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Résumé

RVR : A new robot platform for swarm robotics

Raffaele Todesco

La robotique en essaim est un approche de systèmes multi-robots qui, depuis quelques an-
nées, a prouvé que des comportements complexes émergent de règles et interactions locales
dans un groupe d’agents qui se coordonnent. En particulier, le robot e-puck a été largement
utilisé en robotique en essaim, tout particulièrement concernant les récentes avancées en
conception automatique de logiciel de contrôle.

Cependant, l’e-puck a aussi montré des défauts qui, au mieux, réduisent la facilité d’usage
du robot, et, au pire, ont un impact négatif sur la performance de l’essaim. L’autonomie
réduite ou la qualité plus basse de certains capteurs sont des exemples de telles faiblesses.

L’objectif de ce mémoire est d’étendre les capacités de la robotique en essaim, via une nou-
velle platforme : le robot RVR. Le RVR présente d’intéressants capteurs, tels que la couleur
du sol ou l’odométrie, qui pourraient constituer les premières pierres de nouvelles possibil-
ités en robotique en essaim. En premier lieu, je présente comment cette nouvelle platforme
a été intégrée dans un environnement de simulation, et comment le logiciel de contrôle
conçu en simulation peut être transposé de manière transparente vers la réalité. Un nou-
veau processus de conception automatique, AutoMoDe-Watermelon – inspiré du logiciel de
pointe AutoMoDe – est introduit et évalué sur un ensemble d’expériences qui soulignent
l’efficacité d’une méthode de conception automatique avec cette platforme en particulier, à
la fois en simulation et en réalité. Ceci montre que cette approche est prometteuse pour le
développement de nouvelles tâches et capacités en robotique en essaim.

Mots-clés : robotique en essaim · RVR · conception automatique

Mémoire présenté en vue de l’obtention du diplôme d’Ingénieur civil en Informatique à finalité
spécialisée
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Abstract

RVR : A new robot platform for swarm robotics

Raffaele Todesco

Swarm robotics is an approach of multi-robot systems that, in the past years, has proven
that complex behaviours emerge from local rules and interactions in a pool of coordinating
agents. In particular, the e-puck robot has been widely used in swarm robotics, especially
in automatic design of control software.

However, the e-puck has also shown some flaws that, at best, reduce the ease of use of the
robot, and, at worst, have an negative impact on the performance of the swarm. The re-
duced autonomy or the lower quality of some sensors are examples of such weaknesses.

The goal of this thesis is to extend the capabilities of swarm robotics, by introducing a
new robot platform : the RVR robot. The RVR presents some interesting sensors, such as
ground color or odometry, that could constitute the building blocks of new swarm robotics
behaviours. First, I discuss how this new platform has been integrated in a simulation
environment, and how the control software designed in simulation can transparently be
transposed into reality. A new automatic design process, AutoMoDe-Watermelon – inspired
by the state-of-the-art AutoMoDe software – is introduced. It is evaluated on a set of test
experiments that highlight the efficiency of an automatic design method with this particular
platform, both in simulation and reality. This showed that is a promising approach for the
development of new swarm robotics tasks and capabilities.

Keywords : swarm robotics · RVR · automatic design
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1
INTRODUCTION

Swarm robotics is an exciting field, straddling the border between artificial intelligence and
robotics, gathering simple agents into a collective intelligence. The technical challenge of
assembling such a functional party of robots, however, brings the development and use of
dedicated simulators to the forefront, to explore possibilities beyond physical limitations.

The robot addressed in this thesis is the Sphero RVR, an education-tailed device packed with
a large sensor set. Its modularity makes it an interesting candidate for robotics experiments,
especially in swarm robotics. These native new capabilities, such as odometry – the ability
for the robot to locate itself into space – and the extended autonomy might be a qualitative
addition to the existing robot pool.

The purpose of this work is to build an ecosystem for RVR experimentation in swarm robotics,
through the development of a simulator, and of a cross-platform control software interface
that enables transparency between simulated and real-life behaviours of the robot. More-
over, this thesis aims to show that existing swarm robotics techniques, such as AutoMoDe,
also work on this new platform.

This chapter is structured as follows : Section 1.1 defines the objectives of this thesis; Sec-
tion 1.2 summarizes the main contributions of this thesis to the field; Section 1.3 lists the
subsequent chapters of this work.

1.1 Objectives

This work aims to design and implement an architecture for swarm robotics development
with the RVR, as well as to design the robot itself, augmented with new sensors.

This cross-platform architecture allows researchers to :

• Realize virtual experiments with multiple extended RVRs through the simulator, and
design control software in simulation.

• Transpose transparently this control software to the real robot and achieve a similar
behaviour.

• Exploit the features they need, or extend them, thanks to the modularity it offers.

More importantly, this work will also evaluate the quality of this transposition with con-
trol softwares automatically designed, by comparing the performance in simulation and in
reality.
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1.2. MAIN CONTRIBUTIONS OF THE THESIS CHAPTER 1. INTRODUCTION

1.2 Main contributions of the thesis

This thesis aims to contribute to swarm robotics research.

First, I created a baseline of hardware and software architectures for the RVR, including 2
new sensors : the lidar and the proximity sensors, with the modularity and compatibility in
mind.

Secondly, I developed a simulation environment that aims to mimic the real robots as well
as possible; this environment is used to design control software, either by human experts or
via an automatic process.

Finally, I assess the quality of automatic modular design with this platform, both in simula-
tion and reality; the reality gap, i.e. the performance drop between simulation and reality,
is estimated on 3 experiments and tracks of its sources are evoked.

1.3 Structure of the thesis

Chapter 2 summarizes the state-of-the-art of topics related to this thesis.

Chapter 3 describes the RVR robot, and its current software and hardware architecture im-
plementations.

Chapter 4 presents the implementation of the simulation environment of the robot, as well
as the virtual recreation of sensors.

Chapter 5 explains how the automatic design process takes place and the information it
accesses.

Chapter 6 describes the experiments that will be conducted as a proof-of-concept for this
robot platform.

Chapter 7 exposes the simulation and reality results of the said experiments.

Finally, Chapter 8 concludes this thesis with a brief summary of the work and insights of the
possible future improvements.
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2
RELATED WORK

Robotics and artificial intelligence (AI) are evolving fast in past years, leading to an explo-
sion of applications and models, and more and more complex robots emerged, especially
with the help of machine learning.

This is where the swarm robotics particularity stands out : the point is to build AI from a
collection of simple agents, and not from a single efficient brain. Although, this does not
mean that they progress completely in parallel : the growth of deep learning for image
recognition, for example, can totally be useful for a swarm element.

Developing for robots also means wisely picking hardware; especially with numbers of sim-
ple swarm members that can have to run costly algorithms. The evolution in microcomput-
ers performance, and possibly energy consumption, is thus a key metric and bottleneck for
this field.

This chapter is structured as follows : Section 2.1 examines swarm intelligence, swarm
robotics and their principles; Section 2.2 compares the existing simulators designed for
swarm robotics; Section 2.3 lists the other robot platforms used in swarm robotics; Sec-
tion 2.4 discusses the different microcontrollers possibilities for the RVR; Section 2.5 de-
tails the communication software components and libraries; Section 2.6 highlights some
common experiments of the field; Section 2.7 addresses the automatic design approaches
followed in swarm robotics.

2.1 Swarm intelligence & swarm robotics

Swarm intelligence is defined as “any attempt to design algorithms or distributed problem-
solving devices inspired by the collective behavior of social insect colonies and other animal so-
cieties”[10]. It is often applied for solving combinatorial problems through the Ant Colony
Optimization algorithm[10, 22], and can reach state-of-the-art performance in network op-
timization[4, 43] or other routing problems[86].

However, swarm robotics is a different topic. It is defined as “the study of how large numbers
of relatively simple physically embodied agents can be designed such that a desired collective
behavior emerges from the local interactions among agents and between the agents and the
environment”[72], which is yet inspired from natural ants as well.

Usually, swarm robots[11, 73, 6, 59] :

• are autonomous;

• can modify the environment in which they are situated;
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2.2. SWARM ROBOTICS SIMULATORS CHAPTER 2. RELATED WORK

• have local sensing and communication capabilities;

• do not have access to a centralized control or global knowledge;

• cooperate to achieve a given task.

This lack of control center is the major difference with other multi-robot approaches, that,
on the other hand, can be strongly coordinated, or take advantage of an external source of
information.

These properties also imply that robots are adaptive and independent from the group[11,
73, 6, 59]:

• they are able to cope with a missing peer, a faulty sensor, etc. : they are fault-tolerant;

• they stay efficient with swarms of different sizes : they are scalable;

• and they are flexible with the environment they are placed in.

2.2 Swarm robotics simulators

In order to efficiently prototype swarm behaviours, a powerful, full-fledged simulator, has
to be developed for the RVR.

Gazebo[32] is a free, open-source simulator, designed for multi-robot and swarm robotics
experiment. However, implementing custom sensors and actuators to mimic RVR’s within
this software seems complicated.

Webots[50] is a commercial open-source alternative, which is intended to realistically simu-
late multiple robots with accurate physics and collision. However, its performance decreases
fast with a large number of robots[59], which is not desirable for a swarm robotics experi-
ment.

Microsoft Robotics Studio[39] is a multi-robot simulator that can only run on Windows plat-
forms, which can be a problem since the rest of the architecture of this project is Linux-based.

SwarmBot3D[64] is a tailor-made simulator for the s-bot; its lack of modularity hinders the
addition of a new robot.

Finally, ARGoS[66] is an open-source, highly customizable simulator, dedicated to swarm
robotics. Its main advantage is that it supports large scale experiments, by focusing less
on high-precision physics, which is particularly relevant in our case. Moreover, it supports
plugins for robots, sensors and actuators, which helps implementing new entities properly.

2.3 Swarm robotics platforms

Many different types of robots have been used in the past to conduct swarm robotics exper-
iments[59, 73, 82].
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2.3. SWARM ROBOTICS PLATFORMS CHAPTER 2. RELATED WORK

1. Khepera[54] : developed for educational and research purposes, Khepera has been
losing interest in past years, after having been widely used[60, 88, 16, 69], for exam-
ple in exploration[53];

2. Khepera IV[76] : upgraded version of Khepera, by K-team. This circular robot com-
prises WiFi, Bluetooth, an accelerometer, gyroscope and camera, as well as proxim-
ity sensors. It is mainly education-oriented[24, 62, 23], dealing with usual swarm
robotics problems such as path following and obstacle avoidance[24].

3. E-puck[33] : circular educational robot including proximity sensors, ambient light
sensor, accelerometer, LEDs, Bluetooth, and optional Zigbee communication module.
Numerous extension boards allow various usages[1] and communication possibili-
ties[17, 35, 49];

4. Alice[13] : smaller rectangular robot, with high modularity (supports additional mod-
ules such as camera, RF or gripper);

5. Jasmine[42] : another small rectangular robot that implements proximal communi-
cation on top of the usual sensor set, that can face navigation problems[36, 80, 74]
well.

6. s-bot[55] : versatile robot, with lots of actuators. Its self-reconfiguring and self-
assembling abilities can help in tasks that involve objects interaction[20, 21].

7. Kobot[82] : interference-resistant, bigger robot that can distinguish other robots head-
ings and obstacles. It is adapted for flocking purposes[83, 15].

8. Kilobot[18] : small low-cost robot, designed for large-scale swarms. Ideal for herd-
ing[61] and self-assembly tasks[71].

This abundance of swarm-compatible robots shows that the needs and experimental envi-
ronment shape the choice of the platform. The common requirements and selection criteria
that stand out of these robots are[73]:

• Sensing and signalling : the direct or indirect interaction between robots is the only
way for them to communicate, and thus its quality is a primordial constraint :

– The interference between the sensors and the external sources of noise should
be minimized;

– The robots should be able to recognize each other;

– The robots should be able to communicate information to their peers directly or
via their environment, for example via pheromones. This is called stigmergy.

• Communication : a wireless ad-hoc communication between the robots is highly rec-
ommended. Moreover, a connection to a development console is ideal for monitoring
and debugging purposes;

• Physical interaction : robots can have the ability to physically interact, for example to
self-assemble[72];

• Autonomy : the battery life of these should be long enough to allow the collective
behaviour to emerge;
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2.4. RVR MICROCONTROLLERS CHAPTER 2. RELATED WORK

• Cost : tens of robots are required, which often means that a small individual robot
cost is preferable.

• Size : multiple robots standing in the same test arena implies that their size should
be taken into account. A reasonable size is a trade-off between compatibility with the
arena size, and having an expandable robot that is not too expensive due to compo-
nents miniaturization.

These criteria make the RVR a very good candidate for swarm robotics. At a reasonable price
point, you obtain a well-sized robot with a large sensor set, that includes odometry, which
greatly help to locate itself and other mates. It has a very good base autonomy compared
to others, and, with additional sensors and a LIDAR, proximity detection is granted.

2.4 RVR microcontrollers

Robots cited earlier usually have their own microcontroller. In RVR’s case, robot control
is done through an UART interface, leaving the choice of the microcontroller to the user,
among :

1. Raspberry Pi[26] : in this case, you have access to a relatively powerful microcomputer
that can run Linux distributions. Sphero designed a Python API specifically for this
platform[79].

2. Arduino UNO[2] : a lower-level microcontroller that uses Sphero’s SDK as an interface
to communicate with the robot.

3. micro:bit[51] : cheaper alternative that is more education-oriented, with a block-
coding option.

In order to run computationally intensive programs and maximize compatibility, using a
Raspberry Pi is the usual choice[58, 63, 3].

2.5 Interfacing & communication

Communication between robots, or between different components of the software archi-
tecture, is a key feature, especially in swarm robotics where inter-robots communication is
a major source of information. A global framework that could bundle together high-level
applications and lower-level control software is highly desirable to improve the modularity
and the evolution capacity of the robot.

There are several frameworks that offer such abstraction.

ROS[70], the Robot Operating System, is a popular set of libraries for robot applications.
The communication process of ROS works similarly to a RSS feed. Software components,
called nodes, can publish information on given channels, named topics. These components
can also retrieve information from other channels by subscribing to them. Every application
is then using only the information it requires to work.
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ROS is widely used in swarm robotics projects, for various applications, from Particle Swarm
Optimization (PSO)[46, 48] to swarm organization[85, 38]. It has been more and more con-
sidered as a standard in robotics[89].

This popularity also created a large and active community, that designs packages which can
be easily implemented due to the "plug-and-play" approach of the architecture, similarly
to other frameworks such as the Mobile Robot Programming Toolkit (MRPT)[57]. MRPT
is another open-source set of libraries that aims to help robotics research, especially in the
mapping and navigation fields. Despite some successful applications[41, 56, 84], MRPT suf-
fers the comparison with ROS due to its narrower community and applications. Moreover,
MRPT libraries are wrapped into a ROS package, granting access to them if using ROS[5].
Other specific alternative exist : the Microsoft Robotics Developer Studio (MRDS)[52], a
discontinued proprietary option thought for research; or CARMEN[14], a navigation toolkit.

Even if, in particular cases, these alternatives might be viable, the range of ROS applications
and its broad, growing community turns it into the go-to option. Its logging, visualization
and monitoring capabilities are great tools for development as well.

However, in swarm robotics, the use of ROS as inter-robot communication is extremely
rare, because it then requires the use of a local network, infringing the rules presented in
section 2.1 by using a central source of information. The borders of the use of the network
and its limitations must be clearly defined to avoid altering the swarm property of the group.

Fortunately, ROS can be as restrictive as desired, by simply defining upstream the constraints
the robots will face, which will translate into accessibility – or not – to some transmission
topics. Robots can then fall back to computer vision or range-and-bearing devices to handle
communication.

2.6 Experiments

In order to evaluate this new robot platform in comparison with the previous ones, a set of
experiments has to be designed and the performance of the swarm should be evaluated on
the said experiments.

The most common tasks represented in swarm robotics are [59]:

• Aggregation : The goal of the swarm is to gather on a defined or undefined place of
the arena. Some variants include forbidden areas or ambient cues [27]. This task is
often a subtask of more complex missions.

• Dispersion/coverage : Conversely, in dispersion missions, the robots have to cover the
biggest area they can, while staying connected – or close enough – to their neighbours.
Again, there exists variants with forbidden areas for example [27].

• Pattern formation : This problem consists of forming a global pattern with the robots,
which is interesting due to the local information and communication constraints of
swarm robotics.
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• Collective motion : The aggregated swarm has to coordinate on a movement, similarly
to a school of fish. Either the position and orientation of the robot is enforced within
the group (formations) or not (flocking).

• Foraging : The robots have to transport objects from a source to their base, called the
nest. This can lead to interesting experiments, where too heavy objects need to be
carried by several robots [34], and can also introduce the division of labor concept,
which splits the swarm into robots having to perform different tasks[40].

2.7 Automatic design

Creating robot swarms control software can rely on human expertise to design a proper,
well-thought and understandable code. However, this is very time consuming, and, more-
over, it has been shown that automatic design methods can perform better than human
experts [27].

There exists 2 main approaches in the automatic design of swarm robotics [27] :

2.7.1 Artificial evolution of neural networks

A neural network maps an input (for example, the readings of the sensors) to an output (the
actuators values, i.e., what the robot has to do). In order to obtain the best neural network
controller, in terms of topology (number of nodes, hidden layers...) and parameters, an evo-
lutionary algorithm will apply natural selection and eventually produce the best controller
he could find. This has been the go-to option for several years[11].

In particular, the EvoStick algorithm is a constrained version of NEAT, where the neural net-
work has no hidden layers and is feed-forward[29].

However, this approach has a hard time to cross the reality gap : even though it pro-
duces good results in simulation, with real robots the performance of the software drops
heavily[29]. The source of this performance drop is the specialization of the control soft-
ware to the simulation characteristics; the controller poorly generalizes to reality. This
low-bias/high-variance problem has been tackled by introducing automatic modular design
with AutoMoDe, which is described in subsection 2.7.2.

2.7.2 AutoMoDe

AutoMoDe generates control software automatically in the form of a probabilistic finite state
machine (PFSM)[29]. Each of this state machine is then composed of 2 types of modules :

1. Behaviours : These are the states in the PFSM and represent a core behaviour the robot
can accomplish : exploration, stop, attraction/repulsion to neighbours or light, etc.

2. Transitions : The transitions are the conditions to transition from one state to the
other. These can be fixed probability, color of the floor, neighbour coun, etc.
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AutoMoDe will then optimize the combination of modules to produce a control software
represented as a PFSM. This process can be handled by various optimization algorithms.

This limited set of modules injects enough bias to reduce the impact of the reality gap sig-
nificantly[29]. This method also allows a better understandability of the code compared to
neuroevolution.

Several variants of the original version of AutoMoDe, AutoMoDe-Vanilla, exist, and are
called flavours. Each flavour changes components of the automatic design process: mod-
ules, form of the control software, optimization algorithm, etc.

The first important variant is AutoMoDe-Chocolate, that improved the performance of Vanilla
by using a different optimization algorithm, iterated F-race [29].

Afterwards, many variants appeared. Some examples are Coconut[77] that implements sev-
eral exploration modules, Tuttifrutti[30]which allows interaction via colors or Gianduja[37]
that adds explicit communication.

15



3
THE SPHERO RVR

The RVR[78] is a differential treaded robot, developed by Sphero in Greenville, TX, for ed-
ucation purposes. It has a very attractive price point, which makes it an interesting choice
for robotics experimentation. Unfortunately, it is fairly recent, which explains the very few
current uses of the robot in research publications[58, 7, 75].

This chapter is structured as follows : Section 3.1 describes the inherent capabilities of the
robot, the additional sensors, and the current prototype; Section 3.2 details the modular
software architecture enabling cross-components communication.

3.1 Hardware architecture

The factory version of the RVR, paired with a Raspberry Pi 4[26], provides the following
main sensors :

• an RGB ground color sensor that detects the color of the floor;

• a velocity sensor;

• a 3-axis accelerometer;

• a 3-axis gyroscope, measuring angular velocities;

• an IMU sensor, that measures the robot pitch, roll and yaw;

• an ambient light sensor;

• a locator odometry sensor, that allows the robot to locate itself.

It also offers 5 RGB LEDs and its 2 distinct treads as actuators. An extended version of the
robot, designed at IRIDIA, proposes 8 proximity sensors (Terabee Teraranger Multiflex[81])
and a lidar (YDLIDAR X4 [87]).
Communication between the robot and the Raspberry Pi is ensured through the UART pro-
tocol.

As shown on Figure 3.1b, the additional components (lidar, proximity sensors, and Rasp-
berry Pi) are mounted on a cardboard "hat" on top of the RVR. Consequently, the ground
and odometry sensors are still fully working, while the robot is able to detect obstacles with
the proximity sensors. The lidar is the only element at its height level in the experimental
environment, in order to enable neighbour detection between the robots. The only down-
side is that, currently, the robot is not able to detect ambient light. This will be fixed in
future improvements as the opaque cardboard will be replaced by translucent plexiglass.
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(a) Base RVR (b) Extended RVR

Figure 3.1: The base RVR robot and the current prototype.

Figure 3.2: Base RVR architecture

3.2 Software architecture

Sphero developed a Python API[79] to enable interaction between the Rasperry Pi and the
RVR through the UART protocol. Thus, any Linux distribution such as Ubuntu[12] or Rasp-
berry Pi OS[25](previously Raspbian) supports this API. This creates the first level of ab-
straction presented in Figure 3.2.

This base architecture allows to design control software for the robot, but only within this
Python environment which, as such, can not be connected to ARGoS and enable translation
from simulation to reality.

This leads to the introduction of ROS in the ecosystem. As described in section 2.5, ROS
connects multiple software components through topics to which these components can sub-
scribe (declare that they want to get access to a given topic information) or publish (write
information on a given topic). This will allow the ARGoS C++ control software and the
Python RVR driver to transfer information to each other. In particular, the control software
will subscribe to sensor topics and publish to actuator values, and the driver will do the
opposite.
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Figure 3.3: RVR - ARGoS architecture with ROS

The topics themselves will be split into the following dedicated ones :

• The color detected by the ground sensor;

• The ambient light perceived;

• IMU information, that groups :

– The orientation (pitch, roll and yaw) provided by the IMU sensor;

– Angular velocities from the gyroscope;

– Linear acceleration from the accelerometer.

• Odometry information, which means:

– The pose, including the position estimated by the locator and the orientation
provided by the so-called quaternion sensor;

– The twist, i.e., the angular velocities of the gyroscope and the linear velocities
from the velocity sensor.

This architecture is presented in Figure 3.3.

Finally, the flexibility and modularity of this architecture is highlighted when adding the
additional hardware modules : the lidar and the proximity sensors. Indeed, these sensors
both have their own ROS nodes (software components), which means that they can connect
to the same ROS master system as well. In order to integrate these sensors with the rest of
the architecture, they will publish their information on dedicated ROS topics, which can be
read by the ARGoS control software, showing that no additional work on the architecture
is required to incorporate new sensors or actuators to the robot.
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Figure 3.4: Complete robot architecture

This final architecture is schematized in Figure 3.4.

This modular architecture also helped to attenuate the ground sensor calibration problem.
Depending on the robot, the color sensed by the robot beneath is highly biased, either to-
wards darker or lighter tones. As no official calibration procedure is provided by Sphero,
a color labeler ROS node has been integrated, in order to reliably detect tiles for the color
selection experiment (see section 6.5). This additional node maps the raw reading to the
RGB value of the closest label, defined by :

label= argmini di (3.1)

di = (Rsensor − Ri)
2 + (Gsensor − Gi)

2 + (Bsensor − Bi)
2 (3.2)

The result of this labeling is output on its own topic which is provided as an input to con-
trollers.
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4
SIMULATION

The simulation is a key point of robotics research. It allows important features such as of-
fline design, repeatability, or easy testing. The simulator used here is ARGoS[66], due to its
high modularity, in terms of robots and sensors, and to its compliance with swarm robotics
needs. Its multi-engine capabilities allow the user to prioritize physical accuracy or experi-
ment scalability, and its parallel computations improve performance on modern machines.
It has already proven itself[68] with other robots such as the Kilobot[67] or the e-puck[66].

Several extensions of the simulator, named plugins, already exist and integrate new robot
platforms into ARGoS, such as the Khepera IV[65] or the Kilobot[44].

This chapter is structured as follows : Section 4.1 presents the 3D model of the robot in-
tegrated in the simulation; Section 4.2 exposes the implementation of each sensor in sim-
ulation and the noise estimation for the main sensors; Section 4.3 explains the use and
operation of the actuators.

4.1 Robot model

A 3D model of the RVR has been realized, according to robot measures and pictures. This 3D
model can be seen in Figure 4.1. Regarding physics, a 2D physics model is implemented,
using a cubed colliding box around the robot shape, similarly to the e-puck implementa-
tion[19]. The treads are undergoing a classical differential-drive model, with 2 distinct
speeds vl and vr .

4.2 Simulating sensors

Due to the large sensor set of the RVR, simulating its capabilities accurately was a substan-
tial part of this work.

The implementation of each sensor in simulation will be described in the following section.
As accurate simulation of the sensor noise is a key feature to mitigate the reality gap[47], I
will then describe the noise evaluation and generation for the sensors that will be in use in
the experiments of this thesis.

4.2.1 Ground color sensor

The ARGoS simulator already includes grayscale ground sensor in some robot implementa-
tions, because it is a common sensor in swarm robotics. However, the RVR is able to detect
the color underneath it and provide it as an RGB (Red - Green - Blue) value. In ARGoS, this
is simulated by checking the color of the virtual floor, at the position of the projection of the
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Figure 4.1: RVR 3D model. Black cylinders are visual representations of the RGB LEDs. The
green part of the upper side highlights the front of the robot.

virtual color sensor on it. This virtual floor can be set as any image by the user.

The noise of the sensor has been evaluated for 4 different benchmark color measurements
: red, green, blue and yellow, over 300 samples each. The measured noise histograms, as
well as their kernel density estimation, are presented in Figure 4.2. Accordingly, a noise
following a Gaussian distribution N(0,5) for each color channel has been recommended in
the experiment configuration. The µ and σ parameters of the Gaussian distribution can be
tweaked by the user to better simulate its own experimental environment.

4.2.2 Velocity sensor

The velocity sensor provides the robot speed along the X and Y axis "absolute" axis, in m/s.
The X and Y axis here are defined as the axis according to Figure 4.3, at the boot time of the
robot. However, ARGoS rigidbodies only provide the position and orientation of the robot
in the virtual space, meaning that we have to compute the speed from wheel speeds vl and
vr . The idea here will be :

1. Compute the velocity v of the robot by averaging vl and vr .

v =
vl + vr

2
(4.1)

2. Find the relative orientation Q rel from the original absolute orientation Q i and the
current orientation Qc, where all orientations are represented by quaternions.

Q rel =Q−1
i ∗Qc (4.2)

3. Compute the Euler angle α, representing the rotation around the Z axis, from Q rel .

4. Return the speed vector as
v⃗ = (v cosα, v sinα) (4.3)
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Figure 4.2: Noise of the color sensor for several ground colors. Each histogram color repre-
sents the corresponding color channel.

4.2.3 Accelerometer

The 3-axis accelerometer provides the robot acceleration around its 3 axis (see Figure 4.3),
in g. The axis are defined as in the velocity sensor, which means that we will apply the same
method to find the relative orientation Q rel . To be able to simulate acceleration, we need to
compute the evolution of speed over time. Again, the only speeds we have access to are vl

and vr . The process will be :

1. Compute the velocity v of the robot by averaging vl and vr , as earlier.

v =
vl + vr

2
(4.4)

2. Compute the relative orientation Q rel and find the Euler angle α from it.

Q rel =Q−1
i ∗Qc (4.5)

3. Compute the current velocity vector v⃗t from α.

v⃗c = (v cosα, v sinα) (4.6)

4. Retrieve the time spent between 2 speed measurements, which is the clock tick of
ARGoS physics simulator ∆t.

5. Compute the acceleration vector a⃗, with the previous speed vector v⃗t−1, and convert
it to g (G = 9.81 m/s2).

a⃗ =
v⃗t − v⃗t−1

G∆t
(4.7)
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Figure 4.3: RVR axis system

6. Update the value v⃗t−1 to v⃗t for the next accelerometer reading.

4.2.4 Gyroscope

The gyroscope provides the angular velocity of the robot around each axis. Similarly to
the accelerometer, we only have access to the current orientation of the robot, and not its
angular speed, which requires to compute the difference between 2 timesteps, which is done
as :

1. Retrieve the differential orientation Q t , the rotation between the previous timestep
orientation Q t−1 and the current one Qc.

Q t =Qc ∗Q−1
t−1 (4.8)

2. Convert Q t to Euler angles αX , αY and αZ , which represent the relative angular rota-
tion and constitute the angular vector α⃗.

3. Retrieve again the time spent between 2 measurements ∆t.

4. Compute the angular velocity vector v⃗ :

v⃗ =
α⃗

∆t
(4.9)

5. Update Q t−1 to Q t .

4.2.5 IMU

The Inertial Measure Unit (IMU) will abstract information from the magnetometer, ac-
celerometer and gyroscope of the robot to provide orientation as pitch, roll, and yaw angles.
As the IMU measurement is based on an external reference (with the magnetometer) that all
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robots share, they will also share the same referential system for the IMU. For that reason,
the simulated IMU will provide the orientation that comes from the absolute referential of
the simulator, considering it thus has a virtual North pole that robots can align to.

4.2.6 Light sensor

The single ambient light sensor is placed at the front of the robot and can perceive the
ambient light in lux. To simulate it, it is needed to sum the contribution of each light source
in the scene and take occlusion into account.
The idea is the following :

1. Go through every light source in the scene

2. Check that light is not occluded by raycasting

3. Distribute the reading to the sensor according to its distance to it and its intensity

4. Clamp the value to the range the sensor can detect

The sum of all light sources contributions then constitute the sensor reading.

4.2.7 Locator

The locator can provide odometry information as (X , Y ) values inside an axis system that is
defined as the robot is aligned to North pole, similarly to the IMU. Although the axis systems
of each robot are aligned, the origin of the axis is the original position of each robot. The
simulated locator thus works as the following :

1. At the beginning of the experiment, save the position of the robot as the origin of the
locator axis (Xo, Yo)

2. Provide (X , Y ) readings as the current coordinates of the robot in the absolute simu-
lator axis system (X c, Yc), translated to the locator origin.

(X , Y ) = (X c, Yc)− (Xo, Yo) (4.10)

4.2.8 Quaternion

The quaternion sensor provides the relative orientation of the robot with respect to its boot-
ing position. The approach is similar to the locator’s :

1. At the beginning of the experiment, save the orientation of the robot Q i

2. Find the relative orientation Q rel from the original absolute orientation Q i and the
current orientation Qc

Q rel =Q−1
i ∗Qc (4.11)
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Figure 4.4: Proximity sensors noise distribution

4.2.9 Proximity sensors

The proximity sensors allow to detect obstacles between 0.05 and 2 meters. To detect ob-
stacles in simulation, a raycasting approach has been applied.

1. For each sensor, check the first occluding object in the direction of the sensor

2. If the distance between the sensor and the obstacle is in the range [0.05,2], the sensor
reading is that distance. Otherwise, it is −∞ or +∞ if the object is too close or too
far, respectively.

The noise of the proximity sensors is normally-distributed with a low deviation, as shown
in Figure 4.4.

4.2.10 Lidar

The lidar, due to its very similar functionality, has been implemented in the same way as the
proximity sensors, with different sensor placements, many more readings (719 against 8),
and a broader range : [0.10, 12] meters.

The lidar noise is distributed as in Figure 4.5. Accordingly, a uniform noise has been inte-
grated, to which the user can tweak the range to better fit its observations and environment.
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Figure 4.5: Lidar noise distribution

4.3 Simulating actuators

The current actuator set comprises :

1. 4 wheels grouped into 2 treads (connecting 2 wheels each);

2. 5 RGB LEDs (2 in the front of the robot, one on each side, one in the back).

In simulation, the wheels are considered as a differential drive to which 2 different speeds
can be submitted (left and right), which matches the actual robot implementation. The
LEDs are represented with black cylinders (see Figure 4.1) and can display any color from
its RGB encoding.
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CONTROL SOFTWARE

The previous chapters showed how the robots capabilities are transposed into a simula-
tion environment, namely, ARGoS. In order to assess its quality and drive experiments with
the robots, a control software that dictates the actions of the robot must be designed. As
addressed in section 2.7, the human design approach will be complex and extremely time-
consuming. AutoMoDe-Chocolate has been chosen as the base automatic design software
for this thesis, as it crosses better the reality gap between the simulation and the actual
swarm[29].

This chapter is structured as follows : Section 5.1 describes how an additional layer of ab-
straction is added to interface AutoMoDe and the robot; Section 5.2 presents the automatic
modular design approach applied to the RVR.

5.1 The reference model

In AutoMoDe, every robot needs to be described as a reference model, a set of input/output
variables that will be used by the different modules of the state machines produced by Auto-
MoDe. They will provide another layer of abstraction between the control software and the
sensors and actuators. The reference model variables for the RVR are presented in Table 5.1.

The proximity sensor provides 8 readings included in [0, 1], 1 meaning that an obstacle
is less than 0.05 meters away from the sensor, and 0 signalling no obstacles in range. The
maximum range of the proximity sensor can be tuned by the user to face different use cases.
The proximity sensor also indicates the angle of the sensor with respect to the head of the
robot.

The light sensor provides the illuminance it perceives, in lux. However, as the latest robot
prototype does not have access to ambient light, this sensor is currently not in use.

The ground color sensor, as expected, provides the color output by the color labeler as an
RGB value triplet.

The neighbour locator is an abstraction that needs to be made because of the difference
between the robot implementation and the simulation. To detect its neighbours, the real
robot uses the lidar readings and clusters them into groups it will consider as a single robot.
In that way, each robot can detect its neighbours in a 0 to 10 meters range by detecting the
lidar of other robots which is the only object at the same height. However, due to the physics
simulation model, simulating inter-lidar detection is not possible. The simulation uses an
omnidirectional camera that is able to detect virtual, invisible LEDs placed on the top of
other robots. Practically, these two ways of detecting neighbours aim at the same objective,
which are grouped under the neighbour localization sensor of the reference model.
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Sensor/actuators Variables Range of values
Proximity prox [0,1]8

∠q [0, 2π)8

Light l i ght [0, 16000]
Ground color R, G, B [0, 255]3

Neighbour localization d [0, 10]m, m ∈ N
∠q [0,2π)m, m ∈ N

Wheels v [0, 155]2

Table 5.1: The reference model variables for the RVR

To extract the position of neighbours from lidar readings, they are clustered in the following
way :

1. The algorithm goes through every of the 719 lidar readings.

2. If a reading lies outside of the [0.10, 0.75] range, it is discarded because it can not
belong to another robot. The upper bound of 75 cm is thought to avoid considering
walls of the room in which the arena lies as neighbours.

3. If 2 consecutive readings have a similar distance and angle (with arbitrary thresholds
set at 2 cm and 10 degrees), they are clustered together and considered as belonging
to the same robot.

This algorithm eventually outputs the number of neighbours, their distance and their head-
ing with respect to the current robot.

The wheel variables are trivially the speed of each tread.

5.2 AutoMoDe-Watermelon

AutoMoDe-Chocolate control software takes the form of a probabilistic finite state machine
(PFSM), which is composed of 2 types of modules :

1. Behaviours : These are the states in the PFSM and represent a core behaviour the robot
can accomplish : exploration, stop, attraction/repulsion to neighbours or light, etc.

2. Transitions : The transitions are the conditions to transition from one state to the
other. These can be fixed probability, color of the floor, neighbour count, etc.

In particular, AutoMoDe-Chocolate contains the same behaviour modules as the original
AutoMoDe-Vanilla, which are the following [29]:

1. Exploration : the robot moves straight. If any of the proximity sensors positioned
in front senses an obstacle, that is, if prox i ≥ 0.1 for any i ∈ 1,2, 7,8, the robot
turns on itself for a random number of control cycles chosen in 0,1,...,τ,where τ is an
integer parameter in 1,2,...,100. The robot turns away from the direction faced by the
proximity sensor that returned the highest value.

2. Stop : the robot stays still.
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3. Phototaxis : the robot moves towards the light source, if perceived; otherwise, it moves
straight. Obstacle avoidance is embedded: the robot follows the vector w=w′−kwo,
where k is a hard-coded parameter whose value has been a priori fixed to 5 and w′

and wo are vectors defined as:

w′ =

¨

wl =
∑8

i=1

�

lighti,∠qi

�

, if light is perceived.

(1,∠0), otherwise;

wo =
8
∑

i=1

(prox i,∠qi) ,

(5.1)

4. Anti-phototaxis : the robot moves away from the light source, if perceived; other-
wise, it moves straight. Obstacle avoidance is embedded: the robot follows the vector
w=w′ − kwo, where

w′ =

¨

−wl, if light is perceived

(1,∠0), otherwise:
(5.2)

and k, w’, and wo are defined in phototaxis.

5. Attraction : the robot goes in the direction of the robots in neighborhood, if any;
otherwise, it moves straight. Obstacle avoidance is embedded: the robot follows the
vector w=w′ − kwo, where

w′ =

¨

wn =
∑n

m=1

�

α
di

,∠qi

�

, if robots are perceived

(1,∠0), otherwise;
(5.3)

and α is a real-valued parameter in [1,5], and where wo and k are defined in photo-
taxis.

6. Repulsion : the robot moves away from the other robots in its neighborhood, if any;
otherwise, it moves straight. Obstacle avoidance is embedded: the robot follows the
vector w=w′ − kwo, where

w′ =

¨

−wn, if robots are perceived

(1,∠0), otherwise;
(5.4)

and wn is defined in attraction, while wo and k are defined in phototaxis.

However, the (anti-)phototaxis behaviours rely on the presence, for the e-puck, of multiple
light sensors which allow to find the direction of the light with respect to the robot. As the
RVR owns a single light sensor, these behaviours can not be implemented without regularly
sampling the light intensity around the robot to find its direction. Moreover, as the current
prototype obstructs the light sensor, these modules will not be used with the RVR. Explo-
ration, stop, attraction and repulsion are compatible and working with this robot.

Nonetheless, these modules also had to be tweaked, as the original modules were designed
for the e-puck. The reasons of these changes will be addressed in section 7.1. This leads
to the introduction of AutoMoDe-Watermelon, the first AutoMoDe flavour designed for the
RVR. The behaviour modules of AutoMoDe-Watermelon are the following :
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1. Exploration : the robot moves straight. If any of the proximity sensors positioned in
front senses an obstacle, that is, if prox i ≥ 0.1 for any i ∈ 1, 2,7, 8, or if there is
a neighbour in front, the robot turns on itself for a random number of control cycles
chosen in 0,1,...,τ,where τ is an integer parameter in 1,2,...,100. The robot turns away
from the direction faced by the proximity sensor that returned the highest value.

2. Stop : the robot stays still.

3. Attraction : the robot goes in the direction of the robots in neighborhood, if any;
otherwise, it moves straight. Obstacle avoidance is embedded: the robot follows the
vector w= kww′ − kowo, where

w′ =

¨

wn =
∑n

m=1

�

α
di

,∠qi

�

, if robots are perceived

(1,∠0), otherwise;
(5.5)

and α is a real-valued parameter in [1,5], and where wo is defined in phototaxis; kw

and ko are hard-coded hyperparameters that have been a priori set respectively to 1.2
and 5.

4. Repulsion : the robot moves away from the other robots in its neighborhood, if any;
otherwise, it moves straight. Obstacle avoidance is embedded: the robot follows the
vector w=w′ − kwo, where

w′ =

¨

−wn, if robots are perceived

(1,∠0), otherwise;
(5.6)

and wn is defined in attraction, while wo and k are defined in phototaxis.

Regarding transition conditions, AutoMoDe-Watermelon contains :

1. Black floor : if the ground is black (ground reading in grayscale is lower than 0.05),
the transition is enabled with probability β , where β is a parameter.

2. Gray floor : same as black-floor but the prerequisite is that the ground reading in
grayscale is around 0.5.

3. White floor : same as black-floor but the prerequisite is that the ground reading in
grayscale is above 0.78.

4. Neighbour count : the transition is enabled with probability

z(n) =
1

1+ eη(ξ−n)
(5.7)

where n is the number of robots in the neighbourhood, η ∈ [0, 20] is a real-valued
parameter and ξ ∈ 0, 1, ..., 10 is an integer parameter. The transition is enabled with
probability 0.5 if n= ξ. The parameter η regulates the steepness of the function z(n)
at n= ξ.

5. Inverted neighbour count : the transition is enabled with probability 1− z(n), where
z(n) is defined in neighbour count.
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Figure 5.1: An example of a PFSM control software that could be designed with AutoMoDe-
Watermelon

6. Fixed probability : the transition is enabled with probability β , where β is a parameter.

All of these transitions are compatible and implemented with the RVR. Moreover, to take ad-
vantage of the ground color sensor, a 7th transition has been created, inspired by AutoMoDe-
Tuttifrutti[31]:

7. Color detection : if the robot perceives a given color c among a fixed set (red, green,
blue and yellow), the transition is enabled with probability β . β and c are parameters.
To be resistant to noise, the hue of the color perceived by the sensor is compared to
each of the hues of the expected labels. If it is close enough (under an arbitrary
threshold of 15°), the closest label is considered as the perceived color.

An example of an AutoMoDe-Watermelon PFSM can be found in Figure 5.1.

In order to obtain a control software that highlights a desired collective behaviour of the
swarm, the FSM choice problem is turned into an optimization problem that will be tackled
by iterated F-race[9], as in AutoMoDe-Chocolate[28]. This algorithm will then maximize the
performance of the swarm by evaluating different FSMs in the search space within a certain
budget, i.e., the number of ARGoS simulations allowed. The performance of a given control
software is defined by mission-specific indicators. Each FSM is restricted to a maximum of
4 states, and 4 outgoing transitions (which can not be self-transitions). Once the budget is
depleted, iterated F-race outputs the best state machine it could find.
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6
EXPERIMENTS

In order to assess the performance of the swarm, it will be evaluated on a set of test missions.
The choice of missions to include aims to exhibit the general problem-solving capabilities
of the robot compared to other robot platforms, as well as to highlight the new possibilities
offered by the RVR in particular. Therefore, 2 missions are directly taken from other Au-
toMoDe variants, and the last one has been designed to emphasize the use of the ground
color sensor, which is an exclusive capability compared to the e-puck, the only other plat-
form currently supported by AutoMoDe. These 3 missions are aggregation, grid exploration,
and color selection.

Before any actual experiment starts, each module of AutoMoDe-Watermelon should be eval-
uated individually. In this bottom-up approach, identifying potential strengths or weak-
nesses of the modules can help to mitigate or justify the reality gap. This is called the
modules assessment experiment.

This chapter is structured as follows : Section 6.1 presents the environment in which the
experiments take place; Section 6.2 defines the assessment protocol for single AutoMoDe
components; Section 6.3, Section 6.4 and Section 6.5 describe respectively the aggregation,
grid exploration and color selection experiment; Section 6.6 outlines the evaluation protocol
for the said missions.

6.1 Experimental environment

Every mission is held in a dodecagonal arena of 4.91 m2, which is delimited by walls high
enough to ensure that the proximity sensors and lidar can not detect objects beyond them.
The base color of the floor is gray, but some missions require some areas to be colored. All
missions are performed by a swarm of 3 RVRs and last 120 seconds. 3 robots in the swarm
ensure a reasonably good performance on the core behaviours, as the robots have to go
at minimum 25 cm/s to avoid overheating the motors. Indeed, this speed in such a small
arena with robots of 27cm diameter yields a lot of congestion and collisions with more than
3 robots.

6.2 Modules assessment

In this experiment, the goal is to examine the behaviour of the RVRs on the AutoMoDe-
Watermelon modules. Each behaviour module is qualitatively evaluated 5 times with the
swarm of 3 robots. If the robots manifest the expected behaviour, the behaviour module
will be considered good enough to be included in the automatic design process.
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Figure 6.1: Assessment FSM for the black floor transition

Regarding transitions, each module will be tested with a 2-states FSM as presented in Fig-
ure 6.1. The robot will move from exploration to stop as soon as the transition is triggered
(with p = 1 for Black floor, Gray floor, White floor, Fixed probability and Color detection,
and with η = 0 and ξ = 1 for Neighbour count and Inverted neighbour count). If the robot
successfully triggers the transition when it is expected to 10 times, it is considered good
enough to be included in the design process.

6.3 Aggregation

This is inspired by the one-spot aggregation experiment from AutoMoDe-Coconut[77]. The
robots have to aggregate as fast as possible on a black spot at the center of the arena. The
floor is completely gray except for a black circular area of diameter 1m at the center of the
workspace. At the beginning of the experiment, the 3 robots are randomly placed in the
whole workspace. The workspace is shown in Figure 6.2a. The performance of the swarm
is measured by the number of robots in the black area at the end of the mission. More
formally,

Fag gregation =
N
∑

i=1

bi (6.1)

where N is the number of robots and bi equals 1 if the robot i lies in the black area at the
end of the mission, 0 otherwise.

6.4 Grid exploration

This is the grid exploration experiment from AutoMoDe-Coconut[77]. The robots must ex-
plore and cover as much space as possible. The floor is completely gray. At the beginning
of the experiment, the 3 robots are randomly placed in the workspace. The workspace is
shown in Figure 6.2b. In order to measure the performance of the swarm, the arena is di-
vided in a grid of 10 tiles by 10 tiles. For each tile, we retain the time t elapsed since the
last time it was visited by a robot. Each time the tile is visited by an robot, this time is reset
to 0. The performance of the swarm is measured by the sum over all control cycles of the
opposite of the average time t over all the tiles. More formally,
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Color Reward
Green 0
Red 1

Yellow 2

Table 6.1: Color rewards for the color selection experiment

(a) Aggregation (b) Grid exploration (c) Color selection

Figure 6.2: The simulated experimental setup for all three missions.

Fgrid ex ploration = −
1

Nt iles

Ncc
∑

i=1

Nt iles
∑

j=1

t i j (6.2)

where Ncc is the number of control cycles for the whole experiment, Nt iles is the number of
tiles and t i j is the time, at the control cycle i, since the tile j was crossed by a robot.

6.5 Color selection

The robots must stand as fast as possible on the color patches that reward the most. At the
beginning of the experiment, the 3 robots are randomly placed in the workspace. The floor
is completely gray except for 12 square color patches of different colors (green, yellow, and
red) that are 30 cm of side length and shuffled randomly at the beginning of the experiment.
A score is associated with each color, as shown in Table 6.1. The performance of the swarm
is measured by the position of the robots at the end of the mission. The position is awarded
by the reward associated with the said color. More formally,

Fcolor ag gregation =
N
∑

i=1

Ncolors
∑

j=1

r j bi j (6.3)

where N is the number of robots, Ncolors is the number of colors, r j is the reward associated
with color j and bi j equals 1 if robot i stands on a tile of color j at the end of the mission,
0 otherwise.

Note that, given the robot size, a robot standing on a tile implicitly means that the center of
the robot should lie above the tile. As the ground sensor is slightly offset towards the front,
a behaviour that immediately stops as a good tile is detected might not always be accounted
as a rewarding position, which should be handled by the control software.
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(a) Aggregation (b) Grid exploration (c) Color selection

Figure 6.3: The real experimental setup for all three missions.

6.6 Protocol

AutoMoDe-Watermelon is executed 10 times on each of the 3 missions with a budget of 100k
evaluations, generating 10 control software instances per mission. Each of the produced in-
stances is then evaluated once on its respective mission 1. The results of these evaluations
are then presented mission by mission.

Then, each instance is uploaded on real RVRs and evaluated once in a real environment
with the same geometry and features as in the simulation. The results of these evaluations
are also presented for each mission.

1This protocol is the same as the one described in [29, 77, 28, 45] and discussed in [8].
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7
RESULTS

As mentioned earlier, the goal of these missions is to evaluate how well a control software
designed for the RVR, in particular with AutoMoDe-Watermelon, can transfer to reality. The
state machines produced by AutoMoDe-Watermelon will be analyzed to see the effectiveness
and utility of the modules, and the performance of the swarm in simulation and reality will
be compared in order to evaluate the reality gap.

This chapter is structured as follows : Section 7.1 examines the functionality of each individ-
ual component of AutoMoDe-Watermelon; Section 7.2, Section 7.3 and Section 7.4 present
the state machines and performance of the aggregation, grid exploration and color selection
experiments.

7.1 Assessment

The 4 behaviour modules (Exploration, Stop, Attraction and Repulsion) pass the assessment
test. Obstacle avoidance is effective most of the time with the proximity sensors. However,
the robot presents a latency that could sometime lead to a too high reaction time when
encountering another robot, and cause high velocity bumps. For this reason, the obstacle
avoidance (in Exploration as well as in Attraction and Repulsion) also integrates the position
of neighbours as detected by the lidar to improve its responsiveness. This permits a better
anticipation and improved the overall obstacle avoidance of the robots.
The 7 transition modules also pass the assessment test.

This assessment experiment allowed to identify some discrepancies between simulation and
reality, which can help to explain the potential reality gap.

• Latency : even though the simulation can act immediately on the wheels of the robot,
it is not the case in reality. There is around 200 milliseconds of unconstant latency
between the control software commanding a change in speed and the actual effect on
the treads. This can have an impact on the overall behaviour of the swarm, especially
regarding positioning and obstacle avoidance.

• Obstacle detection : the proximity sensors are very sensible to the glossiness of the
surface against which their infrared rays collide. If the surface is too matt, it can
induce errors in obstacle detection (either not detecting existing obstacles, detecting
non-existing ones, or miscalculating the distance). Even with glossy surfaces, the
proximity sensors are unpredictably unreliable. This is heavily affecting missions that
rely on long exploration periods, such as grid exploration.

• Neighbour detection : some of the prototypes happened to sometimes show difficul-
ties to detect their neighbours. This can bias the Attraction and Repulsion behaviours.
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• Timestep duration : even with the same control software, the ROS software architec-
ture slightly alters the control software step frequency, which can impact the spinning
duration in the Exploration module. This has been fixed by enforcing a fixed time
duration T in seconds for the robot to turn on itself based on the random number of
control cycles r1. It is computed as such :

T = r ×∆t (7.1)

where ∆t is the duration of 1 clock cycle in simulation. In the context of this thesis,
∆t = 100 ms. As long as the robot did not spin for T seconds, it keeps spinning, which
aligns better the simulation and reality behaviours.

7.2 Aggregation

The 10 states machines output by AutoMoDe-Watermelon for the aggregation experiment
are presented in section A.1.

The overall presence of modules in the control softwares is summarized in Table 7.1. The
occurrence rate is the proportion of control softwares including the module in question.

Module Average number of occur-
rences per control software

Occurrence rate

Exploration 1.5 80%
Stop 1.2 100%
Attraction 0.2 20%
Repulsion 0.4 40%
Black floor 2.5 100%
Gray floor 1.3 80%
White floor 0.7 50%
Neighbour count 0.6 40%
Inverted neighbour count 0.4 30%
Fixed probability 0.8 60%
Color detection 1.2 50%

Table 7.1: Module appearance statistics for the aggregation control softwares

As expected, the most present modules are Stop, Exploration, Black floor and Gray floor.
Intuitively, they allow to place each robot in the black area and ensure it does not move
away from it. Attraction and Repulsion are not very popular modules, because the robots
manifest a tendency to aggregate at the perimeter of the black area and Attraction may lead
to stuck a robot against its peers at the edge of the area. Conversely, Repulsion might reject
the robot away from the rewarding area.

In some control softwares, Color detection is heavily represented. The hue comparison can
apparently work as a gray/black comparison. This point will be investigated later in sec-

1This fix has been applied after running the 3 other experiments.
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Figure 7.1: Control software performance on the aggregation mission

tion 7.4.

The performance of the control software in simulation and reality is compared in Figure 7.1.
A more visual representation of the results is shown on Figure 7.2. There is effectively a
performance drop. On average, 2.1 physical robots stand on the black spot at the end of the
experiment. The divergence between the simulated and real timestep durations is probably
a source of this difference. As the robots spin longer in simulation, when they encounter
the walls of the arena, they can rotate longer and bounce back towards the center where
the other robots and the objective lie. In reality, the robots tend to drive along the walls
because they rotate for shorter periods of time, making it more difficult for them to reach
the goal. However, we can notice that, on average, less than 1 robot misses the spot.

7.3 Grid exploration

The 10 states machines output by AutoMoDe-Watermelon for the grid exploration experi-
ment are presented in section A.2.
The overall presence of modules in the control softwares is summarized in Table 7.2.
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Figure 7.2: Performance distribution for the aggregation experiment

Module Average number of occur-
rences per control software

Occurrence rate

Exploration 2.4 100%
Stop 0.0 0%
Attraction 0.0 0%
Repulsion 0.1 10%
Black floor 0.5 50%
Gray floor 0.7 60%
White floor 0.4 40%
Neighbour count 1.0 70%
Inverted neighbour count 2.1 90%
Fixed probability 1.9 90%
Color detection 0.7 40%

Table 7.2: Module appearance statistics for the grid exploration control softwares

The behaviours here essentially consist of Exploration with different values for the τ param-
eter. The transitions are triggered either by Fixed probability – note that here Gray floor is
equivalent to Fixed probability – or by the number of surrounding neighbours.

The performance of the swarm on the 10 evaluation runs is presented in Figure 7.4. Sur-
prisingly, the swarm performs better in reality than in simulation. This might come from
the fact that the score computation for reality is not exactly the same as in simulation. To
compute the score in reality, robot positions are tracked with a tag that is considered at the
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Figure 7.3: Top view of the extended RVR

center of the robot. However, this tag could not be placed at the center of the robot due to
the presence of the lidar (see Figure 7.3). This creates an offset that is advantageous for the
swarm in that experiment; indeed, when the robots turn on themselves, the tag is going over
several tiles that the center of the robot actually does not cover, increasing the performance
of the swarm. This might explain the better performance in reality. These results also show
that the behaviour transferred effectively from simulation to reality.

The problem of faulty proximity sensors and timestep length has heavily been impacting
this experiment. When the robots adopt an Exploration behaviour with a small τ value, in
addition to the lack of reliable obstacle detection, they tend to simply go forward against
obstacles, since, when they detect them, they spin for an extremely short period of time.
This led to the crash of robots against the arena walls and them disassembling the arena.
To be able to proceed with the experiment, heavy objects have been put against the walls
outside of the arena, so that the robot are stuck against them without moving them.

7.4 Color selection

The 10 states machines output by AutoMoDe-Watermelon for the color selection experiment
are presented in section A.3.

The overall presence of modules in the control softwares is summarized in Table 7.3.
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Figure 7.4: Control software performance on the grid exploration mission

Module Average number of occur-
rences per control software

Occurrence rate

Exploration 1.6 100%
Stop 1.1 100%
Attraction 0.2 20%
Repulsion 0.5 40%
Black floor 0.9 70%
Gray floor 1.9 100%
White floor 1.6 100%
Neighbour count 1.2 80%
Inverted neighbour count 1.0 70%
Fixed probability 0.7 70%
Color detection 0.9 80%

Table 7.3: Module appearance statistics for the color selection control softwares

We can summarize the use of each module in this mission :

• Exploration : in 8 of the 10 state machines, robots start in the Exploration state, and
it appears in every control software. Indeed, it seems intuitive to be a good starting
state to search for high reward spots. We can also notice that robots can switch from
an Exploration state from another one with a different value for the τ parameter, to
refine their behaviour.

• Attraction : the Attraction behaviour only appears once, in which it is the starting
state. As the robots barely have room to fit in the colored tiles, it seems logical to
avoid being attracted to other robots.
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Figure 7.5: Control software performance on the color selection mission

• Repulsion : 3 of the control softwares integrate Repulsion. In Figure A.23, the initial
state is Repulsion and another Repulsion state exist. Already more popular that Attrac-
tion, this behaviour allows to improve search within the arena when other robots have
found – or not – a good place to stand.

• Stop : unsurprisingly present in every design, Stop allows the robots to stop when
they detect a good spot.

Suprisingly, Color detection transitions are often replaced by White, Gray or Black floor. Due
to the thresholding done in these transitions and the colors of the experiment, they can suf-
fice to evaluate the quality of the current position of the robot. However, 80% of the control
softwares also present the Color detection, meaning that they are still a useful transition;
in this experiment they seem to be somewhat equivalent to grayscale comparisons. This
is an indicator that specific new modules should be designed for the RVR. The AutoMoDe-
Watermelon modules are based on modules designed for the e-puck robot, and this experi-
ment highlights the need of platform-specific modules, to avoid this redundancy of features
across multiple modules and improve the quality and abilities of the control software.

The performance of the control software in simulation and reality are compared in Fig-
ure 7.5. A more visual representation of the results is shown on Figure 7.6. The scores in
simulation and reality are the same; in 9 out of 10 evaluations, the 3 robots ended up on
yellow spots. In one of the runs, a single robot missed a rewarding tile. This shows that the
control software is portable and works similarly across simulation and reality.
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Figure 7.6: Performance distribution for the color selection experiment
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8
CONCLUSION

In this master thesis, I have presented a software and hardware architecture for the RVR
robot in swarm robotics. This enables the use of the robot within a simulation environment,
as well as the transparent transfer of control software between simulation and reality. The
addition of new sensors, i.e. the lidar and the proximity sensors, allowed to develop com-
mon swarm robotics features such as obstacle avoidance and peer detection.

In order to conceive the architecture, I reviewed literature about swarm robotics, robotic
platforms for swarms, simulators, microcontrollers, and inter-component communication.
The choice of the microcontroller and software libraries has been thought to be cross-
compatible, portable and highly modular.

I then developed a unified platform that could be transposed easily from simulation to real-
ity, thanks to the ARGoS software. Special care has been given to reality fidelity, with noise
evaluation and imitation.

Thanks to this architecture, any control software designed in simulation can be directly
transposed to reality. As a validation procedure, this new platform has been implemented
as AutoMoDe-Watermelon, an automatic modular design of control software framework. Af-
ter assessing the effectiveness of each individual component of AutoMoDe-Watermelon, the
design process has been evaluated through 3 experiments.

The results showed that this robot is a promising platform for swarm robotics. The modular
control software was able to achieve the objectives fixed in the missions, with some unex-
pected (but efficient) design choices, such as an equivalence between grayscale and color
comparison. This highlighted the need to (re)design hardware and software components,
thought for this platform, that would exploit its capabilities better, even though the current
ones are already able to make a coordinated behaviour emerge.

Real-life experiments also showed that the control software automatically designed offline
in simulation can be effective in reality. The reality gap manifested itself in the results, lead-
ing to a divergence between the simulation and reality results. The discrepancies between
simulation and reality are addressed in this work and reducing them could be the objective
of a future work.

As a conclusion, this work constitutes the foundations of a new window of opportunities
for swarm robotics. The new capabilities of this robot, as well as its modular architecture,
could lead to improvements in swarm robotics real-world applications such as disaster area
mapping, with the included odometry. I strongly believe that this platform can achieve
interesting new tasks and unlock a new potential for swarm robotics.
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A
FINITE STATE MACHINES

This appendix contains all the control softwares produced by AutoMoDe-Watermelon for
this work.

A.1 Aggregation

Figure A.1: FSM 1 for the aggregation mission
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Figure A.2: FSM 2 for the aggregation mission

Figure A.3: FSM 3 for the aggregation mission

Figure A.4: FSM 4 for the aggregation mission
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Figure A.5: FSM 5 for the aggregation mission

Figure A.6: FSM 6 for the aggregation mission
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Figure A.7: FSM 7 for the aggregation mission

Figure A.8: FSM 8 for the aggregation mission

Figure A.9: FSM 9 for the aggregation mission
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Figure A.10: FSM 10 for the aggregation mission

A.2 Grid exploration

Figure A.11: FSM 1 for the grid exploration mission

Figure A.12: FSM 2 for the grid exploration mission
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Figure A.13: FSM 3 for the grid exploration mission

Figure A.14: FSM 4 for the grid exploration mission
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Figure A.15: FSM 5 for the grid exploration mission

Figure A.16: FSM 6 for the grid exploration mission
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Figure A.17: FSM 7 for the grid exploration mission

Figure A.18: FSM 8 for the grid exploration mission
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Figure A.19: FSM 9 for the grid exploration mission

Figure A.20: FSM 10 for the grid exploration mission

A.3 Color selection

Figure A.21: FSM 1 for the color selection mission
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Figure A.22: FSM 2 for the color selection mission

Figure A.23: FSM 3 for the color selection mission

Figure A.24: FSM 4 for the color selection mission
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Figure A.25: FSM 5 for the color selection mission

Figure A.26: FSM 6 for the color selection mission

Figure A.27: FSM 7 for the color selection mission
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Figure A.28: FSM 8 for the color selection mission

Figure A.29: FSM 9 for the color selection mission
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Figure A.30: FSM 10 for the color selection mission
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[73] Erol Şahin et al. “Swarm Robotics”. In: Swarm Intelligence: Introduction and Applica-
tions. Ed. by Christian Blum and Daniel Merkle. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 87–100. ISBN: 978-3-540-74089-6. DOI: 10.1007/978- 3-
540-74089-6_3. URL: https://doi.org/10.1007/978-3-540-74089-6_3.

62

https://doi.org/10.1007/s00500-016-2182-2
https://doi.org/10.1007/s00500-016-2182-2
https://github.com/ilpincy/argos3-kheperaiv
https://github.com/ilpincy/argos3-kheperaiv
https://doi.org/10.1126/science.1254295
https://www.science.org/doi/pdf/10.1126/science.1254295
https://www.science.org/doi/pdf/10.1126/science.1254295
https://www.science.org/doi/abs/10.1126/science.1254295
https://www.science.org/doi/abs/10.1126/science.1254295
https://doi.org/10.1007/978-3-540-74089-6_3
https://doi.org/10.1007/978-3-540-74089-6_3
https://doi.org/10.1007/978-3-540-74089-6_3


BIBLIOGRAPHY BIBLIOGRAPHY

[74] Thomas Schmickl and Karl Crailsheim. “A navigation algorithm for swarm robotics
inspired by slime mold aggregation”. In: International Workshop on Swarm Robotics.
Springer. 2006, pp. 1–13.

[75] Rajesh Singh et al. “A Review on Implementation of Robotic Assistance in Covid-19
Epidemics: A Possibility Check”. In: (2020).

[76] Jorge M. Soares, Iñaki Navarro, and Alcherio Martinoli. “The Khepera IV Mobile
Robot: Performance Evaluation, Sensory Data and Software Toolbox”. In: Robot 2015:
Second Iberian Robotics Conference. Ed. by Luís Paulo Reis et al. Cham: Springer In-
ternational Publishing, 2016, pp. 767–781. ISBN: 978-3-319-27146-0.

[77] Gaëtan Spaey et al. “Evaluation of Alternative Exploration Schemes in the Automatic
Modular Design of Robot Swarms”. In: Artificial Intelligence and Machine Learning.
Ed. by Bart Bogaerts et al. Cham: Springer International Publishing, 2020, pp. 18–
33. ISBN: 978-3-030-65154-1.

[78] Sphero. Educational Coding Robot Car | Learn Coding & STEM | Sphero RVR. https:
//sphero.com/products/rvr?_pos=11&_sid=1f95ddb4f&_ss=r. 2022. Accessed
on 03/03/2022.

[79] Sphero. Sphero RVR SDK to run on Raspberry Pi using Python. URL: https://github.
com/sphero-inc/sphero-sdk-raspberrypi-python. Accessed on 01/03/2022.

[80] Marc Szymanski et al. “Distributed shortest-path finding by a micro-robot swarm”. In:
International Workshop on Ant Colony Optimization and Swarm Intelligence. Springer.
2006, pp. 404–411.

[81] Terabee. Sensing Kit | 8 Sensor Modules | Custom Configurations. URL: https://
www.terabee.com/shop/lidar-tof-range-finders/teraranger-multiflex/.
Accessed on 01/03/2022.

[82] Ali Turgut et al. “Kobot: A mobile robot designed specifically for swarm robotics re-
search”. In: (Jan. 2007).

[83] Ali E Turgut et al. “Self-organized flocking in mobile robot swarms”. In: Swarm Intel-
ligence 2.2 (2008), pp. 97–120.

[84] Zoltán Tuza, János Rudan, and Gábor Szederkényi. “Developing an integrated soft-
ware environment for mobile robot navigation and control”. In: 2010 International
Conference on Indoor Positioning and Indoor Navigation. 2010, pp. 1–6. DOI: 10.1109/
IPIN.2010.5647506.

[85] Mohamed H. Wagdy, Hady A. Khalil, and Shady A. Maged. “Swarm Robotics Pattern
Formation Algorithms”. In: 2020 8th International Conference on Control, Mechatron-
ics and Automation (ICCMA). 2020, pp. 12–17. DOI: 10.1109/ICCMA51325.2020.
9301540.

[86] Xiaoshu Xiang et al. “Demand coverage diversity based ant colony optimization for
dynamic vehicle routing problems”. In: Engineering Applications of Artificial Intelli-
gence 91 (2020), p. 103582. ISSN: 0952-1976. DOI: https://doi.org/10.1016/
j.engappai.2020.103582. URL: https://www.sciencedirect.com/science/
article/pii/S0952197620300592.

[87] YDLIDAR X4_YDLIDAR|Focus on lidar sensor solutions. URL: https://www.ydlidar.
com/products/view/5.html. Accessed on 01/03/2022.

63

https://sphero.com/products/rvr?_pos=11&_sid=1f95ddb4f&_ss=r
https://sphero.com/products/rvr?_pos=11&_sid=1f95ddb4f&_ss=r
https://github.com/sphero-inc/sphero-sdk-raspberrypi-python
https://github.com/sphero-inc/sphero-sdk-raspberrypi-python
https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-multiflex/
https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-multiflex/
https://doi.org/10.1109/IPIN.2010.5647506
https://doi.org/10.1109/IPIN.2010.5647506
https://doi.org/10.1109/ICCMA51325.2020.9301540
https://doi.org/10.1109/ICCMA51325.2020.9301540
https://doi.org/https://doi.org/10.1016/j.engappai.2020.103582
https://doi.org/https://doi.org/10.1016/j.engappai.2020.103582
https://www.sciencedirect.com/science/article/pii/S0952197620300592
https://www.sciencedirect.com/science/article/pii/S0952197620300592
https://www.ydlidar.com/products/view/5.html
https://www.ydlidar.com/products/view/5.html


BIBLIOGRAPHY BIBLIOGRAPHY

[88] Guohua Ye et al. “Managing group behaviors in swarm systems by associations”. In:
2006 American Control Conference. 2006, 8 pp.-. DOI: 10.1109/ACC.2006.1657266.

[89] Yanqi Zhang, Bo Zhang, and Xiaodong Yi. “The Design and Implementation of Swarm-
Robot Communication Analysis Tool”. In: Geo-Spatial Knowledge and Intelligence. Ed.
by Hanning Yuan et al. Singapore: Springer Singapore, 2018, pp. 631–640. ISBN:
978-981-13-0896-3.

64

https://doi.org/10.1109/ACC.2006.1657266

	Introduction
	Objectives
	Main contributions of the thesis
	Structure of the thesis

	Related work
	Swarm intelligence & swarm robotics
	Swarm robotics simulators
	Swarm robotics platforms
	RVR microcontrollers
	Interfacing & communication
	Experiments
	Automatic design
	Artificial evolution of neural networks
	AutoMoDe


	The Sphero RVR
	Hardware architecture
	Software architecture

	Simulation
	Robot model
	Simulating sensors
	Ground color sensor
	Velocity sensor
	Accelerometer
	Gyroscope
	IMU
	Light sensor
	Locator
	Quaternion
	Proximity sensors
	Lidar

	Simulating actuators

	Control software
	The reference model
	AutoMoDe-Watermelon

	Experiments
	Experimental environment
	Modules assessment
	Aggregation
	Grid exploration
	Color selection
	Protocol

	Results
	Assessment
	Aggregation
	Grid exploration
	Color selection

	Conclusion
	Finite State Machines
	Aggregation
	Grid exploration
	Color selection




