entities e2, e3, e4), which are
in the communication range of the leader el, but also in the
communication range of the leafs in the tree. The order of the
entities that can directly communicate with the leader is higher
comparing to the entities that need an intermediate entity to
relay (in Figure 8, the leader el has the highest order, while
the leafs b, ..., e10 have the lowest order).

=P0\S(e;)
P2=P1\S(ep) @ - =P 1\S(eg) .F’4—P1\S es)
P> P2 Pa

P5=P,\S(e5) P6= P2) P8= P3\S(e8) P9= P10=P4\S e10)

LEGEND

PO Initial Problem space

Entity

entity communicates a
Px decomposed problem Px
with another entity

S(x) solution provided by entity x

Figure 8: Problem Resolution Tree

A formal definition of the problem resolution tree is as
follows.

Definition 10 (Problem Resolution Tree). A problem resolu-
tion tree is a tuple T = (root, Ei, L) where:

e oot is the entity that triggered the top-level problem PO.

e [E; are the nodes in the tree represented through the
entities that decompose and partially solve part of the
top-level problem.

e L : N — N are parent-child links between entities that
are able to communicate between each other. It is a func-
tion that represents problems/solutions communications
from the root to its children.

Each child in the tree decomposes the problem received from
its parent. Then, in the end we have a resolution tree where
the leaves are entities that contain the smallest subset of the
problem space. Each problem resolution tree represents only
one possible instantiation of the problem resolution process.
When the problem resolution tree has a full solution, the leafs’
problem space is an empty set.

We define a quality g of a solution S; proposed by an
entity in the problem resolution tree based on two factors: (i)
closeness to the entity that triggered the problem, (ii) intrinsic
quality given by the entity. What we mean by closeness to
the entity is the following: in one instance of the problem
resolution tree, if there is an entity e; that has a higher-order
in the hierarchy in the problem resolution tree and can propose
a solution s; to a sub-problem py, then we consider that the
solution s has precedence over solutions that are able to solve
the same sub-problem p;, but are coming from other entities
that have lower order in the hierarchy in this instance of
the problem resolution process. Because the communication
between entities is limited, the algorithm is searching for
solutions closer to the entity that triggered the problem py
and if it finds one, it stops the search for other solutions that
are generated from entities that might produce solutions with

better intrinsic quality, but are more distant from the leader
in the problem resolution tree. Thus, when we speak about
hierarchy, we consider hierarchy of entities in terms of the
problem resolution tree: the nodes that are closer to the root
(meaning they need less number of hops to communicate with
the root) have a higher order in the hierarchy comparing to
nodes that are lower in the branching. Root has the highest
order in the hierarchy, while the leafs have the lowest order in
the resolution tree.

C. Correctness and completeness

To resolve mission resolution problems we used a gossiping
algorithm that aims to disseminate the information about a
specific problem and finds a solution. To prove the correctness
and completeness of the approach, we need to prove correct-
ness and completeness of the algorithm. In this section, we
prove correctness and completeness of our algorithm i.e. we
show that the algorithm is aligned with Definition 9 and always
provides the best possible solution for a particular deadline.

1) Correctness: In order to prove that our algorithm is
correct, we need to show that the solution computed by the
algorithm is correct and is the best solution for a particular
deadline.

For a solution to be correct, we assume that the solvers
provided by the different entities in the system are correct.
Correctness of a solver means that an entity’s solver can
generate a behaviour (solution) to resolve a particular mission
related problem with a quality g,.

Moreover, we need to show that the solution provided by
the algorithm is the best solution for the specific deadline.
The leader when calculating the solution for a particular
problem, doesn’t have the exact information on how each
entity in the ensemble contributes towards the final solution.
The only information the leader of the problem resolution
process has when making the decision is how each entity that
is directly reachable (it can directly communicates with) can
help in resolving part of the bigger problem of the leader.
All reachable entities might have formed sub-ensembles that
contribute towards the final solution, but the leader does not
have that information. For example, a leader might be able to
communicate with two entities that can provide some solution
to the initial problem. Each of those two entities might have
formed a temporary sub-ensemble. The two temporary sub-
ensembles are on the same hierarchical level and they might
have one entity in-common, however they belong to different
instances of the resolution process and can be represented
with two different problem resolution trees. When the leader
decides for the final solution it might consider a combination
of both sub-ensembles which create the final solution and
might choose a final stable ensemble that is a combination
of both sub-ensembles. Here the idea is that at each level of
the problem resolution tree each node has calculated the “best
solution” provided by its leafs. The process is repeating and in
the end, the root of the tree should calculate the “best solution”.
As mentioned before, we represent this solution provided in
one instance of the problem resolution tree as in Figure 8.

To understand if the algorithm correctly calculated the best
solution, we should consider not only the fact if the leader

correctly calculated the “best solution”, but we also need to
take in consideration the structure of the ensemble which
participated in the specific resolution that provided the “best
solution”. The structure and state of the ensemble providing
the final solution has high impact on the quality of the solution.
That being said, we make the following assumptions. First, we
assume that there should not be a noticeable difference in the
solution quality between the moment a solution is proposed
and a solution is chosen. Solution quality will remain the
same if there isn’t any change in the entity’s resources and
in the connectivity formation of the ensemble. That is why we
assume that the time between a solution is proposed and a
solution is committed is within seconds, so that there isn’t
any change in the connectivity formation of the ensemble
(Assumption 1). However, change in the resources for the
proposed solution might come if an entity participate in two
different resolution processes triggered by different leaders.
During problem resolution, entities might propose solutions
for different problems in different ensembles. As the resources
of the entities are limited, we made the assumption that the
entity will not participate in two different resolution processes
(resolution processes triggered by two different leaders) which
overlap in the usage of the resources i.e. if an entity participates
in two different resolution processes from different leaders the
usage of resources will not overlap (Assumption 2). However,
there is another case that impacts the quality of the solution
and that is when an entity tries to propose multiple solutions
in one problem resolution process. In Theorem 1 we show that
this would not be possible. Now, we show that our resolution
algorithm for solving mission problems is correct by proving
that it satisfies the following theorem.

Theorem 1 (Correctness). If an entity e triggers a problem P;
and Assumption 1 and Assumption 2 are true, then the Mission
Problem Resolution Algorithm finds and computes the best
quality solution S; proposed by an Ensemble E that is in the
communication range of the entity e.

Proof: As we mentioned earlier we assume that all mis-
sion related problems can be decomposed. Let’s say we have
an entity e that triggered the problem Pi. Pi can be decomposed
on m different different ways. For each different decomposition
there is a sequence of local solutions proposed by an ensemble
E,, that combined together give a global solution S,,. The
global solution S, is a sequence of local solutions sg, 51, ..., Sk,
each of them with a particular quality go, gy, ..., gx correspond-
ingly. Let’s assume there exists an ensemble consisting of n
entities for which there is a communication path between them
and the leader (the ensemble might include the leader) and
that they can provide the best final solution S; to a problem P;.
Correspondingly, we can decompose the solution to a sequence
of local solutions S; = (sg,s1,...,5,) each with a particular
quality ¢o,q1,-..,g,- We can represent that ensemble using
the problem resolution tree (Figure 8). In order to prove that
the algorithm is correct, we need to prove that the computed
solution §; by the leader of the stable ensemble E, is the
best for the problem P;. To prove that, we use the problem
resolution tree of the stable ensemble. The root of the tree
is the leader. We need to prove that the solution calculated

by the leader has the highest quality i.e. S; = (S0, 51, -+, Su)
each with a particular quality g, g1, ...,g,- As our mission
problem resolution is recursive at each node in the resolution
tree, the algorithm calculates the best solution by considering
the best combination of solutions proposed by its children.
After calculating the best solution, it sends that solution to its
parent. Starting from the leafs of the tree, the nodes calculate
the best combination of solutions. In the end, the leader
composes all combinations and calculates the best combination
of solutions proposed by its children. If an entity proposed
solutions to multiple problems in the same instance of the
problem resolution tree, the algorithm will return a value which
might not be correct because of lack of resources for the
entities that proposed multiple solutions.

That is why we need to have (i) a set of n different agents in
the stable ensemble contributing towards the final solution S;
as a precondition for the leader to be able to correctly calculate
the best possible solution. Our algorithm should not allow for
one entity to participate with multiple different solutions in a
same ensemble because as we mentioned earlier it might not
be possible for one entity to perform multiple solutions due to
a lack of resources.

To prove (i), we need to to prove that there is no possibility
for a communication loop in one instance of the problem reso-
lution process (problem resolution tree). What is considered as
a possible loop in this distributed algorithm is a situation where
one entity communicates a sub-problem P; € P; with another
entity that reduce the problem to Py € P; and communicates
that problem to the first entity that triggered P;. We can imag-
ine a situation where before an entity commits its resources
to a particular ensemble, it might propose solutions for other
ensembles to resolve different problems, so in that case we
might encounter a situation where the first entity will propose
a solution to a sub-problem that was not able to resolve it
before taking in consideration the whole nature of the problem
(ex. in a previous iteration the entity proposed a solution to a
more general problem and if it commits its resources to that
solution, it might not be able to resolve the smaller problem
that requires a solution in this iteration). To avoid that, each
entity that runs the algorithm checks if the problem that is
being received for resolution is some type of sub-problem of
a more general problem that was being resolved in a previous
iteration. If that is the case, the problem resolution procedure
will not start i.e. the entity will not participate in the execution
of the sub-problem.

In order to prove the correctness of the algorithm, we
verified (using model-checking) the following property: (i) for
each problem resolution tree, all nodes in the tree represent
different entities in the system (for up to 16 robots). We used
Zing model-checker [15] to systematically test our algorithm
represented in the state-machine based programming language
P. Zing is a model checker used for verification of concurrent
software. Zing explored the state space of our system model
starting from the initial state exploring reachable states for
up to 16 robots in a depth-first manner. From here we can
conclude that for each instance of the resolution procedure for
a problem P; we have a set of n < 16 different entities that
contribute towards the solution S;. In other words, there aren’t

two nodes in the tree that have reference towards same entity.
Hence, we proved correctness of our algorithm.
|

2) Completeness: Completeness of the approach is defined
based on assumptions about the connectivity between the
agents and the stability of resources and connectivity. First,
we assume that we have complete connectivity between agents
meaning that starting from each agent we can broadcast a
message that will reach all agents in the environment for a
specific deadline d. Second, we assume that we have stable
connectivity between agents which means that the connection
between the agents will not disrupt during the adaptation
process. Third, we assume that we have stable resources
during adaptation which means that there isn’t a change in
the resources important for the agent to execute the solution it
proposes. Taking in consideration these assumptions, we prove
the completeness of the approach as stated in Theorem 2.

Theorem 2 (Completeness). If a solution S; for a specific
problem P; exists and we have a deadline d to find it, the
algorithm is able to find it.

Proof: Let us introduce a metric m that is a number
that represents the size of the problem. For example, in
our motivating scenario, we consider that mission-specific
problems are regions that are uncovered, so in this case as
a metric m we represent the area of the uncovered region.
With this metric, we want to measure the different degrees
(levels) of mission fulfilment [16, § 16.1]. In this context, we
represent one instance of the resolution process of problem P;
as a monotonic decreasing sequence m; (m,+1 < m,,Vn € N),
where each number represents the area of a reduced uncovered
region.

Generally, we represent each instance of the mission res-
olution process of problem P; (we consider that all mission-
specific problems can be decomposed) as a monotonic decreas-
ing sequence where each element in the sequence represents
the appropriate reductions of the problem P;. Obviously, if a
sequence is decreasing and is bounded below by a minimum,
in some finite time we will reach that minimum. In our case,
the minimum would be the problem that corresponds to the
final solution §;, which in ideal situation will be the empty
set.

If we represent one instance of the resolution process of
problem P; as function that reduces problem P;, then we
can represent each reduction of P; in a monotonic decreasing
sequence where each instance represents the appropriate reduc-
tions of the problem P;. Obviously, if a sequence is decreasing
and is bounded below by a minimum, in some finite time we
will reach that minimum. In our case, the minimum would be
the problem that corresponds to the final solution S;, which
in ideal situation will be the empty set. Having that for all
instances of the mission resolution process (which is always a
finite number), we can always find a solution ;.]

VI. SAFETY PROBLEM RESOLUTION

In this section, we discuss about the adaptation resolution
problem related to safety problems. To be able to model
specific safety related behaviours, we discuss few properties
of agents and how they are connected to safety.

With A we denote the set of all agents performing the
mission and with 7' the total mission execution time.

We take a snapshot of the mission at a particular time
7 € T. We denote with OBS, the region of all obstacles
(known and uknown) in the environment at time 7. We define
an Obstacle 0 € OBS. as a region in the environment that
should not intersect with the region of operation of an active
robot (agent) to not jeopardize safety. We denote by VR. € R
the “visible region” in which an agent a; can “observe” its local
environment (obstacles and other agent’s location) at time T
and by SR the safety region of an agent g; at time 7 that
represents a region that is the absolute minimum separation
for safety that must be maintained during a close encounter
with other (robots) agents or with a static/dynamic obstacle.
We identify each agent a; through its safety index. The safety
index is a unique identifier that specifies how well an agent
can resolve safety issues. Agents that have a higher index have
a higher level of safety resolution capabilities. In this work,
we focus on one representation of safety defined through the
concept of collision. We define collision as a situation when
the safety zone of a robot is overlapping a region of an object
or a safety zone of another robot at time 7. In that context, we
say that a MMR system is safe, if no collision happens during
mission execution. Taking that in consideration, we formally
specify what a safe MMRS is.

Definition 11 (Safety). We say a MMRS system is safe if and
only if the following two safety invariants are valid:

1) Vaja; € A&VTeT; SRENSR, =0

2) Va;€A&Vo e OBS,; SR_.No=1

We defined safety in Definition 11 in terms of absence
of collisions, where 1) states that there will be no collision
between agents and 2) states that there will be no collision
between agents and obstacles during mission execution.

Our framework implements a safety planner as part of the
Planning component in the MAPE-K loop for each entity. The
knowledge base of the MAPE-K loop contains a catalogue
of correct obstacle avoidance algorithms as solvers which can
be activated and able to provide a solution for an agent in
a specific situation. These are solvers that can be reused in
different application scenarios and missions independently of
the type of the domain. Here, the scope of safety specific
problems is independent of the nature of the definition of the
mission.

In order to explain the safety problem resolution process,
we frame the scope of safety problems for isolated and
collective adaptation. In our work, we envision resolution of
the following types of safety problems: (i) collision with a
static obstacle; (ii) collision with a dynamic obstacle; and
(iii) collision between agents. In the case of static/dynamic
obstacle avoidance, an entity performs isolated adaptation i.e.

one entity generates a solution (behaviour plan) to the problem.
The generated solution (behaviour plan) brings the entity into
a state from which it can continue executing the mission. In
the reminder of this section, Section VI-A describes more in
details collective adaptation, and Section VI-B discusses the
correctness and completeness of the proposed algorithms.

A. Collective adaptation

For the third type of safety problems (collision avoidance
between agents), our framework provides a palette of coordi-
nation protocols for the agents to be able to perform collision
avoidance maneuvers. To resolve safety problems related to
collision between agents, our framework uses the concept of
ensembles described above. Agents dynamically form collabo-
rative groups using attribute-based communication ensembles
as described in [17] to gain benefits that otherwise would
not be possible. In safety problem resolution, the agents
must follow certain rules and in return the ensemble offers a
guarantee that if all single agents follow the rules, safety will
be preserved. Adherence to these collective rules temporarily
reduces the flexibility of the collaborating agents, but has
a strongly positive impact on safety. Comparing to mission
resolution where those collective rules are more flexible, safety
resolution requires stronger, more precise, and detailed rules.

A safety ensemble is primary determined by the agents that
collaborate to solve a safety problem. In a collision between
multiple agents, our safety resolution procedure consists of:
(1) a protocol for on-the-fly ensemble formation for safety
resolution and (ii) a recursive function that is initially called
locally by the ensemble leader to select and commit a solution.
In the safety problem resolution, all entities in the ensemble
must participate in the solution creation because full solution
is required. What we mean here is that we treat safety as
binary (the MMRS is safe or not). In contrast, in the mission
resolution a partial solution is enough for solving a particular
problem. If one agent fails to comply to the rules in the
ensemble, safety will be compromised. Here, the shape and
structure of the ensemble is strongly correlated with the type of
the safety problem due to the fact that all involved participants
need to generate their corresponding behaviours to guarantee
the safety of the system.

ensemble SafetyResolution

1
2 id ensemble_id: Entity

3 membership

4 roles

5 Leader : Entity

6 Solver_Agent [1..n]: Entity

7 constraints

8 constraint Solver_Agent.hascommpath(Leader)==T

9 constraint 3 Solver_Agent.solver

10 compatible (Solver_Agent.solver , Leader.solver)==T
11 fitness Leader.solution.quality

12 knowledge exchange

13 Leader.Problem=Solver_Agent.Problem(conflict_r)

14 Solver_Agent.solver = Leader.solver (A, attr)

15 Leader.solution=Solver_Agent.solution

Figure 9: EDL Specification for safety resolution ensembles

We specify the ensemble type used for safety problem res-
olution in Figure 9. To identify the ensemble, we declare a
leader agent to be the id of the ensemble - essentially saying
that instances of this ensemble type cannot be created without
the ensemble being associated with a unique entity instance,
which can be seen as a coordinator of the ensemble. A leader
of an ensemble for safety resolution is an agent that leads
the ensemble formation and decides for a safety resolution
protocol. Example could be a fixed camera positioned in a
particular point in the environment that checks if there is
a possibility for collision between two or more robots or a
robot that notices another robot in its visible region. Unlike
the leader in the mission resolution ensemble, the leader in a
safety resolution has knowledge of all the possible ensemble
participants when it decides for a solution type and when it
starts the coordination of the problem resolution process.

As we can see from Figure 9, the ensemble membership
function consists of three sections.

First, the structure of the ensemble is defined by declaring
the ensemble roles the agents can play. In our case, same as in
the mission resolution, an agent can play one of the following
roles in the safety resolution ensemble:

e Leader - an agent that has the highest safety index and

leads the ensemble formation;

e Solver_Agent - an agent that can provide partial solution

that contributes towards the final solution.

Second, we place semantic constraints, represented by the
constraint expression. In our safety resolution ensemble a
constraint for an agent to be part of the ensemble is that
there must be a communication link between the corresponding
agent and its leader. What we mean here is that the leader can
communicate with all ensemble participants. The other very
important aspect in the ensemble formation is the solution
space. In contrast to the mission resolution ensemble, a safety
resolution ensemble must provide a full solution, so we put
that as a constraint. Full solution consists of combination of
behaviours generated by all participants in the ensemble. What
we mean is that all ensemble participants agree to follow a
specific protocol suggested by the leader i.e. each entity in the
ensemble must have a solver compatible to the solver proposed
by the leader. Our assumption is that each entity has at least
one solver that is compatible to the solvers of the rest of the
system. We consider this assumption reasonable because we
consider safety independently from the mission, so all safety
solvers can be independently embedded in the knowledge base
before the start of the mission independently of their type.

The third part of the membership definition is the fitness
function, providing information about which aspect of the en-
semble membership should be optimized. In our example, the
fitness function is represented as maximized solution quality of
the leader that coordinates all ensemble participants. Finally,
knowledge exchange is specified, creating an information
exchange between the members of the ensemble. In our case,
we have exchange of three types of information. First, it is the
information of the agents’ conflict region conflict_r, which is
calculated by the position of the agent and its corresponding
speed (line 13). conflict_r is the safety region of an agent in
a specific time interval during the mission execution. Second,

each of the entities in the ensemble receives an information
about a specific solver proposed by the Leader. Each entity in
the ensemble receives information about a collision avoidance
algorithm A and the attributes of the algorithm attr (example
of attributes of the algorithm might be the central point
around which the entities will perform the collision avoidance
protocol, their corresponding speed, etc.) (line 14). Third, the
leader gets information about the solution of each entity in the
ensemble (line 15).

We defined the following protocol (Figure 10) that is used
for on-the-fly ensemble formation when agents discover that
they are facing with a possible collision among them. Each
agent starts executing in the Discover state. If an agent g;
notices other agents in its visible region, it broadcasts the
RegforSafetyRegion event with identifier for the VR - visible
region, the time 7 when the message is sent and the identifier
of the agent id, asking for the safety region SR of the robots
in its “visible region” during some time period A7. Then it
goes to the WaitForResponse state.

DISCOVER

| broadcast(RegforSafetyRegion(VR, t,id))

SE(WaitForR

AB& 1B && IMSGI = IR(VR)!

id!=safestrobot IA&& IB&&C

DECIDE

FINISH

ACCEPT
LEGEND:

if (num(msg)==colligion(R) && D)

A= exists m in MSG where
m.ensemble_state="NO_ENSEMBLE"

B= exists m in MSG where
m.ensemble_state="INITIALIZE"

C=exists m in MSG where COORDINATE
m.ensemble_state="PLANNING&EXECUTION"

D=exists r in e where r.id>leader

Rednf in e.ensemble_participants

PLANNING

Figure 10: State machine animating each entity in the safety
resolution process

Depending of state it is, when an agent a; receives the event
RegforSafetyRegion(msg), it generates a message m = (a; :
int; conflict_region : R; ensemble_state : int), where a; is the
identifier of the agent creating the message, conflict_region
is a region in the environment that should not intersect with
the region of operation of an active agent. If the agent is not
part of an ensemble, the conflict region is equal to the agent’s
SRi, _, while if the agent is part of an ensemble, it represents
the execution region of the ensemble, which is the union of the
SR', . of all ensemble constituents. The ensemble_state gives
information if the agent is part of an ensemble and if it is, it
gives information in which phase of operation the ensemble
is. It can be in one of the following states:

e NO_ENSEMBLE: means that the agent is not part of

an ensemble;

o INITIALIZATION: means that the agent is a part of

an ensemble that is in the phase of formation;

e PLANNING & EXECUTION: means that the agent is

a part of an ensemble that is established and it executes
some safety-related algorithm that can’t be interrupted
at that time i.e. at the time of execution.

In the WaitforResponse state, the agent a; waits to receive
feedback from all the agents that were found in its visible
region VR. When it receives message from all the agents in
its visible region it goes to a state Decide. In the state Decide,
the agent goes through all messages and for each message it
does the following: first, it checks if the agent a; that sends the
message might collide with g;. If there is a possible collision,
it categorizes the message in one of the following categories:

1) Category 1: The message is from an agent a; that
is a part of an ensemble in an initialization state
(ensemble_state=initialization). In this case, the agent
a; considers the possibility to join to that ensemble.

2) Category 2: The message is from an agent g; that is not
part of an ensemble (ensemble_state=no_ensemble).
Here, the agent a; considers the possibility to start with
initialization of an ensemble.

3) Category 3: The message is from an agent g; that is a
part of an ensemble that is in planning&execution state
(ensemble_state=planning&execution). In this case, the
agent a; considers the conflict_region received in the
message as a dynamic obstacle and adds it in its
collision region CollisionR. The ensemble in plan-
ning&execution state cannot be interrupted.

After ag; finishes the iteration through all the messages, it
does the following decision:

e if there is at least one message from category 1 (state-
ment B in Figure 10 is true), the agent a; goes to
state JOIN and initiates the joining process. If there
are multiple messages from category I, the agent a;
considers joining to the ensemble that has leader with
highest safety index.

e if there are no messages from category I (statement B
in Figure 10 is false), it checks if there is at least one
message from category 2, i.e. if statement A in Figure 10
is true. If there are multiple messages of that kind, with
the function findsafestrobot it finds the identifier of the
agent with the highest safety index in its visible region.
If the agent has the highest safety index in its visible
region, it goes into state FORMING from where it starts
the initialization of the ensemble, otherwise it goes into
state INITIALIZE.

e This is the case when the agent has received only
messages from agents that are parts of ensembles that
are in their planning&execution phase (category 3). In
this case the agent a; goes into the AVOID state where
the agent acts as it discovered a dynamic obstacle. In
this state the agent should activate some of its solvers
for dynamic obstacle avoidance that are able to generate
a behavior (solution) for a dynamic obstacle avoidance.
Here, the agent performs isolated adaptation and threats
this problem on the same level as a dynamic obstacle.

We define conflict set Rconf for an entity e as the set of

entities that are in its visible region, can collide with e and
are not part of an ensemble that is in planning&execution

phase (entities that have send messages from category 2 and
category 3). This means that Rconf entities are “open” for
performing an appropriate collision avoidance protocol that
should avoid the possible collision.

From the INITIALIZE state, the entity waits for a message

m from the agent that has the highest safety index in its visible
region to decide in which state it should go. If it receives a
message that there exists another entity with a higher safety
index (statement D is true), it transits to a JOIN state from
where it starts the procedure for joining an existing ensemble.
Otherwise, if it receives an ACCEPT message means that the
agent with the highest safety index in its visible region started
the process for ensemble creation, and then it goes to a state
Coordinate. That means that there isn’t any other entity with
higher safety index in both of their visible regions.
The entity in the FORMING state is a possible leader (coordi-
nator) of an ensemble. The entity in this state sends ensemble
“proposal” requests to the entities that are in its vision region
and have safety regions that overlaps with its safety region at
some point of time in the future. The entity e; stays in the
FORMING state until one of the following happens:

e it receives a message from an entity in its visible region
that “rejects” its ensemble “proposal” meaning that the
entity that send the message is aware of another entity
that has a higher safety index, so that entity should be
the coordinator/leader of the ensemble (statement D is
true). In that case, the entity that received the message
directly goes into state JOIN.

e it receives a message from all entities in Rconf and they
all accepted the proposal for ensemble creation. That
means statement D is false i.e. there isn’t any entity in
Rconf that is aware of another entity e; that is in the
FORMING state and has a higher safety index.

In the Coordinate state, the coordination between the differ-
ent entities in the ensemble happens. The entity stays in this
state, until all entities represented with Rconf are part of the
ensemble. When each of Rconf entities join the ensemble, the
entity goes into a Planning state. The last entity that enters
the Planning state is the leader. When the leader enters this
state, on-the-fly ensemble formation phase finishes and the
final ensemble is formed. Here, the leader has information for
all ensemble participants and the final conflict region of the
ensemble. In this state the leader makes a decision of what
is the best solver i.e. what is the best collision avoidance
protocol that all ensemble participants should follow. We
implemented that by using the function coordinate() which is
executed only by the ensemble leader (Figure 11). Based on the
information about the ensemble (conflict regions, participants,
etc.), the leader generates a prioritized list of all possible
solvers (list of collision avoidance algorithms) embedded in
the Knowledge base that could solve the possible collision
for this ensemble formation (line 3). Then, the ensemble
leader starts from the first algorithm and calls the recursive
function resolve_safety(A,id,e_j) where A is the algorithm
that is chosen for safety resolution, id is the identifier of the
entity that executes the algorithm to generate a solution and
e_j is the identifier of the entity that triggered the algorithm

in the entity that executes it. Initially resolve_safety(A, id,e_j)
is called locally by the ensemble leader so it has the form
resolve_safety(A, id, id) (line 5).

The function resolve_safety includes the following. First,
the appropriate solver is called to generate a solution §
based on the algorithm A (line 10). Then, a corresponding
communication is derived using derive_coms for each of the
reachable entities in the ensemble. In other words, derive_coms
finds all the children in the problem resolution tree reachable
from the corresponding entity in the final ensemble.

For each identified entity, the function resolve_safety is
called with the algorithm A (line 13) and a solution § is
calculated.

The function resolve_safety returns a boolean:

e it returns true when the entity and all its children in
the problem resolution tree contain the algorithm A in
its knowledge base. If that is the case, the generated
solution § is stored locally (function store (line 18));

e it returns false when the entity itself or one of its
children (targets) doesn’t contain the algorithm A in its
knowledge base.

In the end the resolve_safety for the ensemble leader (line 5)
returns true if all the entities in the ensemble are able and
agreed to perform some algorithm A. If that is not the case,
the ensemble leader goes through the other algorithms in
the SolverList and repeats the process until finds a suitable
algorithm A for which all ensemble participants are able to
perform it. If it finds one, it calls locally the function commit
and breaks the loop. Execution of the commit function is when
the entity enters the Execution state in Figure 10.

The commit function lines 23-26. is recursive, it goes
through each entity in the ensemble and enacts a distributed
commit of the best solution. It updates the solution S in
each entity by updating its behaviour tree with the function
update(S) (line 26). When the entity finishes with the commit
function in the Execution state, it goes to Discover.

B. Correctness and completeness

In order to prove correctness of the safety resolution ap-
proach we need to prove the correctness of the safety res-
olution algorithm. In order to prove the correctness of the
safety resolution resolution algorithm we need to analyze: (i)
the protocol for on-the-fly ensemble formation and (ii) the
recursive function for selecting and committing a solution. We
define correctness as follows.

Theorem 3 (Correctness). If an entity e triggers a safety
problem P;, then the Safety Problem Resolution Algorithm
computes a solution S; where the safety invariants in Defini-
tion 11 are always satisfied.

Proof:

Our assumption is that each of the entities in the safety
collective adaptation process contains at least one safety solver
(collision avoidance protocol) that is compatible to the solvers
of the other entities in the ensemble. This means that we
assume that when an ensemble is formed, each of the entities

function coordinate ()

1
2 if (id == ensemble.leader)

3 SolverList = callSolvers (ensemble) ;

4 foreach A € SolverList:

5 if (resolve_safety (A, id, id))
6 commit (id)

7 break

8

9 function resolve_safety (A, id, e.j)

10 S = callSolver (A)

11 Target = derive_coms (ensemble)

12 foreach € Target:

13 t.solution = rpc (resolve_safety (A, ¢, id))
14 if (z.solution == false)

15 S=0

16 break

7 if (S#0)

18 store (S, Target)

19 return true

20 else

21 return false

23 function commit(ry)

24 foreach ¢ € riy.Target
25 commit ()
26 update (S)

Figure 11: Code snippets from Planning and Execution state

participating in the ensemble contains an appropriate solver
that can generate a solution that will satisfy the safety invariant
defined in Definition 11. Therefore, to guarantee correctness of
the safety resolution process we just need to prove correctness
of the protocol for on-the-fly ensemble formation.

In order to prove the correctness of the protocol for on-
the-fly ensemble formation, we verify (using model-checking)
the following properties about the coordination protocol: (1)
at each point of time there won’t be any ensembles (up to
16 entities) that are in planning&execution phase and that
have overlapping conflict_region CR; (2) the highest safety
index computed by the safety resolution algorithm is consistent
across all entities in an ensemble that is in planning&execution
phase. We formally specify them as follows. We denote with
T the total mission execution time and with EJ, the set of all
ensembles in the system that are in planning&execution phase
at time 7. Hence, we define (1) as: V7 € T&&Ves;, es; €
E},; esi.CRNes;.CR = () and we define (2) for an es € E},
as: Vej, e € es; e;.s_id = ej.s_ = id.

However, the safety resolution algorithm by itself is not
complete due to the following reason: each entity in a stable
ensemble might not have a solver compatible to the solver
proposed by the leader. However, for completeness of the
approach, as we mentioned earlier, we assume that each entity
in the system has at least one safety solver that is compatible
to the solvers of the rest of the system. We consider this as-
sumption reasonable because we consider safety independently
from the mission and in this way, we can reason about safety
before the start of the mission. That is how we guarantee safety
during the whole mission execution.

VII. RELATED WORK

MMRSs are just one application domain from the variety
of Cyber-physical systems (CPSs). In the literature, a lot
of work has been done to address run-time adaptation of
CPSs in different application domains and different levels
of abstraction. Specifically, the authors of [18] present an
approach to support the adaptation process of CPS based on
run-time generation of verified system configurations, while in
[19] the temporal costs of an autonomic manager that performs
on-line verification for a specific application are analysed.
Moreover, [20] presents an architecture of a middleware that
supports time-deterministic reconfiguration in distributed soft
real-time environments, while [21] evaluates reinforcement
learning adaptation policies through a set of experiments. All
the aforementioned works present general approaches that have
been applied in a specific application scenario. In comparison,
in this work we focus on the specificities of the domain of
mobile multi-robot systems: (i) agents have partial knowledge
of the system and the environment and (ii) the interplay
between (possibly) partial resolution of mission problems vs.
full resolution of safety problems is crucial.

In the following, we focus on mobile multi-robot systems
and we review recent work on run-time approaches that
support mission execution. We investigate what kind of run-
time collective approaches are proposed for the different multi-
robot systems and in which type of environments they are ap-
plicable. Furthermore, we focus at identifying and classifying
approaches that address safety. Our aim is to understand how
safety is managed and what are the constraints and limitations
of existing methodologies addressing safety. Additionally, we
consider if the approach supports adaptation on the system and
which adaptation decisions could be made at run-time.

In Table I, we note some of these run-time mission execution
approaches for mobile multi-robot systems and categorize
them according to the following criteria:

1) System & environment characteristics;

2) Safety management;

3) Adaptation mechanisms.

For each criteria we identify several parameters. For each
of them, we categorize the approaches as follows.

System & environment characteristics

e Agent type: whether the considered agents in the system
are homogeneous or heterogeneous.

e Openness: whether the approach supports systems that
can accept external agents at run-time (e.g., new robots
entering the mission).

e Ensemble type: whether the proposed approach sup-
ports formation of an ensemble structure (group of
agents) that can change at run-time (dynamic) or not
(static).

¢ Ensemble management: whether an ensemble is man-
aged in a centralised or in a distributed way.

e Hierarchy: whether the approach provides a mechanism
for hierarchical structure of ensembles (e.g. an ensemble
of ensembles).

e Environment (dynamic vs. static): whether the approach
supports modeling of systems that operate in environ-

18

Work System & environment characteristics Safety Management Adaptation mechanisms
A. Type Openness | Ens. type Mgmt. Hierarchy ENV Coop. Mechanisms | Concerns sep. | Adapt Type Human

[22] Heterogenous N/A dynamic N/A N/A N/A cooperative NO YES BOTH NO
[23] Heterogenous YES N/A N/A NO dynamic local NO YES isolated NO
[24] Heterogenous NO N/A N/A N/A dynamic cooperative NO NO N/A N/A
[25] Heterogenous NO dynamic distributed NO static cooperative NO YES isolated NO
[26] Homogeneous NO N/A N/A NO static local NO YES isolated NO
[27] Homogeneous NO N/A N/A NO static cooperative NO NO N/A NO

[2] Heterogenous NO N/A N/A NO dynamic centralized NO YES N/A N/A

[1] Homogeneous NO dynamic | centralized NO N/A centralized NO NO N/A N/A
[28] Heterogeneous YES dynamic distributed YES dynamic N/A N/A YES BOTH NO

Table I: Literature Comparison

ment that can change at run-time (e.g., moving obstacles,
some other elements outside of the system can change
their status).

Safety Management

e Cooperation mechanisms: whether the approach allows

safety mechanisms that involve cooperation between
different agents rather than centralized management of
safety entity or local management on single robots,
without any cooperation.
It is LOCAL if safety mechanisms are conceived to
work on single robots, without any cooperation, CEN-
TRALIZED if the knowledge of the overall system is
maintained by a centralized entity, or COOPERATIVE
if there are mechanisms to share knowledge between
different robots that take part in the mission.

e Separation of concerns: whether the approach keeps the
management of safety-specific issues (e.g. safety rules)
separated from the management of mission-specific is-
sues.

Adaptation decisions

e Adaptability: whether the approach supports MMRSs
that can adapt.

e Type: whether the approach supports a collective adapta-
tion where a collection of autonomous agents collaborate
together to satisfy a particular goal or isolated adaptation
where one agent adapts independently from the rest of
the system.

e Human Controllability: whether the approach enables
an operator (human) to be involved in the adaptation
process.

As shown in Table I, most of the approaches are unable to
deal with open systems (only 2/9 approaches are able to deal
with open systems). By open systems, we mean systems that
can accept external entities at run-time (e.g., new robots or
new human actors). This implies that most of the approaches
that have been proposed do not consider that the system
evolves in terms of addition or removal of robots and/or
other types of agents, including humans. This is indeed an
interesting research direction since systems of the near future
will be necessarily characterized by openness, and it is often
impossible to assess at design time the exact boundaries and
topology of the system.

A peculiar system characteristic is the capability of man-
aging teams consisting of robots of different types (e.g.,

robots for grabbing objects, for video streaming, sensing and
discovering relevant information). According to Table I most
of the analyzed systems have the capability of managing
heterogeneous robots, which is the direction in which we are
going with our approach.

In order to manage different unpredictable situations of
missions and considering situations where there is only partial
communication between different agents, it is preferable that
the MMR system is capable of grouping and regrouping agents
in ensembles at run-time in a decentralized fashion. Most of
the approaches propose solutions where they assume that all
robots in the system will be able to communicate to each
other. Only 2/9 approaches discuss about the possible benefits
of distributed ensemble formation. The concept of ensemble
enables single agents to take part in a group where they will
follow certain rules and in return the ensemble offers certain
advantages with respect to a preservation of a particular system
quality. In this context, we don’t need to consider the whole
system to analyze if a particular system quality is satisfied, we
only consider part of it.

Furthermore, as shown in Table I, in all approaches the
management of safety-specific issues (e.g., safety rules) is not
kept separated from the functional management of the robots
(e.g., the mission). Keeping a separation of concerns means
for instance that the approach prescribes a special layer for
managing safety, which is totally separated from the rest of
the system.

Regarding the cooperation mechanisms, most of the ap-
proaches adopt local safety mechanisms, i.e. safety mecha-
nisms that are conceived to work on single robots, without
any cooperation. Centralized safety management mechanism
means that there exists an entity managing the safety aspect of
the overall system. As can be seen in Table I only 2 approaches
have a centralized safety management mechanism. Instead, 4
approaches rely on co-operative safety mechanisms, meaning
that safety mechanisms involve a cooperation between different
robots.

Regarding the adaptation mechanisms, most of the ap-
proaches allow the system to adapt at run-time, meaning
that the system is able to adapt (e.g., behaviour adaptation,
trajectory recalculation, goal renegotiation, etc.) in order to find
a solution depending on some change in the context. Adaptabil-
ity might be considered in conjunction with context awareness
since awareness of the context is a required capability in order

to support adaptability. Human involvement in the adaptation
process brings some degree of control-ability that can help
in defining regulations and rules about the responsibilities of
the operators in operational scenarios and make adaptation
more practical and safer. None of the approaches in Table I
includes the human as a factor in the adaptation process.
Regarding the collectiveness of the adaptation process, 3 of the
approaches consider isolated adaptation where the agent adapts
its behaviour independently from the rest of the system, while
only 2 approaches consider the two types of adaptation: (i) on
a collective level where multiple agents must adapt altogether
and transactionally and (ii) isolated adaptation where one agent
adapts its behaviour independently from the rest of the system.

Classifying our approach in this classification schema is as
follows: It supports modeling of open systems which consist
of heterogeneous agents that are context-aware about their
operational context. The agents can be grouped in dynamic
ensembles, which are groups of agents that are managed in a
distributed way among the ensemble participants. Furthermore,
the approach allows for a hierarchical structure of ensembles
for satisfying a particular goal as we showed in [12]. Regarding
the environment, the approach has mechanisms for modeling
MMRSs that operate in dynamic environments and have some
degree of unpredictability (ex. birds flying, animals walking,
etc).

Most of the approaches we have analyzed do not consider
safety aspects separate from the functional behaviour of the
robots. In our approach we make a clear separation of con-
cerns between safety and mission aspects. We consider this as
extremely important for managing complex missions and it is
one of the fundamental parts on which we base our work. This
way an operator modeling its mission can focus on the mission
specification, while a safety engineer can focus on the safety-
specific mechanisms, thus making safety-specific mechanisms
reusable across missions, projects, and organizations.

Another really important feature of our approach is allowing
cooperation mechanisms between different agents when safety-
related issues are triggered. This means that safety is not
managed in a centralized way (there isn’t an entity that
manages the whole aspect of safety, but it is managed on a
level of ensemble in a distributed way where each agent should
perform an appropriate behavior as part of the ensemble).

Moreover, our framework contains structures that enable
system designers to design systems which are adaptable during
mission execution. It allows part of the adaptation decisions
to be done at run-time. That being said, we make clear
distinction about which decisions should be made at design-
time versus decisions at run-time. Regarding the type, we
allow agents to adapt on a collective (ensemble) level, which
means that a collection of autonomous agents collaborate to
perform adaptation in order to satisfy a particular goal or solve
a particular problem. In the end, we allowed the operator
(human) be able to have control in the adaptation process.
Some adaptation decisions can’t be done by the system at
run-time, however with our approach as we showed in [12]
we allow the operator to take over and participate as agent in
the adaptation process.

VIII. CONCLUSIONS

In this paper, we presented a collective adaptation approach
that consists of two parts: one for (potentially partial) reso-
Iution of mission problems and one for full safety resolution
i.e. one that ensures a full satisfaction of safety invariants.
While most of the proposed solutions for collective adaptation
work under the assumption that all the knowledge used to
adapt a system is fully specified at design time (i.e., a pre-
defined set of issues) and is centrally controlled by a specific
component (i.e., a set of predefined solvers), our approach, as
depicted previously, addresses collective adaptation problems
in a decentralized fashion, at run-time, with new solvers that
can be introduced at any time. At the same time, in highly
dynamic and distributed environments, our approach provides
a way to dynamically understand which parts of the system
should be selected to help solve an adaptation issue making
a clear distinction when resolving mission vs. safety-related
issues. That way, we can ensure full satisfaction of safety,
while guaranteeing (potentially partial) mission completion.

Currently, we are performing an extensive experimental
campaign to evaluate the collective adaptation process (CAP)
by simulation. Simulation is performed by using a Software-
In-The-Loop (SITL) platform. We are measuring mission
satisfiability that gives information on how much percentage
of the mission is performed by the system taking in con-
sideration various application domains. We are using hetero-
geneous robots operating under various circumstances (e.g.
different number of tasks to be performed, different size
of MMRSs, different number of problems triggered during
mission execution, different ratio between safety and mission
problems triggered during mission execution etc.). The final
goal is to find out if our collective adaptation approach is
scalable for managing real-sized missions. Additional materials
concerning the experimental setup and the results is available
here: https://darkobozhinoski.github.io/MMRS/.

Moreover, we plan to integrate the approach with a suitable
extension of the FLYAQ platform [3]. This platform permits to
graphically define civilian missions for a team of autonomous
multicopters via a domain specific language to make the
specification of missions accessible to people with no expertise
in IT and robotics.

ACKNOWLEDGMENTS

Research partly supported from the EU H2020 Research and
Innovation Programme under GA No. 731869 (Co4Robots)
and from the European Research Council (ERC) under GA
No. 681872 (DEMIURGE).

REFERENCES

[1] A. Desai, E. A. Cappo, and N. Michael, “Dynamically feasible and safe
shape transitions for teams of aerial robots,” in Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016, pp. 5489-5494.

[2] J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, and H. Kress-Gazit,
“Collision-free reactive mission and motion planning for multi-robot
systems,” in Robotics Research. Springer, 2018, pp. 459—476.

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

D. Bozhinoski, D. Di Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli,
“Flyaq: Enabling non-expert users to specify and generate missions of
autonomous multicopters,” in Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on. IEEE, 2015, pp.
801-806.

D. Di Ruscio, I. Malavolta, and P. Pelliccione, “Engineering a platform
for mission planning of autonomous and resilient quadrotors,” in
International Workshop on Software Engineering for Resilient Systems.
Springer, 2013, pp. 33-47.

T. Skrzypietz, Unmanned Aircraft Systems for Civilian Missions, ser.
BIGS policy paper: Brandenburgisches Institut fiir Gesellschaft und
Sicherheit. BIGS, 2012. [Online]. Available: http://books.google.se/
books?id=jQVPmwEACAAJ

D. D. Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli, “Automatic
generation of detailed flight plans from high-level mission descriptions,”
in Proceedings of the ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems. ACM, 2016, pp.
45-55.

M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit,
and M. Y. Vardi, “Iterative temporal planning in uncertain environments
with partial satisfaction guarantees,” IEEE Transactions on Robotics,
vol. 32, no. 3, pp. 583-599, 2016.

R. G. Dromey, “From requirements to design: Formalizing the key
steps,” in Software Engineering and Formal Methods, 2003. Proceed-
ings. First International Conference on. 1EEE, 2003, pp. 2-11.

A. Bucchiarone, C. A. Mezzina, M. Pistore, H. Raik, and G. Valetto,
“Collective adaptation in process-based systems,” in Self-Adaptive and
Self-Organizing Systems (SASO), 2014 IEEE Eighth International Con-
ference on. 1EEE, 2014, pp. 151-156.

M. Colledanchise and P. Ogren, “How behavior trees modularize hybrid
control systems and generalize sequential behavior compositions, the
subsumption architecture, and decision trees,” IEEE Transactions on
Robotics, vol. 33, no. 2, pp. 372-389, 2017.

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41-50, 2003.

D. Bozhinoski, A. Bucchiarone, I. Malavolta, A. Marconi, and P. Pel-
liccione, “Leveraging collective run-time adaptation for uav-based sys-
tems,” in Software Engineering and Advanced Applications (SEAA),
2016 42th Euromicro Conference on. IEEE, 2016, pp. 214-221.

T. Bures, F. Krijt, F. Plasil, P. Hnetynka, and Z. Jiracek, “Towards
intelligent ensembles,” in Proceedings of the 2015 European Conference
on Software Architecture Workshops. ACM, 2015, p. 17.

“P language Manual.” [Online]. Available: https://github.com/p-org/P/
blob/master/Doc/Manual/pmanual.pdf

T. Andrews, S. Qadeer, S. Rajamani, J. Rehof, and Y. Xie, “Zing: A
model checker for concurrent software,” in Computer Aided Verification.
Springer, 2004, pp. 28-32.

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

20

P. R. Lewis, M. Platzner, B. Rinner, J. Tgrresen, and X. Yao, Self-Aware
Computing Systems. Springer, 2016.

M. Wirsing, M. Holzl, N. Koch, and P. Mayer, Software Engineering
for Collective Autonomic Systems: The ASCENS Approach. Springer,
2015, vol. 8998.

M. Garcia-Valls, D. Perez-Palacin, and R. Mirandola, “Pragmatic cyber-
physical systems design based on parametric models,” Journal of
Systems and Software, 2018.

M. M. Bersani and M. Garcia-Valls, “Online verification in cyber-
physical systems: Practical bounds for meaningful temporal costs,”
Journal of Software: Evolution and Process, vol. 30, no. 3, 2018.

G. Valls, I. R. Lépez, and L. F. Villar, “iland: An enhanced middleware
for real-time reconfiguration of service oriented distributed real-time
systems,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1,
pp. 228-236, 2013.

J. Panerati, F. Sironi, M. Carminati, M. Maggio, G. Beltrame, P. J.
Gmytrasiewicz, D. Sciuto, and M. D. Santambrogio, “On self-adaptive

resource allocation through reinforcement learning,” in Adaptive Hard-
ware and Systems (AHS), 2013 NASA/ESA Conference on. 1EEE, 2013,

pp. 23-30.

Y. Cui, R. M. Voyles, J. T. Lane, and M. H. Mahoor, “Refresh: A
self-adaptation framework to support fault tolerance in field mobile
robots,” in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on. 1EEE, 2014, pp. 1576-1582.

L. E. Parker, “Alliance: An architecture for fault tolerant multirobot
cooperation,” IEEE transactions on robotics and automation, vol. 14,
no. 2, pp. 220-240, 1998.

M. G. Morais, F. R. Meneguzzi, R. H. Bordini, and A. M. Amory,
“Distributed fault diagnosis for multiple mobile robots using an agent
programming language,” in Advanced Robotics (ICAR), 2015 Interna-
tional Conference on. 1EEE, 2015, pp. 395-400.

M. T. Khan, M. Qadir, F. Nasir, and C. de Silva, “A framework for a
fault tolerant multi-robot system,” in Computer Science & Education
(ICCSE), 2015 10th International Conference on. 1EEE, 2015, pp.
197-201.

E. Castello, T. Yamamoto, F. Dalla Libera, W. Liu, A. F. Winfield,
Y. Nakamura, and H. Ishiguro, “Adaptive foraging for simulated and real
robotic swarms: the dynamical response threshold approach,” Swarm
Intelligence, vol. 10, no. 1, pp. 1-31, 2016.

A. Desai, I. Saha, J. Yang, S. Qadeer, and S. A. Seshia, “Drona: a
framework for safe distributed mobile robotics,” in Proceedings of the
8th International Conference on Cyber-Physical Systems. ACM, 2017,
pp- 239-248.

Y. A. Alrahman, R. De Nicola, and M. Loreti, “On the power of
attribute-based communication,” in International Conference on For-
mal Techniques for Distributed Objects, Components, and Systems.
Springer, 2016, pp. 1-18.

