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Abstract

This Master’s Thesis was submitted by Quentin Roels in the academic year 2023-2024
for the award of the degree of Master of Science in Computer Science and Engineering.
The thesis consists of the cooperative relative localization of a robot swarm based solely
on ultra-wideband (UWB) distance estimation.

Enabling complex swarm behaviors, such as efficient path planning, assembly, dis-
persal, or morphogenesis, requires each agent to know its relative position with respect
to other agents. Since most research uses the fusion of numerous sensors or an external
infrastructure to enable localization within a swarm, this thesis aimed to determine to
what extent it is possible to perform cooperative relative localization using only distance
information measured with ultra-wideband radio communication modules.

On the one hand, an ultra-wideband communication protocol was designed to enable
distance measurement and communication within the swarm. On the other hand, different
localization algorithms, known as multidimensional scaling (MDS) and particle filters
(PF), were implemented to use the distance data generated. A comparative study of
localization algorithms was carried out to determine the best candidate. While the MDS
algorithm was more successful in reducing agent positioning errors, it lacked stability for
continuous localization, resulting in poor orientation estimation. The particle filter proved
more stable and improved orientation estimation but reduced the quality of position
estimation for large swarms. However, both methods failed to consistently estimate
the agent’s orientation, preventing these location estimates from being used for complex
behaviors.

In conclusion, MDS and the particle filter produced low-quality results for relative lo-
calization using distance measurements alone. On the contrary, displacement data added
in the particle filter improved the overall quality, showing the benefits of sensor fusion
in cooperative relative localization. Later research on relative localization should avoid
using distance alone as it does not allow for the consistent estimation of a good-quality
direction. Furthermore, the implemented system based solely on distance measurements
was shown to perform better in landmarked situations, which limits its application to
swarms of robots trying to avoid dependence on external structures.

Keywords: swarm robotics, cooperative relative localization, ultra-wideband, multi-
dimensional scaling, particle filter.
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Chapter 1

Introduction

Swarm robotics aims to enable a large group of agents to cooperate to accomplish tasks
impossible to perform alone [I]. Whether for regrouping at the same place, covering the
largest possible area, or forming patterns, the spatial organization of agents is one of the
most important and studied behaviors in swarm robotics [2, 3]. While many behaviors
can be realized by following local rules [4] [5], enabling more complex behaviors requires a
high-level understanding of the swarm’s topology. To that extent, we introduce collective
relative localization, defined by Schranz et al. in [0] as “allowing the robots in the swarm
to find their position and orientation relative to each other via establishment of a local
coordinate system throughout the swarm”. Therefore, relative localization is invaluable
data for complex spatial organization, as it enables planning agents’ next steps based on
a descriptive map of the current circumstances.

Studies perform relative localization in different ways depending on the application.
Outdoor applications such as UAVs (unmanned aerial vehicles) generally allow GPS-
assisted localization. However, edge applications such as missions indoors, underground,
or in other GPS-denied environments require another implementation. Those systems
typically use numerous sensors and complex mathematical filters based on control theory
to achieve sensor data fusion and ensure qualitative localization. Another implementation
often discussed in the literature is the addition of an external infrastructure, leveraging
nodes with known positions called landmarks to position the agents in the reference
frame. Based on sensor fusion, the former requires numerous sensors, which increases
the cost of the robotic platform but avoids the need for an infrastructure. Based on
landmarks, the latter reduces the number of sensors required but limits localization to
prepared environments. Other studies have proposed using some of the agents of the
swarm as mobile landmarks, which reduces the number of sensors while removing the
need for an external infrastructure. However, this solution involves modifying the agents’
movement to apply localization.

Those observations raise the question of whether it is possible to enable real-time
relative localization using distance alone, without altering the agents’ movement and
without an external infrastructure—a question that this thesis will try to answer.



1.1 Context

In [1], Dorigo et al. define swarm robotics as the design of a group of robots that do
not require any external infrastructure or form of centralized control to operate. Also
mentioned by Navaro and Matia in [7] and by Bonabeau et al. in []], swarm intelligence
principles are the fertile soil in which swarm robotics takes root, trying to reproduce the
complex behavior achieved by communities of insects through local rules.

Swarm intelligence is generally described by the following set of properties [Il, 9] 10] :

e Group of individuals, often numerous.
e Homogeneous, i.e. a restricted set of individual types.

e Self-organized, i.e. organizing through local communication or changes in their

environment.
e Collaborative, i.e. the task must be impossible for a robot to perform alone.

e Distributed, i.e. only access to local information and sensing, and no centralized
control.

Using the taxonomy defined by locchi et al. in [3] and shown in Figure [1.1} a swarm
of robots is cooperative, aware, coordinated, and distributed. It means that all members
of the swarm operate together to perform the same task, are aware of the existence of the
other agents of the swarm, take into account the actions taken by other agents to create
coherence, and are autonomous in their decision-making process.

Cooperation Cooperative
Knowledge Aware Unaware
I
[ | |
- . Weakly Not
Coordination Coordinated Coordinated Coordinated
I
[ | |
- Strongly Weakly -
Organization Centralized Centralized et

Figure 1.1: Taxonomy of mutli-robot systems defined by Tocchi et al. in [3]

Schranz et al. [6] have studied the variety of behaviors given to robot swarms over
the years and their different real-life applications. Figure shows the landscape of
behaviors they described, which gives a comprehensive overview of the topic and allows
to situate the current thesis work within swarm robotics. As described in the previous
section, the subject of this thesis addresses two of the behaviors defined in Figure [1.2]
The underlying behavior studied in this work is cooperative localization, classified as a
navigation behavior, while the thesis aims to enable the various behaviors classified under
spatial organization.



Aggregation
Pattern Formation
— Spatial Organization
Self-Assembly

Object Clustering and Assembly

——  Collective Exploration
— Coordinated Motion
— Navigation —
— Collective Transport

L—  Collective Localization

Swarm Behaviors — — Consensus

— Task Allocation

—— Collective Fault Detection
——  Decision Making —
— Collective Perception

— Synchronization

—  Group Size Regulation

— Self-Healing

— Miscellaneous —_— Self-Reproduction

— Human-Swarm Interaction

Figure 1.2: Taxonomy of swarm behaviors defined by Brambilla et al. in [11] and later
updated by Schranz et al. in [0]

1.2 Contribution

The main objective of the thesis is to enable behaviors based on the relative localization
of the agent in the swarm. Typically, the aim is to reach a specific position in the
swarm to obtain, aggregation/repulsion behaviors and other actions, such as following a
given agent. To this extent, agents must have a high-level understanding of their relative
position in the swarm, which induces the research topic of this thesis: cooperative relative
localization, i.e., getting agents in the swarm to cooperate so that they localize each other
relative to themselves. The contribution includes implementing a communication and
telemetry protocol using UWB modules and a localization algorithm using the distances
communicated by the swarm via the protocol.

The topic of this thesis aligns with the research of IRIDIA, the robotics and artificial
intelligence lab of the Université Libre de Bruxelles (ULB). Generating aggregation and
repulsion would allow Mercator [12], their last robotic platform to have all behaviors
of IRIDIA automatic off-line design tool, AutoMoDe [I3]. This would allow them to
finish implementing all e-puck behaviors they previously had on their current robots and
conclude their study of the portability of automatic behaviors from one robotic platform
to another.



1.3 Structure

This chapter introduces the research topic by explaining the basic concepts of swarm
robotics and explaining the contribution of the thesis, the following chapters are orga-
nized as follows: Chapter [2] provides an overview of the research landscape in which the
thesis is embedded. Chapter [3] describes the material used in the thesis. The [th chap-
ter summarizes the various implementations of the thesis, namely the communication
protocol of the robotic platform and the algorithms used to enable relative localization.
Next, chapter 5| deals with the experimental setup, protocols and measurements used to
assess the quality of the communication protocol and algorithms implemented. Then,
chapter [0] discusses the results of these same experiments. Finally, the thesis concludes
with discussions and further work in chapter [7] and a conclusion in chapter [§

1.4 Symbol and Abbreviations

’ Abbreviation \ Meaning \ Reference ‘
ROS Robot Operating System 3.3
rosbag ROS service recording messages sent in the topics over time o
’ BLE ‘ Bluetooth Low Energy ‘ 2.1 ‘
’ SoL ‘ Speed of Light ‘ 4.1.2 ‘
MDS Multidimensional Scaling 4.3.2
init initialization of MDS with previous estimation of localization. 4.3.2
offset distance measurements corrected with error model. |6.1|
certainty weighted MDS to give less importance to old measurements. 4.3.2
PF Particle Filter 4.3.3
init starting up the filter with good relative positions. 6.3
offset distance measurements corrected with error model. 6.1
certainty removing old values for the update phase 6.3
Direction estimates 4.3.4]
distances Direction estimate using evolution of pairwise distances 4.3.4]
displacement | Direction estimate using displacement in the position estimates 4.3.4
particles Direction estimate using the mean value of the PF particles 4.3.4




Chapter 2

Literature Review

The idea of relative localization appeared in distributed sensor networks long before its im-
plementation in indoor localization. For example, in 1978 [14], it was already mentioned
that knowledge of relative positions can be determined by measuring pairwise distances
and is crucial for interpreting the data collected by the network. Therefore, whether
to optimize the communication path or improve distributed sensor measurements, most
of the research on relative localization comes from wireless sensors and communication
networks, to locate the different network nodes [15].

Collective localization is defined by Schranz et al. as “allowing the robots in the
swarm to find their position and orientation relative to each other via the establishment
of a local coordinate system throughout the swarm” [6]. Generally, satellites enable the
use of Global Navigation Satellites Systems (GNSS) to obtain the position of a robot
in a global reference frame. GNSS, like GPS and many other positioning systems, are
often supported by a compass to determine the robot’s current direction to the reference
frame [16], therefore completing the requirements for localization of the agents. However,
current research is mainly trying to avoid those exact technologies [I7, 18], the main
reasons being :

e GNSS precision is about 5 meters [19], unusable for small-scale swarms [20].
e GNSS denied environments (prevents indoor, underground, and other missions)

e GNSS is too expensive and energy-insensitive for simple robots [21]

These reasons have led cooperative localization research to focus on GNSS-free so-
lutions, on the assumption that the main applications of the swarm are in GNSS-free
environments, mostly indoors, such as in warehouses [18, 22, 23]. In this context, the
question arises about which technology to use for indoor localization.

2.1 Indoor Localization

Indoor localization is not a new topic; Werb et al. discussed the design of such a system
in 1998 [24]. Numerous studies have addressed the various technologies that enable
cooperative localization and their use for distance measurement and sometimes bearing
measurement [25, 26, 27]. Some studies, particularly that of Chen et al. in [25], have



shown that UWB technology is a good solution, even more so in a swarm of robots where
scalability is a vital requirement.

UWB technology has been used for decades as a means of communication [28] and has
recently gained interest in the field of localization [29] 30] as it enables communication
and distance estimation thanks to its large bandwidth, allowing more accurate Time of
Flight (ToF) distance estimation than other media, such as Wi-Fi or BLE technologies
with less bandwidth [I8].

Citing Siva et al. in [I8], “The vast majority of UWB localization systems are im-
plemented in an environment where multiple UWB transceivers act as anchors while the
robot to be localized carries another one referred to as the tag”. Nowadays, the anchor-
tag protocol is implemented in most off-the-shelf solutions available on the market [31].
The main reason is that these solutions are often dedicated to applications such as indoor

tracking of moving objects [32], where the anchor-tag localization system is very effective
[33].

UWB Positioning Methods

|
\ \

Fingerprints Methods Geometric Methods
|
\ \
CIR/PDP Triangulation Trilateration
AoA RSSI ToA

Figure 2.1: UWB Positioning Methods classification taken from Mazhar et al. in [30],
Geometric Methods are divided between Triangulation and Trilateration after [34] 135, 36]

Many localization techniques are using Ultra-Wideband, the classical ones are listed
in Figure 2.1}

The first category concerns fingerprinting methods:

e PDP, or Power Delay Profile describes how signal power varies as a function of
different delays, providing a better understanding of multipath propagation in radio
environments.

e CIR, or Channel Impulse Response, reflects how a communication channel distorts
and delays signals.

In fingerprint-based localization, PDP and CIR are used to create a database of signal
characteristics at different locations. The PDP captures variations in signal strength over
time, while the CIR details how the environment distorts signals. By matching the PDP
and CIR observed at an unknown location with the database, the system can estimate the
location based on the closest match, enabling precise localization indoors or in complex



environments. Fingerprinting methods are more complex as they commonly require a
database consisting of previous measurements at several known positions [29] on which
to apply machine learning algorithms [37], leading to geometric methods being studied
more often.

The second category concerns triangulation techniques:

e AoA, or Angle-of-Arrival is a triangulation technique that exploits the angle at
which the signal arrives at the antenna, using a set of sensors that typically measure
the phase difference for a given received signal.

In triangulation-based localization, the angles from known locations to the target
are used to define the target’s position at the intersection points of the defined lines.
Triangulation methods are believed to be less suitable than trilateration methods for
position estimation [38], which is why AoA is often used in conjunction with another
method such as ToA [39, 40, 41]. However, in some cases, AoA can outperform other
techniques, but it requires special systems made up of UWB antenna arrays [42], 43 [44],
which complicates the implementation of such systems.

The last category concerns trilateration techniques:

e RSSI, or Received Signal Strength Indicator

e ToA/ToF, or Time of Arrival/Flight

Trilateration-based localization aims to find pairwise distances between network nodes
to locate and position them relative to known landmarks. There are many ways of
calculating pairwise distances between UWB sensors [45], but only the most common
are discussed here. Concerning RSSI, Siva et al. mention that “RSSI measurements are
not reliable, because they suffer from large errors induced by multipath effects as well
as a distinct lack of stability even when the environment is static” [18], which makes it
difficult to use indoors (corroborated by Dong et al. [40]).

For the above reasons, the most common techniques for UWB localization are the
ToF-based ones, namely TDoA and RToF [47]

e TDoA (Time Difference of Arrival) consists of a tag broadcasting a message peri-
odically; the anchors receiving the message are tightly synchronized to determine
the exact time of arrival of the message. The information is then centralized to
compute the most likely position of the tag.

e RToF (Round Trip Time of Flight), also known as Two-Way-Ranging (TWR),
involves a tag sending a message to each anchor point independently; the round-
trip time is used to estimate the distance using the transmission speed. The tag
then uses the distances to the known anchor points to calculate its position relative
to them.

Table|2.1|summarizes the advantages and disadvantages of the two methods according
to Ridolfi et al. in [47]. TDoA and RToF have complementary strengths and weaknesses,
but the architecture required is the most differentiating factor. TDoA requires robust



Advantages Disadvantages
TDoA e Tags must send only one packet | e Anchors must be synchronized ac-
per position estimate, decreasing energy | curately, which causes synchronization
consumption. beacons overhead.
e The server has more computational | e The calculated positions are unknown
power than the infrastructure/mobile | to the tag, so the estimated position
nodes, resulting in faster position esti- | must be communicated via a second net-
mation. work.
e All anchors in the range can be used | e Data aggregation or collaborative lo-
for positioning so we obtain more accu- | calization is impossible since the mobile
rate results. tags are only transmitting and not re-
ceiving.
RToF e Location could be computed by the | e More messages are required for local-
mobile nodes. ization.
e Anchors do not have to be synchro- | e More complex implementation, e.g.,
nized. selecting the best anchors set, roaming
management.
e More energy consumption.

Table 2.1: Advantages and Disadvantages of TDoA and RToF, taken from [47]

synchronization and does not provide distance information to mobile nodes, requiring
a centralized server to retrieve measurements from all nodes and perform the location
calculation. Such a strict architecture runs counter to the expectations of swarm robotics
[T, [I1], and explains the appeal of RToF for application to UWB relative localization. It
is worth noting that power consumption is not an issue in our case, even when the aim
is to equip sensors in swarm robots with limited power; UWB technology is a significant
improvement on Bluetooth and Wi-Fi [4§].

However, implementing RToF requires a communication protocol between anchors
and tags so that the round-trip message can be sent back, which increases airtime and
channel utilization compared with TDoA [49], therefore increasing interference. As the
number of tags increases, the channel utilization increases, too, to reduce packet losses
in that setting; however, some channel access schemes can be implemented.

2.2 Channel Access Schemes

There exist many schemes such as ALOHA (Random Access), CSMA (Carrier Sense
Multiple Access), TDMA (Time-Division Multiple Access), FDMA (Frequency-Division
Multiple Access) or CDMA (Code-Division Multiple Access) [50,51]. For implementation
reasons, the most discussed ones are ALOHA, which is straightforward; TDMA, which
requires MAC-level implementation of the communication modules; and CDMA, which
requires a deeper knowledge of devices spreading codes. Even if CDMA can offer great
performances [52], it is often disregarded in research on applied topics for simplicity.



Typically, the ALOHA scheme, which resends the packet after a certain time until it is
received, is the simplest and is more beneficial than doing nothing since the chances of the
packet being received are increased by resending it. With ALOHA, however, scalability
is a problem: if the number of nodes in the network increases, packets that are resent
will always end up interfering with others and so will never be received. Another option
is CSMA, which senses the channel before starting the communication to avoid causing
interference by sending it on top of another ongoing communication. However, sensing
the channel is a complex task.

Arguing that ALOHA and CSMA are not suitable for heavy-load networks, one might
want to find a solution elsewhere. In [53], Cao et al. propose a solution using the TDMA
scheme, which they argue fits well the purpose of relative localization even for more
significant sizes of swarm than what ALOHA can support. ALOHA is effectively chosen
for its straightforward implementation in low-load applications. But as soon as the load
increases, choosing another channel access scheme becomes more effective, and TDMA is
used most of the time [53, 54 55].

2.3 Cooperative Localization

Let us now delve into cooperative localization applied to robotics. As mentioned previ-
ously, most research on cooperative localization comes from the study of Wireless Sensor
Networks, which inevitably causes a bias toward situations with a robust infrastructure
of non-moving nodes [56]. Those nodes with known locations or landmarks can then be
used as reference points in the localization, which significantly simplifies the problem of
relative localization, being for cases with non-moving nodes only or hybrid cases such as
Mobile Sensor Networks composed of moving and non-moving nodes [32]. However, the
infrastructure hypothesis considerably reduces the interest of robot swarm studies since
their primary goal, as described in [11], is to work together to avoid relying on an external
infrastructure and centralized computation.

2.3.1 Alternating Landmarks

A typical solution to the need for infrastructure is the Alternating Landmark Network
(ALN) proposed by Kurazume et al. in 1994 [57]. The idea is described as a division of
the robots into two teams alternating between moving toward their target position and
stopping to act as landmarks for the other team. This method offers the advantages of
landmarks for relative localization, showing excellent results [58, [59], but requires robot
coordination using synchronization. Furthermore, it forces the agents to adopt a behavior
that might interfere with the mission. However, this method has proven itself in cases
where uncertainty due to noise in the measurement is too significant, offering stability by
relying on non-moving nodes.

The most common solution for relative localization in dynamic systems is to use sensor
fusion through recursive Bayesian frameworks such as Kalman filters and particle filters.
The main idea of both filters is to predict a state vector, such as the positions of the
robots in the swarm, and leverage measurements made with sensors to lead the filter
toward a good approximation of the actual state through an iterative correction process
between each prediction. Furthermore, the filters typically account for the noise of the



various measurements made by the sensors, which explains the interest of these filters in
robotics, where systems are often noisy.

On the one hand, Kalman filters use the system’s dynamics to estimate the state’s
evolution. It is, therefore, necessary to derive the dependencies between the motion
of the system and the observations made on it. The Kalman filter requires a linear
system. However, there are non-linear variants, such as the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF), which are sub-optimal due to their inherent
approximation. The EKF uses analytical linearization, i.e. a first-order truncation of the
Taylor approximation of the system dynamics, which requires the system dynamics to be
differentiable to return to a linear system. While the EKF gives good results for slightly
non-linear systems, it becomes difficult to use for strongly non-linear systems. UKF is
better suited in this case, as it has the same computational complexity as EKF and is
derivative-free, allowing for non-differentiable systems (discontinuities, ...) [60]. UKF is
based on the fact that “it is easier to approximate a probability distribution than it is to
approzimate an arbitrary non-linear function or transformation” [61], meaning that it will
use Unscented Transformation (UT), based on deterministic sampling, to approximate
the output distribution of the non-linear function instead of trying to approximate the
non-linear function itself.

On the other hand, Particle filters (PF) are sequential Monte Carlo methods based on
the simplification that the system acts as a Markov process. The goal is then to estimate
the posterior distribution of the state using the observation made on the dynamic system
through the sensors [62]. The main steps are predicting the state through a weighted
average of the particles drawn from the distribution, correcting the posterior distribution
using the observations, and resampling the distribution to have new particles [63]. While
much research is done on particle filters and Kalman filters, it is commonly accepted
that particle filters bring better results but are more computationally expensive than
Kalman filters [64]. Therefore, when applied to small robots, localization is often based
on Kalman filters.

2.3.2 Kalman Filters

In [65], Araki et al. compare filters for merging range measurement and odometry infor-
mation to perform relative localization of up to 5 moving robots. The authors propose
a version of UKF, EKF, and PF that leverages synchronization between the robots to
compute the steps asynchronously—allowing for a more straightforward real-life imple-
mentation of the filters. They show that PF is more computationally expensive than
EKF and UKF and that UKF performs better than the other filters for a more signifi-
cant number of agents, i.e. for a highly non-linear system. As EKF is not robust against
large initial error [66], Chakraborty et al. [67] propose a N-vehicle cooperative relative
localization estimator using range-only measurements among vehicles in the presence of
large initial uncertainty. The Multi-Hypothesis Extended Kalman Filter (MHEKF) de-
scribed is lightweight compared to Particle filters, performs better than EKF when initial
error is high, and can be used for many robots.

However, as the number of robots increases, the state to be estimated by the various
filters increases in size, which tends to generate an overhead in computation. To solve
the problem of EKF computational overload in multi-robot systems, Roumeliotis et al.

10



[68] propose a distributed version of the Kalman filter in which each agent computes the
part of the Kalman filter associated with its displacement and shares its result with the
other robots so that they can compute the global state. Unfortunately, for a robot to
calculate the global state, it must receive factors from all the other agents, which requires
full connectivity and communication between each filter update phase.

Different distributed non-linear filters have been proposed, such as the Interleaved
Extended Kalman Filter (IEKF). In [69], Panzieri et al. describe an implementation of
IEKF that overcomes the need for a fixed number of agents in the system. By locally
computing the fusion of host sensors and only exchanging sensor measurements and the
corresponding covariance matrix with robots within their range, each agent improves its
position instead of the position of other agents in the swarm, decoupling the Kalman
filter and cross-correlation terms. This result tends to give non-uniform accuracy but
allows localization even when some agents lose connection with the team. However, the
filter loses accuracy when not applied with landmarks, and the authors correct this by
adding agents playing the role of alternative landmarks.

The basic assumption of the distributed filter is that all agents compute their position
through the same frame, which we might want to avoid. The literature also describes
relative localization methods based on communication between two agents alone. Many
techniques return to what ter Horst defines as tangolation in [54], using the displacement
of the two agents between two time steps and the measurement of the distance before and
after the time step, we can recreate the relative movement of the two agents [70, [71] [72].
As a result, the robots only need to communicate their odometry data and measure the
distance between them, which does not require common calculation techniques. How-
ever, it requires synchronization to use the correct measurements and it often requires
a common frame, which typically means adding a compass to the system. Furthermore,
this relative localization technique was designed for just two robots and is not scalable.

2.3.3 Particle Filters

Despite the computation overhead avoided by using Kalman filters instead of Particle fil-
ters and their intensive distribution sampling, the various Kalman filters are not always
applicable. Observability is the primary concern when describing a system dynamic to
apply a Kalman filter because it quantifies whether the state can be estimated through the
measurements made to the system [73]. For that reason, many studies perform observ-
ability analysis of various systems with different combinations of sensors; for example,
Sharma et al. derive the observability of bearing-only cooperative localization in [74],
while Burchett et al. describe the observability of range-only cooperative localization in
[75]. Burchett et al. show that a system based on odometry and range measurement
for moving and non-moving nodes is weakly-observable. Araki et al. show in [65] that
observability is kept once the landmarks are removed. However, they end up mention-
ing that their main experiment required the robots to move in groups, resulting in an
alternating landmarks system. When observability is low, ambiguities appear that the
Kalman filter does not handle well, leading to degraded results. In such cases, particle
filters can be helpful [54].
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In addition, the particle filter, being non-parametric, can be applied more generally
than Kalman filters, which assume that the system is Gaussian [76]. Building on the latter
argument, Liu et al. [77] propose improving dead reckoning navigation by fusing inertial
information from an IMU sensor with distances measured by UWB transceivers. Sensor
fusion is achieved using a particle filter, which gives excellent results in a landmark-free
situation. Similarly, Li et al. [78] propose a two-stage relative localization algorithm
to account for two main problems: state initialization and particle filter distribution for
multi-robot systems.

This work aims to remove the need for a sensor other than distance measurement
to perform relative localization. This approach can also be found in [79] where Zhou
et al. argue that an additional inertial sensor requires sampling synchronization and
increases the cost and size of the system. Another typical way of proceeding would be
to add velocity to the state to be estimated by the filter, but this has two negative
aspects. Firstly, the system’s observability is reduced since the state to be estimated is
larger, but no additional measurements are added. Secondly, increasing the size of the
state may cause the filter to suffer from the ”curse of dimensionality”. In their work,
Zhou et al. focus on two new approaches to estimating robot velocity as a function of
the previous state estimate, one based on particle filters and the other on Chan-Taylor.
Unfortunately, both approaches rely heavily on a high-quality position estimation made
possible using landmarks. On the other hand, Liu et al. [80] propose a particle filter that
merges information from RSS sensors and UWB range estimation. Since no information
on agent motion is known, they represent the motion model as a random walk.

2.4 Thesis Work

Since most research on the topic of cooperative relative localization requires either modify-
ing the movement of agents to facilitate the localization process or retrieving information
from many other sensors, which increases the system’s dependence on sometimes expen-
sive sensors, the question arises as to what can be achieved using only pairwise distance
measurements. This research aims to provide a basis for distance-based localization, ei-
ther by showing that several sensors are indeed needed to achieve sound localization or
by showing that current systems do not need as many sensors as they are equipped with.
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Chapter 3

Material

This section describes the hardware and software used in the different experiments of the
thesis to ensure reproducibility.

3.1 DWM1001-DEV

The DWM1001-DEV is a development board manufactured by Qorvo that enables easy
implementation and prototyping using the DW1000 ultra-wideband transceiver. The base
components for this thesis usage of the board are (see Figure :

e The DWMI1001 module, based on the DW1000 UWB transceiver, adds a micro-
controller (Nordic Semiconductor nRF52832), a Bluetooth antenna, and a motion
Sensor.

e The USB connection for reprogramming, debugging, and power supply.

e The LEDs, buttons, and J-Link On-Board Debugger for quick debugging.

DWM1001 Module

Reset
GPIO header Bluetooth Wake Up

Current measurement

header ~ [ESESESEGRaN ¢ Module 10 header
== =¥ (Raspberry Pl
Battery compatible)

connections

Battery
Charger

(1)

LEDs

USB J-Link On-Board

(1) Battery Charger not mounted on boards shipped after November2021

Figure 3.1: Double-Sided Two-Way-Ranging Protocol

A hands-on explanation of the development pipeline for the DWM1001-DEV board
can be found in the documentation on Qorvo’s website. However, the development board
is primarily made for plug-and-play evaluation of the features and performance of the
DWM1001 transceiver module. It comes with a proprietary library and API for an
anchor-tag localization scheme.

13



Serial Device Radio Device [+
C Code
Physical Port
— User Thread
DWM1001 Module i Bluetooth Radio
PANS API :
CAPI UART API SPI API BLE API  [+---~
Generic API Parser
Generic API [ User
: Modul
Decawave Positioning and Networking Stack (PANS) 0 Module
Proprietary

Figure 3.2: Decawave Positioning and Networking Stack (PANS) API Usage

The API usage is shown in Figure [3.2] The user can interact with the API via the C
code flashed onto the module (on top of the proprietary firmware), through SPI/UART
via a wired connection to the module, or through the Bluetooth antenna of the DWM1001
module.

However, the Positioning and Networking Stack (PANS) is a finished proprietary
product designed and fine-tuned for the sole purpose of anchor-tag localization in the
way intended by the manufacturer. The following limitations can be noted:

e Data Transfer: the PANS library does not allow for data transfer between the tags
and the anchors; the only data transfer happening is between tags and particular
local central nodes (gateways) that are unnecessary for the localization process.
Furthermore, the up-stream and down-stream information that can be exchanged
is limited; the usual application is for over-the-air modules firmware updates.

e Underlying Protocol: the modules are communicating through a Time-Division
Multiple Access (TDMA) scheme, which requires synchronization and using the
antenna at precise moments. This prevents adding a UWB communication layer
on top of the module firmware to compensate for the data transfer problem just

described.

e Distance Measurement: the distances measured by the module are limited for
efficiency. A maximum of four distances are measured at each localization step (be-
tween the tag and four different anchors), and the anchors to which the distance is
estimated cannot be chosen manually; they are chosen by the black-box localization
algorithm.

e Proprietary Library: the PANS library is a pre-compiled proprietary firmware
that cannot be modified as it is not open-source. This final limitation makes it
impossible to modify the firmware to compensate for the above issues it raises.

Those particular points have led to prototyping a limited communication protocol that
allows for range measurements and data communication using the user C code interface
and calls to the low-level API of the DW1000 transceiver, which prevents the PANS
firmware from running at the same time on the modules.
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3.2 ARGoS
“What is ARGoS? ARGoS is a multi-physics robot simulator. It can simulate large-

scale swarms of robots of any kind efficiently. You can customize ARGoS easily by adding
new plug-ins” (from ARGoS website) and was created by Pinciroli et al. [81].

*-{ Controller }7
Control Interface

Sensor Actuator

Simulated 3D Space

’“—-{ Loop Functions ’

Physics Engine ; Wi-Fi ’ ‘ Range and Bearing ’ 5

Figure 3.3: ARGoS Modular Architecture, taken from [81]

The simplified architecture of ARGoS is shown in Figure [3.3] The simulation is
based on different entities, typically the simulated robots. Each entity is defined by its
physics, the media it uses, its actuators/sensors and a controller. The controller is a
user-created program that receives data from the sensors and applies modifications to
the related entity through its controllable components, called actuators. For example,
receiving data from the proximity sensors, the controller decides on the direction and
modifies the wheel actuator values accordingly to make the agent rotate. Loop functions
are global controllers allowing for additional computing on top of the simulation.

ARGoS was used to prototype the localization software. Range estimation and com-
munication were simulated using the range and bearing sensor and actuator plug-ins.
The range information of the sensor simulated the UWB modules’ distance estimation,
and the actuator’s ability to transmit information between agents’ controllers simulated
the communication protocol. To approximate the noise of the physical situation in such
a system, a noise like that observed with actual modules was added to the distance mea-
surements (see noise profile determination later on), and a high percentage of drop rate
was used to mimic interference in the communication procedure.

3.3 ROS

“The Robot Operating System (ROS) is a set of software libraries and tools that help you
build robot applications. From drivers to state-of-the-art algorithms, and with powerful
developer tools, ROS has what you need for your next robotics project. And it’s all
open source.” [82]. ROS was used for communication between the various localization
processes in the robot, both in simulation and real experiments. The ROS Noetic distro
was used since the robots were running Ubuntu 20.04.
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Figure 3.4: Typical ROS communication architecture

As shown in Figure ROS is based on nodes that will either publish or subscribe
to topics. For the system to be aware of the current connections, all nodes and topics
are registered to a common centralized master (for ROS1). Topics are described by a
name and only accept messages of a given type, determined at creation. ROS also has
a recording function that allows for the storage of messages sent on different topics over
a period of time. It was used to record experiment data and be able to rerun them as
many times as required.

3.4 Mercator

The robots used for the experiments outside simulation are the robots of the Mercator
project of IRIDIA at the ULB. Based on the Sphero RVR robot (see Figure (a)), it
has been augmented with many sensors, such as proximity sensors, a LiDAR, a camera,
UWB modules and RaspberryPi’s for computation (see Figure (b)).

(a) Base Robot (Sphero RVR) (b) Final Robot (Mercator)

Figure 3.5: Mercator
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Figure 3.6: Marcator complete architecture (after Kegeleirs et al. in [12])

The internal architecture and data flow in Mercator is shown in Figure 3.6 A driver
reads data from the Sphero RVR'’s internal sensors and publishes the readings on different
topics. These can then be used by the controller, within the ARGOS3 control software.
Once the calculation is complete in the controller, the actuator values are sent back to the
RVR controller via the driver. In addition, external sensors can be added to the robot, as
is the case with LiIDAR, cameras, and UWB modules. These sensors must publish data
in ROS topics to fit the Mercator architecture. A handmade driver is typically required
to interface the external sensor readings to ROS.
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Chapter 4
Method

4.1 Ranging Process

This section examines the design choices in implementing the ranging process, includ-
ing low-level implementations such as the firmware for ultra-wideband modules and the
communication scheme.

4.1.1 Channel Access Scheme

As described in Section [3.1] the firmware shipped with the DWM1001-DEV modules
implements a polished TDMA scheme. Such a scheme divides the communication in
time frames during which each tag (one at a time) is allowed to initiate single-sided two-
way ranging with the close-by anchors. However, the proprietary nature of the firmware
makes it impossible to modify it to meet the requirements of this thesis. To avoid the
need to implement TDMA from scratch using the DW1000 (as it has already been done
by Cao et al. in [53] and by ter Horst in [54]), this thesis focuses on prototyping an
ALOHA channel of sufficient quality and building on top of it, with the promise that any
results found for larger swarms would be greatly improved by better implementation of
the channel.

4.1.2 SS-TWR vs. DS-TWR

While the choice between RToF and other distance estimation techniques has been justi-
fied in detail in the literature review, its operation has yet to be mentioned. Round Time
of Flight (RToF), Round-Trip Time (RTT), or Two-Way Ranging (TWR) describe the
same concept and are separated into two typical protocols for peer-to-peer measurement
of distance:

e Single-Sided Two-Way Ranging (SS-TWR)
e Double-Sided Two-Way Ranging (DS-TWR)

SS-TWR and DS-TWR are common trade-offs between a simpler protocol that allows
for computing the distance only on one side and a more complex protocol that allows for
computing the distance on both sides but causes more interference due to more messages
being sent.

18



Initiator Responder

d = (tZdetay = TTdelay) /2 * ¢
t,-t, = ts-t2

Figure 4.1: Single-Sided Two-Way-Ranging Protocol

First, the concept of TWR is easily grasped through the explanation of the Single-
Sided method shown in Figure[4.1] The module willing to estimate the distance separating
it from another module initiates the communication protocol; it is called the initiator.
It sends a polling message to the other module and saves the timestamp (¢;) at which
it sent the message. Then, the module that has been polled, called the responder, will
answer the poll with a message containing the timestamp at which it received the polling
message (t2) and the moment at which it sent it back (¢3). Finally, when receiving the
answer from the responder, it saves the timestamp (¢4). At this point, the initiator has
everything it needs to compute the distance estimate through RToF'.

Following the equation in Figure [£.1], the initiator effectively estimates the time that
both messages have spent flying in the protocol ({Zgeiay — TTdelay), Which it divides by
two to have the estimated time of one message going from one module to the other, and
multiplies the result by the speed of light (SoL) ¢ to find the distance through the equation
d = v.t, where d is the distance, v is the speed, and ¢ is the time. Note: SoL being a good
approximation of the propagation speed of messages sent by UWB transceivers.

pojj

answer

\/

fina
— t6
Initiator Responder
d = (tZdetay — T delay)/2 * C
-t t;-t,)  oninitiator side
to-tg ty-t,)  onresponder side

Figure 4.2: Double-Sided Two-Way-Ranging Protocol
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In comparison, the Double-Sided TWR protocol is shown in Figure 1.2 The idea
is to send a final message from the initiator to the responder so that the responder has
everything it needs to do the same computation as the initiator. Therefore, it allows both
ends of the communication channel to have access to the distance estimation at the cost
of one more message sent through the channel.

Having a two-way communication protocol in a swarm of robots is not usual. Often,
agents in a swarm announce more than they discuss during communication, usually by
broadcasting messages, while the others listen for messages when they need to. This
offers a simple channel with high message drop rates and interference but without the
need for acknowledgment messages in the protocol. In this case, however, the ranging
process requires two-way communication, which, added to the ALOHA scheme, will not
help reduce interference and the drop rate. From this point of view, it seems complicated
to justify a final acknowledgment that would also increase the number of frames in flight
and, consequently, the amount of interference. The main benefit would be a better
distribution of distance knowledge but at the cost of an additional message per protocol
iteration (a 50% increase in the number of messages sent during a distance estimation
phase) and a shorter availability for the agent responding to another agent’s query. The
comparison of the two protocols would be more interesting in a TDMA context, where
each robot is allocated a moment in time for distance estimation with its neighbors.
Indeed, responders’ availability is not a problem when they respond to the only module
currently polling for distances. This thesis builds on single-sided two-way ranging.

4.1.3 1-Module vs. 2-Module Operation

The RToF ranging process requires two nodes with different behaviors: the initiator,
polling for distances, and the responder, answering the polls to allow distance estimation.
These behaviors being different, here are possible ways to implement the protocol on
independent agents:

e 1-Module, Heterogeneous: One module per robot, having either one behavior
or the other (exclusive “or”). Heterogeneous firmware between the different agents
of the swarm, some acting as initiators, others acting as responders.

e 1-Module, Homogeneous: One module per robot, switching between the two
behaviors. Homogeneous, all agents have the same firmware on their communication
module.

e 2-Module, Homogeneous: Two modules per robot, each having one of the two
behaviors (each having a different one). Homogeneous, all agents have the same
modules, with the same protocol.

1-Module, Heterogeneous

The main problem with this implementation is the Two-Way Ranging (TWR) design.
Whether for unilateral or bilateral TWR, the initiator is the basis of the ranging protocol.
The interaction does not occur without the initiator, preventing responder modules from
estimating their relative distance from other responders. Conversely, the responder’s
behavior is mandatory when responding to a poll from an initiator, prohibiting two
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initiators from running the ranging process together. Even in the best configuration, an
agent could only communicate with one-half of the swarm.

1-Module, Homogeneous

Switching from one behavior to the other is the least costly option, as it keeps the number
of equipped communication modules as low as possible. However, it has an inherent cost-
efficiency trade-off. When one agent switches to the initiator state, it becomes impossible
for other robots to initiate communication with the agent. Conversely, when switching
to the responder behavior, the only way for the agent to access the range estimate would
be to implement the Double-Sided TWR protocol, which allows both sides to estimate
the distance with a final message coming back to the responder.

Another difference between the two behaviors is situated in the timeout while waiting
to receive a message. While the initiator is supposed to wait only a short time for the
answer before it can be considered lost, the responder on its side cannot timeout too often
while waiting for an incoming message as it would be missing frames. While reasonable
if the goal is to offer simple communication in the swarm, the context-switching protocol
causes many communication losses, making robots unavailable for answering polls half
the time. In the case of relative localization, the application greatly benefits from a more
efficient channel, being by implementing a TDMA communication scheme or, in this case,
avoiding the 1-module context switching operation.

2-Module, Homogeneous

This can be seen as putting an anchor on each agent in addition to the tag it would carry
if it was localized with landmarks. Each module is efficient in its goal, either listening
to the channel (for the responder) or polling for distance updates (for the initiator). It
is, therefore, the best option compared to the objective of the thesis, which led to its
implementation. However, it comes at the expense of a second module for each robot and
having many modules initiating the ranging process at each time step. This can cause
interference, making the ALOHA scheme insufficient for greater sizes of swarms.

4.2 Communication Protocol

To enable relative localization using distance measurements alone, each agent must have
access to more information than its relative distance from the other agents. Intuitively,
applying the ranging process alone does not allow for having access to all the informa-
tion required to localize the swarm as it only provides distances between the initiating
agent and other agents, pairwise distance of other agents are required. To this extent, a
communication protocol must also be implemented to share relative distances within the
swarm, thus enabling Cooperative Relative Localization, defined as localization enabled
by cooperation between nodes. Cooperation is typically achieved whether by modifying
the movement of agents, sharing sensor data between them, or combining both.

Communication can be achieved through Wi-Fi, Bluetooth, Infra-Red, Ultra-Wideband,
and other technologies. However, as UWB is alreadu used to communicate distance es-
timation messages, it can be leveraged to integrate data transmission into the existing
communication protocol. Figure and show the proposed communication protocol.
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Figure 4.3: Initiator side of the communication protocol (from agent 1)

The first part, described above, is the distance estimation phase; the initiator iteratively
requests an acknowledgment from each responder module in the swarm to calculate the
distance estimate. The second part is the data transfer phase; the initiator will broadcast
a message containing its knowledge of distances, which any currently listening responder
will receive.

Responder 2 Initiator 1

RaspberryPi

..............

Distance Estimation Protocol

....... NN

Distance Knowledge

——= - Data Transfer Message

Figure 4.4: Responder side of the communication protocol (from agent 2)

On the other side of the communication channel, the responder will respond to in-
coming poll messages from the different initiators in the swarm and sometimes receive
data messages containing the known distance of a given agent. When receiving a data
message, the responder will forward it to a RaspberryPi through the serial port. This
implementation generalizes to messages containing any type of data; it only requires
communicating the data to add to the message to the initiator via the RaspberryPi.
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4.3 Localization

4.3.1 Trilateration

Trilateration is an essential concept in relative localization, as it is one of the most widely
used techniques in landmarked environments. However, its application to landmark-free
contexts at the early stages of this thesis work has proved unreliable. Therefore, it
will only be used to give an intuition about the ambiguity of relative distance-based
localization in such contexts.

(X1! y1)

Figure 4.5: Trilateration of a moving object (x,y) using non-moving nodes (nodes 1, 2

and 3)

As shown in Figure 4.5, using reference points with known positions, called anchors,
the distances between the node of interest, commonly called the tag, and the different
anchors allow for finding the common intersection in their relative coordinates frame to
position the tag. Trilateration differs from triangulation by nature. While trilateration
uses distances to constrain a node’s placement possibilities, triangulation uses angles from
landmarks to tags. Therefore, it requires methods that measure the angle of arrival of
the localization message rather than the measure of the distance between the nodes.

As described above, this thesis aims to remove the need for landmarks in the lo-
calization process to enable the relative localization of moving robots without external
infrastructure and without constraining their movement. In most cases, similar studies
choose between the different possibilities of positioning the first three nodes, as repre-
sented in Figure [4.6] which allows placing all other nodes relative to the first three. A
typical choice (not represented here) is to put the first node on the origin, the second
node on the x-axis at the right distance of the first one, and the third node in the positive
y-axis values.
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(a) Starting Knowledge (b) Placement of Second Node

(c) Placement of Third Node (d) Final Result

Figure 4.6: Relative trilateration without known-position landmarks

However, some ambiguities appear due to the relative-distance localization performed
by trilateration without reference points :

e Intuition of the rotation ambiguity is shown in Figure (b): from the distances
between nodes 1 and 2, it is impossible to recover the second node’s position. It
only describes a circular locus around node 1.

e Intuition of the flip ambiguity is shown in Figure 4.6|(c): from the distances between
node 1-3 and node 2-3, it is impossible to position the third node with total certainty.

Unfortunately, detecting and correcting these ambiguities is impossible based on the
static knowledge of the situation currently described. Trilateration, therefore, requires a
minimum of three reference points to avoid ambiguity. Furthermore, better performances
can be achieved with four or more landmarks, and as the network grows and spreads, it
becomes interesting to have more landmarks well distributed, enabling the localization
process to further increase the quality of the results.
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Rotations are not possibly detectable in the context of this thesis. As no infrastructure
and no sensors, such as compass, allows for placing nodes in a more global frame of refer-
ence, rotation detection and correction are not possible. Therefore, we are concentrating
solely on what can be learned without the knowledge of rotation.

Limitations

This section justifies the reasons for abandoning the trilateration method. As shown
above, trilateration techniques are typically applied in a landmarked situation, where
known position nodes are used to fix all moving nodes in a common reference frame.
When trying to implement them for relative localization between moving nodes, each
node can only be placed based on other nodes, which requires deciding which nodes to
place first and iteratively deciding in which order to place nodes based on the relative
measurements to nodes already placed. This raises several important points that limit
the application of trilateration techniques in the relative localization of a moving network.

Iterative processes on uncertain measurements showed increasing error as more nodes
were placed, even more in cases with noise on the measurements. Some heuristics based
on the certainty of the measurements (considering measurement age and previous mea-
surements) were implemented without any success. Techniques based on least squares
and other noise mitigation processes were studied without more success. Even though
trilateration showed good results in landmarked environments, implementation made for
the thesis greatly suffered from the uncertainty brought by localization based on moving
nodes and was never successful.

To avoid the need for iterative decision heuristics and the error it can bring, some solu-
tions using mathematical systems based on triangular inequality relaxations were tested.
However, each added measurement represented another constraint in the mathematical
system, which significantly increased the computation overhead the more was known
about the system. While relaxations typically improve the run-time of such algorithms,
no practical middle ground was found between estimation quality and computation over-
head. This is mainly due to both the computation time and the errors in the measurement
requiring relaxation of the problem.

In conclusion, trilateration techniques could have shown better results in the context
of moving networks with an external structure on which to base the localization of the
moving nodes. In a landmarked context, each new measurement from a landmark to the
moving node improves the localization quality, and four nodes are enough to obtain a
centimeter precision. Hence, the main application of DMW1001-DEV modules is using
an anchor-tag structure to obtain the advertised accuracy in positioning the tags in
the network. However, in the setting without landmarks, the above-mentioned failed
attempts did not show promising results, which led to the hypothesis that trilateration
was not fitted for the work. Therefore, the implementations discussed in the next section
are based on the observed limitations of trilateration. The main take away of this section
is the intuition behind the different ambiguities that arise from relative localization based
solely on range measurements.
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4.3.2 Multidimensional Scaling

Multidimensional scaling (MDS) is a standard solution for relative localization. Based
on the previous conclusion on trilateration techniques, optimization procedures could be
the solution for placing nodes in two-dimensional space with the minimum error on all
nodes.

Practically speaking, Multidimensional Scaling is an iterative procedure that aims to
optimize the following loss function o(X) called the stress, i.e., the weighted mean square
error of the relative distances of each placed node. Intuitively, if the distance between
node ¢ and node j is not respected, it increases the stress, decreasing the results quality.

o(X) = ) wi(dig(X) = 6;)%, (4.1)
1<j<n
Where w;; > 0 is a weight given to the pairwise distance from node ¢ to node j and
can serve as a certainty factor, d;;(X) is the Euclidean distance between the current
estimated positions of the nodes ¢ and j, ¢;; is the actual distance between the nodes i
and 7, that is estimated through pairwise range measurements using RToF.

There are different ways to optimize this loss function. In this thesis, the SMACOF
implementation found in the scikit-learn Python package was used, slightly modified to
accept weights after de Leeuw et al. in [83]. SMACOF, or “Scaling by MAjorizing a COm-
plicated Function”, is an algorithm that leverages bounds on the different components of
the loss function to simplify the optimization process.

Starting with the classical loss function o(X), we can extend it to find:

i<j i<j i<j
Where o(X) = 3, wi;07; is a constant, >, . w;;d7(X) is quadratic in X, and can
be rewritten for better computability, and ), _; wi;0;;d;;(X) can be minorized by a linear
function, which allows for a majorization of the stress o(X). Using the upper bound, the
loss function becomes easier to optimize.

To mitigate the fact that the distance matrix will not be updated at each iteration
(latency in the communication), a certainty variant of MDS was implemented based on
the fact that we can add weight to each measurement. The weights are based on the time
since the measurement was taken and decrease by a factor of 0.99 at each iteration.

Unfortunately, MDS is not suited for real-time localization by design as it aims to
optimize a stress function that is only constrained by the distances between the nodes
and not the past positions of the nodes. It is impossible to make total sense of the
displacement observed in the position estimate over time. However, the optimization
algorithm allows for the initial state to be decided. Previous estimations can be input as
the initial value for optimization, allowing for the algorithm to search its local minimum
at a position that has physically more sense than flickering solutions of the base MDS
algorithm with random initialization. This observation led to the implementation of the
initialized MDS variant and the particle filter discussed in the next section.
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4.3.3 Particle Filter

The particle filter is a Bayesian filter, which consists, after random initialization of the
particles, in three steps repeated until the end of the computation [84] :

1. Initialize the state of the particle filter. The initialization step randomly draws
a first list of N states x = (z,y, ) that we call particles. They contain a position
(x,y) and an orientation (@) information. The initialization variant of the particle
filter consists of giving starting relative positions as information, therefore sampling
the starting particles around the given coordinates.

2. Predict the particle movement using the system’s dynamic model. The prediction
step consists of making the particles move depending on the state they represent by
following the movement equation of the system. Logically, the better the movement
law describes the system, the better the results.

In our case, random walk is considered due to the lack of information on the system’s
dynamic. The random walk mainly consists of making the particles move linearly
in a random direction. A constant linear speed of 30cm/s is considered to match
the RVR’s speed, and the rotation speed is described as null but with an error of
2m, which effectively causes the particles to choose a new direction randomly at
each step.

3. Update the particle distribution using real-life measurements through the following
formula :

P(x) = |I£-P(x)l|, (4.3)

Where L is the likelihood, P(x) is the prior distribution of x. The norm is used to
normalize the posterior probability distribution of x, i.e. P(x). This is a realization
of the Bayes theorem (Equation (4.4))

P(z]x)P(x)

P(xle) = =5

(4.4)
Where z represents the measurements of the real system, and x is the estimated
position of the agent. Intuitively, the estimated quality of the particles when seeing
the measurement z (i.e. the posterior probability P(x|z)) is proportional to the
probability of the agent being in position x (i.e. P(x), which is estimated by the
previous iteration) multiplied by the likelihood of obtaining measurement Z when
the agent is placed in position x (i.e. P(z|x)), up to a normalizing factor P(z).

In the particle filter case, the certainty variant removes the uncertain measure-
ments before applying the update. Therefore, old measurements do not impact the
estimated probability distribution.

4. Resample the particles. The resampling step redraws new particles to match the
current probability distribution estimate better if too many particles have a bad
fitness.
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The particle filter was implemented by modifying the filter proposed in [84]. The
main difference is that the dependence on landmarks had to be removed and replaced by
pairwise measurements of other agents. To do so, from the point of view of any agent, each
other agent is simulated by another particle filter, which allows for decoupling the different
estimations. The other particle filters are used to estimate the position from which
to consider the measured pairwise distances. However, this may cause computational
overhead and will not allow large-scale implementations.

4.3.4 Direction

Localization is the fusion of both position and orientation estimation. While robotic
platforms would typically be equipped with compasses to put their current direction into
the reference frame of Earth’s magnetic field, the thesis focuses on what can be achieved
by pairwise distance alone. This section describes three methods imagined to estimate
the direction of the agents based on the positioning algorithm previously discussed and
pairwise distance measurement over time.

Distances Evolution Estimation

Based on distance alone localization, the first implementation of direction estimation was
designed using the evolution of the distance matrix. The basic idea is that the relative
evolution of distances could give a rough estimation of the agent’s direction relative to
the other agents of the swarm.

------------- relative distance

relative displacement
Dt estimated direction

Figure 4.7: Direction Estimation through pairwise distance evolution

Figure [4.7] showcases the main concept of direction estimation with distance evolu-
tion. The different vectors composing the distance estimation are aligned to the vectors
connecting the other nodes to the first node, with the direction chosen depending on the
sign of the distance evolution (positive when moving away from each other). A direc-
tion angle can then be computed relative to the estimated positions using the position
estimate generated by the previously described positioning algorithms.
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While it worked well in a landmarked situation in simulation, the quality decreased
too much in landmark-free environments to be usable. The main reason was that all
the agents moving in seemingly random directions caused the estimation to generate
small direction vectors that could be in any direction depending on the noise of the
measurements. This observation led to the implementation of a distance history, which
allows to take distances from earlier times and, therefore, increase the vector size with
greater distance evolution.

Displacement Estimation

Another investigated option is to use the previous position estimations as information
for the direction estimation. The idea is to use the positions over time to recover the
displacement vectors. In this case, the historic variant of the direction estimation works
as follows: the larger the history, the more of the previous positions are considered while
aggregating the results with a moving average. The moving average is a time-variant of
the classical average that gives more importance to recent values.

However, for this to work, the position estimation must be stable, meaning that
the localization x(t), should make sense compared to the previous estimation x(t — 1),
by following some dynamic law explaining the movement between the two time steps.
This will typically not be the case if the method is not designed for it. For example, a
trilateration heuristic, which always puts the first node at the origin and the second on
the positive x-axis, will generate cases where the first node has moved while the estimated
position has not changed over time, causing other ambiguities.

Usually, it would suffice to have landmarks to overcome this problem; fixed nodes
would allow for rotating and translating the estimate to match the previous position
of those same nodes, but the aim is to have no landmarks, which adds the previously
discussed flip and rotation ambiguities. Therefore, the best candidates for this method
are the initialized MDS, which starts from a predefined previous position, and the particle
filter, which attempts to simulate the movement of agents over time. Nevertheless, we
can expect undesirable behavior from both methods since the initialized MDS updates
the position to minimize stress without trying to make sense of the movement, and the
particle filter is mainly probabilistic, which could also lead to unexpected results.

Particle Filter Estimation

As described in the section on the particle filter, each particle also has its angle (relative
to the simulation axis) as part of the state to predict agent displacement. We can,
therefore, use this information to aggregate an estimate of each agent’s current direction,
in the same way as the filter aggregates particles’ positions :

1 n

where n is the number of particles, w; is the weight of each particle and x; is the
particle state (z,y,6). Which gives the estimate p of the position and heading of the
agent. However, the system’s dynamic being estimated through random walk will not
help the particle filter make sense of the particles’ displacement. It would, therefore, be
a better estimate after adding sensor fusion with odometry data.
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4.4 Simulation Parameters

Since a large part of the thesis is based on UWB communication, the simulation results
must be cautiously separated from a real-life situation, as simulated communication pro-
tocols are often far from the reality of communication and all its physical constraints.
While good simulation results may not be transposed to reality, bad simulation results
will undoubtedly lead to bad results. Therefore, it is interesting to discuss the weaknesses
and, only to some extent, the strengths of each of the methods and variants described
above in the simulation. To try and get closer to reality, the following parameters of the
simulation can be tweaked: the message drop rate of the simulated communication mod-
ules, the range measurements noise of the simulated sensor, and the simulation iteration
rate.

The above-discussed noise model is applied to the simulation except for the computed
offset. Manually adding the offset we computed in the previous section would make no
sense as it would exactly match the algorithm variants considering that model. Therefore,
only the computed standard deviation is added as noise to the measurements, and the
study of the simulation results will not make use of the offset variants of each algorithm.

Further analysis of the system is required to determine the correct drop rate and
iteration rate. Let us first derive the meaning of the drop rate; the probability of receiving
a message from at least one of the three other agents at a given timestep is computed as
follows:

Pm>1)=3-p2- (1 —pg) +3-pg- (1 —pg)* + (1 —pa), (4.6)

Where m is the number of messages received at a given simulation step, p; is the
probability of a frame being dropped (effectively, the drop rate). The probability is
computed as the sum of the probability of each resolution that matches the goal (i.e.
receiving all three, the three possible combinations of receiving two of the three, and the
three possible combinations of receiving one of the three). Which is more convenient to
compute the other way around:

Pm>1)=1-Pm<1)=1-Pm=0)=1-7p. (4.7)
This can easily be transferred to a case with n robots:

P,(m>1)=1-p). (4.8)

This probability can effectively be estimated by counting the number of messages
received by an agent over time, allowing for deciding on the optimal drop rate for the
simulation :

message_per_second = (1 — pj) - iteration_rate (4.9)

To ensure that the correct number of messages is transferred over one second, the
simulation will randomly choose one message per iteration and discard all the others.
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4.5 Summarized Architecture

A RaspberryPi is mounted on each robot and connected to the two modules to calculate
the position of each agent. It will receive information on the distance estimations of the
modules and use this to calculate the localization. Figure [4.§|shows the final architecture
mounted on each swarm robot.
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Figure 4.8: Interface between DWM1001-DEV Modules and the Robot Controller

First, we have the operation of each UWB module, which was explained in the previ-
ous section. Then, we have the calculation part, where, as mentioned above, the UWB
modules share their knowledge with the RaspberryPi through the serial port. The Rasp-
berryPi hosts two Python processes, one to read data from the serial port and the other
to calculate agent positions in real-time, both communicating over ROS topics. Finally,
it would be possible to communicate information to the robot controller if we wanted the
calculated location to have an impact, typically to enable morphogenesis behaviors such
as aggregation or repulsion.
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Chapter 5

Experiments

5.1 Experimental Setup

This section explains the configuration used to carry out the various experiments in the
physical and simulated contexts.

5.1.1 Physical Setup

For the experiments outside of the simulation, the previously introduced Mercator robots
were equipped with an initiator /responder pair of UWB modules. The agents evolved in
a dodecagonal arena with a diameter of 2.5 meters.

——————— Physical link tyACMO

Micro-USB Port
Logical link

Sensor Data  Tracking Data
—

.bag

8
o t

ROS Topic Record (rosbag) - -

......................... ~  ArUco Tag Tracking (ceiling camera) Tracking System

Figure 5.1: Experimental setup data flow, three agents placed in the arena, the tracking
system knowledge and internal architecture of agents (described in Section .
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As depicted in Figure 5.1, during experiments, the actual positions were recovered
using a video tracking system based on the recognition of ArUco tags. Each sensor’s
measurement during the experiment was recorded using rosbag to re-simulate the ex-
periment as many times as needed. Before each experiment, the tracking system and
the RaspberryPi clocks were synchronized through their internet connection. Record-
ings from rosbag have timestamps based on the system clock for every recorded message,
which allows for easy synchronization of the data of the different bags while replaying
the experiment.

5.1.2 Simulation Setup

The simulations were carried out using ARGoS3, presented in section 3.2l As the main
objective of the simulation was to test the system with an increasing number of agents,
the arena was chosen as a square of about 4 meters on a side, deliberately larger to
accommodate more robots. The foot-bots plugin was used to simulate the agents, imple-
mented with approximately the same number of proximity sensors as Mercator to enable
random walking in the arena. The range and bearing sensor/actuator plugin was used to
simulate the UWB modules. While bearing measurements were dropped, distance mea-
surements were used to generate the swarm distance estimate. The range and bearing
actuator was used to transmit information between agents and, therefore, simulate the
data communication of the physical system.

i ARGoS Simulation i 1 Localization Computation '
3 positions . /simulation/positions | | | - Thesis | |
' Simulation . Loop Function — et Statistics |
Knowledge distances positions P !

Controllers
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: § [ ] sSimulated Sensors/Actuators
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Visualization

/agent_1/positions

Algorithm

positions

i — Information Flow

Figure 5.2: Simulation setup architecture scheme, showing the data flow between the
different components of the simulation.

On the one hand, the tracking system was simulated using a loop-function; a controller
with access to all the simulation information, running in the background during the
experiments in ARGoS. It mainly consisted of publishing each simulated robot’s exact
position and orientation on the related ROS topic. On the other hand, the control software
of the robots simulated a random walk and published sensor data to each linked ROS
topic. Finally, the localization computation was implemented using ROS nodes reading
data from the various ROS topics in which the loop-function and robot controller were
publishing. Localization algorithms were applied in real-time on top of the simulation to
reproduce some of the communication delays introduced by ROS. (see Figure
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5.2 Experiments

Two main types of experiments were carried out as part of the thesis: static experiments,
in which UWB communication modules were placed at known positions to study the
system without the randomness involved in module movement, and dynamic experiments,
in which communication modules were placed on moving agents to study the system with
movement.

5.2.1 Static Experiments

The study of dynamic systems involving several agents is complex. Therefore, static
experiments were carried out to simplify the analysis and generate a basic intuition of
the system’s underlying rules. The main interest of these experiments was to derive a
noise model for range measurements and to characterize the communication channel when
using the implemented communication protocol.

Noise Model Experiment

The experiment aimed to characterize the noise on the measurement made with the UWB
modules using two-way ranging. The derivation of the noise model has two main interests.
On the one hand, studying the estimate’s accuracy could lead to important information,
such as a significant bias in the measurement, which could be corrected manually in the
localization process. On the other hand, the derived noise model enables us to understand
which parameters to give to the simulation to bring it closer to the reality of the ranging
process.

Figure 5.3: Experimental setup for analyzing the static distribution of the RToF estimated
distances.

As shown in Figure two UWB modules (one initiator and one responder), placed
facing each other, were used to measure distance. A folding meter was used to measure
the actual distance between the two modules. The distance measurements generated at
the initiator were saved over 30 seconds using a USB cable connected to a computer,
recording the data shared by the communication module. Finally, the experiment was
carried out 20 times, starting with 10 centimeters separating the two modules up to 2
meters apart, with steps of 10 centimeters. The experiment’s output is a distribution of
the range measured for different known distances, which allows the study of the accuracy
of RToF measurements with UWB modules compared to reality.
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Channel Characterization Experiment

The main benefit of channel characterization is that it enables a comparison between
the implemented communication protocol and future implementations such as TDMA. A
positive impact of knowing the channel’s communication frequency is that it enables the
proper simulation parameters to be chosen, bringing the simulation closer to the reality of
physical communication, i.e., interference or other physical phenomena that are difficult
to model in simulation.

For the characterization of the communication channel, four pairs of UWB modules
were placed in a random configuration, each pair composed of one initiator module and
one responder module tied against each other. For each experiment, modules were placed
in another configuration, and for the duration of the experiment (60 seconds), the number
of messages received at the initiator and responder modules were saved independently.

e Message count of initiator: amount of successful distance estimation

e Message count of responder: amount of successful data communication

This allows for computing the frequency of distance estimations and data communi-
cation at a given swarm node.

Data Convergence Experiment

The main objective of this experiment was to gain insight into the speed at which the
system converges, as well as the speed of data flow. The goal was also to study the
behavior of the different localization algorithms and variants in a static setting.

Figure 5.4: Experimental setup for static convergence analysis

As shown in Figure , the module pairs were placed in a known configuration (in a
square shape with edges of 1.6 meters) to allow for comparing the quality of the position
estimation with regard to the actual configuration. One pair was connected to a computer
to recover and save the data it received throughout the experiment. The three other
pairs were connected to the same multi-plug to be switched on simultaneously. Each
experiment batch started with all modules switched off except for the modules connected
to the computer, which were reset manually before starting each experiment. Directly
after starting the experiment on the computer (record of data over time), the other
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modules were started. Therefore, a delay of about one second can be expected due to the
human intervention required, which should not be considered when discussing the results.
The experiment was repeated five times for 60 seconds to enable the averaging of results
over different batches of data and to avoid outliers leading to erroneous conclusions. The
quality of each algorithm’s position estimation was calculated using the difference with
the known positions in which the modules are placed.

5.2.2 Dynamic Experiments

Building on the results of the static experiments, experiments in a dynamic context
were conducted to study the system in a realistic setting. On the one hand, dynamic
experiments were conducted with an increasing number of moving agents. On the other
hand, experiments were conducted in simulation to study the scalability of the system
and its dependence on noise, which are difficult to test in a real setting, as only a limited
number of robots are available. The noise due to increasing interference is not easily
generated in reality without increasing the number of modules and, therefore, the cost of
the installation. All dynamical experiments are 60-second long runs of the agents moving
around the arena; the localization computation is restricted to 10 times per second.

Physical Setting

Two experiments were conducted using the setup described above to assess the overall
quality of the localization protocol in different settings. One experiment was dedicated to
trying the algorithms in a setting close to reality, with all the agents moving. The other
experiment was conducted with one agent moving while the others were at rest to act
as landmarks. For all the experiments in the physical setting, the experimental protocol
consisted of the following:

1. Booting up the robots, subsequently starting the communication modules.
2. Launching the tracking system and starting the tracking data recording.
3. Starting the sensor data recording in the RaspberryPi of each agent.

4. Putting the required agents in motion for a given duration.

Simulation Setting

While the simulation was mainly used for rapidly implementing the different algorithms
and creating proofs-of-concept, it constituted an important tool to test the proposed im-
plementations in settings that are difficult to recreate in reality. To that extent, different
experiments were carried out with an increasing number of agents. The idea was to show
whether the system could adapt to a large number of agents in the perfect simulation
environment and assess the deterioration in localization quality as the number of agents
increased.

The experimental protocol consisted of, for each number of agents considered, running
all the components of the simulation setup described above, i.e., the ARGoS experiment,
generating data and publishing them on given ROS topics in real-time, and the localiza-
tion pipeline, computing localization from the generated data and comparing them with
the agents’ actual positions.
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5.3 Quality Assessment

This section describes the different measures used to evaluate relative localization quality
and compare the implementations described in the previous chapters. They are divided
into two categories: position quality, which focuses on how algorithms position agents in
a 2D plane relative to each other, and direction quality, which focuses on the quality of
the direction estimate of the agent.

Preliminary note: as mentioned in Section [4.3.1on trilateration, algorithms are prone
to rotation and flip ambiguities when trying to obtain a relative localization with distance
alone and without landmarks. Although solutions have been proposed to detect these
ambiguities by taking advantage of node motion [85], they generally require retrieving all
distance measurements at the new node position in a single time step, which works well in
simulation but is virtually impossible in a real environment with the underlying communi-
cation constraints. This is why, before applying the above measures, an optimal rotation,
inversion (flip) and translation transformation, found with the Kabsch-Umeyama algo-
rithm, is applied to the points with the actual positions as reference points. Inversion can
occur when the points are rotated; to detect this, we can calculate the determinant of the
rotation matrix; if the determinant is negative, an inversion has occurred. Consequently,
when calculating statistics, it is possible to detect whether the localization algorithm
generates an inverted version of the real positions.

5.3.1 Position Quality

Position quality is estimated by calculating the mean square error of estimated versus
actual positions. This means that the metric is lower when all error estimates are small
and higher when the errors on individual estimates are significant. The metric gives the
best results when most of the robots are well placed, while poor results are due to one or
more robots being completely misplaced.

5.3.2 Direction Quality

Agent direction knowledge is essential for enabling morphogenesis behaviors. The most
crucial direction estimate is the one of the agent currently calculating relative localization
before performing its next step. As a result, the metric for evaluating the quality of the
heading is the error on the angle estimate of a given agent ¢ when calculated using its
knowledge. The error is the difference between the actual angle and the estimated angle,
modulo 27 and shifted to obtain an error of +m (either too far left or too far right,
relative to the actual heading). Then, to avoid going from 7 to —7 between two time
steps while only changing the estimate from 2 degrees, the absolute value of the error
is considered, resulting in an undirected error between O and 7. This metric will ensure
that random guessing of the direction will not average the error to 0° but to 90°. It
will allow to differentiate better methods that increase the orientation estimation quality
from methods that create a random estimate averaged to 0° of error.
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Chapter 6

Results

6.1 Noise Model

A static distribution experiment was conducted to study the error in the measurement
estimation made with RToF (Round Time of Flight) using the DWM1001-DEV modules
and the communication protocol depicted in Section [£.2]

Measured RToF distance vs. True distance
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Figure 6.1: Study of the static distribution of RToF measurements compared to the real
distance

The results obtained at short distances show that the RToF estimate systematically
overestimates the distance by around 20 centimeters. A linear regression was applied to
the data, and although it showed the linearity of the range estimate, a slope of 0.906 was
found, leading to the hypothesis that the error is 10 centimeters higher as the distance
to the responder module increases by 1 meter. While this might not be the case for
measurements of higher magnitudes, all experiments were conducted in spaces where
no measurement could exceed 3 meters, which removes the need to model the error for
greater distances.

Since the resulting noise model has a convenient form, an offset variant has been
implemented for each algorithm. It uses the derived noise model to transform the mea-
surements before localization computation, expecting it to describe the actual distances
better.
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6.2 Channel Characterization

An experiment was conducted to characterize the communication channel, counting the
messages received from ranging and communication separately. The results are averaged
for four experiments, each in a different position configuration.

Histograms of Ranging and Communication (POV: Node C, Average over 4 runs)
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Figure 6.2: Study of the communication frequency averaged over different static settings,
frequency separated by communication type and by agents communicating with the stud-
ied node C

The experiment results in Figure [6.2] show about 70 messages per second for the
ranging process and 90 messages per second for the data communication process. Com-
munications seem to be well distributed between the different agents, except for node C,
which does not communicate with itself through UWB. However, fewer messages were
received from node B, which shows that some other factors not present in the simulation
can change the communication properties. Some examples are the closeness to the agent,
the multi-path effect, some obstruction between the nodes, or a random synchronization
between two nodes hindering communication with other nodes.

Based on the obtained frequency of communication, the following parameters were
used for the simulation :

e iteration rate: set to 100 to allow for up to 100 successful messages per second.

e drop rate: set to 0.5 under the equation (4.9) :

(1—0.5%)-100 = 87,5 (6.1)

Under those parameters, the simulation has the same amount of successful transmis-
sions per second as the experiment, allowing for approximately the same data transmission
rate. To match the number of new measurements made per second, an 80% probability
of dropping the new measurement coming from the message transmission was added. It
causes the number of new measurements per second to be 87.5-0.8 = 70, which gets the
simulation to approximately the same ranging frequency as the experiment.
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6.2.1 Parameter Assessment

This section compares the base results for dynamic experiments between real settings

and simulations. Figure summarizes the results for different values of noise standard
deviation in the simulation.
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Figure 6.3: Study of the effect of noise standard deviation on the localization quality
using MDS and Particle Filter in simulation

Later results leveraging the real implementation (see Figure tend to corroborate
the previously defined noise model and dynamic behavior. The results show that the
error on the localization is approximately the same (error bound between 0 and 100cm?)
as for the simulation case using an error standard deviation of 10 to 15 centimeters.
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Figure 6.4: Study of the localization quality between MDS and Particle Filter, comparison
between their mean square error over time.

However, the attenuation of particle filter errors is not observed anymore. The main
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reasons for this difference could be, firstly, that the noise model is not perfect and,
secondly, that the particle filter parameters are over-adjusted for the simulation. Various
parameters were therefore tested to improve the particle filter results but without success.
Although the results improved, they only got closer to the MDS results, with the same
error curves in some experimental cases (shown in Figure [6.5)).
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Figure 6.5: Study of the localization quality between MDS and Particle Filter with
improved parameters, comparison between their mean square error over time.

This last result highlights a limitation in estimation quality, which, given the total
opposition in their implementation, does not depend on the algorithms but rather on the
information available and its quality. Suppose the quality of the estimate was limited
by the data available. In that case, it may be due either to the speed of transmission
(out-of-date measurements) or to the quality of the measurements (excessively noisy
measurements on the tracking system or the UWB modules).

This discrepancy does not appear in the simulation, but well in the results of the
experimental setup; the main causes of error in the experimental setup compared to the
simulation should be the following:

e Errors in the positions computed by the tracking, mainly due to the loss of ArUco
tags trace at some point, causing translation of the agents to undesired positions.

e The position of the UWB modules next to the ArUco tags, which generates an
offset of 5 to 10 centimeters between the actual center of the robot (as seen by
the tracking system) and that which the localization algorithm with perfect range
measurements would estimate.

e The measurement bias, which, as described in Section [6.1] increases with distance
and can reach 20 to 30 centimeters for measurements over 2 meters.

e The system dynamics, which means that information always arrives later than it
was measured since agents move at speeds of up to 50cm/s.

e Finally, data propagation and computation time mean that the estimate is time-
shifted compared to the agent’s actual positions.

The tracking system data were manually shifted in time to check the impact of the
last source of error. The results in Figure show that it takes some time for the system
data to reach the localization algorithm, resulting in a delay of around 0.5 seconds in the
position estimate. However, this error alone cannot explain the discrepancy between the
simulation and experimental configuration.
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Figure 6.6: Average mean square error of the position estimate using the particle filter
algorithm for different time shifts of the real positions (estimated by the tracking system)

For other sources of error, such as the rate at which the swarm transmits information,
the certainty variants should improve resistance to missing data compared with current
results; for sources of error, such as measurement noise, the offset variants should improve
overall error. If none of the variants radically improves the results, the cause of the error
may be something else.

The last error source that must be investigated is the tracking system error. Since the
tracking system is the ground truth used to compute statistics on the localization quality,
errors should be noticed to avoid false conclusions on the results. Figure shows a
correlation between error peaks in location quality estimation and tracking system speed
outliers. While not all error peaks are due to the tracking system (see the 55-second
timestamp), there is also a strong correlation between the most significant tracking system
outliers and most error peaks, showing that tracking system errors are not negligible.
Results would, therefore, be less noisy with an improved tracking system.
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Figure 6.7: Showcase of correlation between speed outliers of the tracking system and
the computed error on localization (speed outliers represented as vertical lines).
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6.3 Convergence Analysis

Multidimensional Scaling

The results are averaged over five experiments using the following variants of MDS:
e init: initialization of MDS with the previous localization estimation.
e offset: distance measurements corrected using the derived error model.

e certainty: weighted variant of MDS to give less importance to old measurements.
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Figure 6.8: Evolution of the Mean Square Error over time for all tested variants of MDS

Figure shows that some models converge in terms of mean square error while
others do not. Those that do not converge all come from the init variant of MDS. As
shown in Figure (a), the non-convergence behavior is because some batches converge
while others remain at a high and never decreasing error level. Figure (b) illustrates a

typical mis-estimated position and shows that the initialized MDS cannot escape a local
minimum of its objective function.

MSE of Positions (4 Static Agents, MDS) Wrongly Estimated Positions (4 Static Agents, MDS)
8000
1601 g & =
7000 -
140 o
__ 6000+ 120
3
= 5000 4
5 z 100
f 4000 T % e Estimation
& = ® Reality
3 s
@ 3000 4 > 60
g Batch 1
= 2000 Batch 2 40
Batch 3
1000 4 Batch 4 201 ¢
Batch 5
o] — mds, init | N | O — 0 &0 f

0 5 10 15 20 25 30 35 40 0 50 100 150

200
Time (s)

X-axis (cm)

(a) MDS with initialization variant, batch de-  (b) Resulting localization at last time-step
composition for non-converging batch

Figure 6.9: Final positions estimation for a non-converging batch of MDS with initializa-
tion variant
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Furthermore, from Figure we see that the offset variant has caused two improve-
ments in the behavior: a significant speed-up in the convergence speed and a lower mean-
square error at convergence. Lower convergence mean-square error is easily explained by
the measures being closer to reality for the convergence speed. However, it is not trivial
as to why it causes such a big difference. It might be caused either by the agents being
close together (about 1.6 meters from each other), which causes errors to impact the es-
timation quality significantly or by the distances being closer from reality, allowing MDS
to generate better estimates faster. Finally, even though the certainty variant seems to
generate faster convergence, the difference is not enough to conclude.

Particle Filter

Let us now look at the results of the Particle Filter. Here is a quick reminder of the
particle filter variants implemented:

e init: starting the filter with good relative positions (but not the right distances).
e offset: same as previously, updated distance values with derived error model.

e certainty: removing old values from the measurement in the update phase.
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Figure 6.10: Evolution of the Mean Square Error over time for all tested variants of the
Particle Filter

It can be seen in Figure that the particle filter converges less often than MDS;
this is mainly due to the nature of the solution, which tries to simulate the movement of
agents, forcing a logical transition between each time step. Consequently, if the particle
filter finds itself in an ambiguous position, such as a local minimum, it will not be able
to return to a correct estimate, even more so if the number of measurements it can rely
on to update the probabilities is reduced, as it is the case here with relative localization
based on distance alone. However, giving a good first approximation to the filter allows
for converging most of the time, as it happened with the initialization variant proposed
here.
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6.4 Mobile Setting Analysis

This section analyses the localization quality for the different algorithms and variants
implemented. All the results in this section come from experiments done in the physical
setting with all agents moving.

6.4.1 Position Estimation Quality

The various algorithms implemented were run on the data of the dynamic experiments,
with all the agents moving to study the impact of each variant on localization quality.
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Figure 6.11: Boxplot of the positioning mean square error over a 60-second run with all
robots moving. Comparison between the two algorithms and their variants based on the
localization error.

The results in Figure show that the offset variant is the only variant with a
significant impact on localization quality, showcasing the interest of the previously derived
noise model. All the results in Figure [6.12| corroborate the previous conclusion since,
over time, the quality remains the same for the algorithm with and without variant
except for the offset variant, which consistently decreases the observed mean square error.
However, compared with the static convergence study, all the algorithms converge, which
means that the system dynamics allow enough randomness to prevent the algorithms
from getting stuck in local minima.

Furthermore, initialization variants have a positive impact at the beginning of the
experiments, but they have the same results as the algorithm without the variant. Finally,
the certainty variant having no impact on the quality of the estimate either means that
the channel is not the limitation of the localization quality or that the certainty factor is
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not decreasing fast enough for outdated measurements. In both cases, it causes all values
to have about the same certainty, changing nothing to the algorithm’s results.

However, certainty decreases by a factor of 0.99 at a frequency of about 80H z, causing
it to be equal to 50% after one second. Furthermore, certainty only increases when a new
measurement is made, and the average certainty of the values over an experiment is about
95%, which tends to show that the error is not a channel limitation.
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Figure 6.12: Comparison of the localization results for MDS and PF when using the
offset, certainty and init variants.
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6.4.2 Direction Estimation Quality

This section discusses the direction estimation through the different methods described in
Section All the results in this section come from experiments done in the physical
setting with all agents moving.

Preliminary Method Comparison

Figure showcases the three direction estimation mechanisms results for MDS and
PF. The historic parameter has a different impact on each method:

e Displacement: historic saves the previously computed positions and averages the
displacements from position to position with a decreasing weight as the position
estimate is older.

e Distances: historic saves the distances measured over time, and uses the difference
from the first and last distance estimation of the historic to compute the distance
evolution.

e Particles: historic saves the total weighted average particle of each iteration and
computes the average of direction with a decreasing weight as the particle is older.
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Figure 6.13: Boxplot of the error on the estimation of direction using the three estimators
on both MDS and PF (“particles” estimator not relevant for MDS) and for different sizes
of historic

The boxplot does not showcase great results for the different direction estimation
methods. Even though some methods decrease the variance and others tend to decrease
the mean error, on average, the error level is around 80 to 100°, which is the expected
result of a random guess since the metric used is bound between 0 and 180°. This shows
that the overall quality of the direction estimate is low. However, the direction estimates
fluctuating a lot over the whole experiment could be studied in more detail to compare
the quality of the different methods.
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Direction Estimation Stability

As shown in Figure [6.14] even though both estimations have about the same average
quality, the particle filter version is way more stable in its estimate, which is better than
the seemingly random behavior of MDS.

< 100

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

(a) PF vs. Classical MDS (b) PF vs. Initialized MDS

Figure 6.14: Comparison of the error on the direction using the displacement estimation
between PF and MDS with and without the initialized variant

As mentioned, this is mainly due to the difference in construction between MDS
and PF. MDS does not make sense of the previous estimation, which causes new position
estimation to appear completely random compared to previous estimation. The initialized
version of MDS was introduced for that reason and proved to have the intended effect in
Figure [6.14]

However, the results based on MDS are still less stable than those of PF-based esti-
mations for both the displacement and distances methods. Overall, the distances based
estimation showed unstable results for any historic size. The following section will, there-
fore, only focus on comparing the displacement and particles based methods using the
particle filter and the displacement method using MDS, which are the only methods that
showed preliminary results.

Method Comparison

Instability in the direction can come from different factors depending on the method. For
example, the particles estimate instability comes mainly from the fact that the particles do
not have a dynamic model to rely on, therefore basing itself on a random walk, causing
the directions to be less stable. It also means that the method should greatly benefit
from sensor fusion with odometry data. Then, the distances estimate showed promising
results in simulation with one agent moving in a landmarked setting but no consistency
over situations with every agent moving randomly. Since the historic size did not change
anything to the results, the cause must be the randomness brought by the displacement
of all agents, which leads to the conclusion that it is not suited for the purpose. Finally,
the displacement estimate stability directly depends on the stability of the positioning
method.

However, we can see in Figure [6.15] (a) that the best results for orientation, given
by the particles estimation, match the quality of the constant direction. This should
mainly be caused by the random direction given to the particles to ensure a good position
estimation even without information on the system’s dynamic. Indeed, averaging angles
evenly spread between —m and 7 will always give 0 and, therefore, no information on
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the agent direction. For this estimation to work, it should have a consequent part of the
particles oriented in approximately the right direction. However, it would require the
particle filter to receive additional information to remove the need for the random walk
implementation.

nnnnnnnnnnnnnnnnn

xxxxxxx

(a) Particles direction vs. constant direction (b) Displacement direction vs. constant direction

Figure 6.15: Comparison between implemented methods of direction estimation and con-
tinuously estimating the same direction.

Figure [6.15] (b) shows the result of the displacement method. While it does not
improve the overall quality of the estimation (average to about 50% of the time under 90°
of error), it has a behavior that does not correspond to the constant estimation, which
shows that a more stable estimation should allow for improving the result. However,
more stability will not be achieved unless landmarks or sensor fusion are added to the
particle filter. In conclusion, the orientation estimation methods implemented are not
qualitative and will not allow consistent results. Furthermore, from all the implemented
methods, displacement is the best option for distance alone orientation estimation, and
particles should be tried with a better-known dynamic when adding odometry data.

6.5 Landmarked Setting Analysis

This section summarizes the experiment results with landmarks, i.e., one agent moving
and all the others at rest. It is deliberately kept short to support the improvements that
an environment with reference points brings to localization.

6.5.1 Position Estimation Quality

As shown in Figure [6.16], the position estimate is approximately the same. However,
some minor improvements can be observed, as the particle filter is able to decrease the
estimation error even more once in a while when implemented with landmarks. Once
again, some error can be observed, showcasing problems in the quality of the data but
not a problem with the implementation itself.
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Figure 6.16: Comparison of position error between MDS with initialized variant and PF
with and without considering non-moving agents as fixed points in localization algorithms

6.5.2 Direction Estimation Quality

Landmarked settings are often used to increase the stability of distance localization in
literature; therefore, they can be expected to have a good impact on the direction esti-

mate.
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Figure 6.17: Quality comparison of direction estimation with displacement method be-
tween MDS with initialized variant and PF with and without considering non-moving
agents as fixed points in localization algorithms

As shown in Figure[6.17] while it does not become perfect, the quality of the direction
estimation significantly improves when using landmarks. Once again, displacement is the
only method whose quality has increased, corroborating that its main requirement is the
stability of the position estimate. Unfortunately, the distances direction estimation does
not improve with the landmark situation in the real context, showing that displacement
estimation is the only promising method of the three presented to achieve consistent
direction estimates for distance-only settings.
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6.6 System Scalability

Based on the simulation, experiments were carried out for 4, 8, 12, 16, and 20 robots.
Equation [4.8 was used to derive the drop rate for each number of agents to match the
channel characterization. The previously derived noise model and communication param-
eters were therefore used, which is the main limitation of this analysis since interference
and message loss can be expected to increase considerably for an increased number of
agents. This problem is indeed caused by the ALOHA-based communication protocol. It
cannot be expected to work this well when used with so many agents in real life. However,
the results could prove that even with an idealized channel, specific problems do occur.
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Figure 6.18: Comparison of the localization quality over time using MDS and Particle
Filter for an increasing number of agents

Figure [6.18 shows MDS and PF results for different numbers of agents. Firstly, when
the algorithms reach convergence, the error is, on average, greater for larger swarms. In
fact, a linear decrease in quality is observed for MDS while an exponential decrease is
observed for PF. Secondly, we find that whenever the algorithms have an error peak, they
take longer to smooth out for simulations with a larger number of agents. On the MDS
side, the error peaks in the 12-agent setting are larger and more significant than for the
4- and 8-agent settings. On the PF side, it takes around 20 seconds to smooth out an
error peak with 16 agents, whereas it takes around 15 seconds for the 12-agent setting.
Finally, the particle filter algorithm does not converge for a larger swarm. Indeed, we
find that, while MDS retains a low error, PF is unable to reduce the localization error
over time and retains large errors in the 20-agent configuration.
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Chapter 7

Discussions

7.1 Ultra-Wideband Protocol

The ALOHA protocol implemented proved to be very efficient for the swarm size consid-
ered during the channel characterization. ALOHA is a good starting point for prototyping
cooperative localization algorithms without focusing on telecommunications implementa-
tions. The main limitation of the protocol is its scalability, which limits the applicability
of the designed protocol to larger swarms. However, it did not show to be the most
important limitation for the scalability of the proposed implementation. Consequently,
studies based on more than 5 to 10 agents will require a more scalable protocol. One so-
lution of choice seems to be TDMA, which has been successfully applied in many papers
dealing with the current topic [53] [54].

7.2 Localization Algorithms

Both positioning algorithms produced great results. Although some error peaks were
observed, the methods implemented gave the same error on position estimations. Given
that their implementation is completely different, this observation led to the hypothesis
that they always minimized the error according to the data available and its quality. In
general, MDS showed better error reduction capabilities than the particle filter. However,
as MDS is not based on a dynamic model of the system, it proved less stable than the
particle filter. As a result, orientation estimations (which were highly dependent on the
stability of the positioning algorithm) worked better with the particle filter than with
MDS.

None of the three methods devised for estimating the relative orientation of the agent
in the swarm yielded results that could be put to further use. Distances-based estimation
was unable to cope with the randomness of a situation in which too many agents were
moving. Particle direction estimation proved too random, which can be explained by the
fact that the particle filter is based on the random walking of agents, while it is designed to
base itself on odometry knowledge. Displacement estimation failed to deliver the expected
results, as it proved too dependent on the stability of the underlying positioning method.
As expected from the previous results, this final technique performed better with the
particle filter thanks to the stability it brings to the position estimate.
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Overall, the results presented in the previous chapter are mixed. While the posi-
tioning algorithms produced good results, none of the techniques implemented produced
convincing estimates of the agent’s orientation. Since localization aims to recover both
the agent’s positioning and directional information, we can conclude that this objective
has not been achieved. Given the efforts made to implement variants to correct the
drawbacks of each method and the few results obtained, we can conclude that relative
localization based solely on pairwise distance is unreliable in a fully mobile environment.

7.3 Distance-based Localization

Performing relative localization based on pairwise distances leads to ambiguities. These
ambiguities are the main obstacle to distance-only localization, as they prevent the cre-
ation of a stable reference frame in which to position agents. In the literature, these
ambiguities are generally resolved by merging data from other sensors to increase the
number of observations made on the system or by fixing nodes to reduce the number of
unknown variables. The first solution increases the system’s observability and reduces the
number of ambiguities, while the second uses fixation to generate a stable environment
without ambiguities.

Application of the designed system to a swarm of robots is reduced to missions where
agents can act as beacons for other agents, creating immobile nodes on which the local-
ization algorithm can rely to resolve ambiguities. Consequently, distance alone is better
suited to applications with external infrastructure, such as the localization of moving
objects in warehouses. In conclusion, basing the localization system on self-contained
robotic platforms equipped with a larger number of sensors would make more sense in
the context of swarm robotics, as this does not restrict the agents’” movements, enabling
broader applications. This observation is corroborated by the many excellent results
obtained in the literature for sensor fusion localization.

7.4 Later Work

The communication and ranging protocol designed is efficient for small-scale swarms.
Furthermore, later work could extend the communication protocol to send more than just
ranging measurements. Besides, it provides an additional sensor for the Mercator robotic
platform, enabling pairwise distance measurements. The designed UWB architecture
increases the agents’ knowledge of the system and allows for the implementation of sensor
fusion with odometry data retrieved by the robot. The next logical step is to implement
this sensor fusion to obtain a relative localization in the swarm and enable the complex
spatial organization behavior described in the introduction.

The particle filter gave good results when positioning agents using only knowledge of
distance. Furthermore, sensor fusion is easily achieved by extending the update phase
of the proposed particle filter, enabling future implementations to be started based on
this thesis work. However, the scalability study showed that the multi-filter approach
will only apply to small swarms. Further work with many robots will require an im-
proved localization algorithm by implementing distributed filters or less computationally
expensive options, such as different Kalman filters.
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Chapter 8

Conclusion

To the author’s knowledge, no paper discussing the feasibility of relative localization using
solely pairwise distances in a network of moving nodes exists. Based on that observation,
this work aimed to study possible options of localization algorithms that could leverage
knowledge of distances to construct relative positions and orientations of the agents in a
swarm.

The first part of the thesis was devoted to designing a communication and ranging
protocol using Qorvo’s DWM1001-DEV UWB modules. The second part focused on im-
plementing two real-time relative positioning algorithms, MDS and a particle filter, based
solely on distance measurements from the designed protocol. The third part discussed
different methods for estimating the relative direction of the robots. Combining posi-
tion and orientation would generate a complete localization system and enable spatial
organization behaviors in the swarm using distance measurements alone.

On the one hand, the ALOHA-based ultra-wideband protocol design showed high-
quality results for small-scale swarms, allowing imagined localization algorithms to be
implemented based on an efficient communication channel. On the other hand, localizing
the agents based on distances alone proved difficult. While the implementation achieved
good results in positioning the agents relative to each other, the proposed methods for
determining orientations proved to be suboptimal, limiting the use of the derived algo-
rithms for localization. However, those results allow consistent computation of high-level
knowledge about the swarm. For example, one can expect to compute metrics such as the
area, the perimeter, the global shape of the swarm, and many other metrics comprising
clusters and concentration of agents around a given agent. The main limitation is the
estimated orientation of the robots. Therefore, systems based on this thesis implemen-
tation will not enable complex spatial organization behavior as they will not allow the
agents to perceive the direction they are heading towards.

Consequently, the main finding of this thesis is the impossibility of distance-only
localization to resolve the underlying ambiguities brought by the lack of knowledge of the
system. The thesis subsequently showed the interest of the different solutions proposed
throughout the literature, such as sensor fusion to increase the system observability or
landmarks to resolve the ambiguities. Later work wanting to enable a swarm of self-
contained robots to collaborate toward relative localization should focus on implementing
sensor fusion. However, applications in known environments would greatly benefit from
non-moving reference points to increase the localization quality.
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