This document is a pre-print of an article available on
ScienceDirect. The final authenticated version is available
online at: https://doi.org/10.1016/j.0hx.2018.e00050

Title: An open-source multi-robot construction system

Authors: Michael Allwright, Weixu Zhu, and Marco Dorigo

Affiliations: Université libre de Bruxelles

Contact email: michael.allwright@ulb.ac.be

Abstract: We describe a completely open source system for performing experiments in multi-robot
construction in laboratory settings. The system consists of robots that are capable of assembling
cubic blocks into structures, which can be up to three blocks in height. The building material
contains microcontrollers and multi-color light-emitting diodes (LEDs) that can be programmed
by the robots using a near-field communication (NFC) interface. This mechanism is implemented
to facilitate experiments where the intelligence that coordinates the construction can be embedded
not only in the robots but also in the building material.

Keywords: robotics; construction; open-source hardware; multi-robot system

Specifications table:

Hardware name

SRoCS (Swarm Robotics Construction System)

Subject area

Engineering and Material Science

Hardware type

Electrical engineering and computer science

Open-source licenses

Hardware and high-level software: MIT License
Microcontroller firmware: GNU LGPL 2.1
Linux kernel modules: GNU GPL 2

Cost of hardware

36,500.00 EUR (5 Robots, 50 Blocks)

Project repository

https://osf.io/spfx7/



https://doi.org/10.1016/j.ohx.2018.e00050

1. Hardware in context

We present the hardware of our open-source robotics construction system for experiments in multi-
robot construction, which we call: SRoCS (Swarm Robotics Construction System). We have de-
signed SRoCS as a research tool for studying how swarms of robots [6] can be programmed to
assemble structures collectively. The system is designed to operate in laboratory settings and con-
sists of two components, a building material and a mobile robot capable of assembling that building
material into structures.

We have designed the system to study the behavior and coordination mechanisms used by social
insects during the construction of their nests. An example of such behavior is exhibited by social
wasps, which coordinate the construction of their nest by changing the shape of combs as they are
built [8]. A further example is exhibited by termites, which coordinate the construction of their
nest’s royal chamber by using pheromones to mark soil pellets [4]. Construction by social insects
has been shown to be robust, parallel, and adaptive to the environment in which it is situated [3, 5].

To simulate the coordination mechanisms used by social insects in our system, we have implemented
an advanced building material that we call the Stigmergic Blocks. The Stigmergic Blocks contain
multi-color light-emitting diodes (LEDs) that can be configured using near-field communication
(NFC) by the robots. We have shown in previous work that this functionality of our hardware
makes it possible to assemble a target structure by encoding the building process in terms of
the structural arrangement and LED colors at the intermediate stages of the target structure’s
construction [1].

The presented system has been designed to study how structures can be assembled by swarms of
robots. As such, our experimental focus is on developing reactive, decentralized control algorithms
for construction. The robots are designed to perform the necessary computer vision on-board.
While it is possible to enhance the capabilities of the system by giving the robots access to global
sensory and computational resources (for example, an overhead camera system or a remote server
for offloading image processing), such configurations are beyond the scope of our experimental focus
and have not been tested.

This article provides a description of SRoCS and the instructions to assemble, program, and per-
form experiments using the hardware. The hardware components of our system are available under
an MIT license and are hosted as part of a project on the Open Science Framework. The micro-
controller firmware for our system is available under an LGPL license and the drivers for the Linux
operating system on the robot are available under a GPL license.

2. Hardware description

The SRoCS system consists of two components, a mobile robot called BuilderBot and a building
material called the Stigmergic Blocks. BuilderBot evolved from an extension to the BeBot mobile
robotics platform [7]. In contrast to BeBot, however, BuilderBot is completely open-source and
can be assembled using 3D printed parts and off-the-shelf components. At the time of writing,
the presented hardware is the first completely open-source platform for performing research in
autonomous construction. In the following sections, we describe the electronics, mechanical design,
and software of BuilderBot and of the Stigmergic Block.



Fig. 1: A structure built from Stigmergic Blocks

2.1 Stigmergic Block

A Stigmergic Block is an advanced cubic building material capable of computation, data storage,
and communication (Fig. 1). The block supports three types of communication: (i) robot-to-
block and block-to-block communication using a near field communication (NFC) interface, (ii)
block-to-robot communication from a block’s LEDs to a robot’s camera and (iii) block-to-robot,
robot-to-block, and block-to-block communication using an optional Xbee module. An AprilTag is
attached to each face of a Stigmergic Block, enabling a robot to reliably estimate its pose relative
to a block using a tag detection algorithm [9]. A freely-rotating, spherical magnet is located in
each corner of a block to enable self-alignment and to reduce cumulative misalignment during
experiments. These spherical magnets also increase the structural integrity of the structure being
built.

In addition to being used with the BuilderBot as a building material, the Stigmergic Blocks could
be a useful tool for investigating and running experiments with smart structures. Such structures
could be made up of a number of Stigmergic Blocks and could route information between them
using their NFC interfaces. For example, the blocks could be used to visualize and validate routing
algorithms in an interactive, physical system, where the nodes in a network can be added and
removed by hand.

2.1.1 Electronics

Each Stigmergic Block contains a central circuit board and six face circuit boards. An ATMega328P
microcontroller for running a block’s software is mounted on the central circuit board and enables
computation, data storage (using the SRAM, EEPROM, or Flash), and communication (using
the LEDs, NFC transceiver, or Xbee module). A single USB connection provides a power source
for recharging a lithium-ion battery, an interface for reprogramming the microcontroller, and an
interface for debugging a block’s software.

A push button is located near the USB port to switch the system’s power on and off. The system’s



( USB port Top face port J

Socket for
Xbee module

( Microcontroller

[ Side face port

Magnet container J

Bottom face port J

{ Spherical magnet J

Fig. 2: Internal view of a Stigmergic Block

power is provided via two regulators. The first regulator provides 3.3 volts for the control circuitry,
while the second regulator provides 5 volts for the LEDs on the face circuit boards.

We provide a socket for an Xbee wireless module on the central circuit board. The purpose of this
wireless module is primarily to enable remote debugging and monitoring of a block. However, it is
also possible to realize block-to-block and block-to-robot communication using this module. The
Xbee module connects to the microcontroller using an emulated serial port, which is implemented
using the microcontroller’s 16-bit timer.

Each face circuit board contains an NFC transceiver and an LED driver. The LED driver is used
to set the brightness of the red, blue, and green channels of four multi-color LEDs. These LEDs
can be detected by a BuilderBot’s camera. The central circuit board provides six connectors for
each of the face circuit boards. These connectors provide each face circuit board with power, an
interrupt line, and an I?C bus to control the LEDs and NFC transceiver.

2.1.2 Mechanical design

A Stigmergic Block is cubic in shape and has a side length of 55 millimeters. It is assembled from
circuit boards, spherical magnets, and covers that we print using selective laser sintering. As shown
in Fig. 3, we use three types of covers: a side cover, a top cover, and a bottom cover. We have
designed the side covers to be used in an alternating up and down configuration. The top and bot-
tom covers have their side cover slots and receptacles at different orientations to accommodate the
up and down configuration of the side covers. The side covers contain printed springs, which have
been orientated so that the adjacent side covers are held in place with tension. This configuration
provides structural integrity while allowing the top and bottom covers to be easily removed.



LED hole

—

Support for face
circuit board

J

\

Clip for face
circuit board

J

N\

LED hole

LED hole

—

Support for face
circuit board

J

\

Clip for face
circuit board

J

\

Top or
bottom tab

J

(a) Top cover

(b) Bottom cover

Receptacle ]

for side cover

e

power switch

Access to J

Side cover slot J

Tabs to hold
magnets in place

—

Magnet inset J

-

(c) Side cover

Tension springs

for adjacent
side covers

Fig. 3: Mechanical design of the top, bottom, and side covers of a Stigmergic Block



The top and bottom covers both contain four small insets for four spherical neodymium magnets.
These magnets are held in place using small tabs on the sides of each inset, which allow a magnet
to be held in position while remaining free to rotate. These magnets cause adjacent blocks to
self-align and increase the strength of a structure built from the blocks. The top cover contains a
small hole located above the power and reset switch on the central circuit board. This hole allows
the block to be turned on and off using a small screwdriver.

2.1.3 Software

The microcontroller on the central circuit board contains 32 kilobytes of flash memory, 2 kilobytes
of SRAM, and one kilobyte of EEPROM. The flash memory is partitioned to include the Optiboot
bootloader, which enables the reprogramming of the microcontroller using the USB connection.
The firmware for the Stigmergic Block is written in C++ and is derived from the Arduino AVR
core library. The firmware starts by initializing the LED and NFC controllers, before entering an
infinite loop where the block waits for an NFC message from a BuilderBot. When a message is
received, it is used to configure the colors of the LEDs on a block.

At the time of writing, the firmware is relatively simple with respect to the potential functionality of
a Stigmergic Block. To this end, we are currently investigating algorithms that use block-to-block
communication to route messages through a structure. By enabling the routing of messages through
the structure, we can investigate construction scenarios where the intelligence that coordinates the
assembly process may be embedded not only in the robots but also in the building material itself.

2.2 BuilderBot

The BuilderBot evolved from our extension to the BeBot, a miniature mobile robotics platform [7].
The BuilderBot is powered by a dual-core processor from Texas Instruments which has access to
1 gigabyte of RAM and is clocked at 1 gigahertz. The BuilderBot moves around its environment
using a differential drive and uses twelve rangefinders to avoid obstacles. LEDs in the base of the
BuilderBot can be used for low-bandwidth communication with other robots and to provide visual
feedback to human operators. An Omnivision camera is used to capture the scene in front of the
robot.

A manipulator for assembling the Stigmergic Blocks into structures controls the vertical position
of an end effector. This end effector is equipped with four semi-permanent electromagnets, which
couple with the spherical magnets inside a Stigmergic Block to pick it up and to hold it in place
during transport. By sending a pulse of current to the semi-permanent electromagnets, the strength
of the magnetic field is either increased or decreased, improving alignment while picking up a block
or detachment of a block respectively.

To locate the Stigmergic Blocks, the end effector is equipped with four rangefinders and a camera.
We have mounted the camera at an angle of 45 degrees from the horizontal. This angle provides
a compromise between enabling the BuilderBot to track a Stigmergic Block at a distance and to
track a block as it is being approached. When the end effector is positioned at its maximum height
from the ground (3.5 blocks, or 19.25 centimeters), the camera can see blocks on the ground up
to approximately 35 centimeters away from the center of the robot. When the end effector is



Fig. 4: Computer vision hardware for the BuilderBot robot. (a) A module from Leopard Imaging
containing the OmniVision OV5640 image sensor. (b) A camera circuit board with an installed
module

positioned at its minimum height from the ground (1 block, or 5.5 centimeters), the blocks can
be tracked as they are approached and until they disappear underneath the end effector. At this
point, the rangefinders on the end effector are used to perform the final alignment with the block
prior to picking it up. The BuilderBot is capable of assembling structures up to three blocks in
height.

While we have designed the BuilderBot for experiments in construction where the control software
is autonomous, decentralized, and reactive, it is possible to connect the BuilderBots to a wireless
network and to offload the required computer vision to a server. This server could gather data from
an overhead camera system and control the BuilderBots remotely in a centralized fashion.

2.2.1 Electronics

The BuilderBot electronics are implemented using six circuit boards: (i) the camera circuit board,
(ii) the microprocessor circuit board, (iii) the power circuit board, (iv) the interconnect circuit
board, (v) the manipulator circuit board, and (vi) the interface circuit board. When used together,
the microprocessor circuit board and power circuit board are also compatible with the BeBot mobile
robotics platform. In the remainder of this section, we detail the purpose and the functionality of
each of these circuit boards.

Camera circuit board The BuilderBot includes a dedicated circuit board which supports an
image sensor module from Leopard Imaging (Fig. 4). This image sensor module is based on the
0OV5640 image sensor from OmniVision. The camera circuit board provides a 24 MHz clock signal
and a digital and analog power supply to the image sensor. We have mounted four white LEDs
around the image sensor to increase the illumination of the scene. The image sensor is controlled
over an I2C bus and its pixel data is routed to the microprocessor circuit board where it is captured
by a dedicated image sensor interface.



( DuoVero COM

—

UART port J

USB peripheral ) B (W
port

IR UART port J

SD card for
operating system

XBee module )

SD card for
acquired data

( USB Host port

—

( LEDs )

Fig. 5: The microprocessor circuit board for the mobile robotics platform

Microprocessor circuit board Fig. 5 shows the DuoVero COM attached to the microprocessor
circuit board. The DuoVero COM hosts the main microprocessor for the BuilderBot. This micro-
processor is an OMAP4460 from Texas Instruments, which runs Linux. The DuoVero COM also
provides WLAN and Bluetooth connectivity.

The microprocessor on the DuoVero COM includes two camera serial interface (CSI) ports, which
can simultaneously capture video. We have routed both of these ports to two custom connectors,
which can be connected to two of the aforementioned camera circuit boards. These connectors
are located on the bottom of the microprocessor circuit board near the cut out on the left-hand
side (see Fig. 5). Capturing images over CSI enables the use of the microprocessor’s dedicated
image processing hardware. This hardware can capture, scale, and compress the pixel data from a
connected camera.

We have added an SD card reader to the microprocessor circuit board to store data such as the
images captured by the BuilderBot’s camera. A USB port is also provided and can be used to
attach any standard USB device to the system.

The BuilderBot is designed to be connected to a PC via its micro-USB port. This port is routed
to an integrated USB hub, which provides a user with low-level access to the system’s bootloader
(via an onboard USB-to-serial converter) and high-level access to the Linux operating system
by emulating an Ethernet connection via USB On-The-Go (OTG). The integrated USB hub is
compliant with the USB battery charging specification, enabling the BuilderBot to draw current
from the USB connection in order to run its system or to charge its batteries. For debugging and
low-bandwidth communication, twelve multi-color LEDs are evenly spaced around the perimeter
of the microprocessor circuit board.

Interconnect circuit board The primary function of the interconnect circuit board is to connect
the microprocessor circuit board with the power circuit board. In addition to this interconnect, the
interconnect circuit board contains three four-port I?C multiplexers for connecting the rangefinders



( Switch

( DC socket

Accelerometer
and gyro

Charger status
LEDs

T Stiiiiie 206 o

( ID select f USB development J
elector

L ports

Fig. 6: The BuilderBot’s power circuit board

around the BuilderBot’s chassis to the microprocessor circuit board.

Power circuit board The power circuit board hosts two systems: the sensor-actuator system
and the power management system. Each system is controlled by an ATMega328P microcontroller.
The sensor-actuator system provides differential drive to the BuilderBot by implementing closed-
loop controllers for the left and right tracks. Shaft encoders in the motors enable the microcontroller
to report changes in the position of the wheels to the high-level software running on the BuilderBot.
The sensor-actuator system includes a digital gyroscope-accelerometer sensor.

The power management system is responsible for routing power and for recharging the BuilderBot’s
batteries. The power management is broken down into two domains: the system power domain
and the actuator power domain. Both of these power domains have their own battery and power
management integrated circuit (PMIC). External power can be applied to the system using either
the standard 5.5/2.1 millimeter power jack on the power circuit board or the micro-USB connector
on the microprocessor circuit board. The external power inputs are connected to the system PMIC,
which forwards power to the actuator PMIC when it is available. The firmware controlling the
routing of power is implemented on the power management system’s microcontroller. In addition to
routing the available power, the firmware also configures the USB hub on the microprocessor circuit
board and reads the result from the USB hub’s battery charger detection circuitry to determine
how much power can be sourced from the micro-USB connector.

Manipulator circuit board The manipulator adjusts the height of an attached Stigmergic
Block by raising and lowering its end effector. The height of the end effector is controlled using a
stepper motor. Two limit switches are used for calibration and to keep the end effector inside of its
operating range. Four semi-permanent electromagnets are located in the end effector, which couple
with the spherical magnets in a Stigmergic Block. Depending on the direction of a current applied



( USB connector ) { UART port J

( -
L Capacitors ]

Fig. 7: Manipulator circuit board

to the semi-permanent electromagnets, the magnetic field can be either strengthened or weakened.
This current is generated by precharging four 6.8 millifarad capacitors to 25 volts. The direction of
the current is controlled using an H-bridge. The BuilderBot strengthens the magnetic field during
block attachment. This strengthening of the field improves the alignment of the Stigmergic Block
during attachment to the end effector. The BuilderBot weakens the magnetic field so that a block
can detach from the end effector and become part of a structure.

The manipulator circuit board contains a microcontroller, which executes the manipulator’s soft-
ware and communicates with the BuilderBot’s microprocessor circuit board via a universal asyn-
chronous receiver-transmitter (UART). The manipulator circuit board has its own battery, which
is charged independently using its USB port.

Interface circuit board The interface circuit board contains an NFC transceiver for commu-
nicating with a Stigmergic Block. Two rangefinders are mounted directly on the interface circuit
board, which the BuilderBot uses for aligning with a block or with a structure. The interface
circuit board contains two connectors for two additional rangefinders which are connected to the
end effector. The peripherals on the interface circuit board are controlled by the microcontroller
on the manipulator circuit board.

2.3 Mechanical design

The BuilderBot contains two Faulhaber motor modules connected to a left and right track to form a
differential drive, allowing the robot to move around its environment. These motor modules contain
an inbuilt planetary gearbox and an encoder to provide feedback to the PID controller implemented
on the sensor-actuator system’s microcontroller. The motor modules, batteries, circuit boards,

10



Image sensor

—

Camera circuit
board

Electromagnet
Rangefinders }
Interface circuit
N board
NFC antenna J

Fig. 8: Interface circuit board of the manipulator attached to the end-effector

11



cables, and sensors are all attached to the BuilderBot’s chassis which is assembled from 3D printed
parts.

Following the diagram in Fig. 9, a stepper motor is used to drive the two lower sprockets via a
pinion and worm gear. These sprockets are connected to chains that pull the end effector up and
down. A counterweight is connected to each chain to offset the weight of the end effector and limit
the load on the stepper motor. Limit switches are used to detect if the end effector is moving out of
its operating range. The end effector contains four semi-permanent electromagnets which are used
to pick up the Stigmergic Blocks. The BuilderBot is 38 centimeters tall and has a square footprint
of 14 cm x 14 cm.

2.3.1 Software

We describe in this section the software for the BuilderBot. There are three layers to this software.
The first layer is the firmware that runs on the BuilderBot’s microcontrollers. The second layer
involves the kernel modules that make the BuilderBot’s sensors and actuators available to the Linux
kernel. Finally, the third layer is the high-level software and libraries that enable an end user to
write software that controls the BuilderBot’s behavior.

Microcontroller firmware Besides the microprocessor running the Linux operating system,
the BuilderBot contains three microcontrollers. These microcontrollers communicate with the
microprocessor using a command-based interface. The commands can set the speed or the position
of a motor, request readings from remote sensors, and perform read/write operations from/to
remote devices attached to a microcontroller’s I2C bus. A valid command consists of two preamble
bytes, the command identifier, the length of the packet, the packet’s payload, a checksum, and
two postamble bytes. Fig. 10 shows an example command, which queries the battery voltage of a
battery connected to a remote microcontroller.

Linux operating system and drivers The BuilderBot microprocessor runs a custom variant of
Linux which is built using the Yocto build system®. A configuration layer for the BuilderBot (called
meta-builderbot) is provided with the project and can be used to quickly build and customize the
operating system. The Yocto build system describes a target system in terms of configuration
layers. These configuration layers contain scripts called recipes, which instruct the build system to
fetch, patch, configure, compile, and install software for the target system.

The interfaces to the microcontroller are implemented as external, loadable kernel modules. These
kernel modules are instantiated and configured using a device tree which is included in the Linux
kernel recipe. From the perspective of the Linux operating system, each microcontroller is rep-
resented as a multi-function device which is connected to the processor using a serial device bus.
Each multi-function device hosts several child devices which send commands over the serial device
bus and are executed by the microcontroller’s firmware. These child devices are all implemented
using the standard subsystems available to the Linux operating system. For example, the drivers
for the BuilderBot’s sensors and actuators are realized using the Industrial I/O (IIO) subsystem
and video capture is supported using the Video for Linux 2 (V4L2) subsystem.

Yocto Project: www.yoctoproject.org/

12



Counterweights ]

Chains ]

S S R NN R e

v Vv @ Vv Y-

( Slider rail

( Slider

a 'k

( End effector Stepper motor }

e N
Microprocessor and
power circuit

[ Camera circuit
board enclosure

board holder

[ Motor, sprocket & )
track assembly

[ Electromagnets

Interface circuit
board holder J

Fig. 9: Mechanical components of the BuilderBot

13



FO CA 01 00 00 23 OF

L———— Preamble —— b— Type — L— Length — '~ Checksum — “—— Postamble ———

Fig. 10: A packet for requesting the battery voltage using the command-based interface

Several patches in the meta-builderbot layer have been applied to the Linux kernel to support
upstream features that have not yet been merged into the Linux mainline. For example, we have
patched the kernel to include support for low-speed I10 output buffers, which are used to control the
BuilderBot’s actuators. Without these patches, some of the BuilderBot’s drivers will not compile.

Userspace libraries and applications The system image for the BuilderBot comes with three
libraries for (i) detecting tags, (ii) interfacing with the ITO subsystem, and (iii) interfacing with the
V4L2 subsystem. Yavta, a userspace application for testing the V4L2 subsystem, is also included
and can be used for capturing frames from the BuilderBot’s camera.

To control the behavior of the BuilderBot, we use an executable based on the libraries of ARGoS,
a multi-robot simulator [10]. This executable initializes the BuilderBot’s sensors and actuators and
enables a user to control the behavior of the BuilderBot using a Lua interface. This design choice
simplifies the writing of control software for the BuilderBot since the recompilation and redeploying
of binaries and libraries is not necessary. The Lua scripts for the control software can be directly
edited and run on the BuilderBot.

3. Design files

The following tables in this section provide a summary of the design files required to manufacture
the presented hardware. The 3D printed parts were designed using FreeCAD 0.17-7 and the circuit
boards were designed using Altium Designer 14. The interconnect circuit board was developed
more recently than the other circuit boards and was designed in KiCad 5.0, an open source EDA.

For each circuit board, we provide an archive that contains the complete project in addition to a
PDF document for use as a quick reference for checking the functionality and layout of the circuit
boards. For the 3D printed parts, we provide a FreeCAD part document for editing purposes and
an STL file for submission to a rapid prototyping facility.

The design files for the Stigmergic Block are summarized in Table 1 and the design files for the
BuilderBot are summarized in Table 2.

4. Bill of materials

The bill of materials for this project is split into two spreadsheets which are located in the project’s
repository on the Open Science Foundation’s website. Due to the amount of information involved
in detailing the individual components for each of the eight circuit boards, we have decided to

14



Table 1: Design file summary for the Stigmergic Block

Design file name File type License | Location
Electronics / FaceBoard.zip Altium MIT $:OSF
DeSigner Download
The project for the face circuit board. This circuit board contains the LEDs | Project EWIERD
and NFC transceivers for the Stigmergic Block.
Electronics / MainBoard.zip Altium MIT $3OSF
Designer Download
The project for the main circuit board. The main circuit board provides Project ViSWIPDF
power management and contains the microcontroller that runs a Stigmergic
Block’s software.
Mechanical Design / BottomFace.FCStd FreeCAD | MIT $#:OSF
Part Download
The 3D model of the bottom cover of the Stigmergic Block. Ve
Mechanical Design / SideFace.FCStd FreeCAD | MIT $:OSF
Part Download
The 3D model of the side cover of the Stigmergic Block. ETIST
Mechanical Design / TopFace.FCStd FreeCAD MIT $:OSF
Part Download
The 3D model of the top cover of the Stigmergic Block. IS
Software / Firmware.tar.gz CH++ LGPL $:OSF
Source Download
The bootloader and firmware for the Stigmergic Block (based on the Code

Arduino core library for AVR microcontrollers).

15




Table 2: Design file summary for the BuilderBot

Design file name File type License | Location

Electronics / CameraBoard.zip Altium MIT $:OSF
DeSigner Download

The project for the camera circuit board, which provides power and control Project EWIESD

signals for the OV5640 image sensor module.

Electronics / InterconnectBoard.zip KiCad MIT $3OSF
Project Download

The project for the interconnect circuit board, which connects the power ViSWIPDF

circuit board to the microprocessor circuit board. This board also connects

the microprocessor board to the rangefinders around the chassis.

Electronics / InterfaceBoard.zip Altium MIT $#:OSF
Designer Download

The project for the interface circuit board, which contains the NFC Project o O

transceiver that communicates with the Stigmergic Blocks.

Electronics / ManipulatorBoard.zip Altium MIT $:OSF
DeSigner Download

The project for the manipulator circuit board, which controls the lift Project EWIERD

actuator system.

Electronics / MicroprocessorBoard.zip Altium MIT $2OSF
DeSigner Download

The project for the microprocessor circuit board, which hosts the DuoVero Project VisWIPDF

COM. The DuoVero COM is a single board computer that runs Linux.

Electronics / PowerBoard.zip Altium MIT $3OSF
Designer Download

The project for the power circuit board, which manages the BuilderBot’s Project View PDF

system and actuator power supplies.

Mechanical Design / BaseLowerChassis.FCStd FreeCAD MIT $3OSF
Part Download

The 3D model for the base lower chassis, which supports the motors and has T

a cut out for the system battery.

Mechanical Design / BaseShaftCoupler. FCStd FreeCAD MIT $#:OSF
Part Download

The 3D model for the base shaft coupler, which connects the stepper motor IS

to the shafts that move the manipulator.

Mechanical Design / BaseShaftSpacer. FCStd FreeCAD MIT $2OSF
Part Download

The 3D model for the base shaft spacer, which maintains the correct IS

distance between the gears, the pinion, and the worm gear.

16




Table 2: Design file summary for the BuilderBot (continued)

Design file name File type License | Location

Mechanical Design / BaseTrackHolder. FCStd FreeCAD MIT $3OSF
Part Download

The 3D model for the base track holder, which holds the sprockets and e

tracks for the differential drive in place.

Mechanical Design / BaseUpperChassis.FCStd FreeCAD MIT $:OSF
Part Download

The 3D model for the base upper chassis, which contains the supports for IS

the interconnect, power, and microprocessor circuit boards.

Mechanical Design / CameraChassis.FCStd FreeCAD | MIT $:OSF
Part Download

The 3D model for the camera chassis, which facilitates the attachment of the IS

camera circuit board to the lift actuator’s manipulator.

Mechanical Design / Counterweight Cover.FCStd FreeCAD | MIT $:OSF
Part Download

The 3D model for the counterweight covers, which keep the lead View STL

counterweights in place and which connect to the chains.

Mechanical Design / CounterweightHolder.FCStd FreeCAD MIT $:OSF
Part Download

The 3D model for the counterweight holders, which hold the lead ViewIST!

counterweights and which are connected to the counterweight covers.

Mechanical Design / Lift ActuatorBase. FCStd FreeCAD MIT $+OSF
Part Download

The 3D model for the lift actuator base, which encloses the base of the robot T

and which provides a platform to which the lift actuator columns are

attached.

Mechanical Design / Lift ActuatorBracket.FCStd FreeCAD MIT $:OSF
Part Download

The 3D model for the lift actuator bracket, which fixes the slider rail to the T

lift actuator columns.

Mechanical Design / Lift ActuatorColumnLowerLeft. FCStd FreeCAD | MIT $3OSF
Part Download

The 3D model for the lift actuator lower left column. This part contains a IS

support for the lower limit switch.

Mechanical Design / Lift ActuatorColumnLowerRight.FCStd FreeCAD | MIT £3OSF
Part Download

The 3D model for the lift actuator lower right column. This part contains View STL

the battery holder for the manipulator circuit board.

17




Table 2: Design file summary for the BuilderBot (continued)

Design file name File type License | Location

Mechanical Design / Lift ActuatorColumnUpperLeft. FCStd FreeCAD MIT $:OSF
Part Download

The 3D model for the lift actuator upper left column. This part contains IS

asupport for the upper limit switch.

Mechanical Design / Lift ActuatorColumnUpperRight.FCStd FreeCAD | MIT $:OSF
Part Download

The 3D model for the lift actuator upper right column. TETE

Mechanical Design / Lift ActuatorCover.FCStd FreeCAD | MIT £3OSF
Part Download

The 3D model for the lift actuator cover, which keeps the two upper lift ViswISTE

actuator upper columns aligned with each other.

Mechanical Design / Lift ActuatorManipulator. FCStd FreeCAD MIT £3OSF
Part Download

The 3D model for the lift actuator manipulator, which enables the robot to T

interact with the Stigmergic Blocks. This part contains supports for the

camera module, the electromagnets, and the interface circuit board.

Mechanical Design / Lift ActuatorShaftCover. FCStd FreeCAD | MIT $3OSF
Part Download

The 3D model for the lift actuator shaft covers, which hold the lift ERIST

actuator’s shafts in place.

Software / SystemImage.tar.gz Yocto MIT $:OSF
Layer Download

This archive contains a layer for the Yocto build system for the BuilderBot.

Software / Firmware.tar.gz C++ LGPL $2OSF
Source Download

This archive contains the bootloader and firmware for the BuilderBot’s Code

microcontrollers. The code is based on Arduino’s core libraries for AVR,

microcontrollers.

18




list each circuit board as a single item on the bill of materials. The cost of these items includes
manufacturing the boards, ordering the components, and having the boards assembled. To this
end, a user of the project repository needs to generate a detailed bill of materials for the individual
circuit boards using either Altium Designer or KiCad. This solution is practical since fabricators
and board assemblers may use their own spreadsheets which can be automatically populated using
EDA software. The following links are to the online spreadsheets for the Stigmergic Block and for
the BuilderBot.

File Format OSF Link
Bill of materials for the Stigmergic Block | Open Document Spreadsheet https://osf.io/pzhgn/
Bill of materials for the BuilderBot Open Document Spreadsheet https://osf.io/svb58/

5. Build instructions

Due to the large number of steps required to assemble the hardware, we have opted to present this
content in the form of two detailed videos that describe the assembly process in its entirety. The
videos are located in the project’s repository on the Open Science Foundation’s website. Please use
the following links to download and to view these videos.

File Format OSF Link

Assembly instructions for the Stigmergic | MP4 (H.264) https://osf.io/kb3g6/
Block

Assembly instructions for the BuilderBot | MP4 (H.264) https://osf.io/8bkjn/

6. Operation instructions

In this section, we discuss how to operate the hardware. At the time of writing, snapshots of the
firmware, configuration files, and high-level software have been stored in the project’s repository on
the Open Science Foundation’s website. These snapshots are the versions of the software referred
to in this article. More recent versions of this software may be found in the GitHub repositories
listed in Table 3. The versions from these repositories, however, may be in development or may
contain changes that are incompatible with the other software components.

The following discussion describes how to download, compile, install, and interact with the boot-
loaders and the firmware, how to prepare a system image, and how to run some examples routines
with the hardware.

6.1 Installing the bootloaders and firmware

The circuit boards in the presented hardware are controlled using ATMega328P microcontrollers.
There is a single microcontroller in the Stigmergic Block and three microcontrollers in the Builder-
Bot. The bootloader and firmware for each of these microcontrollers is provided as a gzipped tarball
that is located in the project’s repository on the Open Science Foundation’s website. The archives

19



Table 3: GitHub Repositories for software components

Software component OSF Link GitHub Repository

Stigmergic Block https://osf.io/y5tj4 https://github.com/allsey87/stigmergic-block-
firmware and firmware

bootloader

BuilderBot firmware https://osf.io/k6qh3 https://github.com/allsey87/builderbot-firmware
and bootloader

Yocto system image https://osf.io/s79wh https://github.com/allsey87/meta-builderbot
layer for the

BuilderBot

BuilderBot plug-in for None — built automatically https://github.com/allsey87/argos3-builderbot
ARGoS 3 as part of the system image

Fig. 11: Installing the bootloader to the Stigmergic Block using avrdude and a Bus Pirate. A
custom cable connects the Bus Pirate to the ICSP (in-circuit serial programmer) port.

contain a folder for the bootloader and a folder for the firmware for each microcontroller. The
following instructions assume that you are using Linux and that you have installed avrdude and
the AVR versions of the binutils, gce, and libc packages. In this section, we describe the process
of installing the bootloader and firmware on a Stigmergic Block. This process, however, is also
applicable to the three microcontrollers in the BuilderBot.

Before the firmware for a microcontroller can be downloaded over the USB port, the Optiboot
bootloader? must first be installed. There are two approaches to installing the bootloader. The
bootloader can either be given to a component distributor (for example, Digi-Key), who will pro-
gram the microcontrollers prior to shipping them or the bootloader can be manually installed to
the microcontroller using avrdude and a Bus Pirate (see Fig. 11). In the remainder of this section,
we will describe the latter approach.

The bootloader/firmware archive for the Stigmergic Block can be downloaded, extracted, compiled,
and installed by issuing the following commands. We note at this point that in order to improve the
reliability of the serial connection, we have used a baud rate of 57600 throughout our code base.
In the following commands, references to ttyUSBX must be replaced by the tty that represents a

2Optiboot: https://github.com/optiboot/optiboot

20



Bus Pirate connected to the ICSP (in-circuit serial programmer) port on the main circuit board.

# create a new directory for working with the bootloader

mkdir workspace && cd workspace

# download and extract the bootloader/firmware archive

curl -L https://osf.io/ybtj4/download | tar xz

# compile the bootloader

make -C block/bootloader

# download the bootloader (change ttyUSBX to the tty for the bus pirate)

avrdude -c buspirate -p m328p -P /dev/ttyUSBX -U lock:w:0x3F:m -U lfuse:w:0xFF:m \

-U hfuse:w:0xDE:m -U efuse:w:0x05:m -U flash:w:block/bootloader/optiboot_atmega328.hex \
-U lock:w:0x0F:m

The above parameters to avrdude command have the following effects: (i) the flash memory for the
bootloader is unlocked, (ii) the microcontroller is configured to use an external clock and the size of
its bootloader is set, (iii) the bootloader is uploaded, and (iv) the flash memory for the bootloader
is locked. After the bootloader has been installed, it is possible to program the microcontroller and
to communicate with it using the USB port — the Bus Pirate is no longer required. The following
commands result in the firmware for the Stigmergic Block being compiled and installed over USB.
These commands assume that the current directory is where the previous commands were issued.

# compile the firmware for the Stigmergic Block

make -C block/firmware

# upload the firmware to the Stigmergic Block

# (change ttyUSBX to the tty for the Stigmergic Block’s USB connection)
avrdude -c arduino -p m328p -P /dev/ttyUSBX -b 57600 \

-U flash:w:block/firmware/build/firmware.hex

At the time of writing, the commands for the BuilderBot’s microcontrollers consist of a sequence
of bytes that include a preamble, a data payload, a checksum, and a postamble. This interface is
necessary to efficiently move multi-byte data between the microcontrollers and the Linux operating
system running on the BuilderBot.

The microcontroller on the Stigmergic Block, however, uses a character-based interface and can
be manipulated by issuing single character commands with a terminal emulation program such as
putty, minicom, or picocom. When connecting from these programs to the Stigmergic Block, keep
in mind that the baud rate is 57 600. Table 4 summarizes the character-based commands for the
Stigmergic Block. We note that if an Xbee wireless module is installed inside the block, the input
and output will be automatically redirected over this connection.

6.2 Preparing the system image

The system image is prepared using the Yocto build system. In order to use the Yocto build system,
you will need to install the packages listed in the Yocto Project Quick Build Manual.?

Building the system image involves compiling and preparing the Linux operating system, the drivers
for the BuilderBot, and its userspace tools and software. While the entire process is automatic,

3Yocto Project Quick Build Manual: https://www.yoctoproject.org/docs/2.5/brief-yoctoprojectqs/brief-
yoctoprojectgs.html

21



Table 4: Character-based commands for the Stigmergic Block

Command Expected response/behavior

a Reads the accelerometer and prints its output to the terminal.

b Reads the battery level and prints its value to the terminal.

1 Tests the LEDs by cycling through a pattern of colors.

p Prints the power status, that is, whether external power is being supplied and whether the

battery is charging.

r Performs a hard reset of the microcontroller.

t Sends an NFC message from the first connected port, where the order of the ports is: north,
east, south, west, top, bottom.

u Prints the up time of the microcontroller, that is, the number of miliseconds that the firmware
has been running.

0 Turns off the LEDs.

1-4 Sets the LEDs to one of four predefined colors which are the corners of (Y)UV color space.

it will require approximately 30 gigabytes of hard disk space and will take between 2-8 hours to
complete depending on the speed of the CPU and the speed of the internet connection. Issuing the
following commands will result in the Yocto layers being cloned from the project’s server, the layer
for the BuilderBot being downloaded and extracted, and the build process being started.

# clone the Yocto project repository and create a new branch based on tags/yocto-2.5
git clone git://git.yoctoproject.org/poky.git

cd poky

git checkout tags/yocto-2.5 -b my-yocto-2.5

# download and extract the system image layer for the BuilderBot

curl -L https://osf.io/s79wh/download | tar xz

# initialize the build directory

# this command will change the current directory to the build directory
TEMPLATECONF=meta-builderbot/conf source oe-init-build-env

# start the build process for the system image

bitbake console-image-builderbot

Once the system image has been built, it needs to be loaded onto a microSD card that can be
booted by the DuoVero COM. To prepare this microSD card, follow the instructions from the
Gumstix website for creating a bootable microSD card.*

At this point, the BuilderBot can be switched on. First, insert the microSD card that you have
prepared into the DuoVero COM. Second, attach a microUSB cable between the microprocessor
circuit board and the PC that you are using for development. Connect both batteries and press the
power on button (the upper push button on the power circuit board). Once the system power is
switched on, a ttyUSBX device will appear on the development PC, which enables interaction with
the U-Boot bootloader and with the Linux operating system. By default, the system is configured
with only the root user and with no password set. Once logged in, standard Linux tools and
configuration files can be used to set up networking using WLAN or USB On-The-Go.

‘https://wuw.gumstix.com/support/getting-started/create-bootable-microsd-card/

22



6.3 Running examples routines

The BuilderBot is controlled using an executable based on the libraries of ARGoS, a multi-robot
simulator [10]. This executable takes a configuration file as an argument which configures the
sensors and actuators and which in turn specifies a Lua controller that defines the BuilderBot’s
behavior. We have provided four example routines that are deployed automatically in the home
directory of the root user.

Routine Command Expected Behavior

Differential drive argos3 -c test_differential_drive.argos The BuilderBot will turn on the spot with
increasing velocity.

Electromagnets argos3 -c test_electromagnet_system.argos | Once the capacitors on the manipulator
circuit board are charged, the destructive
current will be routed to the electromag-
nets causing a Stigmergic Block to fall
free.

Lift System argos3 -c test_lift_system.argos The lift actuator will perform a self-
calibration routine before moving the ac-
tuator from its bottom position to its top
position and back.

Rangefinders argos3 -c test_rangefinders.argos This routine reads the values of all the
rangefinders and prints them to the con-
sole.

7. Validation and characterization

In this section, we specify the capabilities of the presented hardware. For high-level validation
purposes, we have prepared a video that demonstrates the key functionality of the hardware. In
addition to this video, the following subsections list the capabilities of the hardware and provide
its specifications.

File Format OSF Link

System verification video MP4 (H.264) https://osf.io/2ujc4/

7.1 Stigmergic Block

The Stigmergic Block is capable of communicating via its LEDs, its NFC transceiver, and an
optional Xbee module. Each red, blue, and green channel of each LED on the Stigmergic Block
can be set independently with 8-bits of resolution between off and fully on. The range of the NFC
transceiver is approximately 2 centimeters, which prevents a Stigmergic Block from communicating
with itself while achieving a reliable connection with adjacent blocks or a BuilderBot. The range
of the Xbee link depends on which variant of the module is used. With the PCB antenna variant
of the Xbee, we have achieved a range of approximately 0.5 meters.

The spherical magnets in the two blocks are strong enough to bring two blocks into alignment when
they are separated by up to 1 centimeter or misaligned by up to 25 degrees.

23



Although dependent on usage (for example, the frequency of communication and LED brightness)
the average running time for the block is approximately 7 hours with a 500 milliampere-hour
lithium-ion battery. The weight of the block is 110 grams. The side length of the cube is 55
millimeters.

7.2 BuilderBot

The BuilderBot has a height of 38.8 centimeters and a square footprint with a side length of 14
centimeters. The weight of the BuilderBot is 2.1 kilograms.

The BuilderBot is capable of building structures from the Stigmergic Blocks up to three blocks in
height. When the lift actuator’s manipulator is positioned at its maximum height from the ground
(3.5 blocks, or 19.25 centimeters), the camera can see the blocks on the ground up to approximately
35 centimeters away from the center of the robot. When the lift actuator’s manipulator is positioned
at its minimum height from the ground (1 block, or 5.5 centimeters) a block can be detected
until just before it is attached to the manipulator. The semi-permanent electromagnets in the
lift actuator are strong enough to hold a single block without applying an electrical current. The
vertical speed of the lift actuator is 1.6 centimeters per second.

With the current tuning of the differential drive system, we drive the robot forward with a velocity
of 3.5 centimeters per second and can have the robot turn on the spot with an angular velocity of
35 degrees per second.

The BuilderBot is capable of communicating over WLAN, Bluetooth, NFC (with a Stigmergic
Block), Zigbee (via an optional Xbee module), and using its LEDs (with other robots via their
cameras). The battery configuration of the BuilderBot provides a running time of approximately
5 hours.

When running the AprilTag algorithm on the robot with good illumination, it is possible to process
and detect tags on board the DuoVero COM at a rate of 5 frames per second with an input
resolution from the OV5640 camera module of 640 x 360 pixels.

8. Conclusions

We have presented a completely open source robotics construction system for performing experi-
ments in multi-robot construction in laboratory settings. Our system consists of a building material
called the Stigmergic Blocks and robots called BuilderBots. The robots have been designed to as-
semble the Stigmergic Blocks into structures so that we can study multi-robot construction. The
system has been designed to facilitate experiments where the intelligence that coordinates the
construction can be embedded not only in the robots but also in the building material.

This article is designed to complement the project’s repository, which is hosted on the Open Science
Foundation’s website [2]. For those who are interested in implementing the presented hardware, we
would strongly encourage contacting the corresponding author to discuss potential collaboration.

24



References

[1]

Allwright, M., Bhalla, N., Dorigo, M.: Structure and markings as stimuli for autonomous con-
struction. In: Proceedings of the Eighteenth International Conference on Advanced Robotics.
pp. 296-302. IEEE (2017). https://doi.org/10.1109/icar.2017.8023623

Allwright, M., Zhu, W., Dorigo, M.: An open-source multi-robot construction system (2018).
https://doi.org/10.17605/osf.io/spfx7

Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press (1999)

Bruinsma, O.H.: An Analysis of Building Behaviour of the Termite Macrotermes subhyalinus
(Rambur). Ph.D. thesis, Wageningen University, Netherlands (1979)

Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-
Organization in Biological Systems. Princeton University Press (2001)

Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014).
https://doi.org/10.4249/scholarpedia.1463

Herbrechtsmeier, S., Witkowski, U., Riickert, U.: BeBot: A modular mobile miniature
robot platform supporting hardware reconfiguration and multi-standard communication. In:
Progress in Robotics. pp. 346-356. Springer (2009). https://doi.org/10.1007 /978-3-642-03986-
740

Karsai, 1., Pénzes, Z.: Comb building in social wasps: Self-organization and stigmergic script.
Journal of Theoretical Biology 161(4), 505-525 (1993). https://doi.org/10.1006/jtbi.1993.1070

Olson, E.: AprilTag: A robust and flexible visual fiducial system. In: 2011 IEEE
International Conference on Robotics and Automation. pp. 3400-3407. IEEE (2011).
https://doi.org/10.1109/icra.2011.5979561

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N.,
Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: AR-
GoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence
6(4), 271-295 (2012). https://doi.org/10.1007/s11721-012-0072-5

25



