
U
N

I
V

E
R

S
I

T
É

L

I
B

R
E

D
E

B
R

U
X

E
L

L
E

S

Intuitive mission specification for robot
swarm by learning from demonstration
inverse reinforcement learning for robot swarms

Mémoire présenté en vue de l’obtention du diplôme
d’Ingénieur Civil en informatique

Ilyes Gharbi

Directeur
Professeur Mauro Birattari

Superviseur
Jonas Kuckling

Service
IRIDIA

Année académique

2021 - 2022

This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme: DEMIURGE Project, grant agreement No 681872

Acknowledgement

First, I am extremely grateful to my thesis director, Mauro Birattari, for his enthusiasm and
guidance toward my work and for encouraging me to always push the boundaries of my research.

I cannot begin to express my thanks to my supervisor, Jonas Kuckling, who is the best mentor
I could have ever hope for. This thesis would not have been possible without the tremendous
amount of time he spent supervising me.

I would also like to thank the researchers of IRIDIA, especially David Garzon Ramos, Miquel
Kegeleirs and Guillermo Legarda Herranz, for the countless times they helped me during this last
year and for making me comfortable at IRIDIA.

Finally, I would like to express my deepest thanks to my parents and Amélia for their uncon-
ditional love, support and encouragement during these difficult final years. Thank you.

Ilyes Gharbi

Résumé

Intuitive mission specification for robot swarm by learning from demonstration

Une alternative intéressante à la conception manuelle de programmes de contrôle pour les es-
saims de robots est la conception automatique par optimisation. Cependant, cette approche souffre
de certaines contraintes. L’une d’elles est la recherche de la fonction objective relative à la mission
de l’essaim de robots. En effet, cette fonction objective n’est pas toujours triviale, même pour un
expert en robotique en essaim. Idéalement, une fonction objective adéquate devrait être calculable
pour toute mission aussi complexe soit elle. De plus, même les non-experts en robotiques en es-
saim devraient être en mesure de concevoir de bons comportements en essaim pour des missions
complexes, et cela, cela sans aucun savoir spécifique a priori.

Ainsi, ce mémoire présente Demonstration-Cho, une méthode pour produire des programmes de
contrôle pour robots, sans avoir besoin d’expliciter de fonctions objectives de la mission de l’essaim
de robots. Cette méthode permet d’apprendre une représentation d’une fonction objective depuis
des démonstrations humaines de comportement d’essaim de robots. Grâce à la fonction objective
ainsi apprise, Demonstration-Cho génère automatiquement le programme de contrôle menant au
comportement d’essaim souhaité.

Durant ce mémoire, quatre missions ont été utilisées pour tester les performances de Demonstration-
Cho. L’évaluation des performances de l’essaim est basée sur la répartition spatiale des robots à la
fin de la mission. Les résultats ont montré que Demonstration-Cho est capable de produire des pro-
grammes de contrôle de performances comparables à ceux produits par EvoStick et AutoMoDe-
Chocolate munient des fonctions objectives explicites de chaque missions.

Mots-clés : robotique en essaim, apprentissage par renforcement inverse, apprentissage par
démonstration, AutoMoDe, Orchestra, E-Puck.

Mémoire présentée en vue de l’obtention du diplôme d’Ingénieur Civil en informatique
Ilyes Gharbi, 2021-2022

Abstract

Automatic design by optimization is one promising alternative to the manual design of control
software for robot swarms. Although this approach offers many benefits, it also entails some
challenges. One is to find the correct objective function fitting a specified robot swarm mission.
Indeed, these objective functions are not always trivial, even for experts in swarm robotics. Ideally,
suiting objective functions could be processed for missions as complex as wanted. Furthermore,
even non-expert operators could be able to retrieve relevant swarm behaviour for such complex
missions without any prior advanced knowledge.

Hence in this master thesis, I present Demonstration-Cho, a method to produce robot control
software without providing an explicit objective function. This method allows learning a represen-
tation of an objective function from a set of human demonstrations. With the learned objective
function, Demonstration-Cho automatically generates control software, using AutoMoDe-Choco-
late, leading to desired collective behaviours.

In this master thesis, I assess Demonstration-Cho in four missions, providing only demonstra-
tions of the spatial distribution of the swarm at the end of the mission’s time. The results of the
experiments show that Demonstration-Cho can design control software with comparable perfor-
mances to those generated with EvoStick and AutoMoDe-Chocolate with the explicit objective
function of the missions.

Keywords : swarm robotics, inverse reinforcement learning, apprenticeship learning, Auto-
MoDe, ARGoS, E-Puck.

Contents

1 Introduction 1
1.1 Objective of the master thesis . 2
1.2 Contributions of the master thesis . 3

2 Related Work 4
2.1 Swarm Robotics . 4
2.2 Evolutionary Swarm robotics . 5
2.3 Automatic Modular Design . 5

2.3.1 AutoMoDe . 6
2.3.2 F-Race and Iterated F-Race . 10

2.4 Reinforcement Learning . 10
2.5 Inverse Reinforcement Learning . 11
2.6 Preference-based Policy Learning . 13

3 Technical Assets 16
3.1 E-puck . 16
3.2 ROS . 17
3.3 ARGoS . 18
3.4 Orchestra . 18
3.5 Support Vector Machine . 19

4 Arena and Demonstration Builder 22

5 APRIL 27

6 Apprenticeship Learning 29
6.1 Hypothesis . 29
6.2 Features Representation . 30
6.3 Demonstration-Cho . 32
6.4 Selection of missions . 34

7 Experimental Protocol 37
7.1 Aggregation with Ambient Cues . 38
7.2 Homing . 38
7.3 Sheltering with Ambient Cues . 39
7.4 Coverage with Forbidden Areas . 40

8 Results 45
8.1 Aggregation with Ambient Cues . 46
8.2 Homing . 47
8.3 Sheltering with Ambient Cues . 48

1

8.4 Coverage with Forbidden Areas . 52

9 Discussion and Further Work 55

10 Conclusion 57

Chapter 1

Introduction

Swarm robotics [18], inspired by the field of swarm intelligence [17], is the engineering field
that aims to design large groups of autonomous robots collaborating to accomplish a specific mis-
sion. The swarm behaviour emerges from the many interactions of the robots with each other and
the environment. A characteristic of a robot swarm is that every robot only has access to local
information and local interaction, leading to decentralised self-organisation. From these, some
desirable properties, such as flexibility or resilience, can emerge.

Although desirable properties might emerge thanks to decentralisation and self-organisation,
these characteristics lead to a significant challenge in the field of swarm robotics; the micro-macro
link problem [30]. This problem arises from the non-trivial relation between the swarm’s desired
collective behaviour and the robot’s designed individual behaviour. There is currently no general
methodology to design the robots’ behaviour to access the desired emergent overall swarm be-
haviour.

Thus, several design approaches exist to design and implement the individual behaviours in
swarm robotics. Two of them are manual and automatic designs. On the one hand, the manual
design approach involves a human expert designer conceiving the control software by trial-and-
error. This approach cannot guarantee to succeed in every situation in a reasonable amount of
time, and human resources [10].

In automatic design, there is no human intervention beyond the specification of the mission.
Several automatic design methods have been proposed [22] [12] [53]. Automatic design is mostly
performed using evolutionary swarm robotics [62]. In this approach, an artificial neural network
(ANN) controls the robot by taking its sensors’ values as input and outputting the value of the
robot’s actuators. The weights of the ANN are updated by optimising a mission-specific perfor-
mance measure via artificial evolution, typically in simulation [33]. The benefit of evolutionary
swarm robotics, like the other optimisation-based automatic design, is to avoid the need to explic-
itly reduce the collective behaviour of the swarm to the individual behaviour of the robots in the
swarm. Thus, the ANNs used in evolutionary swarm robotics are universal approximators [37].
An ANN can represent any behaviour constrained to the robot’s sensors and actuators. Although
evolutionary swarm robotics perform well in simulation, it is less efficient when applied to real
robots due to the reality gap [38]. Indeed, the issue with the ANN of evolutionary swarm robotics
is the high variance of its parameters to optimise. This high variance causes an ANN optimised to
overfit too much in simulation. However, the simulation is inevitably different from reality, so the
ANN may perform poorly compared to its performance in simulation when applied to real robots,
even if it leads to optimal behaviour in simulation.

1

Chapter 1 – Introduction

Automatic modular design is an automatic design of swarm robot methods that proposes ad-
dressing the reality gap problem. In machine learning, the bias-variance trade-off states that the
variance of a model estimation can be reduced by increasing bias in the model estimation [6].
Hence, automatic modular design introduces bias in the representation capacity of behaviours of
its method. AutoMoDe [25] is a family of automatic modular design methods. To produce the
control software, the authors of AutoMoDe decided on a set of manually pre-defined behaviour
modules to be automatically assembled in a finite state machine. By constraining the available
behaviour options, this approach reduces the representation power of its model. This increase of
bias in the behaviour selection lowers the variance in the parameter to be optimised by AutoMoDe.
Hence, AutoMoDe is more efficient in crossing the reality gap than evolutionary swarm robotics
[23].

To produce the control software, the design methods in the AutoMoDe family optimise a
mission-specific objective function. Unfortunately, computing explicitly that task-specific objec-
tive function is none trivial, especially when the mission gets more complex even for experts in
swarm robotics [30].

An interesting approach to overcoming the mission-specific objective function issue can be
investigated in reinforcement learning (RL) [39]. In RL, an agent needs to learn an optimal set of
actions to take in order to maximise its reward. Like in automatic design of control software for
robot swarms, it is assumed in RL that the reward function is known a priori. In inverse reinforce-
ment learning (IRL), the reward function is derived from observations of the agent’s behaviour
[59]. The Apprenticeship Learning algorithm is one approach to approximate the reward function
by learning from an expert’s demonstrations [1]. This technique can indeed permit to overlook
the need to find a mission-fitting objective function as it will be learned during the design process
and optimised to generate relevant behaviours.

1.1 Objective of the master thesis

The goal of this master thesis is the specification of swarm robotics missions without the need
for an explicit objective function. To that end, I worked on three sub-goals:

1. Create a graphical mission-builder by expending the features of the software Orchestra (see
Section 3.4 and Chapter 4).

2. Investigate how to learn swarm robotics behaviours from feedback with the algorithm
APRIL (see Chapter 5).

3. Investigate how to learn robotics behaviours from demonstrations with the apprenticeship
learning algorithm (see Chapter 6).

I considered two algorithms in this master thesis because the results with the first one, APRIL,
were not satisfying, as I will explain in Chapter 5. However, working with the second one, the
apprenticeship learning algorithm, produced positive results.

2

Chapter 1 – Introduction

1.2 Contributions of the master thesis

During this master thesis, I delivered three contributions to meet the previously stated goals:

1. An arena builder, implemented in Orchestra to build an experimental arena for a robot
swarm mission from the list provided in Section 6.4.

2. A demonstration-maker, implemented in Orchestra to make demonstrations of the final
spatial distribution of the robots swarm (see section 3.4).

3. Demonstration-Cho, an automatic modular design method that combines apprenticeship
learning for learning the task-specific objective function from expert demonstrations, and
AutoMoDe-Chocolate to design control software according to the learned objective func-
tion.

In this master thesis, I also assess the quality of the control software generated by Demonstration-
Cho in four missions. Indeed, I use four experiments relying on the spatial distribution of the robot
swarm to assess the performance of Demonstration-Cho with two control software design process
baselines I call Objective-Evo and Objective-Cho in this master thesis. The first one is EvoStick
and the one second is AutoMoDe-Chocolate. Both baseline methods can assess their performance
on the mission-specific reward function of each mission. The results of the experiments showed
that Demonstration-Cho produced control software with comparable performances with the ones
produced by Objective-Evo and Objective-Cho (see Chapter 8).

3

Chapter 2

Related Work

Powerful and cutting-edge evolutionary algorithms using artificial intelligence are widely used
to produce accurate behaviour in simulation. Although evolutionary algorithms perform well in
simulation, their performances drop when behaviours optimized in simulation transfer to real
robots. Hence, the automatic modular design proposes to be more robust to the reality gap prob-
lem.

Still, the problem of specifying accurately what the robot swarm needs to accomplish is non-
trivial. Indeed, the more complex the mission is, the more difficult it will be to specify it math-
ematically. Hence, this master thesis also investigates the field of inverse reinforcement learning
that proposes to learn the objective function rather than computing it explicitly.
This chapter is structured as follows: Section 2.1 defines swarm robotics and its main properties;
Section 2.2 presents evolutionary robotics as it serves as the baseline for the experiments of this
master thesis; Section 2.3 presents automatic modular design and one particular implementation
used in this master thesis called AutoMoDe-Chocolate; Section 2.4 presents reinforcement learn-
ing and its formalism briefly; Section 2.5 presents inverse reinforcement learning and its formalism;
Section 2.6 presents Preference-base Policy learning and its formalism.

2.1 Swarm Robotics

Swarm intelligence [7] [18] is the discipline dealing with collective systems of many self-
organized agents collaborating in a decentralized way and relying solely on local communication
and interactions. Swarm robotics [18] [26] [30] [5] [19] [13] is the field of robotics that applies the
principles of swarm intelligence. In swarm robotics, complex behaviour emerges from the many
interactions among the robots composing the swarm with themselves and the environment.

Typically, a swarm of robots has the following properties:

— The swarm is typically composed of many homogeneous robots, although some examples
of heterogeneous robot swarm exist [13].

— The robots interact locally and have only access to local information.

— The robots are simple and display simple behaviours.

— The overall behaviour of the swarm emerges from the interaction of the robots between
themselves and the environment.

4

Chapter 2 – Related Work

Thanks to the properties mentioned above, it is easier to ensure the following desirable prop-
erties for a robot swarm:

— Scalability: the robots in the swarm only rely on local information. Hence, they do not
know the swarm’s size, and the neighbourhood’s size remains approximately constant. So
the swarm can maintain its function while its population of robots increase or decrease.

— Flexibility: the control software designed in simulation allows the robots to adapt to differ-
ent environments. For example, if the swarm mission is to aggregate in a marked location,
the robot can adapt if this marked location changes place.

— Resilience: due to its inherent decentralization and self-organization, the swarm of robots
isn’t affected by the loss of some robots if they can be replaced. Indeed, all robots in the
swarm are interchangeable, and none of them is responsible for the global coherence of the
group.

2.2 Evolutionary Swarm robotics

Evolutionary robotics (ER) is a method to automatically produce robot controllers by using
algorithms inspired by Darwin’s principle of natural selection [70] [21] [63] [8] [62]. In ER, each
robot controller candidate, often ANNs, is represented by a genotype. The genotype is a string
formed by the set of parameters of the candidate robot controller. Then, an evolutionary algo-
rithm is applied to genotypes to select the set of parameters with optimal performance regarding
some evaluation metric. The particular case of evolutionary robotics with ANN is called neuro-
evolutionary [36] [74] [64].

ER is also applied to swarm robotics [71] [72] both in simulation and real robots. For example,
Groß and Dorigo use artificial evolution to successfully produce transport behaviour for simulated
insect-like robots [29]. Duarte et al. even transfer the collective behaviour of aquatic swarm robot
from simulation to reality [20]. Although they successfully transferred the collective behaviours to
the real robots, some motion patterns did not transfer well due to the reality gap. Hasselmann et
al. has empirically studied the effect of reality gap to neuro-evolution [33] and concluded that the
robustness of neuro-evolution to the reality gap is the main issue to address in that field. Indeed,
the ANNs used in neuro-evolution are universal function approximates with generally high vari-
ance in the parameters to be optimized. This high variance is the cause of the poor robustness of
neuro-evolution to the reality gap.

Francesca et al. define EvoStick, a method based on evolutionary robotics and which implement
automatic design for robot swarm [25].

2.3 Automatic Modular Design

An alternative to evolutionary swarm robotics is automatic modular design [68]. The difference
between those two techniques is that in automatic modular design, the process does not optimize
ANN but rather assembles manually pre-defined modules to create robot control software. This
approach induces bias into the conception of the robot behaviour as it reduces the representation
power of the control software in the behaviour space. However, the bias-variance trade-off in
machine learning states that injecting bias permits to reduce the variance. Hence, automatic

5

Chapter 2 – Related Work

modular design’s main feature is to be more robust to the reality gap than neuro-evolutionary
swarm robotics.

2.3.1 AutoMoDe

Francesca et al. propose AutoMoDe, a family of automatic modular design methods [25]. Au-
toMoDe aims to automatically design control software for robot swarms by optimizing a mission-
specific objective function. Multiple instances, called flavours, compose the AutoMoDe family [9]:

— AutoMoDe-Vanilla [23] is the first flavour of AutoMoDe. It uses a set of manually pre-
defined modules to produce control software for robot swarms. There are two types of
modules, the behaviour and the transition modules. The behaviour modules represent sim-
ple actions, described in Tables 2.1. The robot performs a behaviour until meeting some
specific conditions described by the transition modules shown in Table 2.2. These modules
were meant for the reference model RM1.1 of the e-puck (see Section 3.1). The modules
are assembled in the form of a probabilistic finite state machine (PFSM). The probabilistic
finite state machine assembled by AutoMoDe-Vanilla is composed of behaviour modules
linked by the transition modules (see Figure 2.1). Some behaviour and transition of mod-
ules have parameters for their operation. The transition between two behaviour modules
through a transition module’s condition is probabilistic. The optimisation algorithm of
AutoMoDe-Vanilla is F-Race [11] (see Section 2.3.2). Francesca et al. evaluate the per-
formance of AutoMoDe-Vanilla in regards to EvoStick and two types of human designer
called U-Human and C-Human [23]. The U-Human designer is free to conceive the con-
trol software as he pleased. To conceive the control software, the C-Human is constrained
to use the same modules as AutoMoDe-Vanilla. The evaluation of the design processes
was done on five missions: SCA, LCN, CFA, SPC and AAC (see Section 6.4). The ex-
periments of Francesca et al. show that AutoMoDe-Vanilla outperforms EvoStick and
U-Human. However, C-Human outperformed AutoMoDe-Vanilla. As C-Human uses the
same modules as AutoMoDe-Vanilla, the results of the experiments motivate the authors
to investigate how to upgrade the optimizer of AutoMoDe-Vanilla.

— AutoMoDe-Chocolate [24] is an improved version of AutoMoDe-Vanilla. It uses the same
modules as AutoMoDe-Vanilla. However, the results of the experiments of Francesca et al.
[23] on the same five missions as for AutoMoDe-Vanilla evaluation, motivate the authors
to replace F-Race by Iterated F-Race (irace) [11] [55] [54] as the optimizing algorithm. Irace
is presented in Section 2.3.2. Francesca et al. show that AutoMoDe-Chocolate outperform
C-Human [24] on the same missions as in the experiments with AutoMoDe-Vanilla.

— AutoMoDe-Gianduja [32] extends AutoMoDe-Chocolate by allowing robot direct com-
munication. AutoMoDe-Gianduja modules are based on the reference module RM2 of
the e-puck [32]. AutoMoDe-Gianduja addresses one limitation of AutoMoDe-Vanilla and
AutoMoDe-Chocolate with is the non-exploitation of explicit communications among the
robot swarm. Hasselmann et al. evaluate the performance of AutoMoDe-Gianduja in re-
gards to AutoMoDe-Chocolate and EvoCom on three missions [32]: Aggregation, Stop
and Decision (see Section 6.4). Hasselmann et al. define EvoCom as the extension of
EvoStick that uses the reference model RM2 of the e-puck. The results of the experiment
by Hasselmann et al. show that AutoMoDe-Gianduja outperforms the other two design
processes on the three missions. The results show that AutoMoDe-Gianduja uses the com-
munication in the swarm meaningfully and efficiently to accomplish the considered missions.

6

Chapter 2 – Related Work

— AutoMoDe-Waffle [66] uses the same modules as AutoMoDe-Chocolate. However, the
AutoMoDe-Waffle novelty is the automatic selection of the hardware configuration and
the number of robots in the swarm. Salman et al. considered economic constraints ex-
periments to study the performance of AutoMoDe-Waffle [66]. Salman et al. evaluate
AutoMoDe-Waffle on three missions: Anytime-Selection, End-Time-Aggregation and
Foraging (see 6.4). The evaluation of the three missions was done under the economic
constraint of the total monetary budget available and the battery capacity of each robot
in the swarm. The results of the experiments show that the performance of AutoMoDe-
Waffle depends on the nature of the swarm mission. However, the experiments with real
robots asses that AutoMoDe-Waffle is robust to the reality gap.

— AutoMoDe-Maple [46] uses the same modules as AutoMoDe-Chocolate. However, rather
than assembling the modules in a probabilistic state machine, AutoMoDe-Maple assem-
bles the modules in the form of a behaviour tree. Kuckling et al. compare the per-
formance of AutoMoDe-Maple with AutoMoDe-Chocolate and EvoStick on two missions
[46]: Foraging and Agreggation (see Section 6.4). The results of the experiments suggest
that behaviour trees are a promising alternative architecture to the probabilistic finite state
machine architecture.

— AutoMoDe-Mate [56], specialized in designing spatially-organized behaviour, extends AutoMoDe-
Chocolate. The modules of AutoMoDe-Mate are based on the reference module RM3.1
of the e-puck [56]. The difference with the modules of AutoMoDe-Chocolate is that the
modules of AutoMoDe-Mate consider the omnidirectional camera and the RGB LEDs of
the e-puck. Mendiburu et al. evaluate the performance of AutoMoDe-Mate in compar-
ison to AutoMoDe-Chocolate and EvoSpace. Mendiburu et al. define EvoSpace as the
extension of EvoStick based on the reference model RM3.1 of the e-puck. Mendiburu et al.
conducts experiments both in simulation and with real robots on three mission: Any-Point
Coverage, Networked Coverage and Conditional Coverage.

— AutoMoDe-TuttiFrutti [28] uses modules based on the RGB LEDs and the omnidirec-
tional camera of the e-puck to design control software. Garzón Ramos et al. evaluate
the performance of AutoMoDe-TuttiFrutti alongside the performance of EvoColor, an
extended version of EvoStick that produces control software for the e-puck that can display
and perceive colours [28]. The experiments conducted by Garzón Ramos et al., in both
simulation and with real robots, evaluate the performance of the two design processes on
three missions: Aggregation, Stop and Foraging (see 6.4). The results of the experiments
show that AutoMoDe-TuttiFrutti outperforms EvoColor for the three classes of missions.

— AutoMoDe-Coconut [69] uses the same modules as AutoMoDe-Chocolate. The only dif-
ference with AutoMoDe-Chocolate is that AutoMoDe-Coconut introduces a parameter to
control the type of exploration scheme of the modules. Spaey et al. compare the perfor-
mance of AutoMoDe-Coconut and AutoMoDe-Chocolate on experiments in simulation and
reality[69]. The experiments missions are: Aggregation, Foraging and Grid Exploration

(see Section 6.4). The particularity of the experiments of Spaey et al. is that the two design
processes are also evaluated on an unbounded alternative version of the three missions. In
this unbounded alternative version, three walls have been removed from the arena. The
results of the experiments did not show a difference in performance between the two design
processes. Surprisingly, although AutoMoDe-Chocolate only use ballistic motion in the ex-
ploration modules, it yields a similar performance as AutoMoDe-Coconut on the unbound
version of the missions.

7

Chapter 2 – Related Work

Figure 2.1 – From the paper of Mauro Birattari, Antoine Ligot and Gianpiero Francesca [9],
this figure represents an example of control software produced by AutoMoDe in the form of a
probabilistic finite state machine. The circles represent the modules, and the diamonds represent
the transition conditions with probability β.

— AutoMoDe-IcePop [44] uses the same modules as AutoMoDe-Chocolate. The difference
between the two flavours is that AutoMoDe-IcePop uses simulated annealing as an op-
timizing algorithm. Kuckling et al. compare the performance of AutoMoDe-IcePop in
comparison to AutoMoDe-Chocolate in experiments conducted in simulation and pseudo-
reality on two missions: AAC and Foraging (see Section 6.4). The experiment results
suggest that simulated annealing is a viable optimizer for automatic modular design for
robot swarm.

— AutoMoDe-Cedrata [42], like AutoMoDe-Maple, uses behaviour tree architecture. How-
ever, AutoMoDe-Cedrata has modules explicitly defined for behaviour trees. The refer-
ence model used for defining the modules of AutoMoDe-Cedrata is RM2.2. Kuckling et al.
conduct experiments to evaluate the performance of AutoMoDe-Cedrata against human
designer using the same modules as AutoMoDe-Cedrata. The experiments were conducted
on two classes of missions: Marked Aggregation and Stop (see Section 6.4). The results
show that the human designer could produce control software with satisfactory results with
the modules of AutoMoDe-Cedrata even with no prior experience with behaviour trees. On
the other hand, the results show that AutoMoDe-Cedrata cannot produce communication-
based control software.

— AutoMoDe-Arlequin [50] is similar to AutoMoDe-Chocolate except for the behaviour
modules. Indeed, the behaviour modules of AutoMoDe-Arlequin are ANNs automati-
cally generated in a mission-agnostic way. ANNs reduce the amount of human interven-
tion for conceiving the behaviour modules. Ligot et al. compare AutoMoDe-Arlequin
to AutoMoDe-Chocolate and EvoStick in experiments on two missions: Foraging and
Agreggation-XOR (see Section 6.4). The experiments’ results show that AutoMoDe-Arlequin
suffers from the reality gap, however, less than EvoStick.

8

Chapter 2 – Related Work

Behaviour Parameter(s) Description

Exploration τ ∈ {1, 2, ..., 100} The robot moves straight. If proxi ≥ 0.1 for
i ∈ {1, 2, 7, 8}, the robot turns on itself for a
random number of control cycles chosen in
{0, 1, ..., τ}.

Stop None The robot stays still.

Phototaxis k fixed to 5 The robot moves straight to light source if
perceived; otherwise, moves straight. Ob-
stacle avoidance is embedded and depends
on k.

Anti-phototaxis k fixed to 5 The robot moves away from light source if
perceived; otherwise, moves straight. Ob-
stacle avoidance is embedded and depends
on k.

Attraction α ∈ [1, 5] and
k fixed to 5

The robot moves straight to the neighbour
robot thanks to the rang-and-bearing de-
vice; otherwise, move straight. Obstacle
avoidance is embedded and depends on k
and α.

Repulsion k fixed to 5 The robot moves away from neighbour
robots; otherwise, moves straight. Obsta-
cle avoidance is embedded and depends on
k.

Table 2.1 – This table represents the set of behaviour modules used in AutoMoDe-Vanilla and
AutoMoDe-Chocolate [25]. These behaviour modules are the state in the probabilistic finite
state machine representing the behaviour of each robot in the swarm. The behaviour modules
were conceived for the E-puck’s reference model RM1.1.

9

Chapter 2 – Related Work

Condition Parameter(s) Description

Black-floor β ∈ [0, 1] If gndi = 0 for i ∈ {1, 2, 3}, the transition is
enable with probability β.

Grey-floor β ∈ [0, 1] If gndi = 0.5 for i ∈ {1, 2, 3}, the transition
is enable with probability β.

White-floor β ∈ [0, 1] If gndi = 1 for i ∈ {1, 2, 3}, the transition is
enable with probability β.

Neighbor-
count

η ∈ [0, 20] and
ξ ∈ {0, 1, ..., 10}

The transition is enable with probability
z(n) = 1

1+eη(ξ−η) , where n is the number of
neighbouring robots.

Inverted-
Neighbor-
count

η ∈ [0, 20] and
ξ ∈ {0, 1, ..., 10}

The transition is enable with probability
1− z(n).

Fixed-
probability

β ∈ [0, 1] The transition is enable with a fixed proba-
bility of β.

Table 2.2 – This table represents the set of transition condition modules used in AutoMoDe-
Vanilla and AutoMoDe-Chocolate [25]. These transition condition modules are the transition
conditions in the finite state machine representing the condition of transition of the behaviour
of each robot in the swarm. The transition condition modules were conceived for the e-puck’s
reference model RM1.1

2.3.2 F-Race and Iterated F-Race

F-Race [11] is an optimization algorithm. It is used to find the configuration of an algorithm
that optimizes a certain evaluation metric. In the case of AutoMoDe, the configuration to be
optimized is the topology of the PFSM and the parameters of its module, and the evaluation
metric is the swarm mission objective function.

The racing approach consists of evaluating algorithm instances in parallel on several instances.
After evaluating the configurations on each instance, the statistically significantly worse than other
configurations are discarded. Hence at each step, fewer candidates remain until only a set of elite
configurations is kept.

Iterated F-Race (Irace) [54] performs several iterations, each reminiscent of a race, similar to
F-Race. The initial configurations of an iteration are then sampled around the surviving elites of
the previous iteration. The computational budget is the number of simulations performs in irace
to evaluate the configurations.

2.4 Reinforcement Learning

Reinforcement learning [39] is the branch of Machine Learning involving a learning agent in
an environment that must learn behaviour through trials and errors. The agent learns from its
action by trying to optimize a reward function. The learning agent can be powered by any model,
from probabilistic finite state machines to deep neural networks.

10

Chapter 2 – Related Work

Mathematically, a classical reinforcement learning problem is modelled by a Markovian Deci-
sion Process (MDP) which includes:

— a set of states S.

— a set of actions A.

— a probabilities of transition from a state s ∈ S to a state s′ ∈ S under an action a ∈ A
noted P (s′|s, a).

— a reward function granted after a transition from state s ∈ S to state s′ ∈ S under an
action a ∈ A noted Ra(s, s

′).

Hence, the goal of a reinforcement learning agent is to learn a behaviour (or policy) that would
maximize the reward function of each action taken in each state.

To compute this optimal policy, many techniques can be deployed. The most known is called
the Q-learning [73]. In this technique, actions taken by the agent for a certain state have a certain
quality named the Q-value. Q-values are updated along the agent learning. They can be stored
in a table with as many entries as there are combinations of action-state. When the number of
action-state combinations is too large to store all the Q-values, the Q-values can be approximated
by using neural networks. This techniques is called Deep reinforcement learning (DRL) or Deep
Q-Learning (DQL) [57].

Reinforcement learning (RL) is widely used for single robot training and can produce impres-
sive results. For example, Ng et al. achieve to train an autonomous helicopter to fly upside down
by RL [60]. Heidrich-Meisne et al. even propose to apply neuro-evolution in RL [36]. They evalu-
ate the performance of their method called CMA-ES with other RL techniques. Their experience
shows that their method outperforms every RL technique considered in the paper’s conducted
experiments.

RL can also be applied for multi-agent systems of a few learning agents [14]. In the multi-
agents case, the Q-values of an agent also depend on the joint actions it has with the other agents.
This means that an agent no longer only ought to maximize its reward but also the overall reward
of the group. This also holds even to the detriment of its reward function maximization. How-
ever, this approach supposes a centralized structure that distributes the reward to the agents. RL
for decentralized multi-agent is not often addressed in the literature, even less for multi-robotics
applications. Buşoniu et al. compare centralized and decentralized multi-agent RL [15]. They
illustrate the difference between the two approaches with an example of a two-link rigid robotic
manipulator. In this experiment, two robots are linked with two rigid sticks, forming a structure
similar to a double pendulum. The goal is to balance the system near a certain angle. Both
centralized and decentralized RL is applied to balance the system with the learning two robots.
The results of the experiment by Buşoniu et al. show that the decentralized approach learns well-
performing controllers while using less computational resources than the centralized approach.

2.5 Inverse Reinforcement Learning

Classical RL assumes that the reward function is known. When it is not the case, the problem
is modelled as an MDP without a known reward function, noted MDP\R. This particular case

11

Chapter 2 – Related Work

of RL problem is called inverse reinforcement learning (IRL) [4] [75].

In IRL, an agent must learn a policy by observing another agent’s behaviour demonstration.
Therefore, IRL can be seen as the inverted problem of RL. Indeed, whereas in RL, the agent
seeks to learn a policy to maximize a reward function, in IRL, the agent seeks an accurate reward
function representation to explain the expert policy.

One technique for IRL is the apprenticeship learning [1]. This technique assumes the existence
of a ≪ true ≫ reward function noted R∗ = w∗ ·ϕ(s), where s ∈ S is the agent state, ϕ : S → [0, 1]k is
a vector of features over the set of all agent’s states, and w∗ ∈ Rk is the ≪ true ≫ weighting vector.
A policy π is the mapping between the state and the probability distribution of the actions. The
value of a policy can be computed as the expected discounted reward collected by π over time for
all initial states:

Es0∼D[V
π(s0)] = E[

∞∑
t=0

γtR(st)|π] (2.1)

= E[
∞∑
t=0

γtw.ϕ(st)|π] (2.2)

= w.E[
∞∑
t=0

γtϕ(st)|π] (2.3)

The apprenticeship learning algorithm defines µ(π) = E[
∑∞

t=0 γ
tϕ(st)|π], the expected fea-

tures of that policy π. The apprenticeship learning algorithm requires an estimation of the
expert’s expected feature muE = µ(πE). Specifically, given the set of states generated by the

m expert’s demonstration {s(i)0 , s
(i)
1 , ...}mi=1, the empirical estimate of µE is defined as µ̂E =

1
m

∑m
i=1

∑∞
t=0 γ

tϕ(s
(i)
t). The value of a policy π can then be written: Es0∼D[V

π(s0)] = w · µ(π).

In apprenticeship learning, the expert’s demonstration is represented by the feature expectation
vector µE. The goal of the algorithm is to find a policy with performance close to the expert
regarding the unknown ≪ true ≫ reward function R∗ = w∗.ϕ. Hence, the algorithm needs to find
a policy π̃ such that ||µ(π̃) − µE||2 < ϵ. The weighting vector w to compute the learned reward
function R = w · ϕ is obtained by solving the quadratic constrained optimization problem:

max
t,w

t

s.t. wTµE ≥ wTµj + t ∀0 ≤ j ≤ i− 1

||w||2 ≤ 1

(2.4)

This problem is solved using a support vector machine (see Section 3.5). In Figure 3.4, we see
the representations of the policies on the expected feature space. For each algorithm iteration, the
vector w is updated so the algorithm can produce a policy optimizing the newly learned reward
function. Eventually, the distance between the expected features vector of a produced policy and
the expected features vectors of the expert demonstration will be small, meaning that the pro-
duced policy matches the expert policy.

Abbeel et al. applied the apprenticeship learning in simulation in two experiments [1]. In
the first experiment, an agent is placed in a gridworld where some regions have positive rewards.
The reward function is not accessible, but so are expert trajectories. The agent then must learn
from the expert’s trajectories in the gridworld to find the region with the positive reward. The
second experiment consists of simulated self-driving cars circulating on a three-band road. On

12

Chapter 2 – Related Work

Figure 2.2 – This figure represents three iterations of the apprenticeship learning where the ex-
pected features of the produced policies approach the expected features of the expert demonstra-
tion µE (taken From the paper of Akrour and Ng [1]).

this road, other cars circulate. In this experiment, several ≪ driving style ≫ are shown to the
learning agent. The driving style ranges from avoiding all collisions or colliding with all cars, or
trying to stay on the left. The experiment’s goal is to use apprenticeship learning to try learning a
policy to mimic the demonstrated driving styles. In both experiments conducted by Abbeel et al.,
the apprenticeship learning achieved to derive implicit reward function that led to policies that
performed well on the ≪ true ≫ reward functions of each experiment.

2.6 Preference-based Policy Learning

Another way to avoid specifying an objective function is to use the preference-based policy
learning (PPL) approach [3]. PPL consists of a three phases process:

1. The demonstration phase where the agent demonstrates to the expert a candidate policy.

2. The ranking phase where the expert will rank this policy in regards to previously demon-
strated policy.

3. The updating phase where the model of the expert’s preference is updated. Also, the learn-
ing agent learns a new candidate policy based on the updated expert’s preference model.

The process is repeated until a policy close to the expert’s expectation is produced.

PPL defines sensori-motor states (SMS) as combinations of the robot sensors’ values with its
motors values. The SMS describes the behaviour of a learning agent. Demonstrations of the
policy in PPL are called policy trajectory and are defined as the unit vector over all SMS. The
algorithm stores the ranking of the trajectories by the expert in an archive Ut = {u0, ...ut; (ui1 ≺
ui2), i = 1...t}, where ui are the vectors representing the policy trajectories. In the first part of
the archive, each entry is the expert’s preferred trajectory at iteration i. In the second part, each
entry shows that trajectory ui2 is preferred to trajectory uii , allowing us to rank every trajectory
in the archive. A utility function for a trajectory is defined as Jt = wt.u, where wt is obtained by
solving the quadratic constrained optimization problem:

13

Chapter 2 – Related Work

min
w,ξ

1

2
||w||22 + C

∑
1≤i≤t

ξi1i2

s.t. wTui2 − wTui1 ≥ ξi1i2 ∀1 ≤ i ≤ t

ξi1i2 ≥ 0

(2.5)

This problem is also solvable by a support vector machine (see Section 3.5).

To select which policy to demonstrate next, PPL computes a criterion called the Expected
Utility of Selection (EUS):

EUS(x) = Eθ,x>x∗ [wTxi] + Eθ,x∗>x[w
Tx∗

i] (2.6)

where x is the selected policy, x∗ is the current best-selected policy, and w is computed by
solving the optimization problem 2.5. Eθ[w

Tx] is defined as the expected utility. The subscript
θ, called the belief, comes from the Bayesian setting of the algorithm. Indeed, the belief θ repre-
sents the uncertainty over the utility function defined as a distribution over the space of utility
functions. Hence, the left-hand side of Eq.2.6 measures the expected utility of selecting policy x
when x is better than x∗. The right-hand side of Eq.2.6 is the complementary case, measuring
the expected utility of selecting x when x∗ remains the preferred policy.

A variant PPL algorithm, called Active Preference-learning based reinforcement learning (APRIL)
[2], improves the phase where the agent updates its model of the expert’s preference. Instead of
using the EUS, APRIL computes an Approximated Expected Utility of Selection criterion (AEUS)
to select the following policy to demonstrate to the expert. The issue with EUS resides in using
the same w in both terms of Eq.2.6. Indeed, the trajectory x splits the search space of the w
noted W into two versions: W+ where the expert prefers x over x∗ and the complementary case
W− where x∗ is the preferred one. The EUS criterion is then rewritten as follows:

EUS(x) = Ex∼πx[Ew in W+
t
[wTxi] + Ew in W−

t
[wTx∗

i]] (2.7)

Taking the expectation over all w in both W+ and W− is intractable as w ranges in a high
continuous space. In the original paper of APRIL, Akrour et al. consider two approximations
leading to the mathematical expression of the AEUS criterion of a policy π [2]:

AEUS(πx) = Ex∼πx [
1

F (w+)
w+Tx+

1

F (w−)
w−Tx∗] (2.8)

where F (w) is the objective function from the optimization problem 2.5. Both w+ and w− are
obtained by solving the optimization problem 2.5 by considering whether the expert prefers the
last policy x or not rather than the last expert’s preferred trajectory x∗.

Akrour et al. validate APRIL in comparison with the apprenticeship learning algorithm on RL
benchmarks problems [2]. The benchmark is the cancer treatment problem. A stochastic transition
function emulates a patient’s tumour size and toxicity evolution in this problem. The transition
function even implements a stochastic death mechanism. The agent’s role is to learn a drug dosage
selection to stabilize the tumour by avoiding killing the patient. The performance of the policy is
measured by the average tumour size and toxicity level. Apprenticeship learning quickly find the
optimal policy within only two iterations. APRIL took fifteen iterations to produce the optimal
policy. The second RL experiment is the mountain car. In the mountain car problem, the agent’s
goal is to drive a car on the top of a steep mountain. The mountain’s steepness prevents the

14

Chapter 2 – Related Work

car from reaching the top by only accelerating forward. Hence, the agent must learn to drive
backwards to a behind hill to build enough potential energy to reach the top of the mountain. For
this experiment, once again, apprenticeship learning finds the optimal policy in fewer iterations
than APRIL.

15

Chapter 3

Technical Assets

Automatic design for robot swarm operates in simulation to produce control software deployed
on real robots. My work during this master thesis employs technical assets for working in simu-
lation and reality.

Demonstration-Cho is designed to produce control software for a specific model of robot, the
e-puck presented in Section 3.1. Before deploying the produced control software to the real e-puck,
I worked with a robot simulator called ARGoS presented in Section 3.3.

In this chapter, I will also present Orchestra. This software aims to interface between an op-
erator and a robot swarm. As part of my method, I implemented additional functionalities that
I present in Section 3.4.

Section 3.5 of this chapter will briefly present the support vector machines (SVM). This ma-
chine learning technique is crucial for learning the implicit objective function from demonstrations
in Demonstration-Cho, the automatic modular design I propose in this master thesis.

3.1 E-puck

The e-puck [58] is a small mobile robot developed at the EPFL in Lausanne by Michael Bo-
nani and Francesco Mondada for educational and research purposes. The model I used during
this master thesis is a modified version from the IRIDIA lab (see Figure 3.1), augmented with
a range-and-bearing device, an omnidirectional camera, and an overo gumstix board [27]. Each
version of AutoMoDe design control software for the modified e-puck relative to a reference model
[34]. The reference model formalises what the robot can sense and do. AutoMoDe-Chocolate
uses the reference model RM1.1 given by Table 3.1.

The entries below the ≪ Input ≫ column in Table 3.1 correspond to the sensors of the e-puck.
Eight infra-red sensors placed around the e-puck body correspond to the proximity and light sen-
sor. One sensor is placed underneath the robot and is responsible for reading the ground colour.
The camera at the top of the e-puck perceives the number of neighbouring robots. A range-and-
bearing device provides the attraction vector defined as follows:

V =

{∑n
m=1(

1
1+rm

,∠bm), if robots are perceived

(1,∠0), otherwise
(3.1)

16

Chapter 3 – Technical Assets

where range rm ∈ [0, 0.7]m and the bearing ∠b ∈ [0, 2π]rad are to the respectively the distance
angle to the robot neighbour m.

The entry below the ≪ Output ≫ column in Table 3.1 corresponds to the two wheels actuators
in which the control software writes the target velocity vl and vr for the left and right wheels,
respectively.

Input Value Description

proxi∈1,...,8 [0,1] reading of proximity sensor i

lighti∈1,...,8 [0,1] reading of light sensor i

groundi∈1,...,8 black, gray, white reading of ground sensor i

n [0,20] number of neighboring robots perceived

V ([0.5, 20], [0, 2π]) attraction vector

Output Value Description

vl,r [-0.12,0.12]ms−1 target linear wheel velocity

Table 3.1 – Reference model RM1.1 for the modified version of the e-puck [34]

Figure 3.1 – Upgraded e-puck used during the experiments at IRIDIA [27]

3.2 ROS

The Robot Operating System (ROS) is an open-source program that provides a communica-
tion structure layer above the operating system of a cluster of heterogeneous robots [65]. The
communication with ROS is performed by processes called ≪ node ≫ exchanging ≪ messages ≫ to
each other. To send a message, a node publishes it to a certain ≪ topic ≫ other nodes can subscribe
to in order to receive the published message. For example, suppose a process is interested in the

17

Chapter 3 – Technical Assets

odometry of the robots. In that case, it can subscribe to the ≪ odometry ≫ topic so that it will
receive every message from every node publishing to that specific topic.

A helpful tool of ROS is called rosbag, which can record transmitted messages into a .rosbag
file. Rosbag can also allow replaying the messages recorded in the .rosbag file.

3.3 ARGoS

ARGoS [51] is multi-physics simulator designed for swarm robotics. ARGoS can be used with
e-pucks for simulating robot swarm missions (Fig 3.2) through a dedicated plug-in [27]. The simu-
lator has been used in many studies to evaluate the AutoMoDe [24] among other control software.
Each experiment runs in ARGoS is described by an XML file (.argos), where all information about
how ARGoS will run the experiments.

The .argos file, describing the robot swarm mission, always contains the following XML tags:

— The Framework tag contains the mission’s length in seconds, the ≪ ticks-per-second ≫ which
is the frequency of the update cycle of ARGoS, and the random seed of the mission.

— The Loop functions tag contains the path to the loop functions script, which is responsible
for the floor colour, the placement of the robot and the computation of the objective func-
tion in ARGoS. During my master thesis, I also put in this XML tag information that can
be parsed by Orchestra (see Section 3.4) like the information of the elements composing
the arena.

— The Controllers tag contains the information about the control software design and the
robot controller used in the experiments.

— The Arena tag contains information about the specifications of the arena, the number of
walls forming the arena and their specifications, the number of eventual obstacle and their
specifications, and the eventual presence of the light source. The Arena tag also contains
the E-puck tag containing all relevant information for ARGoS about the robots, like how
to distribute them in the arena, their quantity or which is their controller.

— The Physics engines tag only contains the information of which physic engine ARGoS is
using.

— The Media tag contains information about the LEDs and the range-and-bearing of the
e-puck.

— The Visualisation tag enables the visualisation of ARGoS.

3.4 Orchestra

Orchestra is a human/swarm robot interface developed at IRIDIA using the game engine Unity.
The goal of Orchestra is to monitor a robot swarm during a mission. All communications between
the robot swarm and Orchestra are done through ROS.

18

Chapter 3 – Technical Assets

Figure 3.2 – Snapshot of ARGoS with an example of a robot swarm mission with 20 e-pucks

The Orchestra user can retrieve information from monitored robots, like their sensors’ value,
which is visualised in real-time in the software as they move during the swarm mission. The user
can also directly command one or a group of robots by driving them or sending them behavioural
commands. The ROS communication also allows multiple users to operate on the same swarm.

Figure 3.3 shows the first screen of Orchestra, where a .argos file can be entered to generate
the mission setup and the IDs of the e-pucks to be monitored.

3.5 Support Vector Machine

Support vector machines (SVMs) are a family of machine learning algorithms used to solve
classification and regression problems in some feature space [35] [61]. As shown in Figure 3.4, the
principle of an SVM is to separate two classes of points. This separation is done with a hyperplane
in the feature space such that the ≪ margin ≫ between the two clusters is maximal. This margin
is the distance between the two boundary hyperplane of the two classes. The points on these
boundary hyperplanes are called the support vectors.

Mathematically, the SVM classifies two classes of point defined in a feature space and labeled
yi ∈ {−1, 1} ∀xi, where xi ∀i = 1, ..., n are the points in the feature space. The SVM will
classify a point x as part of class 1 if w · x − b ≥ 1 or, -1 if w · x − b ≤ −1. The vector w is
the orientation vector of the separating hyperplane. the support vectors are the points where
w · x− b = 1 and w · x− b = −1. The distance between the hyperplanes intercepting the support
vectors, called the margin, equals 2/||w||. The best hyperplane to separate the two classes is such

19

Chapter 3 – Technical Assets

Figure 3.3 – Principal menu of Orchestra

that the margin is maximal. Hence, the SVM solves the following optimisation problem:

max
w

2

||w||
s.t. yi(w.xi − b) ≥ 1 ∀i

(3.2)

The problem 3.2 has a similar formulation as the IRL problem 2.4. Hence an SVM can be
used to solve that optimisation problem.

20

Chapter 3 – Technical Assets

Figure 3.4 – This picture summarises the main elements of the classification problem solved by the
SVM. The support vectors are the point intercepted by the frontier of the classification boundary.
The goal of the SVM is to find the hyperplane with the maximal boundary distance. Credit:
Wikimedia 2

21

Chapter 4

Arena and Demonstration Builder

In my master thesis, I propose a complete automatic modular design process, from building
the mission’s arena in simulation to computing control software for robot swarms to accomplish
the mission. Hence, I extend Orchestra to no longer only serve as an interface but also to allow
building mission’s arena and swarm behaviours.

The automatic modular design I propose in this master thesis requires the swarm mission’s
arena setup and some swarm behaviour demonstrations in place of an explicit objective function
to produce control software. To specify the swarm mission arena, Di Ruscio et al. propose a
domain-specific language [16]. The inconvenience with specifying missions with domain-specific
language is that the user needs to know the language and its grammar. Hence to specify swarm
missions, I implemented within Orchestra a graphical user interface (GUI) in a ≪ what you see
is what you get ≫ (WYSIWYG) fashion so I can build swarm mission’s arena. I detail how I
typically build an arena below.

Once on Orchestra first menu (see Figure 3.3), the user can click on the ≪ make demo ≫ button
for building the arena and later demonstrate some robot swarm behaviour. Once in the arena
builder screen, several options are available to build an arena for the missions I choose in Section
6.4.

The user can change the arena shape by selecting the one they want from the top-left drop-
down menu (see Figure 4.1). Then, the user can place different elements in the arena by checking
one of the checkboxes in the list of elements on the left of the screen.

The ≪ Disk ≫ and ≪ Quad ≫ elements correspond to the floor patches in circular and rectangu-
lar shapes, respectively. Once placed in the arena, the patch’s parameters can be changed. The
patch’s menu opens when the patch is clicked on. In the patch’s menu, the colour of the patch,
the diameter of the circular patch, or the height, width and orientation of the rectangular patch
can be modified (see Figure 4.2 and Figure 4.3). The placed patch can be erased at any moment
by pressing the ≪ Delete ≫ button from the patch’s menu.

Special patches, called ≪ SpawnDisk ≫ and ≪ SpawnQuad ≫ can be used exactly like the
≪ Disk ≫ and ≪ Quad ≫ patches, except their purpose, is to define the position area of the robot
swarm at the beginning of the mission. Their menu is the same as the ones of ≪ Disk ≫ and
≪ Quad ≫ except that they don’t have colors (see Figure 4.4).

Similarly to the patches, obstacles can be placed in the arena and adapted. Again, when
pressed on, the obstacle’s menu opens up and allows to change the parameters of the obstacle like

22

Chapter 4 – Arena and Demonstration Builder

Figure 4.1 – Screenshot from the arena builder of Orchestra. When first entering the arena builder
screen, the arena is empty and has the shape of a dodecagon. The user can change the arena’s
shape by selecting the wanted shape from the screen’s drop-down menu at the top-left corner.

Figure 4.2 – Screenshot from the arena builder of Orchestra. The user can place a circular floor
patch by checking the ≪ Disk ≫ box from the list of elements on the left side of the screen. Once
checked, the user can point and click to place the floor patch in the arena’s desired location.
Clicking on a placed floor patch will open its menu where its parameters can be changed. For the
circular floor patch, the user can change its diameter and colour.

23

Chapter 4 – Arena and Demonstration Builder

Figure 4.3 – Screenshot from the arena builder of Orchestra. The user can place a rectangular
floor patch by checking the ≪ Quad ≫ box from the list of elements on the left side of the screen.
Once checked, the user can point and click to place the floor patch in the arena’s desired location.
Clicking on a placed floor patch will open its menu where its parameters can be changed. For the
rectangular floor patch, the user can change its width, height, orientation and colour.

Figure 4.4 – Screenshot from the arena builder of Orchestra. The user can define the starting area
for the robot swarm positions at the beginning of the swarm mission. The user can place either a
circular or a rectangular starting area by checking the ≪ SpawnDisk ≫ or the ≪ SpawnQuad ≫ box
from the list of elements on the left side of the screen. Once checked, the user can point and click
to place the starting area in the arena’s desired location. Clicking on a starting area patch will
open its menu where its parameters can be changed. For the circular starting area, the user can
change its diameter. For the rectangular starting area, the user can change its width, height, and
orientation.

24

Chapter 4 – Arena and Demonstration Builder

Figure 4.5 – Screenshot from the arena builder of Orchestra. The user can place an obstacle by
checking the ≪ Obstacle ≫ box from the list of elements on the left side of the screen. Once checked,
the user can point and click to place the obstacle at a desired location in the arena. Clicking on
an obstacle will open its menu, where its parameters can be changed. For the obstacle, the user
can change its length and orientation.

its length and orientation.

This GUI also allows demonstrating robot swarm behaviour. Once every element is placed
into the mission arena, the user can build the demonstration. Hence, by checking the box of the
”Epuck” element from the list of elements, the user can place as many robots as wanted by clicking
on location in the arena (see Figure 4.6). To save a demonstration, the user can press the ”Demo”
button at the bottom right corner of the screen. The placed e-puck will disappear, and the user
can make as many new demonstrations in the arena he builds as he wants.

Figure 4.7 represent a typical scene of Orchestra’s mission/demonstration builder. When the
user is done with building the arena and demonstrating robot swarm behaviours, he can save his
work into a .argos file. To do so, the user needs to provide a file name in the text field at the
bottom-right corner of the screen and then press the ”Build” button. The saved .argos file will
then be provided to Demonstration-Cho to produce control software in the next step of my method.

25

Chapter 4 – Arena and Demonstration Builder

Figure 4.6 – Screenshot from the arena builder of Orchestra. The user can place the robots by
checking the ”Epuck” box from the list of elements on the left side of the screen. Once checked, the
user can point and click to place the robots at the desired locations in the arena to demonstrate a
robot swarm behaviour. Pressing the ”Demo” button at the bottom-right of the screen will save
the robot positions and remove them from the screen. The user can repeat the process of making
and saving a demonstration as often as possible.

Figure 4.7 – Snapshot of the mission builder of Orchestra where the user can construct the setting
of the mission and place the robots to make their demonstration of where they should be and how
they should gather like

26

Chapter 5

APRIL

The first method I worked on during this master thesis is an adapted version of the Active
Preference Learning-Based reinforcement learning algorithm (APRIL) [2]. The objective of my
master thesis is to learn control software for robot swarm without specifying any explicit objective
functions. One of APRIL’s advantages is that it is an RL technique that does not require any
explicit reward function. Instead, it learns the expert’s preference thanks to the expert’s ranking
of proposed policies. By refining its model of the expert’s preference, APRIL can propose policies
closer to the expert’s preference. Hence, by adapting APRIL to the context of swarm robotics, I
may be able to fulfil the goal of my master thesis.

As a reminder, APRIL is composed of three phases: the demonstration phase, the ranking
phase, and the update phase. I adapted each phase so APRIL could produce control software for
robot swarms.

During the demonstration phase, I ran the candidate PFSM in ARGoS for the considered
mission. I then look at how the robots perform in the mission.

In the ranking step, I decide if I prefer the performance of the candidate PFSM I just witnessed
during the demonstration step over the performance of my prefered PFSM so far.

The third step is the updating phase, where all the learning is done. This step is divided
into two sub-steps. First, APRIL updates its model of the expert’s preference based on the cur-
rent ranking of the policies demonstrations. This model of the expert’s preference is called the
Approximated Expected Utility of Selection (AEUS) criterion (see Eq.2.8). The AEUS criterion
can be interpreted as the reward function the following policy needs to optimize. Hence, once
the AEUS criterion is updated, APRIL uses an RL technique with the AEUS criterion as a re-
ward function to produce a new policy. That produced policy is the one optimizing the current
model of APRIL of the expert’s preference. Then the newly produced policy is demonstrated to
the expert, looping back to the first step of APRIL. Hence, APRIL is repeated until it produces
a policy that satisfies the expert, for example, by performing well in regards to a validation metric.

Although in the original paper [2], APRIL is meant for single agent training. Hence to apply
APRIL in the context of swarm robotics, I needed to do some modifications to the original APRIL
algorithm.

The first modification I made is to the definition of a policy trajectory (see Section 2.6). In-
deed, in the original paper [2], the policy trajectory is the unit vector over all sensori-motor states
(SMS). For single robot learning, SMS is easily defined as the combination of all its sensors’ and

27

Chapter 5 – APRIL

actuators’ values. For swarm robotics, defining SMS is more challenging. Indeed, the robot’s be-
haviour in the swarm is represented by PFSM, where the robots can have the same combination
of sensor value/actuator value for different states. For example, knowing the value of the robot’s
wheel speed and sensors’ readings at a given moment does not allow to differentiate if the robot
is in the ≪ Exploration ≫ or ≪ Anti-phototaxis ≫ state described in Table 2.1. Hence, I decided
to describe an SMS of the robots as the number of times a triggered termination of a behaviour
in the PFSM due to a transition condition happens. For example, the number of termination of
the ≪ Phototaxis ≫ behaviour due to the transition condition ≪ Black-floor ≫ corresponds to one
SMS. For example, cases where robots never leave a behaviour until the end of the mission are also
considered SMS. Furthermore, I define the SMS of the robot swarm as the average over the SMS of
each robot. Hence, I define the policy trajectory as the unit vector over all SMS of the robot swarm.

I made the second modification to the original APRIL algorithm during the learning phase. As
I have presented above, once the AEUS criterion has been updated, APRIL uses an RL algorithm
with the AEUS criterion as a reward function to produce the following policy. Because I consider
swarm robotics with PFSM control software, I cannot use a classical RL technique. Instead, I use
the automatic modular design process AutoMoDe-Chocolate with the AEUS criterion as an ob-
jective function. Using AEUS as the objective function will make AutoMoDe-Chocolate produce
a control software optimizing the current model of the expert’s preference.

Once I implemented the two modifications I presented above, I was ready to test my version
of APRIL for swarm robotics. Although, I rapidly encounter a significant issue.

To evaluate APRIL, I have constructed a simple aggregation-like mission where the robot only
has to aggregate on a black spot in the centre of the arena. Hence, I started to rank the candidate
behaviour I witnessed on ARGoS regarding my appreciation when preferring a behaviour over
another. The issue was that my version of APRIL only produced basic control software, with
often only one or two SMS. Hence, I never succeed in producing satisfactory control software,
even for this simple mission.

I believe that the problem is my definition of SMS. Indeed, in the features space, the SVM
classify behaviour into two categories: the candidate behaviour the expert prefers from the current-
best one and the complementary class of behaviour the expert most likely does not prefers. How-
ever, the points in that feature space constructed over my definition of SMS seem impossible to
separate linearly. It follows that the AEUS criterion does not provide relevant information on the
behaviour I most likely will prefer next.

To fix my version of APRIL, I see two options. The first one is to redefine the SMS to construct
a feature space where the two classes of points can be linearly separable. The second option is to
use another classifier than the classical SVM.

Hence, due to the complication I encountered, I, unfortunately, had to leave my work on adapt-
ing APRIL for swarm robotics for the moment.

28

Chapter 6

Apprenticeship Learning

The method I developed during this master thesis is an automatically modular design for
robot swarms by learning from human demonstrations I call Demonstration-Cho. More specif-
ically, Demonstration-Cho is a mix between AutoMoDe-Chocolate [24] and the apprenticeship
learning algorithm [1]. The core idea of my method is not to provide any explicit objective func-
tion to AutoMoDe-Chocolate. To do so, Demonstration-Cho learns an implicit objective function
of the swarm mission by providing demonstrations of swarm behaviour accomplishing the specified
mission to the apprenticeship learning algorithm. This implicit objective function will then be
used by AutoMoDe-Chocolate to produce control software.

The apprenticeship learning algorithm I use in this master thesis is the one described in the
paper of Pieter Abbeel, and Andrew Y. Ng [1]. Although, I needed to assume some hypotheses
to adapt the apprenticeship learning algorithm to the scope of swarm robotics. I will explain my
working hypothesis in Section 6.1.

During the development of Demonstration-Cho, I encountered the problem of how to represent
a robot swarm demonstration in the feature space. In section 6.2, I will detail my final version of
the features representation of a robot swarm demonstration and how I end up with this features
representation.

In Section 6.3, I detailed the algorithm behind Demonstration-Cho.

At IRIDIA, a lot of robot swarm mission has been proposed. To test my method, I needed to
select some missions Demonstration-Cho, AutoMoDe-Chocolate, and Evo could address. Section
6.4 presents an extensive list of the swarm mission developed at IRIDIA. I will also present the
four missions I use for my experiments and why I choose them.

6.1 Hypothesis

I had to make two hypotheses to adapt the Apprenticeship Learning algorithm for single agent
learning to swarm robotics.

Firstly, in my method, a swarm behaviour demonstration is nothing more than the positions
of the robots at the end of the robot swarm mission. In the paper of Abbeel and Ng [1], the value
of a policy is the expected discounted reward collected by the policy over time for all initial states,
implying that the demonstration is defined as a sequence of action for all time. For simplicity, I
only consider the reward collected at the last step of the mission. Hence I only consider the final

29

Chapter 6 – Apprenticeship Learning

position of the robots as robot swarm behaviours.

Secondly, I assume that the objective function specifies that the robot swarm mission is a
linear combination of the features vector of the robot swarm behaviour demonstration.

6.2 Features Representation

Abbeel and Ng define the feature vector ϕ(x) representing the agent behaviour as the result
of the function ϕ : S → [0, 1]k, where S is the set of states and k is the number of features, to
the state x [1]. For example, the feature vector could be the vector of desirable features of a
self-driving car, such as the number of collisions or the lane the self-driving car rides on.

One fundamental difference is that Abbeel and Ng consider a single agent training, and I use
the algorithm for a swarm of agents, but I consider a swarm of robots. Hence, the features vector
no longer only represents the features of a single agent but rather the features of a swarm of
agents. The question is how to construct that feature vector for a robot swarm.

In the beginning, I needed to decide between two ways of representing the features vector.
One possibility was to think about swarm-level features. This way, we might consider the robot
swarm as a whole as a single agent. The other possibility is to use the features of the individual
robots, and I would concatenate all the features together in the features vector. Ultimately, I have
chosen the second option because defining a swarm-level feature is not easy compared to defining
the individual robot features.

Once I decided on how to represent the features vector, I had now to define what the features
were. As I presented in Section 6.1, I consider the robot swarm behaviour as the position of the
robots at the end of the mission. The features must then be related to the position of the robots.

From here, I will designate the features vector by µ and not ϕ by abuse of language. Indeed,
Abbeel and Ng define µ as the expected features vector of the robot swarm behaviour. To compute
it, I repeat the robot swarm mission multiple times and retrieve as many feature vectors ϕ. Then,
I take the average over all ϕ to compute the expected features vector µ. Because µ is the average
over multiple ϕ, replacing ϕ by µ will not impact the formula I will present below.

The first feature I defined is a function of the position of the robots in regards to the robot’s
position from the expert demonstration. More specifically, I defined the distance from the expert
demonstration features vector as follows:

µ = (µHungarian1 , ..., µHungariann) s.t. µHungariani
= e−

2. ln 10
d2

.d.xHungariani ∀i = 1, ..., n (6.1)

where n is the number of robots, and d is the diameter of the inner circle of the arena. The
variable xHungariani

represents the ith smallest distance from the assignment between the positions
of the robots resulting from the automatic design and the positions of the robots from the expert’s
demonstration. This assignment results from the Hungarian algorithm minimizing the sum of all
robot-to-robot distances between the two groups. The reason I use an assignment algorithm is
to break the ordering dependency the features vector has if I consider the robots in the same or-
der every time I need to compute the distance between the robots and the expert’s demonstration.

30

Chapter 6 – Apprenticeship Learning

Figure 6.1 – The x-axis is the distance between one robot position resulting from the automatic
design process and one robot from the expert’s demonstration. The y-axis is the value of µ in the
function of the distance between the positions of the robot. The green curve is the exponential
function described in Eq.6.1, and its decreasing speed is such that when the distance is more
significant than half of the arena’s inner radius (equal to 3 meters in this graph), the value of
µ is already below 0.1. The penalization of the exponential function when the robot from the
automatic design is far from the robot from demonstration is more severe than if the linear
function represented by the blue curve was used. This penalization matters because in the robot
swarm experiments, we are only interested when the robots end up close to the robots of the
demonstration.

The exponential function in Eq.6.1 has two purposes. First, it keeps the value of the µHungarian

in the range of [0, 1] with the value 1 reached when a robot is precisely at the position of a robot
from the expert demonstration. The second purpose of the exponential decrease is to penalize the
robots the farthest they are from the demonstration. Indeed, in the context of the robot swarm
missions, I have chosen (see Section 6.4), a robot’s behaviour is considered poorly performing
regardless of the distance from the demonstration from the point it is more significant than half
the size of the arena. Figure 6.1 shows the difference between decreasing speed of the exponential
function (in green) and the linear function (in blue). The exponential function’s factors from
Eq.6.1 are such that µHungarian = 0.1 when the distance between the robot and the demonstration
is equal to the radius of the inner circle of the arena.

The problem with defining the feature vector is only based on the distance from the demon-
stration is that the resulting implicit objective function may lack specific information about the
mission. Indeed, I noticed when experimenting with that features vector representation that
sometimes the behaviour produced by my method ignored some element of the arena, resulting in
non-optimal behaviour. For example, in the SAC mission (see Section 6.4), the access to shelter
is constrained by walls. Hence, by only considering the distance from the arena, aggregating close
to the shelter’s wall out of the arena is considered a ≪ good ≫ behaviour by my automatic design
process. However, it should not be the case. If the features could integrate the obstacle or floor
patches, more information about the mission would result in better control software.

31

Chapter 6 – Apprenticeship Learning

Hence, I drop the idea of defining the features vector in the distance function to the expert
demonstration. Instead, I defined multiple features per robot, all in function of the distance to
the ≪ landmarks ≫ in the arena. Indeed, in all missions listed in Section 6.4, the same elements
appeared regularly, which I defined as landmarks: the circular and the rectangular floor patches,
in black and white. The features vector at this point is defined as follows:

µ = (µpatch11 , ..., µpatch1n , ..., µpatchkn
) (6.2)

s.t. µpatchij
=

{
e−

2. ln 10
d2

.d.xpatchij ∀i = 1, ..., n , if the robot is outside patch j, ∀j = 1, ..., k;

1, otherwise

(6.3)

where n is the number of robots in the swarm, k is the number of floor patches in the arena and
d is the diameter of the inner circle of the arena. The variable xpatchij

represents the ith smallest
distance from a robot of the swarm to the jth floor patch. The computation of the µpatch is the
same as in Eq.6.1 except that this time µpatch = 1 as soon as the robot is on the floor patch.

Now, the features vector considers the element specific to the robot swarm mission. Although,
more information from the mission can be considered besides the floor patches. Indeed, this new
representation has the same issue with the shelter’s walls of the SAC mission I have mentioned
above. For other missions like CFA (see Section 6.4), a feature about the swarm density could
also be helpful. Hence, for my final version of the features vector, I have made one modification
and one addition to Eq.6.4. To consider the wall, I modify the µpatch such that µpatch = 0 if there
is an obstacle between the robot’s final position and the obstacle. This modification is meant to
penalize a robot outside the shelter when the demonstration robot is in the shelter. Finally, I
added the feature relative to the distance to the closest robot neighbour to provide information
about the robot swarm density. Hence the final version of my features vector is defined as follows:

µ = (µpatch11 , ..., µpatch1n , ..., µpatchkn
, µneigh1 , ..., µneighn) (6.4)

s.t. µpatchij
=

1, if robot i is inside patch j;

0, if an obstacle is between robot i and patch j;

e−
2. ln 10

d2
.d.xpatchij , otherwise; ∀i = 1, ..., n and ∀j = 1, ..., k;

(6.5)

µneighi
= e−

2. ln 10
d2

.d.xneighi ∀i = 1, ..., n (6.6)

where xneighi
is the ith smallest distance between one robot and its closest neighbor in the

swarm.

6.3 Demonstration-Cho

My method for robot swarm mission specification and production of control software for that
mission is composed of two steps. The first step is to build the arena and make some swarm robot
demonstration with Orchestra as presented in the previous Section.

The second step is to adapt the Apprenticeship Learning algorithm [1] to produce control
software for robot swarms. I did three modifications to the original Apprenticeship Learning al-
gorithm. The first one is to adapt the features vector to describe the robot swarm. I provide the

32

Chapter 6 – Apprenticeship Learning

details about my definition of features vector for robot swarm in the context of my master thesis
in Section 6.2.

The second modification concerns the stopping criterion of the Apprenticeship Learning algo-
rithm. As a reminder, the goal of the apprenticeship learning is to produce a policy performing
as good as the expert policy on an implicit reward function R = w.µ, where µ is the features
vector and w a weight vector. This implicit reward function is learned iteratively by solving Prob
2.4 with an SVM. The Figure 6.2 schematically summarizes the apprenticeship learning. The
expert features vector (in green) is the only point in the class ≪ +1 ≫ and all feature vectors
produced so far by the apprenticeship algorithm belong to the class ≪ -1 ≫ (in red). The SVM
is fitted to separate the two classes by maximizing the margin t. The vector w is then used to
learn the implicit reward function R = w.µ. In the original Apprenticeship Learning algorithm,
[1], the stopping criterion is when the value of the max-margin t is below an arbitrary threshold.
If the max-margin t is small, it means that one policy has a features vector close to the features
vector of the expert policy in the feature space. In my experiments, there are as many feature
spaces as there are missions, so the value of the max-margin is not necessarily on the same scale.
Hence in Demonstration-Cho, I specify a fixed number of iterations for the algorithm to terminate.

The last modification I made to the algorithm of Abbeel and Ng [1] is in the policy learning
step. Indeed, the apprenticeship learning algorithm is used in the context of single agent learning.
Hence, once the implicit reward function is learned, the original paper uses an RL algorithm to
learn a policy that would maximize the implicit reward function. In my master thesis, I work
in the context of swarm robotics, so I cannot use a conventional RL technique to learn a swarm
policy. Instead of the RL algorithm, I use AutoMoDe-Chocolate with the learn implicit reward
function to compute the control software in a probabilistic finite state machine (PFSM) that would
optimize the implicit objective function.

The following pseudo-code describes how Demonstration-Cho computes a control software for
a robot swarm mission by providing an expert robot swarm demonstration:

1. Provide the arena and the expert demonstration from Orchestra, and the number of
Demonstration-Cho iterations N.

2. Compute the features vector of the expert’s demonstration and label it as +1 in the PFSM
history.

3. Set i = 0 and generate a random initial PFSMi and compute the features vector of PFSMi

and label it as -1 in the PFSM history.

4. Compute ti and wi by fitting the SVM to the PFSM history.

5. If ti < ti−1 for i = 1,...,N, store PFSMi as the best PFSM and if i = N, return the stored
best PFSM and terminate.

6. Run AutoMoDe-Chocolate with R = wi.µ in ARGoS with the arena from Orchestra, in-
crement I and compute new PFSMi.

7. Compute the features vectors of the new PFSMi and label it as -1 for the PFSM history.

33

Chapter 6 – Apprenticeship Learning

8. Go back to step 3.

μE

μ0

μ4

μ1

μ2

μ3

w

t

Feat 2

Feat 1

Figure 6.2 – The graph represents the fourth iteration of the apprenticeship learning in a feature
space of two dimensions. The SVM is fitted to separate the features vector of the already four pro-
duced policies (in red) from the features vector of the expert policy (in green). The apprenticeship
learning algorithm terminates upon the value of the max-margin t goes below a threshold. This
means that a features vector from the policy produced by the algorithm is close to the features
vector of the expert policy in the feature space.

6.4 Selection of missions

Hereafter is an extensive list of the mission in IRIDA’s literature. In the first part of the list,
for each class of missions, I provide a short explanation of their objectives. Each class of missions
have some variant missions that I will mention. From this first part of the list, I will select can-
didate missions that can be addressed by Demonstration-Cho. Finally, I will present my selection
of the missions I will use to compare the performance of Demonstration-Cho with Objective-Cho
and Objective-Evo.

From the literature of the IRIDIA lab, I found the following class of missions:

— Stop : The robots must stop as soon as a signal is emitted. It can be that one robot steps
on floor patches or the walls emit a stop signal. [32] [28] [31] [40] [41]

— Foraging: The robots need to forage resources. Some variants of this mission exist, like
choosing the best source of objects to gather. [46] [47] [66] [48] [45] [68] [50] [67] [52]

— Aggregation: The swarm of robots need to aggregate at some specific location [46] [32]
[47] [48] [68] [28] [31]. Many variants of this class of mission exist:

34

Chapter 6 – Apprenticeship Learning

— XOR: The swarm must aggregate on one floor patch or the other but not both at the
same time.[50] [33] [52]

— AAC (with ambient cues): The swarm have access to a light source to guide them to
gather on the floor patch. [43] [45] [24]

— End-Time: The robot must aggregate on a floor patch by the end of the time of the
mission. The performance is measured only at the end of the mission. [66]

— Marker: The robot must aggregate within a dotted area which is not visible to the
robot. A floor patch is in the aggregation area to be used as a marker by the swarm.
[40] [41]

— Shelter: The swarm must find and aggregate inside of a shelter [33]. This class of mission
has some variants:
— SCA (with constrained access): The shelter is surrounded by walls and is only accessible

by one side. A light source is present outside the arena on the side of the arena’s opening
to guide the swarm. [43]

— SAC (with ambient cues): Half of the arena is covered by a black floor patch. The arena
is the same as SCA (paper yet to be published).

— guided: The swarm have two ambient cues to guide them to the shelter: a light source
and a conic region providing a path to the shelter [43].

— Directional-Gate: The robots need to pass through a ≪ gate ≫ represented by a floor
patch. The robots must pass through the gate in a correct sense. [33]

— Homing: The robots start at one side of the arena and must aggregate on a floor patch on
the other side. There is no light source to guide the swarm. [33] [52]

— Coverage: The robot swarm has to spread as much as possible in the arena. Some variants
of the class of mission exist:
— Phormica: The arena is divided by cell units, and the robots must at least visit every cell

once. The robots are capable of leaving pheromones to communicate through stigmergy
[67].

— CFA (with forbidden areas): Three circular floor patches are placed in the arena. The
robot swarm must cover the arena but needs to avoid the floor patches [24].

— LCN (largest covering network): While trying to cover the arena, the robots have to
maintain connected to each other [23].

— SPC (surface and perimeter coverage): The goal of the mission is to cover the area of
a white sqaure floor patch and the perimeter of a black circle floor [23].

— Tasking: Gray floor patches and LEDs represent
textquoteworkstations where the robots need to perform the task. A task considered as
performed is the robot spin in the workstation. The robots must visit a workstation only
once. The Phormica variant of this mission involves pheromones to mark the workstation
already visited [67].

— Decision: A circular floor patch is placed in the centre of the arena and can be white or
black. A light source is present outside of the arena. Initially, the robot is placed randomly
across the arena. The task requires that the robots relocate to one-half of the arena if the
floor patch is black and to the other half part of the arena if the floor patch is white [32] [49].

35

Chapter 6 – Apprenticeship Learning

— Anytime-Selection: Two circular floor patches are placed in the arena. The robots must
aggregate in one of the floor patches. The performance is measured over time. So the
robots must aggregate in one of the patches and stay on it until the end of the mission [66].

The candidate missions should be feasible for AutoMoDe-Chocolate as Demonstration-Cho
uses this automatic modular design. The mission requiring seeing LED colours or leaving pheromones
to set stigmergy communication has to be discarded as no modules in AutoMoDe-Chocolate allow
any of that. The mission that involves only the spatial positioning of the robots also needs to be
discarded. Indeed, I defined my features vector relative to the position only, so they cannot repre-
sent any time-based mission like Foraging. Hence, I broke down the above list into the following
list of candidate missions:

— Aggregation:
— XOR
— End-Time
— AAC
— Marker

— Shelter:
— SCA
— SAC

— Homing

— Coverage:
— CFA

I selected one variant mission from the four remaining feasible classes of missions. Hence, the
missions I will use for my experiments are AAC, SAC, Homing and CFA.

36

Chapter 7

Experimental Protocol

This chapter presents the experimental protocol for the experiments conducted in simulations
and with real robots.

In the Experiments, I will compare Demonstration-Cho with Objective-Cho and Objective-Evo.
Demonstration-Cho is the design method described in Chapter 6.3, Objective-Cho is AutoMoDe-
Chocolate and Objective-Evo is EvoStick.

The experimental protocol for all missions is as follows:

1. With the mission builder of Orchestra, I build the arena of the chosen mission.

2. When the arena is constructed, I demonstrate five demonstrations of the robot swarm’s
final positions for the chosen mission in the Demonstration builder of Orchestra.

3. I compute ten instances of control software of Demonstration-Cho with the arena specifi-
cation and the demonstrations from Orchestra. For each fifty iteration of each instance of
Demonstration-Cho, I use a design budget of 10,000 executions of ARGoS.

4. I compute ten instances of control software of Objective-Evo with the arena specification
from Orchestra and the original objective function, as defined in the paper proposing the
mission. For each instance of Objective-Evo, I use a design budget of 10,000 executions of
ARGoS.

5. I compute ten instances of control software of Objective-Cho with the arena specification
from Orchestra and the original objective function, as defined in the paper proposing the
mission. For each instance of Objective-Cho, I use a design budget of 10,000 executions of
ARGoS.

6. For each generated instance of control software, I evaluate the performance once in simu-
lation with ARGoS.

7. For each generated instance of control software, I evaluate the performance once in reality
with a real arena at IRIDIA lab.

8. I report the results in the form of boxplots.

37

Chapter 7 – Experimental Protocol

The reason for Demonstration-Cho running multiple iterations in opposition to one for Objective-
Evo and Objective-Cho is because it is learning the implicit objective function specifying the mis-
sion along each iteration. On the contrary, Objective-Evo and Objective-Cho only run once because
they have access to the explicit objective function.

I describe each mission’s objective, arena specification, and explicit objective function in the
following sections. I also show the demonstrations I made with Orchestra for each mission. I also
show the explicit arena built at IRIDIA for each mission.

7.1 Aggregation with Ambient Cues

For this mission, the arena is composed of twelves walls of length equal to 66 cm forming a
regular dodecagon. Within the arena are one white and one black circle floor patches of radius
equal to 30 cm. The black circle is placed to the side of the arena, the closest to the light source
placed outside of the arena. The white circle is placed on the opposite side of the arena, next to
the side the farthest to the light source.

In the mission Aggregation with Ambient Cues mission (AAC), the robots swarm gather on
the black spot as quickly as possible. The robots have access to the light source outside of the
arena to guide them. At the beginning of the mission, the robots are randomly distributed in the
arena.

The fives pictures from Figure 7.1 show the arena configuration for AAC as I constructed with
Orchestra, with a different example of a demonstration of the final positions of the robot swarm
I made. Figure 7.2 shows the actual arena built at IRIDIA with the robots placed randomly
distributed in the whole area of the arena as starting position for the mission.

The objective function is defined as follows [24]:

FAAC =
∑T

t=1N(t)

where N(t) is the number of robots on the black spot at time t and T = 180 seconds.

7.2 Homing

For this mission, the arena is composed of twelves walls of length equal to 66 cm forming a
regular dodecagon. Within the arena is one black circle floor patch of radius equal to 30 cm. The
black circle is placed next to one side of the arena.

In the Homing mission, the robots swarm gather on the black spot as quickly as possible by the
end of the available time. No light source is available for guiding the robot. The robots must only
rely on local information about the ground colour and their immediate neighbourhood density.
At the beginning of the mission, the robots are placed gathered next to the opposite side of the
black spot.

The fives pictures from Figure 7.3 show the arena configuration for the Homing mission as
I constructed with Orchestra, with a different example of a demonstration of the final positions
of the robot swarm I made. Figure 7.4 shows the actual arena built at IRIDIA with the robots

38

Chapter 7 – Experimental Protocol

Figure 7.1 – The five pictures represent the arena for AAC constructed in Orchestra. In each of
the five pictures, I make one different demonstration of the end position of the robots I want the
produced control software from my method to replicate.

placed randomly distributed in the whole area of the arena as starting position for the mission.

The objective function is defined as follows [33]:

FHoming =
∑N

i=1 Ii(T); Ii(T) =

{
1, if if robot i is in the black area at time T;

0, otherwise

where N = 20 is the number of robots and T = 120 seconds.

7.3 Sheltering with Ambient Cues

For this mission, the arena is composed of twelves walls of length equal to 66 cm forming a
regular dodecagon. A light source is placed outside of the arena. Within the arena is one white
rectangle floor patch of 25 cm in width and 15 cm in height. Two walls of 35 cm in length
and one of 50 in length are placed around the white floor patches, leaving an opening on the
side of the white floor patch the closest to the light source. The three walls and the white floor
patches compose the shelter together. The arena is covered by a black area on all its height, from
its border the farthest to the light source to the border of the shelter the closest to the light source.

In the Sheltering with Ambient Cues mission (SAC), the robot swarm are tasked to gather on
the white shelter as quickly as possible. The robots have access to the light source outside of the
arena to guide them. At the beginning of the mission, the robots are randomly distributed in the
arena.

The fives pictures from Figure 7.5 show the arena configuration for SAC as I constructed with
Orchestra, with a different example of a demonstration of the final positions of the robot swarm

39

Chapter 7 – Experimental Protocol

Figure 7.2 – Picture of the arena built at IRIDIA for the AAC mission. The robots are randomly
placed in the arena at the start of the mission.

I made. Figure 7.6 shows the actual arena built at IRIDIA with the robots placed randomly
distributed in the whole area of the arena as starting position for the mission.

The objective function is defined as follows (paper yet to be published):

FSAC =
∑T

t=1 N(t)

where N(t) is the number of robots in the shelter at time t and T = 180 seconds.

7.4 Coverage with Forbidden Areas

For this mission, the arena is composed of twelves walls of length equal to 66 cm forming a
regular dodecagon. Within the arena are three black circle floor patches of a radius equal to 30 cm.
The black circles are placed all placed close to a side of the arena, forming a triangular formation
around the arena’s centre.

In the Coverage with Forbidden Areas mission (CFA), the robots need to spread as much as
possible across the arena by avoiding the black spots at the available time to perform the task.
No light source is available for guiding the robot. The robots must only rely on local information
about the ground colour and their immediate neighbourhood density. At the beginning of the
mission, the robots are randomly distributed in the arena.

The fives pictures from Figure 7.7 show the arena configuration for the CFA mission as I con-
structed with Orchestra, with an example of a demonstration of the final positions of the robot
swarm I made. Figure 7.8 shows the actual arena built at IRIDIA with the robots placed randomly
distributed in the whole area of the arena as starting position for the mission.

40

Chapter 7 – Experimental Protocol

Figure 7.3 – The five pictures represent the arena for the Homing mission constructed in Orchestra.
In each of the five pictures, I make one different demonstration of the end position of the robots
I want the produced control software from my method to replicate.

The objective function is defined as follows [24]:

FCFA = 25000− E[d(T)]

where E[d(T)] is the expected distance between a generic point in the arena and the closest
robots not on a black spot, at the end of T, and T = 180 seconds. I changed the original
definition of the objective function, so the objective function needs to be maximised like the other
three missions.

41

Chapter 7 – Experimental Protocol

Figure 7.4 – Picture of the arena built at IRIDIA for the Homing mission. The robots are randomly
placed in a rectangular area on the opposite side of the arena from the black patch at the start of
the mission.

Figure 7.5 – The five pictures represent the arena for SAC constructed in Orchestra. In each of
the five pictures, I make one different demonstration of the end position of the robots I want the
produced control software from my method to replicate.

42

Chapter 7 – Experimental Protocol

Figure 7.6 – Picture of the arena built at IRIDIA for the SAC mission. The robots are randomly
placed in the arena at the start of the mission.

Figure 7.7 – The five pictures represent the arena for CFA constructed in Orchestra. In each of
the five pictures, I make one different demonstration of the end position of the robots I want the
produced control software from my method to replicate.

43

Chapter 7 – Experimental Protocol

Figure 7.8 – Picture of the arena built at IRIDIA for the CFA mission. The robots are randomly
placed in the arena at the start of the mission.

44

Chapter 8

Results

This Chapter presents the results of the four experiments in simulation and with real robots,
I presented in the previous Chapter. For every mission, the performance of Objective-Evo,
Objective-Cho and Demonstration-Cho are presented as notched boxplots. The points compos-
ing the notched boxplots are computed as explained in Chapter 7. The notched boxplots allow
comparing the performances between the three automatic design processes for robot swarm with
statistical relevance. Indeed, the notch part of a notched boxplot indicates the 95% confidence
interval of the median value. Hence, if the notches of two boxplots do not overlap, then there is
a statistically significant difference between the performance of the two methods.

Objective-Evo and Objective-Cho run each one iteration of design process for a computa-
tional budget of 10,000 executions of ARGoS to produce one instance of control software. For
Demonstration-Cho, I run 50 iterations of the design process with a computational budget of
10,000 executions of ARGoS per iteration to produce one design process.

For every mission, ten control software are generated per control design process. Each notched
boxplot is constructed with the score of one run of each ten control software for each design pro-
cess. Half of the boxplots are the results of the experiments in simulation (in blue), and the other
half are from the experiments with real robots (in green)

The ten instances of Demonstration-Cho produce together a t-plot for each mission. In the
t-plot, each curve represents the value of the max-margin t of the SVM (or the t-value) over the
design process iterations for each instance (called experience) of Demonstration-Cho. The expe-
rience with the lowest t-value among all ten experiences is related to the best-generated control
software. Indeed, the best control software for Demonstration-Cho means that in the feature space,
the features vector generated by Demonstration-Cho pushed the most the boundary between all
features vectors in the dataset of the SVM and the features vector of the expert’s demonstration.
This best control software is represented below in the form of a probabilistic finite state machine
(PFSM) for every mission.

The experiments were recorded on videos accessible in this git repository: [GIT LINK].

The following sections present all the results from the simulation and reality experiments for
each mission.

45

Chapter 8 – Results

Figure 8.1 – Comparison between the three control process design in terms of performance in both
simulation (in blue) and reality (in green). Each notched boxplot is computed from the result of
one single run for every ten produced control software per control software design process.

8.1 Aggregation with Ambient Cues

Figure 8.1 shows the notched boxplots of the three design processes for the AAC mission in
both simulation and reality. The notch part of the three design processes’ boxplots in simula-
tion overlap, meaning that the three methods have similar performance in simulation. When
assessed in reality, all design Methods suffer from a drop in performance. Objective-Evo is the one
who suffered the most from the reality gap as the average performance loss from simulation to
reality is 13158, in contrast to an average of 11370 for Demonstration-Cho and 9913 for Objective-
Cho. Hence, Objective-Cho and Demonstration-Cho are more robust to the reality gap as their
reality boxplot upper quartile overlap with their simulation counterpart boxplot lower quartile.
The notch part of the reality boxplots of Objective-Cho and Demonstration-Cho overlap, meaning
they perform similarly in real experiments. Furthermore, the notch part of the reality boxplot of
Objective-Evo is below both the notch part of Objective-Cho and Demonstration-Cho reality box-
plots, meaning that Objective-Evo is less efficient in reality than the other two design processes
for the AAC mission. The fact that Demonstration-Cho has similar performance as the other
two methods in simulation and reality is fascinating. Indeed, the objective function of AAC is
continuously evaluated. However, even if Demonstration-Cho only designs control software evalu-
ated at the last step of the mission, it performs reasonably well even when evaluated at every step.

The t-plot from Figure 8.2 shows that all ten runs of Demonstration-Cho for the AAC mission
rapidly improve within the first iterations to reach their lower max-margin value at very different
iterations. Experience 1 reaches the lowest value of t at iteration 23, meaning that the generated
control software for this iteration is the one reducing the max-margin the most for all experiences.

46

Chapter 8 – Results

Figure 8.2 – The graph shows ten curves representing the evolution of the SVM max-margin over
the ten design process iterations over the AAC mission, called experience. The best behaviour is
associated with the experience that reached the global minimum value of t.

Figure 8.3 shows the PFSM related to iteration 23 of experience 1 of the t-plot from Figure
8.2. To accomplish the AAC mission, Demonstration-Cho has constructed behaviour that gathers
the robots together and brings them toward the light source until they eventually reach the black
spot. Once on the black spot, the robots alternate between approaching and receding from the
light source and staying grouped to keep the swarm within the black spot. Hence, the robot swarm
stays inside the black spot until the end of the allowed time.

8.2 Homing

Figure 8.4 shows the notched boxplots of the three design processes for the Homing mission in
both simulation and reality. The notch parts of the Objective-Cho and Demonstration-Cho boxplot
overlap in simulation. This means that the two methods have similar performance in simulation.
The notch part of the boxplot of Objective-Evo in simulation is slightly below the two other design
processes, meaning that it is slightly less efficient for the Homing mission in simulation than the
other two. When assessed in reality, all design methods suffer a drop in performance. Objective-
Evo is the one who suffered the most from the reality gap. The average performance loss from
simulation to reality is about 0.39, in contrast to an average of 0.36 for Demonstration-Cho and
0.32 for Objective-Cho. Objective-Cho and Demonstration-Cho suffered less from the reality gap
as their reality boxplot upper quartile overlapped with their simulation counterpart boxplot lower
quartile. The notch part of the reality boxplots of Objective-Cho and Demonstration-Cho overlap,
meaning they perform similarly in real experiments. Furthermore, the notch part of the reality
boxplot of Objective-Evo slightly overlaps the notch part of both notch part of Objective-Cho and
Demonstration-Cho reality boxplots from the bottom, meaning that Objective-Evo is slightly less
efficient in reality than the other two design processes for the Homing mission in reality.

47

Chapter 8 – Results

Figure 8.3 – The figure represents the probabilistic finite state machine of the best behaviour for
the AAC mission chosen among the ten experiences of Demonstration-Cho in simulation.

Figure 8.5 shows the t-plot for the ten instances of Demonstration-Cho. For all experience,
the t-value decrease rapidly for the first iterations to stay relatively constant for the rest of the
iterations. There is also a wider range of value of the max-margin among the experiences. Here
again, the experiences reach they lower t-value at very different iterations. The lowest t-value is
reached by experience 10 at iteration 44.

Figure 8.6 represents the control software generated at iteration 44 of experience 10. The
strategy of that PFSM is to explore the arena and aggregate with the other robots once on the
black spot. Noticeably, the ≪ Stop ≫ behaviour and condition above the initial behaviour in Figure
8.6 is never reached.

8.3 Sheltering with Ambient Cues

Figure 8.7 shows the notched boxplots of the three design processes for the SAC mission in
both simulation and reality. The notch part of the Objective-Evo and Objective-Cho boxplots in
simulation overlap, meaning that the two methods have similar performance in simulation. The
notched boxplot of Demonstration-Cho in simulation is noticeably very narrow, with its notch part
overlapping with the top of the notch part of the other two design processes’ boxplot, meaning that
Demonstration-Cho performed slightly better on SAC in simulation than both Objective-Evo and
Objective-Cho. When assessed in reality, all design Methods suffer from a drop in performance.
Demonstration-Cho is this time the one suffering the most from the reality gap. Indeed, there is
a considerable gap between Demonstration-Cho simulation and reality boxplot. The performance

48

Chapter 8 – Results

Figure 8.4 – Comparison between the three control process design in terms of performance in both
simulation (in blue) and reality (in green). Each notched boxplot is computed from the result of
one single run for every ten produced control software per control software design process.

Figure 8.5 – The graph shows ten curves representing the evolution of the SVM max-margin over
the ten design process iterations for the Homing mission, called experience. The best behaviour
is associated with the experience that reached the global minimum value of t.

49

Chapter 8 – Results

Figure 8.6 – The figure represents the probabilistic finite state machine of the best behaviour for
the Homing mission chosen among the ten experiences of Demonstration-Cho in simulation.

loss of Demonstration-Cho is 11675, against an average of 9218 and 6572 for respectively Objective-
Evo and Objective-Cho. Objective-Evo also suffers from the reality gap with its simulation and
reality compared to Objective-Cho. Hence, Objective-Cho is the most robust method for SAC.
The notch part of the reality boxplots of the three design processes overlaps, meaning they have
similar performance in real experiments for the SAC mission. The fact that Demonstration-Cho
has similar performance as the other two methods in simulation and reality is fascinating. Indeed,
the objective function of SAC is continuously evaluated. However, even if Demonstration-Cho only
designs control software evaluated at the last step of the mission, it performs reasonably well even
when evaluated at every step.

The t-plot of Figure 8.5 shows the ten experiences with Demonstration-Cho on SAC in sim-
ulation. For all experience, the t-value decrease rapidly for the first iterations to stay relatively
constant for the rest of the iterations. The experiences reach they lower t-value at very different
iterations once again. The lowest t-value is reached by experience 7 at iteration 11.

Figure 8.9 represents the PFSM generated at iteration 11 of experience 7. The PFSM displays
a straightforward strategy where the robot goes to the light source to move away from the light
when a certain number of neighbours is present nearby. Either the robot will enter the shelter or
touch the black area, so it will fall back to its initial state and repeat the process until it enters
the shelter.

50

Chapter 8 – Results

Figure 8.7 – Comparison between the three control process design in terms of performance in both
simulation (in blue) and reality (in green). Each notched boxplot is computed from the result of
one single run for every ten produced control software per control software design process.

Figure 8.8 – The graph shows ten curves representing the evolution of the SVM max-margin over
the ten design processes iterations for the SAC mission, called experience. The best behaviour is
associated with the experience that reached the global minimum value of t.

51

Chapter 8 – Results

Figure 8.9 – The figure represents the probabilistic finite state machine of the best behaviour for
the SAC mission chosen among the ten experiences of Demonstration-Cho in simulation.

8.4 Coverage with Forbidden Areas

Figure 8.10 shows the notched boxplots of the three design processes for the CFA mission
in both simulation and reality. The notch part of the boxplots of the three design processes in
simulation overlap, meaning that the three methods have similar performance. Thus, the notch
part of the boxplot of Objective-Cho in simulation is slightly above the ones of the other two de-
sign processes’ in reality, meaning that Objective-Cho performs better than the other two design
processes for CFA in simulation. This time, Objective-Cho suffered the most from the reality gap
with an average drop of performance from simulation to reality of 6, against 2 for Objective-Evo.
Furthermore, Demonstration-Cho actually improved in reality compare to the simulation with a
average increase of 2. We can also see that the three design processes are just as efficient as each
other for CFA in reality as the notch part of their reality boxplot overlap.

The t-plot of Figure 8.11 shows the ten experiences with Demonstration-Cho on SAC in simu-
lation. The max-margin value of every experience is in a small range in the stationary part of the
curves. For all experiences, the t-value decreases rapidly for the first iterations to stay relatively
constant for the rest of the iterations. The experiences reach they lower t-value at very different
iterations once again. The lowest t-value is reached by experience 4 at iteration 38.

Figure 8.12 represents the PFSM generated at iteration 38 of experience 4. The strategy of
the PFSM is to switch between the ≪ Repulsion ≫ behaviour for covering the whole arena and the
≪ Exploration ≫ behaviour to escape from the black patches. Noticeably, some transition condi-
tions involve white patches even though the mission does not contain any.

52

Chapter 8 – Results

Figure 8.10 – Comparison between the three control process design in terms of performance in
both simulation (in blue) and reality (in green). Each notched boxplot is computed from the result
of one single run for every ten produced control software per control software design process.

Figure 8.11 – The graph shows ten curves representing the evolution of the SVM max-margin over
the ten design process iterations for the CFA mission, called experience. The best behaviour is
associated with the experience that reached the global minimum value of t.

53

Chapter 8 – Results

Figure 8.12 – The figure represents the probabilistic finite state machine of the best behaviour for
the CFA mission chosen among the ten experiences of Demonstration-Cho in simulation.

54

Chapter 9

Discussion and Further Work

The goal of my master thesis is to propose an automatic modular design producing control
software to accomplish robot swarm missions without specifying any explicit objective function of
the robot swarm mission. In this Chapter, I discuss the success of my master thesis based on the
results I presented in Chapter 8. I also provide some insights about Demonstration-Cho and the
future work that needs to be considered to improve Demonstration-Cho.

The previous Chapter’s results indicate that Demonstration-Cho can display similar perfor-
mances as Objective-Cho both in simulation and with real robots. This implies that Demonstration-
Cho is similarly robust to the reality gap as Objective-Cho. Furthermore, Demonstration-Cho
achieve to produce reasonably good control software for missions which are continuously evalu-
ated, even though the design process of Demonstration-Cho only evaluates Control Software at
the final time step..

Indeed, the only time Demonstration-Cho suffered heavily from the reality gap was for the SAC
mission. I explain Demonstration-Cho not being able to cross the reality gap for the SAC mission
by the fact that Demonstration-Cho use only variants of one specific strategy. This strategy, rep-
resented by the PFSM in Figure 8.9, is very efficient in simulation, as clearly shown by the narrow
notched boxplot of Demonstration-Cho in simulation from Figure 8.7. Although well-performing,
when applying this strategy, it appears that the transition from the ≪ Anti-Phototaxis ≫ to the
≪ Phototaxis ≫ behaviour is triggered too often. Indeed, due to a potential misreading of the
floor colour of the arena, the robots read the arena’s floor as black before entering the black
area. Objective-Cho for some runs with the real robots also displays the same strategy and suffers
from the same issue. Although one strategy produced by Objective-Cho suffers from the real-
ity gap, Objective-Cho displays more than one strategy, explaining how it performs better than
Demonstration-Cho for real experiments. However, in general, the results from Chapter 8 show
that Demonstration-Cho achieves similar performance as Objective-Cho for the four missions con-
sidered, both in simulation and in reality. Demonstration-Cho also showed to be robust to the
reality gap for three out of four missions.

I have some insights on the control software produced by Demonstration-Cho. The first in-
sight is that Demonstration-Cho does not diversify its strategy, leading to issues like the reality
gap problem with SAC explained above. The other insight is how some PFSMs produced by
Demonstration-Cho have useless parts. For example, the PFSM from Figure 8.6 and Figure 8.12
both have unreachable behaviour or transition conditions impossible to satisfy in the scope of the
considered mission. I would argue that the production of PFSM by Demonstration-Cho should be
improved both in diversification and optimisation.

55

Chapter 9 – Discussion and Further Work

I also have an insight into the scalability of Demonstration-Cho regarding missions it can ad-
dress. Indeed, for the four considered missions, Demonstration-Cho seems to efficiently produce
satisfactory control software, even without the explicit objective function of the mission. Al-
though, only the positions of the robot are taken into account to achieve the mission I selected in
Section 6.4. Hence, I have chosen the mission that the feature space I have defined can represent.
However, for the Foraging mission, for example (see section 6.4), the features should take into
account more information than only the final positions of the robot. In order to address missions
such as foraging, the feature space Needs to be adapted. Furthermore, Orchestra will also need
to be extended to allow the expert to demonstrate other swarm behaviour than only the final
position of the robots.

For the four missions I consider, the feature vectors of the expert demonstration usually have
a value close to 1 or 0, meaning that the features vector of the expert’s demonstration is usually
at the border of the definition domain of the feature space. Hence, it is usually always possible
to linearly separate the features vector of the expert’s demonstration from the features vectors of
the PFSM produced by Demonstration-Cho. However, it is not guaranteed that in the future, the
features vector of the expert’s demonstration will always be linearly separable from the features
vector produced from Demonstration-Cho. This means that the SVM must be carefully used, and
a potentially more suited classifier might be considered in the future.

Finally, I think that addressing the issue with my version of APRIL (see Chapter 5) by inves-
tigating how to define SMS for robot swarm is interesting as it would lead to an alternative to
Demonstration-Cho.

56

Chapter 10

Conclusion

In this master thesis, I investigate how to specify a robot swarm mission without constructing
any explicit objective function. As a first step, I implemented an arena builder in Orchestra. The
arena builder of Orchestra allows to construct the setup for some robot swarm missions from the
IRIDIA lab literature and to save the arena specification from being used with the robot simulator
ARGoS.

As a second step, I investigate how to produce control software for robot swarms to achieve the
mission without specifying any explicit objective function. By reviewing the literature, I found
two interesting reinforcement learning algorithms: APRIL, a Preference-based Learning algorithm;
Apprenticeship learning, an Inverse Reinforcement Leaning algorithm.

I first adapted the Active Preference Learning-Based reinforcement learning algorithm (APRIL).
Unfortunately, I did not have positive results with that approach as the sensori-motor states used
by APRIL in the scope of single agent learning are difficult to define for robot swarms.

Then, I adapted the apprenticeship learning algorithm to be usable in swarm robotics. The
apprenticeship learning algorithm requires expert demonstrations of the desired behaviour to pro-
duce a policy to replicate that behaviour. In order to provide These demonstrations, I added a
feature to Orchestra allowing the user to place the robots in their final positions. I also defined
a feature function, mapping the state of the swarm into a Vector usable by the apprenticeship
learning algorithm. As the last adaptation, I modify the apprenticeship learning algorithm’s policy
generation phase. Instead of generating a policy for a single learning agent with a reinforcement
learning algorithm, I generate a control software for robot swarms with the automatic modular
design method AutoMoDe-Chocolate.

Once I implemented Demonstration-Cho, I asses its performance in simulation and reality
experiments with physical robots on missions I selected from the literature. The performances
of Demonstration-Cho were compared with two automatic design processes called Objective-Cho
and Objective-Evo. Objective-Cho and Objective-Evo are respectively AutoMoDe-Chocolate and
EvoStick whose have access to the explicit objective functions of each missions.

The results from my experiments show that Demonstration-Cho achieves similar performance
for all missions, both in simulation and in reality, as Objective-Cho. Hence, I succeed in proposing
a new automatic modular design to produce robot swarm control software without the need to
provide an explicit objective function.

57

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. ≪ Apprenticeship learning via inverse reinforcement learn-
ing ≫. In: ICML ’04: Proceedings of the twenty-first international conference on Machine
learning. NewYorkNYUSA, 2004, p. 1. doi: 10.1145/1015330.1015430.

[2] Riad Akrour, Marc Schoenauer, and Michèle Sebag. ≪ April: Active preference learning-
based reinforcement learning ≫. In: 2012 Joint European conference on machine learning and
knowledge discovery in databases. 2012, pp. 116–131. doi: https://doi.org/10.1007/978-
3-642-33486-3_8.

[3] Riad Akrour, Marc Schoenauer, and Michèle Sebag. ≪ Preference-based policy learning ≫. In:
2011 Joint European conference on machine learning and knowledge discovery in databases.
2011, pp. 12–27.

[4] Saurabh Arora and Prashant Doshi. ≪ A survey of inverse reinforcement learning: Challenges,
methods and progress ≫. In: Artificial Intelligence 297 (2021), pp. 103–500. doi: https:
//doi.org/10.1016/j.artint.2021.103500.

[5] Jan C. Barca and Y. A. Sekercioglu. ≪ Swarm robotics reviewed ≫. In: Robotica 31.3 (2013),
pp. 345–359. doi: 10.1017/S026357471200032X.

[6] Mikhail Belkin et al. ≪ Reconciling modern machine-learning practice and the classical bias–
variance trade-off ≫. In: Proceedings of the National Academy of Sciences of the United States
of America 116.32 (2019), pp. 15849–15854. doi: 10.1073/pnas.1903070116.

[7] Gerardo Beni. ≪ From swarm intelligence to swarm robotics ≫. In: Swarm Robotics: SAB
2004 International Workshop. Ed. by Erol Şahin and William M. Spears. Vol. 3342. Lecture
Notes in Computer Science. Berlin, Germany: Springer, 2005, pp. 1–9. doi: 10.1007/978-
3-540-30552-1_1.

[8] Raffaele Bianco and Stefano Nolfi. ≪ Toward open-ended evolutionary robotics: evolving
elementary robotic units able to self-assemble and self-reproduce ≫. In: Connection Science
16.4 (2004), pp. 227–248. doi: 10.1080/09540090412331314759.

[9] Mauro Birattari, Antoine Ligot, and Gianpiero Francesca. ≪ AutoMoDe: a modular approach
to the automatic off-line design and fine-tuning of control software for robot swarms ≫. In:
Automated Design of Machine Learning and Search Algorithms. Ed. by Nelishia Pillay and
Rong Qu. Natural Computing Series. Cham, Switzerland: Springer, 2021, pp. 73–90. doi:
10.1007/978-3-030-72069-8_5.

[10] Mauro Birattari, Antoine Ligot, and Ken Hasselmann. ≪ Disentangling automatic and semi-
automatic approaches to the optimization-based design of control software for robot swarms ≫.
In: Nature Machine Intelligence 2.9 (2020), pp. 494–499. doi: 10.1038/s42256-020-0215-
0.

[11] Mauro Birattari et al. ≪ F-Race and Iterated F-Race: an overview ≫. In: Experimental Meth-
ods for the Analysis of Optimization Algorithms. Ed. by Thomas Bartz-Beielstein et al.
Berlin, Germany: Springer, 2010, pp. 311–336. doi: 10.1007/978-3-642-02538-9_13.

58

https://doi.org/10.1145/1015330.1015430
https://doi.org/https://doi.org/10.1007/978-3-642-33486-3_8
https://doi.org/https://doi.org/10.1007/978-3-642-33486-3_8
https://doi.org/https://doi.org/10.1016/j.artint.2021.103500
https://doi.org/https://doi.org/10.1016/j.artint.2021.103500
https://doi.org/10.1017/S026357471200032X
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1007/978-3-540-30552-1_1
https://doi.org/10.1007/978-3-540-30552-1_1
https://doi.org/10.1080/09540090412331314759
https://doi.org/10.1007/978-3-030-72069-8_5
https://doi.org/10.1038/s42256-020-0215-0
https://doi.org/10.1038/s42256-020-0215-0
https://doi.org/10.1007/978-3-642-02538-9_13

Chapter 10 – BIBLIOGRAPHY

[12] Darko Bozhinoski and Mauro Birattari. ≪ Designing control software for robot swarms:
software engineering for the development of automatic design methods ≫. In: RoSE’18: Pro-
ceedings of the 1st International Workshop on Robotics Software Engineering. New York,
NY, USA: ACM, 2018, pp. 33–35. doi: 10.1145/3196558.3196564.

[13] Manuele Brambilla et al. ≪ Swarm robotics: a review from the swarm engineering perspec-
tive ≫. In: Swarm Intelligence 7.1 (2013), pp. 1–41. doi: 10.1007/s11721-012-0075-2.

[14] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. ≪ Multi-agent reinforcement learn-
ing: An overview ≫. In: Innovations in multi-agent systems and applications-1 297 (2010),
pp. 183–221. doi: https://doi.org/10.1007/978-3-642-14435-6_7.

[15] Lucian Buşoniu, Bart De Schutter, and Robert Babuška. ≪ Decentralized reinforcement
learning control of a robotic manipulator ≫. In: ed. by Uwe Aßmann and Gerd Wagner.
Vol. 1319. IEEE, 2006, pp. 1–6. doi: 10.1109/ICARCV.2006.345351.

[16] Davide Di Ruscio, Ivano Malavolta, and Patrizio Pelliccione. ≪ A family of domain-specific
languages for specifying civilian missions of multi-robot systems ≫. In: MORSE 2014 Model-
Driven Robot Software Engineering: Proceedings of the 1st International Workshop on Model-
Driven Robot Software Engineering. Ed. by Uwe Aßmann and Gerd Wagner. Vol. 1319.
Aachen, Germany: CEUR Workshop Proceedings, 2014, pp. 13–26.

[17] Marco Dorigo and Mauro Birattari. ≪ Swarm intelligence ≫. In: Scholarpedia 2.9 (2007),
p. 1462. doi: 10.4249/scholarpedia.1462.

[18] Marco Dorigo, Mauro Birattari, and Manuele Brambilla. ≪ Swarm robotics ≫. In: Scholar-
pedia 9.1 (2014), p. 1463. doi: 10.4249/scholarpedia.1463.

[19] Marco Dorigo, Guy Theraulaz, and Vito Trianni. ≪ Swarm robotics: past, present, and future
[point of view] ≫. In: Proceedings of the IEEE 109.7 (2021), pp. 1152–1165. doi: 10.1109/
JPROC.2021.3072740.

[20] Miguel Duarte et al. ≪ Evolution of collective behaviors for a real swarm of aquatic surface
robots ≫. In: PLOS ONE 11.3 (2016), e0151834. doi: 10.1371/journal.pone.0151834.

[21] Dario Floreano, Phil Husbands, and Stefano Nolfi. ≪ Evolutionary robotics ≫. In: Springer
Handbook of Robotics. Ed. by Bruno Siciliano and Oussama Khatib. Springer Handbooks.
First edition. Berlin, Germany: Springer, 2008, pp. 1423–1451. doi: 10.1007/978-3-540-
30301-5_62.

[22] Gianpiero Francesca and Mauro Birattari. ≪ Automatic design of robot swarms: achieve-
ments and challenges ≫. In: Frontiers in Robotics and AI 3.29 (2016), pp. 1–9. doi: 10.
3389/frobt.2016.00029.

[23] Gianpiero Francesca et al. ≪ An experiment in automatic design of robot swarms: AutoMoDe-
Vanilla, EvoStick, and human experts ≫. In: Swarm Intelligence: 9th International Confer-
ence, ANTS 2014. Ed. by Marco Dorigo et al. Vol. 8667. Lecture Notes in Computer Science.
Cham, Switzerland: Springer International Publishing, 2014, pp. 25–37. doi: 10.1007/978-
3-319-09952-1_3.

[24] Gianpiero Francesca et al. ≪ AutoMoDe-Chocolate: automatic design of control software for
robot swarms ≫. In: Swarm Intelligence 9.2–3 (2015), pp. 125–152. doi: 10.1007/s11721-
015-0107-9.

[25] Gianpiero Francesca et al. ≪ AutoMoDe: a novel approach to the automatic design of control
software for robot swarms ≫. In: Swarm Intelligence 8.2 (2014), pp. 89–112. doi: 10.1007/
s11721-014-0092-4.

59

https://doi.org/10.1145/3196558.3196564
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.1109/ICARCV.2006.345351
https://doi.org/10.4249/scholarpedia.1462
https://doi.org/10.4249/scholarpedia.1463
https://doi.org/10.1109/JPROC.2021.3072740
https://doi.org/10.1109/JPROC.2021.3072740
https://doi.org/10.1371/journal.pone.0151834
https://doi.org/10.1007/978-3-540-30301-5_62
https://doi.org/10.1007/978-3-540-30301-5_62
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.1007/978-3-319-09952-1_3
https://doi.org/10.1007/978-3-319-09952-1_3
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1007/s11721-014-0092-4

Chapter 10 – BIBLIOGRAPHY

[26] Lorenzo Garattoni and Mauro Birattari. ≪ Swarm robotics ≫. In: Wiley Encyclopedia of
Electrical and Electronics Engineering. Ed. by John G. Webster. Hoboken, NJ, USA: John
Wiley & Sons, 2016, pp. 1–19. doi: 10.1002/047134608X.W8312.

[27] Lorenzo Garattoni et al. Software infrastructure for e-puck (and TAM). Tech. rep. TR/IRIDIA/2015-
004. Brussels, Belgium: IRIDIA, Université Libre de Bruxelles, 2015.

[28] David Garzón Ramos and Mauro Birattari. ≪ Automatic design of collective behaviors for
robots that can display and perceive colors ≫. In: Applied Sciences 10.13 (2020), p. 4654.
doi: 10.3390/app10134654.

[29] Roderich Groß and Marco Dorigo. ≪ Evolution of solitary and group transport behaviors for
autonomous robots capable of self-assembling ≫. In: Adaptive Behavior 16.5 (2008), pp. 285–
305. doi: 10.1177/1059712308090537.

[30] Heiko Hamann. Swarm robotics: a formal approach. Cham, Switzerland: Springer, 2018.
isbn: 978-3-319-74526-8. doi: 10.1007/978-3-319-74528-2.

[31] Ken Hasselmann and Mauro Birattari. Modular automatic design of collective behaviors
for robots endowed with local communication capabilities: supplementary material. http:
//iridia.ulb.ac.be/supp/IridiaSupp2019-005/. 2019.

[32] Ken Hasselmann, Frédéric Robert, and Mauro Birattari. ≪ Automatic design of communication-
based behaviors for robot swarms ≫. In: Swarm Intelligence: 11th International Conference,
ANTS 2018. Ed. by Marco Dorigo et al. Vol. 11172. Lecture Notes in Computer Science.
Cham, Switzerland: Springer, 2018, pp. 16–29. doi: 10.1007/978-3-030-00533-7_2.

[33] Ken Hasselmann et al. ≪ Empirical assessment and comparison of neuro-evolutionary meth-
ods for the automatic off-line design of robot swarms ≫. In: Nature Communications 12
(2021), p. 4345. doi: 10.1038/s41467-021-24642-3.

[34] Ken Hasselmann et al. Reference models for AutoMoDe. IRIDIA, 2019.

[35] Marti A. Hearst et al. ≪ Support vector machines ≫. In: IEEE Intelligent Systems and their
Applications 13.4 (1998), pp. 18–28. doi: 10.1109/5254.708428.

[36] Verena Heidrich-Meisner and Christian Igel. ≪ Neuroevolution strategies for episodic rein-
forcement learning ≫. In: Journal of Algorithms 64.4 (2009). Special Issue: Reinforcement
Learning, pp. 152–168. doi: 10.1016/j.jalgor.2009.04.002.

[37] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. ≪ Multilayer feedforward networks
are universal approximators ≫. In: Neural Networks 2.5 (1989), pp. 359–366. doi: https:
//doi.org/10.1016/0893-6080(89)90020-8.

[38] Nick Jakobi, Phil Husbands, and Inman Harvey. ≪ Noise and the reality gap: the use of simu-
lation in evolutionary robotics ≫. In: Advances in Artificial Life: Third European Conference
on Artificial Life. Ed. by F. Morán et al. Vol. 929. Lecture Notes in Artificial Intelligence.
Berlin, Germany: Springer, 1995, pp. 704–720. doi: 10.1007/3-540-59496-5_337.

[39] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. ≪ Reinforcement learn-
ing: a survey ≫. In: Journal of Artificial Intelligence Research 4 (1996), pp. 237–285. doi:
10.1613/jair.301.

[40] Jonas Kuckling, Vincent van Pelt, and Mauro Birattari. ≪ Automatic modular design of
behavior trees for robot swarms with communication capabilities ≫. In: Applications of Evo-
lutionary Computation: 24th International Conference, EvoApplications 2021. Ed. by Pedro
A. Castillo and Juan Luis Jiménez Laredo. Vol. 12694. Lecture Notes in Computer Science.
Cham, Switzerland: Springer, 2021, pp. 130–145. doi: 10.1007/978-3-030-72699-7_9.

60

https://doi.org/10.1002/047134608X.W8312
https://doi.org/10.3390/app10134654
https://doi.org/10.1177/1059712308090537
https://doi.org/10.1007/978-3-319-74528-2
http://iridia.ulb.ac.be/supp/IridiaSupp2019-005/
http://iridia.ulb.ac.be/supp/IridiaSupp2019-005/
https://doi.org/10.1007/978-3-030-00533-7_2
https://doi.org/10.1038/s41467-021-24642-3
https://doi.org/10.1109/5254.708428
https://doi.org/10.1016/j.jalgor.2009.04.002
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1613/jair.301
https://doi.org/10.1007/978-3-030-72699-7_9

Chapter 10 – BIBLIOGRAPHY

[41] Jonas Kuckling, Vincent van Pelt, and Mauro Birattari. ≪ AutoMoDe-Cedrata: automatic
design of behavior trees for controlling a swarm of robots with communication capabilities ≫.
In: SN Computer Science 3 (2022), p. 136. doi: 10.1007/s42979-021-00988-9.

[42] Jonas Kuckling, Vincent van Pelt, and Mauro Birattari. AutoMoDe-Cedrata: automatic de-
sign of behavior trees for controlling a swarm of robots with communication capabilities:
supplementary material. http://iridia.ulb.ac.be/supp/IridiaSupp2021-004/. 2021.

[43] Jonas Kuckling, Thomas Stützle, and Mauro Birattari. ≪ Iterative improvement in the au-
tomatic modular design of robot swarms ≫. In: PeerJ Computer Science 6 (2020), e322. doi:
10.7717/peerj-cs.322.

[44] Jonas Kuckling, Keneth Ubeda Arriaza, and Mauro Birattari. ≪ AutoMoDe-IcePop: auto-
matic modular design of control software for robot swarms using simulated annealing ≫.
In: Artificial Intelligence and Machine Learning: BNAIC 2019, BENELEARN 2019. Ed.
by Bart Bogaerts et al. Vol. 1196. Communications in Computer and Information Science.
Cham, Switzerland: Springer, 2020, pp. 3–17.

[45] Jonas Kuckling, Keneth Ubeda Arriaza, and Mauro Birattari. ≪ Simulated annealing as
an optimization algorithm in the automatic modular design of robot swarms ≫. In: Pro-
ceedings of the Reference AI & ML Conference for Belgium, Netherlands & Luxemburg,
BNAIC/BENELEARN 2019. Ed. by Katrien Beuls et al. Vol. 2491. Aachen, Germany:
CEUR Workshop Proceedings, 2019.

[46] Jonas Kuckling et al. ≪ Behavior trees as a control architecture in the automatic modular
design of robot swarms ≫. In: Swarm Intelligence: 11th International Conference, ANTS
2018. Ed. by Marco Dorigo et al. Vol. 11172. Lecture Notes in Computer Science. Cham,
Switzerland: Springer, 2018, pp. 30–43. doi: 10.1007/978-3-030-00533-7_3.

[47] Antoine Ligot and Mauro Birattari.On mimicking the effects of the reality gap with simulation-
only experiments. Tech. rep. TR/IRIDIA/2018-003. Brussels, Belgium: IRIDIA, Université
Libre de Bruxelles, 2018.

[48] Antoine Ligot and Mauro Birattari. ≪ Simulation-only experiments to mimic the effects of
the reality gap in the automatic design of robot swarms ≫. In: Swarm Intelligence 14 (2020),
pp. 1–24. doi: 10.1007/s11721-019-00175-w.

[49] Antoine Ligot, Ken Hasselmann, and Mauro Birattari. ≪ AutoMoDe-Arlequin: neural net-
works as behavioral modules for the automatic design of probabilistic finite state machines ≫.
In: Swarm Intelligence: 12th International Conference, ANTS 2020. Ed. by Marco Dorigo
et al. Vol. 12421. Lecture Notes in Computer Science. Cham, Switzerland: Springer, 2020,
pp. 109–122. doi: 10.1007/978-3-030-60376-2_21.

[50] Antoine Ligot, Ken Hasselmann, and Mauro Birattari. AutoMoDe-Arlequin: neural networks
as behavioral modules for the automatic design of probabilistic finite state machines: supple-
mentary material. http://iridia.ulb.ac.be/supp/IridiaSupp2020-005/index.html.
2020.

[51] Antoine Ligot et al. AutoMoDe, NEAT, and EvoStick: implementations for the e-puck robot
in ARGoS3. Tech. rep. TR/IRIDIA/2017-002. Brussels, Belgium: IRIDIA, Université Libre
de Bruxelles, 2017.

[52] Antoine Ligot et al. ≪ Towards an empirical practice in off-line fully-automatic design of
robot swarms ≫. In: IEEE Transactions on Evolutionary Computation (2022). doi: 10.
1109/TEVC.2022.3144848.

[53] Hod Lipson and Jordan B. Pollack. ≪ Automatic design and manufacture of robotic life-
forms ≫. In: Nature 406 (2000), pp. 974–978. doi: 10.1038/35023115.

61

https://doi.org/10.1007/s42979-021-00988-9
http://iridia.ulb.ac.be/supp/IridiaSupp2021-004/
https://doi.org/10.7717/peerj-cs.322
https://doi.org/10.1007/978-3-030-00533-7_3
https://doi.org/10.1007/s11721-019-00175-w
https://doi.org/10.1007/978-3-030-60376-2_21
http://iridia.ulb.ac.be/supp/IridiaSupp2020-005/index.html
https://doi.org/10.1109/TEVC.2022.3144848
https://doi.org/10.1109/TEVC.2022.3144848
https://doi.org/10.1038/35023115

Chapter 10 – BIBLIOGRAPHY

[54] Manuel López-Ibáñez et al. ≪ The irace package: iterated racing for automatic algorithm
configuration ≫. In: Operations Research Perspectives 3 (2016), pp. 43–58. doi: 10.1016/j.
orp.2016.09.002.

[55] Manuel López-Ibáñez et al. The irace package: user guide. IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium. Version 3.4.1. 2020.

[56] Fernando J. Mendiburu et al. ≪ AutoMoDe-Mate: Automatic off-line design of spatially-
organizing behaviors for robot swarms ≫. In: Swarm and Evolutionary Computation 74.4
(2022), pp. 101–118. doi: https://doi.org/10.1016/j.swevo.2022.101118.

[57] Volodymyr Mnih et al. ≪ Human-level control through deep reinforcement learning ≫. In:
Nature 518.7540 (2015), pp. 529–533. doi: https://doi.org/10.1038/nature14236.

[58] Francesco Mondada et al. ≪ The e-puck, a robot designed for education in engineering ≫. In:
ROBOTICA 2009: Proceedings of the 9th Conference on Autonomous Robot Systems and
Competitions. Ed. by Paulo Gonçalves, Paulo Torres, and Carlos Alves. Castelo Branco,
Portugal: Instituto Politécnico de Castelo Branco, 2009, pp. 59–65.

[59] Andrew Y. Ng and Stuart Russel. ≪ Algorithms for inverse reinforcement learning ≫. In:
ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning.
Vol. 1. 2000, p. 2.

[60] Andrew Y. Ng et al. ≪ Autonomous inverted helicopter flight via reinforcement learning ≫.
In: Experimental robotics IX. Springer, 2006, pp. 363–372. doi: https://doi.org/10.
1007/11552246_35.

[61] William S. Noble. ≪ What is a support vector machine? ≫ In: Nature biotechnology 24.12
(2006), pp. 1565–1567. doi: https://doi.org/10.1038/nbt1206-1565.

[62] Stefano Nolfi and Dario Floreano. Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. First. A Bradford Book. Cambridge, MA, USA:
MIT Press, 2000.

[63] Stefano Nolfi et al. ≪ How to evolve autonomous robots: different approaches in evolutionary
robotics ≫. In: Artificial Life IV: Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems. Ed. by Rodney Allen Brooks and Pattie Maes.
A Bradford Book. Cambridge, MA, USA: MIT Press, 1994, pp. 190–197. doi: 10.7551/
mitpress/1428.003.0023.

[64] Paolo Pagliuca and Stefano Nolfi. ≪ Robust optimization through neuroevolution ≫. In:
PLOS ONE 14.3 (2019), e0213193. doi: 10.1371/journal.pone.0213193.

[65] Morgan Quigley et al. ≪ ROS: an open-source Robot Operating System ≫. In: 2009 IEEE
International Conference on Robotics and Automation (ICRA). Ed. by Kinugawa Kosuge.
Vol. 3. 3.2. Piscataway, NJ, USA: IEEE, 2009, p. 5.

[66] Muhammad Salman, Antoine Ligot, and Mauro Birattari. ≪ Concurrent design of control
software and configuration of hardware for robot swarms under economic constraints ≫. In:
PeerJ Computer Science 5 (2019), e221. doi: 10.7717/peerj-cs.221.

[67] Muhammad Salman et al. ≪ Phormica: photochromic pheromone release and detection sys-
tem for stigmergic coordination in robot swarms ≫. In: Frontiers in Robotics and AI 7 (2020),
p. 195. doi: 10.3389/frobt.2020.591402.

[68] Gaëtan Spaey et al. ≪ Comparison of different exploration schemes in the automatic modular
design of robot swarms ≫. In: Proceedings of the Reference AI & ML Conference for Bel-
gium, Netherlands & Luxemburg, BNAIC/BENELEARN 2019. Ed. by Katrien Beuls et al.
Vol. 2491. Aachen, Germany: CEUR Workshop Proceedings, 2019.

62

https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/https://doi.org/10.1016/j.swevo.2022.101118
https://doi.org/https://doi.org/10.1038/nature14236
https://doi.org/https://doi.org/10.1007/11552246_35
https://doi.org/https://doi.org/10.1007/11552246_35
https://doi.org/https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.7551/mitpress/1428.003.0023
https://doi.org/10.7551/mitpress/1428.003.0023
https://doi.org/10.1371/journal.pone.0213193
https://doi.org/10.7717/peerj-cs.221
https://doi.org/10.3389/frobt.2020.591402

Chapter 10 – BIBLIOGRAPHY

[69] Gaëtan Spaey et al. ≪ Evaluation of alternative exploration schemes in the automatic modu-
lar design of robot swarms ≫. In: Artificial Intelligence and Machine Learning: BNAIC 2019,
BENELEARN 2019. Ed. by Bart Bogaerts et al. Vol. 1196. Communications in Computer
and Information Science. Cham, Switzerland: Springer, 2020, pp. 18–33. doi: 10.1007/978-
3-030-65154-1_2.

[70] Vito Trianni. ≪ Evolutionary robotics: model or design? ≫ In: Frontiers in Robotics and AI
1 (2014), p. 13. doi: 10.3389/frobt.2014.00013.

[71] Vito Trianni. Evolutionary Swarm Robotics. Berlin, Germany: Springer, 2008. doi: 10.1007/
978-3-540-77612-3.

[72] Yukiya Usui and Takaya Arita. ≪ Situated and embodied evolution in collective evolution-
ary robotics ≫. In: Proceedings of the 8th International Symposium on Artificial Life and
Robotics. Ed. by Masanori Sugisaka and Hiroshi Tanaka. Tokyo, Japan: International Soci-
ety of Artificial Life and Robotics (ISAROB), 2003, pp. 212–215.

[73] Christopher Watkins and Peter Dayan. ≪ Q-learning ≫. In: Machine Learning 8 (1992),
pp. 279–292. doi: https://doi.org/10.1007/BF00992698.

[74] Tian Yu et al. ≪ Apply incremental evolution with CMA-NeuroES controller for a robust
swarm robotics system ≫. In: 2014 Proceedings of the SICE Annual Conference (SICE).
Tokyo, Japan: The Society of Instrument and Control Engineers (SICE), 2014, pp. 295–300.
doi: 10.1109/SICE.2014.6935195.

[75] Shao Zhifei and Er Meng Joo. ≪ A survey of inverse reinforcement learning techniques ≫.
In: International Journal of Intelligent Computing and Cybernetics 5.3 (2012), pp. 293–311.
doi: https://doi.org/10.1108/17563781211255862.

63

https://doi.org/10.1007/978-3-030-65154-1_2
https://doi.org/10.1007/978-3-030-65154-1_2
https://doi.org/10.3389/frobt.2014.00013
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/https://doi.org/10.1007/BF00992698
https://doi.org/10.1109/SICE.2014.6935195
https://doi.org/https://doi.org/10.1108/17563781211255862

	Introduction
	Objective of the master thesis
	Contributions of the master thesis

	Related Work
	Swarm Robotics
	Evolutionary Swarm robotics
	Automatic Modular Design
	AutoMoDe
	F-Race and Iterated F-Race

	Reinforcement Learning
	Inverse Reinforcement Learning
	Preference-based Policy Learning

	Technical Assets
	E-puck
	ROS
	ARGoS
	Orchestra
	Support Vector Machine

	Arena and Demonstration Builder
	APRIL
	Apprenticeship Learning
	Hypothesis
	Features Representation
	Demonstration-Cho
	Selection of missions

	Experimental Protocol
	Aggregation with Ambient Cues
	Homing
	Sheltering with Ambient Cues
	Coverage with Forbidden Areas

	Results
	Aggregation with Ambient Cues
	Homing
	Sheltering with Ambient Cues
	Coverage with Forbidden Areas

	Discussion and Further Work
	Conclusion

