
Notes on the Estimation of the Expected

Performance of Automatic Methods

for the Design of Control Software

for Robot Swarms

Mauro Birattari

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2020-010

June 2020



IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2020-010

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.



Notes on the estimation of the expected
performance of automatic methods for the
design of control software for robot swarms

Mauro Birattari
IRIDIA, Université libre de Bruxelles, Belgium

June 2020

The goal of this short document is to sketch some ideas that I plan on developing
formally in a forthcoming publication. I focus here on the automatic design
of robot swarms and, specifically, on the empirical assessment of automatic
design methods. For an introduction to swarm robotics, I would refer the reader
to Dorigo, Birattari, and Brambilla (2014); for a review of the literature, to
Brambilla et al. (2013) and to Garattoni and Birattari (2016); for a discussion on
the automatic design of robot swarms and for a sketch of the domain literature,
to Francesca and Birattari (2016) and to Birattari et al. (2019).

In this document, I consider the case in which a mission is given and one
wishes to estimate the expected performance of an automatic method for the
optimization-based design of the control software of a robot swarm that is
deemed to perform the given mission. The performance that one would observe
is a stochastic variable and therefore estimating its expectation is a reasonable
goal. The expectation should be computed with respect to all the sources of
randomness involved in the process. The sources of randomness are the follow-
ing:

The realization of the design process: the design process is stochastic in
nature. If it is performed multiple times, it will (likely) produce different
instances of control software.

The realization of the execution: the performance of a given instance of
control software is clearly a stochastic quantity. If the same instance of
control software is executed multiple times, the performance observed will
(likely) vary.

Having stated this, it is clear that, if one runs the automatic design method
once on the given mission, and then executes once the control software gener-
ated by the automatic design method, the performance observed is an unbiased
estimation of the expected performance of the design method at hand on the
given mission. It is also clear that such an estimation based on a single run of
the design process and a single execution will have a (possibly) high variance.
It is legitimate to consider such an estimation as poor and unsatisfactory.

The widely accepted practice is to observe the performance over multiple
runs (of the design process and/or of the generated control software) and report

1



the average. Other statistics can be considered and might be even more ap-
propriate under some circumstances. In the following, we will assume that the
expected value of the performance is the quantity that one wishes to estimate,
and we will therefore focus on the average as a relevant statistic.

Taking for granted that multiple runs are needed to reduce the variance,
the questions that arise are: How many design processes should one run on the
given mission? How many times should one then execute each of the instances of
control software produced? The obvious answer would be: the more the better!
Indeed, by increasing indefinitely the number of design processes performed
and the number of evaluations of each instance of control software generated,
the variance of the estimation would converge to zero. In practice, one has
typically (if not always) to face practical constraints that limit the number of
experiments that can be performed. Indeed, running experiments with robots
is time consuming and could demand a large amount of resources.

It is realistic to assume that an upper bound N is given on the number of
execution, that is, the number of experiments that one can run with the robots.
It is also realistic to assume that the number of execution is the real bottleneck
in terms of resources demanded. Indeed, running experiments with the robots
is a labor-intensive activity and the really expensive and time-consuming part
in the research on the automatic design of control software for robot swarms.
On the other hand, the design process is fully automatic and multiple processes
can run in parallel on a high-performance computing cluster. We can assume
that the cost (in abstract terms: time and resources) of running a design pro-
cess is negligible compared to the one of running robot experiments. We also
assume that, before running a design process on the given mission, we do not
have any prior information 1. on how well the control software we can generate
automatically will perform and 2. on what will be the variance of the perfor-
mance. An experimental design for estimating the expected performance of a
design method on a given mission, with the constraint that a maximum number
N of executions can be performed, can be formally described by a pair 〈d, n〉,
with d · n ≤ N : the expected performance is estimated on the basis of d design
processes (to generate d instances of control software) and n executions of each
of the d instances of control software generated.

It has to be noticed that any pair 〈d, n〉 yields an unbiased estimate of the
expected performance. Yet, different pairs might differ for what concerns the
variance of the estimate they yield.

THEOREM. Under the assumptions made above, given that a maximum num-
ber N of executions can be performed, the experimental design described by the
pair 〈d, n〉, with d = N , and n = 1, is the one that minimizes the variance of
the estimate.

A proof will be provided in a future publication. It will be formally identical to
the one I previously provided for a very similar (formally identical) estimation
problem that emerges in the assessment of heuristic algorithms for combinatorial
optimization (Birattari, 2004; Birattari, 2009). Also in that case, the expected
value of a quantity has to be estimated empirically and the expectation has
to be computed with respect to two probability measures, which describe two
sources of uncertainties. For the time being, I refer the interested reader to the

2



aforementioned original publications to gain an insight in the structure of the
proof.

The same conclusion that the pair 〈N, 1〉 is the one that minimizes the
variance is relevant also in the case one wishes to compare the expected perfor-
mance of two design methods—the reasoning can be generalized to more than
two design methods, as well. When two methods are considered, the reasoning
presented above applies to the estimation of the expected value of the difference
between the performance of the control software produced by the two methods
under analysis.

It should be noticed that, in the setting described above, the naive approach
that is often adopted and that consists in running multiple executions of the
same instance of control software hides some catches that could lead to mislead-
ing results. In particular, it could lead to wrong conclusions when two (or more)
design methods are compared. By taking n� 1, one runs the risk of undersam-
pling the space of the realizations of the design processes and oversampling the
one of the executions. Let us consider the comparison of two design methods, A
and B. Let us make the hypothesis that, on the mission at hand, the expected
performance of A is better than the one of B. Let us also make the hypothesis
that some realizations of the design process of B produce an instance of control
software that performs better than the one produced by some realizations of
the design process of A. This is perfectly possible, and typically very likely,
as the variance involved in an automatic design process is often quite large. If
the experimental design adopted undersamples the space of the realizations of
the design processes so as to allow multiple execution of the same instances of
control software, the risk exists that the sample over-represents the realizations
of the design process that are favorable to B. If this happens, as n� 1, the risk
exists that the observed performance difference, which will be wrongly in favor
of B, is eventually statistically significant. By undersampling the space of the
realizations of the design processes and oversampling the one of the executions,
the confidence level imposed does not apply anymore to the overall estimation of
the differences but rather to the performance of the specific instances of control
software produced by the few realizations of the design processes that have been
sampled.

The above reasoning could possibly appear clearer if we push things to the
extreme. Let us sample a single realization of the design processes (d = 1) and
use all the N evaluations available to test the single pair of instance of control
software obtained—one for A and one for B. The confidence level will refer to
the performance difference of the specific instances of control software produced
by the single realization of the design processes sampled for A and B—rather
than to the expected performance difference between A and B across all possible
realizations of their respective design processes, as we intend. If we happen to
sample a pair of realizations of the design processes (one for A and one for B)
for which the instance of control software produced by B performs better than
the one produced by A, we will observe a performance difference that is in favor
of B. If N is sufficiently large, the difference will be statistically significant and
we will wrongly conclude that B is better than A. Clearly, this does not extend
to the whole set of realizations of the design processes. The result obtained will
be wrong (at least with respect to the estimation we intend to perform), even if
statistical significance is detected. If d = N (and consequently n = 1), the issue
does not arise and the confidence level applies indeed to the significance of the

3



difference across the whole set of possible realizations of the design processes
of A and B. In this case, if statistical significance is detected, the conclusion
to which we get is correct—within the margins of the confidence level, as usual
when we perform a statistical test of significance.

To conclude, under the assumptions stated in the document, the experimen-
tal design that minimizes the variance of the estimation is the one in which the
largest possible number of missions is considered, and in which therefore each
instance of control software produced is tested only once. Future work will be
devoted to elaborating the ideas sketched here and to providing formal proofs.

Acknowledgements
I have received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 681872). I also acknowledges support from the Belgian Fonds de
la Recherche Scientifique–FNRS, of which I am a Research Director.

References
Birattari, Mauro (2004). On the estimation of the expected performance of a

metaheuristic on a class of instances. How many instances, how many runs?
Tech. rep. TR/IRIDIA/2004-01. Belgium: IRIDIA, Université libre de Brux-
elles.

Birattari, Mauro (2009). Tuning Metaheuristics: A Machine Learning Perspec-
tive. Berlin, Germany: Springer.

Birattari, Mauro, Antoine Ligot, Darko Bozhinoski, Manuele Brambilla, Gian-
piero Francesca, Lorenzo Garattoni, David Garzón Ramos, Ken Hasselmann,
Miquel Kegeleirs, Jonas Kuckling, Federico Pagnozzi, Andrea Roli, Muham-
mad Salman, and Thomas Stützle (2019). “Automatic off-line design of robot
swarms: a manifesto”. In: Front. Robot. AI 6.59, pp. 1–6.

Brambilla, Manuele, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo (2013).
“Swarm robotics: a review from the swarm engineering perspective”. In:
Swarm Intell. 7.1, pp. 1–41.

Dorigo, Marco, Mauro Birattari, and Manuele Brambilla (2014). “Swarm robotics”.
In: Scholarpedia 9.1, p. 1463.

Francesca, Gianpiero and Mauro Birattari (2016). “Automatic design of robot
swarms: achievements and challenges”. In: Front. Robot. AI 3.29, pp. 1–9.

Garattoni, Lorenzo and Mauro Birattari (2016). “Swarm robotics”. In: Wiley
Encyclopedia of Electrical and Electronics Engineering. Ed. by J.G. Webster.
Hoboken NJ: John Wiley & Sons.

4


