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Résumé

Robot recognition using a 360-degree vision module for swarm robots

La robotique en essaim est actuellement un domaine de recherche prometteur. En effet,
elle vise à réaliser des tâches complexes avec un groupe de robots simples, en utilisant
quelques capteurs. Cependant, il existe une limite quant aux informations pouvant être
récupérées par un essaim de robots, en raison du peu de capteurs utilisés par chaque ro-
bot. Une façon d’augmenter les informations pour chaque robot, et par conséquent pour
l’ensemble de l’essaim, est d’ajouter un module de vision.

Les modules de vision sont actuellement assez chers et ce coût est multiplié pour un es-
saim de robots. Ce mémoire vise à concevoir un module de vision à 360 degrés à un prix
raisonnable pour un essaim de robots Sphero RVR, et à utiliser ce module de vision pour
identifier les autres robots de l’essaim. Le module de vision est composé d’un micropro-
cesseur et de différentes caméras.

Trois méthodes différentes sont considérées pour permettre la reconnaissance des robots.
Premièrement, une segmentation par couleur utilise les LEDs des robots Sphero RVR pour
estimer leur position. Ensuite, des marqueurs ArUco placés autour du robot permettent
de localizer les autres robots. Enfin, un réseau neuronal entraîné sur un jeu de données
créé pour la reconnaissance des robots Sphero RVR dans le contexte de la robotique en
essaim est utilisé pour identifier le reste du groupe. Ces trois méthodes sont évaluées à
l’aide d’un jeu de données expérimental. Des expériences sont également menées pour
évaluer les performances de ces algorithmes dans une application en temps réel.

Les résultats ont montré que les opérations en temps réel impliquant la vision par ordi-
nateur nécessitent beaucoup de ressources. La bibliothèque ArUco est difficile à utiliser
lorsque les robots se déplacent trop rapidement, en raison du flou de mouvement. La mé-
thode utilisant un réseau neuronal est capable de détecter les robots en mouvement, mais
prend plus de temps, ce qui la rend actuellement difficile à utiliser dans une application
en temps réel.

Mots-clés : module de vision, robotique en essaim, reconnaissance de robots

Mémoire présenté pour en vue de l’obtention du diplôme d’Ingénieur civil en Informatique
à finalité spécialisée
Franck Trouillez, 2021-2022





Abstract

Robot recognition using a 360-degree vision module for swarm robots

Swarm robotics is currently a promising research field. Indeed, it aims at completing
complex tasks with a group of simple robots, using a few sensors. However, there exists
a limit on which information can be retrieved by a swarm of robots, because of the few
sensors that each robot uses. A way to increase the information for each robot, and con-
sequently for the whole swarm, is to add a vision module.

Vision modules are currently quite expensive and this cost is multiplied for a swarm of
robots. This master thesis aims at designing a 360-degree vision module at a reasonable
price for a swarm of Sphero RVR robots, and to use this vision module to identify the
other robots in the swarm. The vision module is composed of a microprocessor and dif-
ferent cameras.

Three different methods are considered to allow the robot recognition. First, a colour
segmentation uses the LEDs of the Sphero RVR robots to estimate their position. Sec-
ondly, ArUco markers placed around the robot allow to localize the other robots. Lastly,
a neural network trained on a dataset created for Sphero RVR robot recognition in the
context of swarm robotics is used to identify the rest of the swarm. These three methods
are evaluated through an experimental dataset. Experiments are also conducted to assess
the performance of these methods in a real-time application.

The results showed that real-time operations involving computer vision requires a lot of
resources. The library ArUco is hard to use when the robots are moving too fast, because
of motion blur. The method using a neural network is able to detect the moving robots,
but takes more time, which currently makes it hard to use in a real-time application.

Keywords: vision module, swarm robotics, robot recognition
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Chapter 1

Introduction

Swarm robotics is currently a very promising research field that makes use of a group of
simple robots to complete tasks. Robots used in these swarms can now implement more
sensors, in order to gather more information. However, cameras are expensive and the
use of such sensors in this field is currently limited.

Vision modules are considered in order to add a new stream of information to each indi-
vidual of the swarm, and consequently, improving the information of the whole swarm.
A vision module can be considered as a sensor that allows machine vision and image
processing. It is composed of cameras and a microprocessor. This is currently a rare case
in swarm robotics. Indeed, such vision modules are quite expensive, and this cost is of
course multiplied in a swarm of robots.

This master thesis aims to design a 360-degree vision module for a swarm of Sphero RVR
robots for a reasonable price, and to implement a Sphero RVR robot recognition algo-
rithm. Indeed, this is a challenge in swarm robotics since vision modules are expensive.
The Sphero RVR robot recognition algorithm is implemented using the Robot Operating
System (ROS)[41]. Three different methods are considered for this application, and com-
pared through experimental datasets, and with experiments requiring real-time operations
in the context of swarm robotics.

This chapter is structured as follows: Section 1.1 introduces the objectives of the the-
sis; Section 1.2 identifies the main contributions of the thesis; Section 1.3 explains the
structure of this thesis.

1.1 Objectives of the thesis

This master thesis aims to both provide a 360-degree vision module for a swarm of Sphero
RVR robots for a reasonable price, and implement Sphero RVR robot recognition algo-
rithms.

First, a 360-degree vision module for a swarm of Sphero RVR robots with low budget is
designed and provided. A 360-degree vision module means that the vision module needs
to have a 360-degree view. Multiple cameras are used for designing this vision module.
It also requires a microprocessor. Indeed, it must both compute image processing and to
communicate with the controller of the robot. A controller refers to the behaviour of the
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robot, which means that it translates the code and inputs from the sensors to actions for
the robot in order to operate and complete its task. Designing this vision module is a
challenge since most 360-degree vision systems, which do not include a microprocessor,
are very expensive because of the cameras.

Secondly, the implementation of Sphero RVR robot recognition algorithms is considered.
Three different methods are evaluated and compared to complete the task of recognizing
and localizing the other robots of the swarm. The first method applies colour segmentation
thanks to the LEDs of the Sphero RVR robots. The second one uses ArUco[12, 33] markers
placed on every robot of the swarm. ArUco is a library that allows localizing in a 3D space
a marker appearing on an image. The last one makes use of a neural network to recognize
the robots and to estimate their position. This neural network is trained on a dataset
created in this master thesis for Sphero RVR robot recognition in the context of swarm
robotics. These three methods are compared on experimental datasets. Experiments are
also conducted to assess the performance of the Sphero RVR robot recognition algorithms
in the context of swarm robotics. This implies real-time operations. These experiments
aim at evaluating the use of this vision module for robot recognition in the context of
swarm robotics applications.

1.2 Main contributions of the thesis

This thesis aims at contributing to swarm robotics research.

First, on a hardware point of view, I conducted research to design a vision module for
the Sphero RVR robot in the context of swarm robotics. This vision module aims to
be reasonably priced so that it can be used for a swarm of robots. Moreover, this vision
module has a 360-degree view, which allows getting images in every direction for the robot.

Secondly, I created a dataset creation protocol for robot recognition, which allows to cre-
ate a dataset for a potential supervised learning. In this master thesis, it is used in order
to create a dataset of images to recognize the Sphero RVR robots in the context of swarm
robotics. However, this protocol can be applied to other robots and to other applications
in robotics.

Lastly, I compared and evaluated three different methods for Sphero RVR robot recog-
nition through experimental datasets and experiments in the context of swarm robotics.
The first one uses colour segmentation, which is a very used algorithm in computer vi-
sion. It allows to estimate the position of the robots containing the reference colour.
The second one makes use of the ArUco[12, 33] library, which works with markers that
can be localized in a 3D space based on an image containing this ArUco marker. This
consequently gives the opportunity to estimate the precise position of the robot wearing
these markers. The last method uses a neural network trained on the dataset generated
and mentioned before in order to detect and localize the Sphero RVR robots without any
additional marker.
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1.3 Structure of the thesis

The thesis is structured as follows:

• The current section, Section 1, introduces the thesis, by exposing the objectives and
the contributions of this master thesis

• Section 2 states the current state-of-the-art and the related works in relation to this
thesis.

• Section 3 describes the Sphero RVR robot.

• Section 4 addresses the 360-degree vision module designed in this thesis.

• Section 5 describes the Sphero RVR robot recognition algorithms.

• Section 6 compares and evaluates the different methods for the Sphero RVR robot
recognition on experimental datasets.

• Section 7 presents real-time experiments to assess the application of the different
methods used for the Sphero RVR robot recognition.

• Section 8 exposes the future improvements that can be considered thanks to this
work.

• Section 9 concludes the thesis.
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Chapter 2

Related work

Swarm intelligence is attracting more and more interest. Indeed, it allows a group of
simple agents to complete complex tasks. This field of artificial intelligence can be ap-
plied with physical agents thanks to swarm robotics. Indeed, swarm robotics gives the
opportunity to a group of robots to work together to achieve complex tasks.

However, swarm robots are very simple and use only a few simple sensors. Cameras and
vision modules are still new in swarm robotics, because of the budget it requires. That is
why the state-of-the-art is currently limited in terms of computer vision in swarm robotics.

This chapter is structured as follows: Section 2.1 describes swarm intelligence and its main
principles; Section 2.2 defines swarm robotics and the corresponding main properties;
Section 2.3 exposes the different platforms used in swarm robotics; Section 2.4 describes
ROS and its application in swarm robotics; Section 2.5 exposes the current 360-degree
cameras that currently exist on the market; Section 2.6 presents the current state of
computer vision in robotics; Section 2.7 describes the current state-of-the-art of computer
vision in swarm robotics.

2.1 Swarm intelligence

Swarm intelligence is part of artificial intelligence. It is the discipline that uses systems
composed of many agents that coordinate together using decentralized control and self-
organization[8]. It focuses on the behaviour resulting from local interactions between the
agents of the system or the environment. Multiple algorithms exist and are designed to use
swarm intelligence to solve complex tasks or missions. For example, the Ant Colony Opti-
mization (ACO)[9] is able to solve complex optimization problems, such as the Quadratic
Assignment Problem (QAP) which is known as NP-hard[42].

A swarm intelligence system typically has some characteristics[8].

• The system is composed of many agents

• The agents are homogeneous, which means that they are all identical or that they
belong to a few typologies

• The interactions among the agents are based on simple rules which exploit local
information that they can directly exchange, or that they can share thanks to the
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environment

• The behaviour of the whole system is the result from the local interactions of agents,
which means that the overall behaviour self-organizes

Moreover, the swarm system, which includes the environment and the agents, should be
able to behave in a coordinated way without an external coordinator.

Lastly, a swarm intelligence system has multiple particular properties[8].

• Scalability of the system:
The swarm system are expected to scale with the size of the swarm, which means
with the number of agents in the swarm, without requiring to change the rules for the
local interactions of the agents. When the number of agents increase, performances
should not degrade. Moreover, some systems can increase their efficiency only by
increasing the size of the swarm.

• Flexibility:
This means that multiple agents can act at the same time in different places. Indeed,
since every agent is influenced by its local neighbours and the environment, the whole
system does not need to be synchronized. In fact, since it is a decentralized system,
every agent can act and can influence the behaviour of the swarm at each moment.

• Fault tolerant system:
Swarm systems are fault tolerant. Indeed, because of the size of the swarm, and
because of the decentralized and self-organized system, a fault of an individual is
diluted by the rest of the swarm.

2.2 Swarm robotics

Swarm robotics is the application of swarm intelligence with robots as agents. This re-
search field aims at designing the robots and studying their corresponding behaviour[37].
This is nevertheless an emerging research field, since the potential for the industry ap-
plications are multiple. However, it is currently hard to rely on such systems with real
robots since the results between simulated systems are not accurate enough for real appli-
cations. Moreover, it is currently hard to predict the general behaviour of the swarm only
knowing the individual ones. Indeed, by definition of a swarm, it self-organizes and the
system is decentralized, which means that no one is able to control the behaviour of the
whole swarm. However, swarm robotics is a relatively new research field and is already
proposing solutions from theoretical concepts to real prototypes.

The properties of swarm robotics systems are considered as a consensus from multiple
authors[4, 37, 45].

• Scalability:
The swarm robotics system should be able to scale with the size of the swarm, which
means that the swarm should be able to operate with different sizes of group sizes.

• Fault tolerance:
The system needs to be robust, which means that it should be able to continue
operating even if one of the agents is faulty, malfunctioning or lost.
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• Local interactions:
Robots can only have local interactions, and they can not have access to a central-
ized controller. The interactions can be done through sensors and communication
protocols.

• Global behaviour:
The behaviour of the swarm is self-organized by the robots in the swarm.

• Capabilities:
Swarm robotics systems should be able to achieve different tasks thanks to cooper-
ation among the robots.

2.3 Platforms in swarm robotics

In swarm robotics, there exists multiple platforms. The following analysis is mainly based
on the work of Nadia and Luneque[28]. The platforms can be divided into physical and
simulated robots.

2.3.1 Physical robots

First of all, physical robots are of course one of the main types of platforms used in this
field. Indeed, the robots need to be cheap, not very computationally powerful and are
most of the time quite small, in order to design experiments with a large group of robots.

One of the most known robots in swarm robotics is the e-puck [26]. The robot is shown
on Figure 2.1. One of the main advantages of the e-puck is that it is very simple to
use. Moreover, it is already implementing a CPU and sensors. It also allows infrared
communication. Moreover, there exists some extensions for the e-puck, allowing to have
more features on the robot, such as the omnidirectional vision turret. Also, it is affordable
on a budget aspect, which makes it one of the best candidates for research in swarm
robotics.

Figure 2.1: An e-puck robot

There also exists the Kilobot [35], which is a very small and low-cost robot. It is aimed to
be used for experiments with a large group of agents. It moves thanks to vibrations, and
is not moving using wheels. This explains the low cost of this robot. It can be seen on
Figure 2.2.
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Figure 2.2: A Kilobot robot

Of course, there exists a lot of robots for swarm robotics, such as the S-bot [10], which can
aggregate and connect with other similar robots, or the marXbot [3].

2.3.2 Simulators

Since conducting experiments with physical robots can be expensive in terms of time or
budget, simulators are very popular in swarm robotics[37].

Multiple platforms for simulations of swarm robots currently exist. These can be 2-
dimensional or 3-dimensional, and they are able to represent robots.

For example, Gazebo[14] is a very well-known free 3-dimensional simulator for a popula-
tion of mobile robots.

There also exists ARGoS [30], which is a multi-physics robot simulator. This can be used
to simulate large-scale swarms of robots efficiently. It can be upgraded through multiple
plugins to fit different needs.

2.4 ROS

For implementation of controllers for robots, and more specifically swarm robots, con-
trollers with ARGoS are developped. However, there exist some frameworks now in order
to ease the implementation for robots. The Robot Operating System (ROS) is a frame-
work that helps to build robot applications.

ROS[41] allows to have an architecture organized in nodes and topics. Topics are com-
mon places in the computer, where nodes, that are the current programs executed on the
robot, can either publish or subscribe. This means that any node can send data through
a given topic, by publishing messages, or receive data from it, by subscribing to the topic.
This allows data exchange between the nodes.

Multiple works involving ROS exist in robotics. For example, Karimi et al.[20] and Araújo
et al.[2] make use of ROS as their framework for a mobile robot platform for research and
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Figure 2.3: HexCamera Figure 2.4: Ladybug5+

education.

There also exist some works using ROS in swarm robotics. Indeed, Kegeleirs, Garzón
Ramos, and Birattari[21] use ROS as the framework to implement the controller for a
swarm of e-pucks mapping its environment. That is also the case for Ackerman et al.[1]
with their work that aims at producing prototypes for robot swarms that would collect
resources on the surface of Mars. This is done in the context of a swarm robotics pro-
gramming challenge where the swarm of robots needs to search for, pick up and drop off
resources in a collection zone.

2.5 360-degree cameras

360-degree cameras are more and more popular on the market.

For example, the HexCamera1 is a module containing 6 cameras with a DFOV of 118°. It
can be organized such as the 6 cameras are looking in a different direction, to get a 360°
view, as shown by Figure 2.3. This device is currently on sale for $1499 on this website.

Teledyne FLIR also proposes some vision modules for a more professional use. For exam-
ple, the Ladybug5+2, shown on Figure 2.4, is an omnidirectional camera composed of 6
cameras placed with 5 cameras on the same plane, looking in different directions, and a
last camera looking up. This device can reach a 8k resolution while keeping a frame rate
of 30FPS. The price is not indicated on the website itself because it requires to request a
quote, but it should cost around $20,0003.

1HexCamera by e-con Systems. URL: https://www.e-consystems.com/
multiple-csi-cameras-for-nvidia-jetson-tx2.asp

2Ladybug5+ by Teledyne FLIR. URL: https://www.flir.com/products/ladybug5plus/
3see https://360rumors.com/flir-ladybug5-8k-360-camera-has-six-23-inch-sony-sensors/

#:~:text=Ladybug5%2B%20is%20now%20shipping.,got%20a%20quote%20of%20%2419%2C995.
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A cheaper option is the GoPro MAX 4, currently on sale for $399 on the official website. It
proposes a 360° vision module, using 2 fisheye cameras covering a whole view by projecting
the images on a sphere. This kind of cameras is very popular nowadays because it allows
to have a 360-degree view camera at a reasonable price for personal use. However, this
implies distortion and it requires very high quality cameras to still get a high resolution
on every part of the image, and even with that, there exists some blurry parts on the
image.

2.6 Computer vision in robotics with 360-degree vision
module

Currently, applications of computer vision using 360-degree vision module in robotics are
numerous.
Kim, Jung, and Park have made a robot able to map an environment with a 360-degree
view[22]. It uses 4 fisheye cameras and then blend the images in order to project them on
a cube around the robot. A robot using 2 fisheye cameras is described by Sadowski[36].
It also allows to have a 360-degree view of the scene.

There also exists some vision modules using other sensors than just cameras.

For example, Silva, Roche, and Kondoz have made a robot using a LiDAR and a fisheye
camera to get redundancy and hence, to have more robust data[38].

Ding, Liu, and Li make use of RGB-D cameras to get a very wide panorama of images
with depth information in it[7]. This kind of cameras is using IR light to estimate the
depth.

Sumigray et al. have created a way to create a 6DoF environment visualization for a
teleoperated robot[43]. It uses 6 fisheye cameras and 2 RGB-D cameras to create this VR
environment. This configuration produces very good results.

2.7 Computer vision in swarm robotics with 360-degree
vision module

The state-of-the-art in computer vision using 360-degree vision module in swarm robotics
is limited. However, there still exists some works about a vision module for computer
vision in swarm robotics.

Indeed, there exists some papers about vision modules implemented on swarm robots.
However, for most of them, the vision module basically relies on 1 camera looking in a
given direction[5, 15, 51, 23]. Papers about a 360-degree vision module also exist. For
example, Garzón Ramos and Birattari have designed a swarm of robots able to detect
colours and to behave according to the colour perceived and emitted from other robots[13].
It uses the omnidirectional vision turret of the e-puck robot, which is basically a fisheye

4GoPro MAX. URL: https://gopro.com/en/us/shop/cameras/max/CHDHZ-202-master.html
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camera. One of the main problem of their approach is that the image from the camera
is completely distorted. This only allows to recognize colours, instead of more complex
features.

Concerning vision modules containing more than one camera, there exists a paper about
an 360-degree vision module for aerial robot swarms[16]. Recently, a swarm of robots
including this module has been designed[18]. It contains 4 cameras to cover a 360-degree
view, and an additional one to cover the area above.
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Chapter 3

The Sphero RVR robot

The Sphero RVR robot1 is an educational and programmable robot sold by Sphero. It is
a relatively new robot, introduced in early 2019. The robot includes multiple sensors and
actuators. The Sphero RVR robot can also implement extra modules and sensors.

Currently, there is no known application of swarm robotics using the Sphero RVR robot
as a platform.

This chapter is structured as follows: Section 3.1 describes the hardware architecture of
the Sphero RVR robot; Section 3.2 details the software architecture of the Sphero RVR
robot; Section 3.3 analyses the robot as a platform in swarm robotics;

3.1 Hardware architecture

The Sphero RVR is an educational and programmable robot. It can implement code and
instructions using the Sphero Edu application. The Sphero RVR robot can be seen on
Figure 3.1.

The Sphero RVR is a robot already implementing a set of sensors and actuators. It
includes[32] :

• Sensors:

– Ambient light sensor

– RGB sensor with normalizing LED and focus lens

– Full 9-axis IMU - accelerometer, gyro, magnetometer

– Infrared sensor

– High-resolution 20-pole magnetic encoders

• Actuators:

– 10 individually addressable RGB LEDs

– 2 high-power compact motor using high-precision involute gears with vibration
and noise dampening

1Sphero RVR. URL: https://sphero.com/products/rvr
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Figure 3.1: A Sphero RVR robot

It can also be noted that the wheels are covered with an hypergrip all-terrain treads,
allowing a better grip on the floor.

The Sphero RVR robot also includes a 4-Pin UART port (RX, TX, GND, 5V, with 3.3V
signals). This means that in addition with the actuators and sensors that the Sphero
RVR already includes, external boards can be attached, including micro:bit2, Arduino3

and Raspberry Pi4 boards.

3.2 Software architecture

The controller of the Sphero RVR robot can be accessed through the Sphero Edu appli-
cation. It allows to either program the robot, or remotely control it thanks to an external
device using a Bluetooth connection.

The Sphero RVR robot also implements the Sphero Public SDK [40]. It allows, thanks
to an API available in Python and Javascript, to get access to the sensors and actuators
from a software level. Using an external board, it is hence possible to control the robot,
by interacting with the API responsible for the sensors and actuators of the Sphero RVR
robot.

2micro:bit. URL: https://microbit.org/
3Arduino. URL: https://www.arduino.cc/
4Raspberry Pi. URL: https://www.raspberrypi.org/
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3.3 System analysis

The Sphero RVR robot is a relatively new robot. It already includes very common sensors
and actuators. Moreover, its design and motors allow the robot to accurately move in
different environments. Lastly, the 4-Pin UART port gives the possibility to use an
external board. Thanks to the Sphero Public SDK, it gives the possibility to adapt the
controller of the robot to the wanted application. However, even if the Sphero RVR robot
presents a lot of advantages, it has never been used in the context of swarm robotics.
The robot is relatively new. Since this robot has never been used before in swarm robotics,
there is less support and documentation about this robot, and its efficiency in this field of
research has not been proven yet compared to other platforms such as the e-puck robot
or the Kilobot.

Also, the Sphero RVR robot has a length of 18cm, a width of 22cm and a height of 11cm.
Compared to other robots used in swarm robotics, it is relatively voluminous. Indeed, for
example, the e-puck robot has a diameter of 7cm with a height of 5.5cm. For comparison,
the surface taken by the Sphero RVR robot is more than 10 times more than the area of
the e-puck robot. This could be a limitation in the context of swarm robotics. Indeed,
usual experiments require of course a swarm of robots. This means that multiple robots
need to be involved. These robots are required to act and behave in a given environment.
However, the space required by an experiment with a swarm of 10 e-puck robots is much
lower compared to the area required by the same experiment with a swarm of 10 Sphero
RVR robots. This is of course a strong limitation for researchers that want to work in
swarm robotics.

However, even with these downsides, the Sphero RVR robot also have very good points.
Indeed, the motors are very powerful and accurate. There is also the presence of high-
resolution 20-pole magnetic encoders, which allow precise measurements concerning the
movement of the robot. Moreover, the Sphero RVR already contains multiple sensors,
listed before. These type of sensors allows usual experiments in swarm robotics.

That is why the Sphero RVR robot is the platform considered in this master thesis.
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Chapter 4

360-degree vision module

A vision module is composed of a microprocessor and cameras. In order to allow the
robot to get images thanks to the cameras, and to extract features such as the robot
recognition, one needs to choose the correct components and the correct design for the
vision module. Moreover, in order to have a 360-degree vision module, multiple cameras
need to be selected.

The setup of the microprocessor is described in Appendix C, and the communication be-
tween the 360-degree vision module and the microprocessor considered as the controller
of the robot is detailed in Appendix D.

This chapter is structured as follows: Section 4.1 describes the microprocessor chosen for
this vision module; Section 4.2 details the different cameras considered for the conception
of the vision module; Section 4.3 exposes the design of the vision module for the Sphero
RVR robot; Section 4.4 describes the vision module prototype built in this thesis.

4.1 Microprocessor

As explained in the dedicated section, the Sphero RVR robot can work with external
boards, such as the micro:bit, Arduino and Raspberry Pi boards. Since these are the
recommended boards that can be used with the Sphero RVR1, the discussion is focused
on these 3 types of boards.

micro:bit boards aim at giving easy programming and coding for educational purposes.
This kind of boards are quite simple and gives less freedom for complex purposes. For
instance, it can not install a full operating system, which is annoying in the context of
this thesis, where ROS, a very useful framework for swarm robotics, could be used.

Arduino boards uses GPIO pins to control sensors and actuators. This already have more
computational power than micro:bit boards. However, it still can not install an operating
system.

Raspberry Pi boards are very attractive since it allows to have a much higher computa-
tional power, while allowing to fully install an operating system. This means that ROS

1Sphero RVR FAQ. URL: https://sdk.sphero.com/docs/faqs/rvr_faq
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can be used on Raspberry Pi boards, which is a huge advantage. However, in terms of
budget, Raspberry Pi boards are more expensive than Arduino and micro:bit ones. Lastly,
since the vision module aims at extracting features using stream of images, a high com-
putational power is required.

Regarding the current available options, a Raspberry Pi board is chosen in the context of
this master thesis. Indeed, it allows to use ROS, but also to have the highest computa-
tional power between the three options. The Raspberry Pi Model B2 is selected for this
vision module.

4.2 Cameras

Before reporting the cameras, it is important to say that these should fit the Raspberry
Pi 4 Model B previously selected. Indeed, the cameras will be directly connected to the
microprocessor. However, there are some hardware restrictions. In the datasheet of the
Raspberry Pi, ports are limited.

• 1 Camera Serial Interface (CSI) port

• 4 USB ports

Indeed, the unique CSI port, which is a very reliable and fast way of transmitting images
data, implies that there would be at most 1 camera using this port. The 4 USB ports are
less vital than the uniqueness of the CSI port but it also gives the information that at
most 4 devices can be connected through this port. However, it is still possible to use a
USB hub in order to get more devices, but it will decrease the bandwidth and hence, the
rate at which data is transmitted.

Hence, the cameras reported are separated between cameras having a CSI port, and those
which supports USB connection.

4.2.1 CSI cameras

The CSI cameras are reported in Table 4.1.
2Raspberry Pi 4 Model B specifications. URL: https://www.raspberrypi.com/products/

raspberry-pi-4-model-b/specifications/
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Name Raspberry Pi
Camera Module (G)3

OV5647 Camera Board
w/ CS Mount for
Raspberry Pi (B0032)4

Raspberry Pi
Camera Module v25

Picture

Frame rates

QSXGA (2952x1944)@15fps
1080p@30fps
960p@45fps
720p@60fps
VGA (640x480)@90fps
QVGA (320x240)@120fps

1080@30fps
720@60fps

Max
resolution 2592x1944 2592x1944 3280x2464

Focal length Adjustable 3.04mm
Field of view 160°D (120°H) 62.2°H x 48.8°V

Dimensions
25mm x
24mm x
20mm (mesured)

36mm x
36mm x
38mm (measured)

23.86mm x
25mm x
9mm

Availability Currently available
(RobotShop)

Currently available
(RobotShop)

Currently available
(Mouser)

Price 27e00 27e84 28e33

Table 4.1: CSI cameras specifications

Multiple points need to be taken into account when comparing the cameras in the context
of a vision module for swarm robotics.

In this case, the price is of course a very important parameter, since a difference for one
camera is multiplied for the whole robot and even more for the whole swarm. In this
analysis, the differences in price are very low, which means that it will not be a critical
factor for the choice of the camera.

The second parameter that need to be taken into account is the field of view. Indeed,
the wider the view of the camera, the more it can see. However, this also means, for
similar resolution, a lower quality of image for a given field of view. In this table, it can
be seen that the Raspberry Pi Camera Module (G) has a field of view of 160°. In fact, it
is considered as a fisheye camera, which simply means it aims a shooting images with a
very large field of view.

3Raspberry Pi Camera Module (G) specifications. URL: https://www.robotshop.com/eu/en/
raspberry-pi-camera-module-g-fisheye-lens.html

4OV5647 Camera Board w/ CS Mount for Raspberry Pi (B0032) specifications. URL: https://www.
arducam.com/downloads/modules/RaspberryPi_camera/OV5647DS.pdf

5Raspberry Pi Camera Module v2 specifications. URL: https://www.robotshop.com/media/files/
pdf/70812916-datasheet.pdf
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The frame rates and the resolutions at which the camera can capture images is also a very
important parameter. Indeed, the best is to have high resolutions at high frame rates.
However, it can be seen that a trade-off between the two is inevitable. The table shows
that the cameras can work at various frame rates and resolutions, and that the OV5647
Camera Board w/ CS Mount for Raspberry Pi (B0032) has a large panel of configurations.

The focal length is also an important factor. Indeed, in order to have sharp images, the
focal length must correspond with the distance at which the relevant elements will appear.
However, it is hard to know in advance this distance. That is why an adjustable focal
length can be very interesting, such as what is proposed by the Raspberry Pi Camera
Module (G).

The maximum resolution can also be an interesting parameter. Indeed, even if the frame
rate is very low to reach such resolution, it can be interesting in case of capturing images
with a very high resolution occasionally. All the cameras can reach a very high resolution,
and the Raspberry Pi Camera Module v2 can even reach 8MP.

The dimensions can also be considered, since the cameras need to be placed on the Sphero
RVR robot. However, while it does not take an abnormal space, this is not a critical pa-
rameter.

Lastly, the availability of the camera is of course important. If the camera is not available,
it is not possible to use it in the vision module. The three cameras are available in online
shops.

4.2.2 USB cameras

The USB cameras are reported in Table 4.2.
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Name DFRobot
FIT07016

M5Stack
U082-X7

DFRobot
SEN02868

DFRobot
DFR06209

Waveshare
IMX335
5MP USB
Plug-and-Play
Camera10

Picture

Frame rates
2592x1944@20fps
1080p@30fps
720p@30fps

Max
resolution 640x480 2048x1536 2592x1944 1600x1200 2592x1944

Focal length Adjustable Auto-focus 3.91mm
Field of view 66.5°D 72°D 106°D 92.6°H 48.6°V

Dimensions
30mm x
25mm x
21.4mm

48mm x
24mm x
15mm

65mm x
9mm x
5mm

41mm x
21mm x
6.5mm

38mm x
38mm x
36.98mm

Availability
Currently
available
(Mouser)

Currently
available
(Mouser)

Soon
available
(31/12/2021
on Mouser)

Currently
available
(Mouser)

Soon available
(23/02/2022 on
RobotShop)

Price 7€44 15€71 21€88 27€87 43€21

Table 4.2: USB cameras specifications

The same analysis as for CSI cameras is done for the USB ones.

The prices are much more uneven. Indeed, the range of price goes from less than 10€
to more than 40€. For this master thesis, 40€ is quite expensive for the vision mod-
ule, which is already a bad point for the Waveshare IMX335 5MP USB Plug-and-Play
Camera. Keeping the budget as low as possible while having interesting capabilities is of
course the goal when selecting components.

Concerning the field of view, there are no fisheye cameras, even if the Waveshare IMX335
5MP USB Plug-and-Play Camera has a wider field of view than the rest of the cameras.
It is however not a critical factor.

The frame rates and resolutions are not mentioned in most of the datasheet of the cameras.
This will hence not be taken into account and be determining for the selection of cameras.

Concerning the focal length, the M5Stack U082-X has an adjustable focal length, and
6DFRobot FIT0701 specifications. URL: https://www.dfrobot.com/product-2089.html
7M5Stack U082-X specifications. URL: https://docs.m5stack.com/en/unit/timercam_x
8DFRobot SEN0286 specifications. URL: https://www.dfrobot.com/product-1956.html
9DFRobot DFR0620 specifications. URL: https://www.dfrobot.com/product-1931.html

10Waveshare IMX335 5MP USB Plug-and-Play Camera specifications. URL: https://www.
waveshare.com/imx335-5mp-usb-camera-a.htm
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the DFRobot SEN0286 can auto-focus. Auto-focusing means that the focal length is ad-
justable, and can automatically adjust depending on the image captured by the camera.

The maximum resolution is also a parameter assessing the quality of images that the
camera can capture. The DFRobot FIT0701 can only take images with a resolution of
640x480 at most, which is relatively low. The rest of the cameras have relatively high
resolution.

In terms of size and dimensions, it can be observed that the DFRobot SEN0286 is very
small. Indeed, it is quite long, with a length of 65mm, but the width and height make it
very portable and relatively not cumbersome.

All the cameras are currently available, except for the DFRobot SEN0286 and the Wave-
share IMX335 5MP USB Plug-and-Play Camera. The DFRobot SEN0286 can still be
available quite soon, while the Waveshare IMX335 5MP USB Plug-and-Play Camera re-
quires 2 more months.

As a last remark, the M5Stack U082-X is using a software layer on top of the module,
meaning that it implies a dependency to this software if this camera is used.

4.3 Design

In order to design the vision module, a 3D modelling software is used. In this thesis,
Blender [6] will generate the 3D models. Indeed, it is an open and free 3D modelling
software. Moreover, it gives the opportunity to create cameras inside of it, and to see
through them. The Sphero RVR robot has been modelled and the cameras are rendered
as boxes with a Blender camera in it.

For the design itself, there is a main constraint for the module. Indeed, the final robot
will also have a LiDAR sensor, rotating at the top of the car. Hence, it is not possible to
place a module with all the cameras very close to the centre of the robot, as a compact
vision module. The idea is to split the cameras over the Sphero RVR robot, in order to
have a working vision module, compatible with the use of a LiDAR sensor. However, this
implies a bigger offset from the center, which automatically leads to blind spots at closer
range.

Also, compared to what Sadowski[36] did, which was using a vision module with 2 fisheye
cameras back-to-back to cover the 360-degree view, the quality of the images need to be
high enough in order to extract interesting features such as the robot recognition. Con-
sequently, the design proposed by Sadowski is not selected. Indeed, even if the fisheye
cameras allow to have a much wider field of view, it decreases the quality of the image
because of the distortion and the very wide angle of the camera for the same resolution
as other cameras.

Also, the region of interest for this robot will be on the front of it. Indeed, most missions
in swarm robotics involving vision consider that the region of interest is in front of the
robot[15]. Consequently, this part needs a particular attention and need to have very high

22



quality images.

In the context of this master thesis, the price of the selected cameras needs to be as low
as possible, while allowing extracting interesting features such as the robot recognition in
a 360-degree view. Three selections of cameras are considered in this thesis.

1. 1 Raspberry Pi Camera Module (G) and 3 DFRobot SEN0286
Estimated cost = 92e64

2. 1 Raspberry Pi Camera Module (G), 1 Waveshare IMX335 5MP USB Plug-and-Play
Camera and 2 DFRobot SEN0286
Estimated cost = 113e97

3. 1 Raspberry Pi Camera Module (G) and 2 Waveshare IMX335 5MP USB Plug-and-
Play Camera
Estimated cost = 113e42

As it can be seen, the CSI camera Raspberry Pi Camera Module (G) is always chosen. In-
deed, its large field of view allows getting information for a very wide angle. However, this
will also imply more distortion, so the quality of the information will be slightly decreased.

All the considered designs are described in Appendix A. Only the most interesting ones
are reported here.

4.3.1 Selection of cameras 1

This selection contains 1 Raspberry Pi Camera Module (G) and 3 DFRobot SEN0286, and
is estimated to cost 92e64.

4.3.1.1 Asymmetric placement of cameras oriented upwards

The design can be seen on Figure 4.1.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure 4.1: Selection of cameras 1 - Asymmetric placement of cameras oriented upwards

Compared to a basic asymmetric design, where the cameras are placed oriented to the
front of the Sphero RVR robot, the cameras are a little bit oriented to the top. As it could
have been seen on Figure A.2-d, the cameras have a part of the image always seeing too
close. This design allows seeing more upwards than before, and also gives the opportunity
to get features that are not at the ground level.

In the context of this thesis, the robot recognition is the focus in terms of features.
However, future interesting features can be extracted thanks to the cameras oriented
upwards.

4.3.1.2 Asymmetric placement of cameras with bigger offset from the centre
oriented upwards

The design can be seen on Figure 4.2.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure 4.2: Selection of cameras 1 - Asymmetric placement of cameras with bigger offset
from the centre oriented upwards

This design tries to take into account the problem stated by the design described in
subsubsection 4.3.1.1. However, compared to the design detailed by a similar configuration
where the cameras are not oriented upwards, the offset required from the centre is lower
to avoid looking directly at the ground.

4.3.2 Selection of cameras 2

This selection contains 1 Raspberry Pi Camera Module (G), 1 Waveshare IMX335 5MP
USB Plug-and-Play Camera and 2 DFRobot SEN0286, and is estimated to cost 113e97.

4.3.2.1 Asymmetric placement of cameras oriented upwards

The design can be seen in Figure 4.3.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure 4.3: Selection of cameras 2 - Asymmetric placement of cameras oriented upwards

This is an asymmetric design, where the cameras are more oriented to the front of the
Sphero RVR robot, but the cameras are also oriented more upwards. The idea is the same
as the design described by subsubsection 4.3.1.1. This way, the cameras can have more
useful information.

4.3.2.2 Asymmetric placement of cameras with bigger offset from the centre
oriented upwards - version 1

The design can be seen in Figure 4.4.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure 4.4: Selection of cameras 2 - Asymmetric placement of cameras with bigger offset
from the centre oriented upwards - version 1

This design follows the same idea as subsubsection 4.3.1.2. This takes into account a
bigger offset and the cameras oriented upwards.

4.3.2.3 Asymmetric placement of cameras with bigger offset from the centre
oriented upwards - version 2

The design can be seen in Figure 4.5.

27



(a) Short range (b) Long range

(c) From above (d) From the right

Figure 4.5: Configuration 2 : Asymmetric placement with bigger offset oriented upwards
- version 2

This design is nearly the same as the previous one described in subsubsection 4.3.2.2, but
it includes the idea reducing the dead angles in the front of the car. This way, the vision
module is able to have a better vision in the front, while having a wider view than before.

4.3.3 Selection of cameras 3

This design has 1 Raspberry Pi Camera Module (G) and 2 Waveshare IMX335 5MP USB
Plug-and-Play Camera, and costs 113e42.

2 different designs are considered, that can be found in Appendix A. However, this
selection of cameras does not lead to any satisfying design.

4.3.4 Design discussion

The designs using the third selection of cameras are risky. Indeed, in the considered
designs that can be found in Appendix A, the very front of the car is not covered by a
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Figure 4.6: Vision module prototype

camera having as an optical axis the direction of the car.

The second selection of cameras leads to very interesting configurations. However, the
camera Waveshare IMX335 5MP USB Plug-and-Play Camera is relatively big compared
to the other ones. Moreover, this only allows to have a better vision on the back left and
right of the car, which are very unlikely to have very interesting features for the robot.
In addition, this second selection is the most expensive one.

Hence, the designs using the first selection of cameras are considered. Out of them, the
choice has been done on the design described by subsubsection 4.3.1.2 because it allows
to have an image full of useful pixels. Indeed, there are much less useless pixels seeing
the wheels or the ground directly, while giving the chance to the vision module to get
information from higher places.

4.4 Prototype

With the design selected, a vision module prototype was built. At first, this prototype
aimed at having the cameras placed exactly at the same spot as described by the design
selected in the section 4.3. However, because of technical issues, it was not possible to
reach the exact same configuration. In order to still assess the effectiveness of the vision
module, a simplified prototype was built. The vision module alone is presented on Fig-
ure 4.6, and is shown on the Sphero RVR robot on Figure 4.7.

The cameras selected are the same as the ones described in the chosen design, which
is detailed in subsubsection 4.3.1.2. Moreover, it follows the same idea of having the
cameras focused on the front part of the Sphero RVR robot, while having the fisheye
camera looking at the back.
This prototype will be modified in the future in order to integrate other modules for
the Sphero RVR robot. Indeed, this prototype does not currently take into account the
controller microprocessor for instance. However, it allows conducting experiments to
assess the efficiency of the vision module.
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Figure 4.7: Vision module prototype on the Sphero RVR robot
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Chapter 5

Robot recognition

Robot recognition is a very promising feature in the context of swarm robotics. Indeed,
it allows the robots to know where are their peers, and to better behave in the swarm
through cameras. Three methods are considered in order to achieve robot recognition
using the 360-degree vision module. The implementation is done through ROS. The built
package is available on github1.

In this thesis, three different methods are considered for the robot recognition. First, a
method based on colour segmentation using the LEDs of the Sphero RVR robot allows
to estimate the robot position. Secondly, the ArUco[12, 33] library makes use of specific
markers in order to estimate the position of these markers in space. Lastly, a method using
supervised learning with a neural network is implemented in order to recognize the robots.

Once every camera has applied the robot recognition algorithm, the results can be com-
piled in order to deduce the robot recognition in the robot coordinate system. Indeed,
each camera gives relative positions of the robots, but the objective is to have a global
robot recognition for the whole robot, which includes all the cameras.

This chapter is structured as follows: Section 5.1 describes the method based on a colour
segmentation using the LEDs of the Sphero RVR robot; Section 5.2 details the method
using the ArUco library and markers; Section 5.3 exposes the method using a neural net-
work to detect and localize the robots; Section 5.4 compares the three methods described
in the previous sections from a theoretical point of view; Section 5.5 describes how the
relative localization from the cameras using the methods detailed before are compiled into
the robot coordinate system.

5.1 Colour segmentation

The colour segmentation is a simple algorithm in image processing. Indeed, it allows to
directly segment area containing the reference colour in an image.

5.1.1 Methodology

The LEDs placed all around the robot are used in order to apply colour segmentation
with the Sphero RVR robots. These LEDs are shown on Figure 5.1.

1ros_rvr_recognition package. URL: https://github.com/ftrouill/ros_rvr_recognition
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For colour segmentation to work, a reference colour is determined. Indeed, the colour
segmentation works by removing everything on an image that is too different from a
given colour. With this methodology, knowing that only the robots contain this reference
colour, it is possible to only segment the LEDs on the images. In this master thesis, the
green colour is chosen. All the LEDs are displaying this reference colour.

Once the reference colour is chosen, the colour segmentation can be applied on the image.
It segments the LEDs, but it also keeps some noise in the detection. In order to get rid of
the noise, a threshold on the area of the segmented part of the image is applied. Indeed,
the small areas are considered as noise, and should not be considered as LEDs. In fact,
LEDs most likely have a larger surface area than noise. A segmentation of LEDs can be
seen on Figure 5.2

Once the segmentation is done and noise filtered, only the LEDs are kept in the mask.
However, a new problem appears. Indeed, a single Sphero RVR robot can contain more
than one LED, which means that every LED doesn’t necessarily correspond to a Sphero
RVR robot, as it can be seen on Figure 5.1. Consequently, an algorithm on top of the
colour segmentation is designed in order to gather the LEDs belonging to the same Sphero
RVR robot.

The algorithm is described in detail in Appendix B. The main idea of this algorithm is
to first identify the nature of the LED segmented. Indeed, the LEDs of the Sphero RVR
have different shapes, depending on the LED. For example, the LEDs on the front face of
the robot are much different than the ones on the sides and on the back face. For clarity,
the LEDs on the front face are called eyes, and the other ones are named lines. Once the
nature of the LEDs are determined, one can cluster them knowing the placement of the
LEDs on the real Sphero RVR robot.

Once the segmented LEDs are clustered, the position of the robot can be estimated. The
horizontal displacement is estimated knowing the centre of the cluster of LEDs. Then,
the distance between the robot and the camera is estimated thanks to the area of the
segmented LEDs, which allows to estimate the real position of the robot. This implies a
calibration in order to estimate the relation between the area of the segmented LEDs and
the real distance between the camera and the robot.

5.1.2 Limitations

The very first constraint is that the Sphero RVR robots need to display the reference
colour using the LEDs, and can never change. This means that the LEDs can not be used
for anything else.

Moreover, this detector also assumes that only the Sphero RVR robot contains the ref-
erence colour for the segmentation. Indeed, if there is another element containing this
colour, the detector can misinterpret the segmented area and could consider it as a peer,
while it is in fact just an element in the environment.

This detector only works under the assumption that the colour is well segmented. Hence,
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Figure 5.1: LEDs on a Sphero RVR robot

Figure 5.2: Colour segmentation using the LEDs of the Sphero RVR robot

it is sensible to change of light and colours that can occur in the environment.

Since the robot contains multiple LEDs, it can also happen that the LEDs clustering
algorithm fails to correctly group the segmented LEDs. This can of course lead to errors
in robot recognition.

The size of the robot is also hard to compute. Indeed, since the LEDs are already relatively
small compared to the size of the robot, any noise can lead to a very different estimate
for the size of the robot.

5.2 ArUco library

ArUco[12, 33] library is developed to allow Augmented Reality applications based on
OpenCV. This work includes in particular localization in 3D space of specific markers.
Indeed, it is able to estimate both the position and the orientation of such markers. An
ArUco marker can be seen on Figure 5.3.
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Figure 5.3: An ArUco marker

5.2.1 Methodology

In order to use the ArUco library, the ArUco markers need to be placed on the Sphero
RVR robot. Since the markers need to be seen whatever the orientation of the robot, 1
marker is placed on every face of the Sphero RVR robot. The placement of the ArUco
markers is described on Figure 5.4.

Figure 5.4: Placement of the ArUco markers on the Sphero RVR robot

Once the placement of the markers is chosen, the idea to estimate the robot position is to
retrieve the estimated position and orientation of the visible markers and to add an offset
to the position of the marker according to its orientation to get the centre of the Sphero
RVR robot.
Also, it could happen that multiple markers belonging to the same robot are detected.
However, it is not an issue, compared to what was described with the colour segmentation
using the LEDs. Indeed, each ArUco marker is uniquely identified. This means that
markers with the same ID can be placed on the robot, meaning that it is possible to
easily differentiate markers that belong to different robots.

5.2.2 Limitations

The ArUco library is a very reliable way of estimating position and orientation of mark-
ers. However, 2 strong assumptions are required in order to be able to work with ArUco
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markers.

Indeed, the main requirement of this method is that markers need to be placed on the
Sphero RVR robot. This means that the robots can not be recognized without this addi-
tional help.

Moreover, it also relies on the fact that the markers are fully visible. Indeed, if the marker
is not visible enough, or not at all, it is of course not possible for the ArUco library to
estimate the position of the marker. Consequently, the position of the robot can not be
inferred.

5.3 Supervised learning with a neural network

Neural networks are a very useful tool in computer vision. Indeed, they allow extracting
features that can not be identified by more conventional methods. To achieve object
recognition, supervised learning is required. This means that the neural network works
by training on a given dataset, and then generalizes its knowledge to other cases that are
not seen in the training dataset.

5.3.1 Methodology

Since no dataset for Sphero RVR robot recognition exists, a dataset creation protocol
is provided in Appendix E. It describes how to generate a complete dataset for robot
recognition in the context of swarm robotics. This protocol has been used in order to
create a dataset for the Sphero RVR robot recognition.

In order to generate a neural network able to train on a dataset, one could create a neural
network from scratch. However, there already exists neural network designed for object
detection. Indeed, instead of creating a new neural network, it is possible to start from
an existing neural network already trained on datasets. This is what is called transfer
learning, because the neural network starts its training with already some knowledge,
which is very powerful and advantageous for the training phase[48]. Indeed, it allows to
not start from nothing and to have a working architecture for the supervised learning.

Multiple frameworks exist in order to design and implement neural networks. In the con-
text of this thesis, TensorFlow 2 is used. Indeed, it is a very widely used framework for
machine learning. Moreover, it exists a version designed for mobiles and edge devices,
called TensorFlow Lite. Since a Raspberry Pi is used in this thesis, it is very interesting
to know that this framework is easily portable.

There exists numerous neural networks designed for object detection[29]. For example,
YOLOv3 is considered as a state-of-the-art real-time object detection system[31]. How-
ever, a new type of object detection system called EfficientDet has been created by Google
lately[44]. Compared to YOLOv3, EfficientDet is as accurate, but is more efficient in terms
of operations required. That is why this architecture is chosen in the context of this mas-
ter thesis. Multiple models exist using this architecture. They balance the accuracy of

2Tensorflow. URL: https://www.tensorflow.org/
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Figure 5.5: Detected robot using a neural network

the model with its latency. In the context of this thesis, since the latency is a critical
factor in real-time applications, the EfficientDet-D0 model is chosen. It corresponds to
the fastest model.

Using a trained neural network for object detection, it is now possible to estimate the
position of the robot. Indeed, the detected boxes on the image gives information about
the real position of the object. The area of the box gives an information about the depth,
knowing that the robot has a constant size, and the horizontal position of the box on the
image allows to estimate the relative horizontal displacement of the robot. A detected
robot is shown on Figure 5.5.

5.3.2 Limitations

The main limitation with using neural networks with supervised learning is that it is
data-dependant. Indeed, the neural network is trained on a given dataset. The neural
network will only be reliable in the environments described in the dataset. Hence, one
should give the scope of environments in which this method should work. For this thesis,
it has been reduced to the Sphero RVR arena at IRIDIA[17], which corresponds to the
environment described in the dataset produced thanks to the protocol in Appendix E.

A second limitation using neural networks is the latency. Indeed, a neural network asks
for more computational power than other traditional methods. It can then be an issue if
the speed required for the detection is higher than what the model can actually do.

5.4 Comparison of the methods

The three methods described just before can be compared from a theoretical point of view.
a feature table can be reported in order to allow a comparison between the methods.
Regarding the features described in Table 5.1, one should know what are typical ex-
periments in swarm robotics. One very common behaviour for swarm of robots is the
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Colour ArUco Neural network
Distance estimation × X ∼
Direction estimation ∼ X X
Single robot detection ∼ X X
Multiple robots detection ∼ X ∼
Very close robots detection ∼ × ∼
No assumption on robots × × X
No assumption on environment × X ∼
Fast processing X ∼ ×

Table 5.1: Feature table between the 3 methods (X= correct, ∼ = approximate, × =
incorrect)

aggregation[37]. This means that experiments involves multiple robots that can be rela-
tively close from each other.

Regarding the feature table reported on Table 5.1, one could say that the best choice
is the method using the ArUco library, assuming that the appearance of the robot can
be modified and that the robots are not too close from each other. Indeed, in terms of
position estimation, it is theoretically the best candidate. Moreover, since experiments
in swarm robotics involves multiple robots, it is easier to identify each robot using the
ArUco markers. However, if the markers are not visible enough, the robot that wear
these markers will not be recognised. This could be the case when the robots are very
close from each other. It can happen when the robots are aggregating or if the robots
are too close from the camera, since it cannot see all the tags. Indeed, it could happen
that the ArUco marker is not fully visible, and only a part of it is captured by the cameras.

On the other hand, the method using a neural network could also be a good fit in the
context of swarm robotics. The only bad point, which is very important in the context
of real-time experiments, is the speed of the algorithm. Indeed, neural networks requires
more time to process than the two other methods. If the time spent is too high, this
method will not be suitable enough for robot recognition in real-time in the context of
swarm robotics. However, besides this disadvantage, this method could allow position
estimation in every case, without any additional modification of the robots. Moreover, it
could also identify robots that are very close.

5.5 Robot recognition compilation from cameras

Once the cameras have estimated the relative position of the robots, the results need to
be merged together in order to have a robot recognition for the whole Sphero RVR robot.
Indeed, the methods mentioned in the section 5.1, section 5.2 and section 5.3 are applied
for each camera. Hence, it gives an estimation of the robot positions relative to each
camera. Consequently, these results need to be compiled in order to have a global robot
recognition for the whole robot.

Knowing the position of the cameras, it is easy to retrieve the position of the recognised
robots in the system of coordinate of the robot. Indeed, knowing the relative position
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and orientation of the cameras to the position of the robot, one could apply geometric
transformations in order to have everything in the same coordinate system. The relative
position of the robots is given in a 2D plane corresponding to the ground.

However, it can happen that 2 different cameras detect the same robot. To avoid cases
where the robot recognition counts twice the same robot, a last verification on the de-
tected robots is applied. It computes the distance between pairs of detected robots, and
merge them together if they are close enough.

The robot recognition is given every time one of the cameras has estimated the position of
the robots. This means that the robot recognition for the whole robot can contain older
estimations for the cameras that did not refresh their estimation yet.
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Chapter 6

Methods comparison on experimental
datasets

In order to evaluate the 3 methods described in chapter 5, an idea is to compare their
performance on an experimental dataset of images. This comparison aims at assessing the
accuracy of robots position estimation for every method in the context of swarm robotics.
It identifies from an experimental point of view the strengths and weaknesses of each
method.

This chapter is structured as follows: Section 6.1 describes the dataset used for this
methods comparison; Section 6.2 details the metrics used for the comparison; Section 6.3
exposes and analyses the results.

6.1 Experimental datasets

The idea to compare the three methods is to evaluate them on a given experimental
dataset.

This dataset contains images from the IRIDIA research laboratory[17] Sphero RVR arena.
It describes a square with a side length of 3 metres.

In order to create this dataset, multiple cases are considered. Indeed, some base cases are
taken into account„ but also cases where robots are aggregated are considered, since it
is a very common behaviour in swarm robotics. Lastly, cases where a robot is very close
or very far from the camera are considered. These considerations have lead to multiple
configurations.

1. Base cases:

These cases corresponds to situations where the robots are close enough to be de-
tected, without being too near from the camera. Also, these robots are isolated.
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Figure 6.1: Base case - configuration 1 Figure 6.2: Base case - configuration 2

Figure 6.3: Base case - configuration 3 Figure 6.4: Base case - configuration 4
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Figure 6.5: Base case - configuration 5

2. Aggregation cases:

These cases takes into situations where multiple robots are very close from each
other.

Figure 6.6: Aggregation cases - configura-
tion 1

Figure 6.7: Aggregation cases - configura-
tion 2
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Figure 6.8: Aggregation cases - configura-
tion 3

Figure 6.9: Aggregation cases - configura-
tion 4

3. Close range cases:

Such cases considers a very close robot from the camera.

Figure 6.10: Close range cases - configu-
ration 1

Figure 6.11: Close range cases - configu-
ration 2

4. Long range cases:

This describes cases where one robot is relatively far from the camera.
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Figure 6.12: Long range cases - configura-
tion 1

Figure 6.13: Long range cases - configura-
tion 2

Using these configurations, images are taken in precise orientation, in order to know ex-
actly the relative position of the robots. This way, it is possible to compute the position
error estimation for every method. The resolution of the images taken is 1280x720.

The initial idea was to use the same dataset to compare the three methods. However,
it is not possible since every method works under different assumptions. Indeed, the ex-
perimental dataset for the method using colour segmentation includes the same reference
colour for all the Sphero RVR robots. This means that one can not assess the efficiency
of the method using a neural network with the same dataset as the one for the colour
segmentation. This conclusion is the same concerning the method using ArUco markers.
Lastly, a common experimental dataset between the method with colour segmentation
and the one with ArUco markers is also biased by the fact that the ArUco markers would
need to be placed differently in order to not hide the LEDs. That is why the best solu-
tion in this situation is to generate three different datasets in the same conditions, which
includes the same placement of robots and same orientation for the camera that shoot
the images. An example image from each dataset for the same configuration is shown on
Figure 6.14.

43



Figure 6.14: An image from the experimental dataset for the method using colour seg-
mentation (left), ArUco markers (middle) and a neural network (right)

6.2 Metrics

The different methods are compared on the accuracy of their robots position estimations.
Multiple simple metrics can be used to assess this accuracy.

First of all, the number of robots detected on the image is an important metric. Indeed,
it is already a strong and very simple metric in order to compare different algorithms.
Moreover, this already indicates if an algorithm has an error. In order to measure the
performance on this indicator, the root-mean-squared error (RMSE) is used over the ex-
perimental datasets, in order to penalize more the big differences with the real number of
robots on the image.

A second metric is the error on the position of the detected Sphero RVR robots on the
image. The error is simply the distance between the real position of the Sphero RVR
robot, and the estimated position given by the algorithm. The RMSE is also used in
order to quantify the relative error. It is indeed a good indicator for comparison, as done
in many works involving position estimation[24, 47].

Another metric is the estimated distance between the detected robots and the camera.
Indeed, by computing the RMSE between the real distance and the estimated distance, it
is possible to assess how good a method is for distance estimation of Sphero RVR robots.
As said before, the RMSE for such estimates is a good indicator.

Also, the error on the direction, expressed in radians, can be computed. The RMSE is
also used in this case, and allows seeing how well an algorithm can estimate the direction
of the detected robots.
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Lastly, a last metric that can be considered is the time spent by the algorithm to compute
the result. This is indeed very interesting when real-time operations are required. This
is expressed as a frequency given by the ROS topic for the position of the Sphero RVR
robots.

6.3 Results and analysis

The results of the evaluation of each method on the entire experimental datasets are
reported in Table 6.1.

Colour segmentation ArUco library Neural network
RMSEnumber 2.429 1.742 0.602
RMSEposition (cm) 23.478 10.405 21.271
RMSEdistance (cm) 21.582 6.890 18.050
RMSEdirection (rad) 0.2386 0.0432 0.2239
Frequency (Hz) 15.018 4.823 1.281

Table 6.1: Comparison between the 3 methods on the entire experimental datasets

A general comment about the performance of the three methods is that the distance es-
timation between the robots and the camera is the main problem in position estimation.
Indeed, the error on the distance estimate is relatively close to the error on position es-
timate, which shows that the major part of the error on position estimation comes from
the distance estimation.

As it can be seen, the method using colour segmentation seems to be the worst, since it
does not have a better accuracy in position estimation than the two others, nor in the
number of robots estimate. Its only advantage is its high frequency.

The method using ArUco seems to be the most accurate one, by having the lowest error
on position estimation. It also has a higher frequency compared to the method using a
neural network, which is really slow. However, Table 6.1 also indicates a higher error on
the number of robots estimated for the method using ArUco markers than the one using
a neural network.

One could also verify the performance of each method for each type of cases considered in
the experimental datasets, which are base, aggregation, close range and long range cases.

6.3.1 Base cases

The results on base cases are reported on Table 6.2.

Colour segmentation ArUco library Neural network
RMSEnumber 1.323 0.5 0.5
RMSEposition (cm) 34.592 8.924 10.000
RMSEdistance (cm) 34.561 7.958 9.967
RMSEdirection (rad) 0.0181 0.0469 0.0084

Table 6.2: Comparison between the 3 methods on the base cases
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On base cases, it can be seen that the method using ArUco markers gives the best esti-
mation in terms of position. The method with the neural network is also relatively close
in terms of accuracy to the one using the ArUco library. Also, the colour segmentation
method gives worse results than ones of the two other methods.

It could be surprising to see that even in these base cases, there is an error on the number
of robots detected. Indeed, it is sometimes impossible for the algorithm to estimate the
position of a robot, because it is hidden by other robots. Such case is described on
Figure 6.15.

Figure 6.15: Robot highlighted in red hidden by the other robots in a base case

That is why the metrics are computed once again by removing the occluded robots from
the expected robots recognised in the experimental datasets. The results are reported in
Table 6.3.

Colour segmentation ArUco library Neural network
RMSEnumber 1.000 0 0
RMSEposition (cm) 34.592 8.924 10.000
RMSEdistance (cm) 34.561 7.958 9.967
RMSEdirection (rad) 0.0181 0.0469 0.0084

Table 6.3: Comparison between the 3 methods on the base cases without occlusion cases

If the occluded robots are not taken into account, the error on the number of robots is 0
for the ArUco library method and the neural network one.

6.3.2 Aggregation cases

The results on aggregation cases are reported on Table 6.4.

Colour segmentation ArUco library Neural network
RMSEnumber 3.571 2.337 0.672
RMSEposition (cm) 30.931 13.189 27.145
RMSEdistance (cm) 27.859 10.833 24.201
RMSEdirection (rad) 0.2923 0.0392 0.2273

Table 6.4: Comparison between the 3 methods on the aggregation cases
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When the robots are aggregated, one can see that the results are worse than in the base
cases for each method. Moreover, it can be seen that the error on the number of robots
for the colour segmentation and ArUco library methods is much higher than the one using
a neural network. However, on the detected robots, the position estimation is still better
for the ArUco library method.

Aggregation cases also contains occlusions situations. One of these cases is described on
Figure 6.16.

Figure 6.16: Robot highlighted in red hidden by the other robots in an aggregation case

The metrics are computed once again without the occlusions cases, and the results are
reported in Table 6.5.

Colour segmentation ArUco library Neural network
RMSEnumber 2.761 1.840 0.475
RMSEposition (cm) 30.931 13.189 27.145
RMSEdistance (cm) 27.859 10.833 24.201
RMSEdirection (rad) 0.2923 0.0392 0.2273

Table 6.5: Comparison between the 3 methods on the aggregation cases without occlusion
cases

The error on the number of robots detected decreases for every method. However, even
with this consideration, it appears that the error on the number of robots detected by
the ArUco library is relatively high. Indeed, some cases are really difficult and nearly
impossible for this method to work. For example, when the markers are not fully visible,
the detection can not succeed. It is for example the case when the robots are too close.
Such case is described on Figure 6.17. This explains why this error is higher than expected
for the ArUco method.
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Figure 6.17: ArUco markers not fully visible on a close robot

6.3.3 Close range cases

The results on close range cases are reported on Table 6.6.

Colour segmentation ArUco library Neural network
RMSEnumber 0.632 2.646 0.378
RMSEposition (cm) 21.391 × 22.553
RMSEdistance (cm) 18.410 × 17.075
RMSEdirection (rad) 0.3193 × 0.4321

Table 6.6: Comparison between the 3 methods on the close range cases

As it can be seen, the methods using the ArUco library struggles to recognise the robots.
Indeed, for this method to work, the corresponding markers need to be visible enough
or completely on the image. The method using ArUco markers requires that the whole
marker is visible on the image. This case can be seen on Figure 6.18. However, it can
be seen that the colour segmentation method has a lower error on the number of robots
detected. Indeed, in a very close range, if at least part of the LEDs is visible on the image,
the algorithm is able to detect the robot. The method using a neural network is still able
to recognize the robots because it can detect parts of the robots and generalize that it
corresponds to a full robot.
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Figure 6.18: Close range case with LEDs (top) and ArUco markers (bottom)

6.3.4 Long range cases

The results on long range cases are reported on Table 6.7.

Colour segmentation ArUco library Neural network
RMSEnumber 2.449 2.449 0.707
RMSEposition (cm) × × 25.157
RMSEdistance (cm) × × 13.062
RMSEdirection (rad) × × 0.0773

Table 6.7: Comparison between the 3 methods on the long range cases

When the robots are very far, it is very difficult for the methods using colour segmentation
and ArUco library to recognize the robots. Indeed, when the robots are very far, the colour
segmentation is too difficult, since the visible LEDs are too small to not be considered as
noise. The same goes for the ArUco library method, which struggles to identify the ArUco
marker when it is very far. That is why these two methods are not able to recognize the
robots at a long range, while the one using a neural network gives consistent results.

6.3.5 Conclusion

To conclude, the comparison on this experimental datasets confirms the theoretical ex-
pectations concerning the capabilities of the algorithms, described by Table 5.1. Indeed,
it shows that the ArUco markers method is the most reliable one in general. However,
it struggles to recognize the robots when the robots are too close or too far, while the
method using a neural network is most of the time able to estimate the position of these
robots, even if the average accuracy on the position is lower than the accuracy of the
method using the ArUco library. The method using colour segmentation is clearly not a
good candidate for this task. Indeed, such algorithm is able to efficiently detect parts of
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the image containing a reference colour, corresponding to the LEDs in this case, but it
struggles to estimate the robot position based on the different LEDs segmented. As a last
remark, the method using ArUco markers is the most accurate and fastest one, but the
method using a neural network gives satisfying results without any additional marker.
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Chapter 7

Real-time robot recognition
experiments

In order to assess the use of the vision module in a real-time application for robot recog-
nition, experiments are conducted with the vision module prototype and robots moving
around. The experiments are of course not taking into account all the potential cases that
can be encountered in real experiments. However, it aims at evaluating the performance
of the robot recognition methods using the vision module in simple cases, that can occur
in swarm robotics missions.

This chapter is structured as follows: Section 7.1 describes the experimental environment
for these experiments; Section 7.2 presents the experiments; Section 7.3 describes the
metrics used to evaluate the results; Section 7.4 exposes and analyses the results.

7.1 Environment

The experiments are conducted in the IRIDIA research laboratory[17] Sphero RVR arena.
It is an arena described by a square with a side length of 3 metres. The arena is delimited
by tape on the floor. It can be seen on Figure 7.1.
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Figure 7.1: The IRIDIA Sphero RVR arena

The vision module is placed on a robot, and the robot recognition methods are imple-
mented using ROS, the same way as what is described in chapter 5.

It can also be mentioned that ROS contains tools to record data on topics, such as rosbag1.
This is what is used in order to record the results of the experiments.

7.2 Experimental setups

For these experiments, the vision module is powered through the battery of the Sphero
RVR robot.

The goal of these experiments is to evaluate the robot recognition using the vision module
for swarm robotics purposes. That is why these experiments are using multiple robots.
The basic idea is to place the robot with the vision module in the centre of the arena,
and to make the other robots move around it.

The setup used for the experiments is described on Figure 7.2.
1rosbag | ROS. URL: http://wiki.ros.org/rosbag
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Figure 7.2: Experimental setup for the experiments in the Sphero RVR arena

The robot with the vision module stands in the centre of the arena. Three other robots
move around it. One describes a square with a side length of 1 meter, which corresponds
to the closest robot to the vision module. The two other trace another square with a side
length of 2 meters, and go in the opposite direction to the first.

In order to get the real position of the robots, a camera placed above the arena is also
recording the whole experiment. This allows to capture the real robot positions during
the experiments. The estimations are then compared to the real positions to compute the
error.

For these experiments, only the ArUco library and neural network methods are consid-
ered. Indeed, chapter 6 proves that the colour segmentation method gives very poor
results in terms of position estimation.
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With this experimental setup, the only parameters for these experiments are the speed of
the robots moving around, and the time of the experiment. The time of the experiment
is determined by the time spent by the two furthest robots to complete one square. The
speed of the robots is an important parameter. Indeed, in chapter 6, the methods are
evaluated on a dataset with stationary robots. Consequently, the idea here is to move the
robot faster and faster to see if the robot recognition still work with moving robots. The
range of speed goes from 0.1m/s, which corresponds to the minimal speed for the robot
to move, to 0.3m/s, by step of 0.1m/s. This means that the experiment is reproduced 3
times for each method, leading to a total of 6 experiments.

7.3 Metrics

The metrics used are similar to what is described in section 6.2. This includes the error
on the number of robots detected and on the estimations on the position, the distance and
the direction of the recognized robots. It also includes the frequency of the two methods
considered for these experiments.

7.4 Results and analysis

The results of the experiments are presented in these sections. First, the robot recognition
using the ArUco markers is evaluated. The neural network method is also analysed. Since
these two methods have different frequencies, the evaluation of each method is done when
it gives a response for robot recognition. Therefore, since the neural network method has
been shown to be slower, it will be evaluated on fewer samples because the experiment
has the same duration for both methods.

7.4.1 Method using ArUco markers

The results of the experiments are reported in Table 7.1.

Speed of Sphero RVR robots (m/s) 0.1 0.2 0.3
RMSEnumber 1.255 2.308 2.384
RMSEposition (cm) 52.538 87.524 93.787
RMSEdistance (cm) 17.760 21.964 16.872
RMSEdirection (rad) 0.7823 0.8708 0.8867
Frequency (Hz) 1.699 1.849 1.688

Table 7.1: Results for the method using ArUco markers

First of all, it can be seen that the frequency is lower than what is described on the
evaluation on the experimental dataset, which is detailed in section 6.3. This is explained
by the fact that there are multiple detections at the same time, since there are mutliple
cameras.

These results are consistent with what is discussed in chapter 6. Indeed, one can see that
the error on the number of detected Sphero RVR robots is higher than during the eval-
uation through the experimental dataset. In fact, the real number of robots is constant
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and set to 3. Sometimes, the vision module does not allow to capture all of them with
the current configuration of the cameras. Indeed, since the vision module is focused on
the front part of the Sphero RVR, there are blind spots on the sides of the robot. This
explains why this number is higher.

Also, one can see that the faster the robots move, the higher the errors for every metric.
Indeed, the faster the robots move, the hardest it is for the ArUco library to recognize
the markers. In fact, when an object move in front of a camera, a motion blur may
appear. Such case is shown on Figure 7.3. It explains why the detection sometimes fails
and consequently, why it is much harder for the robot recognition to work. This effect
already appears when the robots are moving slowly, but increases with the speed.

Figure 7.3: Motion blur on a Sphero RVR robot with ArUco markers

7.4.2 Method using a neural network

The results of the experiments are reported in Table 7.2.

Speed of Sphero RVR robots (m/s) 0.1 0.2 0.3
RMSEnumber 0.727 0.567 0.554
RMSEposition (cm) 55.289 66.176 51.770
RMSEdistance (cm) 16.648 16.974 17.812
RMSEdirection (rad) 0.9368 0.7917 0.7099
Frequency (Hz) 0.816 0.803 0.854

Table 7.2: Results for the method using a neural network

As a very first remark, it can be seen that the frequency is very low. Indeed, it corre-
sponds to a robot recognition less than once every second. This is of course a very bad
point for this method. This can be explained by the fact that neural networks requires
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more computational power than the ArUco detection.

Secondly, one can see that the errors are higher compared to what was expected from
the results with the experimental dataset. The major reason for that is the very low fre-
quency. Indeed, as explained before for the experiments with the ArUco library method,
the robots are moving at a given speed. However, since the robot recognition is always
done on previous images, the robots have the time to move.

The error should increase with the speed of the robots, as explained for the ArUco method.
However, it can be seen in Table 7.2 that the error does not follow this trend. In fact, it
can be seen that the neural network is able to recognize robots even if there is some motion
blur on the image, as shown in Figure 7.4. However, even if the detection are relatively
satisfying, the very low framerate can be a problem if some decisions are required in
a real-time application, since the detection is always done on past images that can be
considered as outdated.

Figure 7.4: Sphero RVR robot with motion blur detected by the neural network

7.4.3 Conclusion

To conclude, one can see that the error for both methods is much higher than what is
found during the evaluation on the experimental dataset. Indeed, one of the main reasons
for this larger errors is the very low frequency.

First of all, the time spent by the method to apply the detection implies a lag for the
robot recognition. Indeed, the detection is always based on past images. Because of the
low frequency, the robots can move between the moment the image starts to be processed,
and the moment it gives an estimation of the robots positions.
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Secondly, since the global robot recognition compiles results from the 4 cameras, work-
ing asynchronously, and that an estimation for the whole robot is given every time a
recognition is done for one of the cameras, the robot recognition can contain outdated
information. Indeed, when one of the cameras gives an estimation, the positions estimate
for the three other cameras remains the same as before when producing an estimation for
the whole robot. This means that the global robot recognition contains past recognition.
This of course increases the error since a given recognition for a camera is in average kept
for 4 global robot recognition, since there are 4 cameras. However, keeping the last recog-
nition for every camera for the global robot recognition always give the most updated
robot recognition for the robot.

Consequently, the results in real-time experiments are worse than what is found during
the evaluation through experimental datasets. The main reason for this decrease of per-
formance is that the robots are moving. In addition to the problem described just before,
motion blur that appears on the images can lead to wrong or no detection of the robots for
the ArUco markers method, even for really slow robots. However, for the neural network
method, it has been shown that it is still able to recognize robots when they are mov-
ing faster. Nevertheless, its low frequency makes it currently hard to use in a real-time
application since the information got from the cameras can be outdated.
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Chapter 8

Future developments

This thesis aimed at providing a vision module, and to implement robot recognition
algorithms. However, multiple improvements and developments can be considered thanks
to the work achieved in this thesis.

8.1 Neural network method improvement

It has been shown that the neural network method for the robot recognition was the
slowest method. The very low frequency of this method makes it very hard to use in a
real-time application. In order to improve that, one could use an additional GPU (Graph-
ical Processing Unit) or TPU (Tensor Processing Unit) for the Raspberry Pi. Such unit
could lead to a great acceleration in terms of processing time. Coral is providing multiple
products in order to include a TPU in the configuration1. This could greatly increase the
performance of algorithms using neural networks with the framework TensorFlow 2.

However, this also increases the budget allocated per vision module. This requires a
work of financial and budget analysis, balancing the benefits added by such additional
processing unit and the corresponding cost. Nevertheless, this will greatly improve the
efficiency of neural network algorithms used with the vision module, which can include
more than the Sphero RVR robot recognition. Indeed, deep learning allows a lot of
applications in computer vision, and it could be a real gain on the long-term to implement
new interesting features using neural networks for swarm robotics.

8.2 Depth estimation enhancement for robot recogni-
tion

The results have shown that the methods have a relatively low error concerning the di-
rection of the detected robots. However, the distance estimation, closely related to depth
estimation, could be enhanced. This would allow better robots position estimation.

The first idea to improve the depth estimation would be to simply use RGB-D cameras
instead of simple RGB cameras. These cameras allow to estimate the depth thanks to a

1Coral - Products. URL: https://coral.ai/products/
2Edge TPU performance benchmark. URL: https://coral.ai/docs/edgetpu/benchmarks/
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dedicated sensor. This could lead to a much higher accuracy in depth estimates, but it
would also increase the budget for the vision module. That is why a financial analysis
would be required.

The second idea would be to use stereo cameras, or to add more cameras covering the
same angle. Indeed, this way, stereo matching can be done in order to estimate the
depth[27]. This of course increases the budget for the vision module, since it requires ei-
ther more cameras, or stereo cameras, that are more expensive than simple RGB cameras.

Another idea would be to use the information of a module dedicated for depth estimation,
such as a LiDAR. Indeed, it allows to estimate the depth all around the robot at a given
height. Using both the robot recognition algorithms described in this thesis and a depth
sensor could enhance the position estimates.

Lastly, an idea would be to use depth estimation algorithms, thanks to deep learning.
Indeed, single image depth estimation (SIDE) is currently a field of interest in computer
vision[25]. It makes uses of neural networks in order to estimate the depth map of an
image. This approach could enhance the depth estimation for the robot recognition.

Also, an enhanced depth estimation could also be useful for other applications and features
than robot recognition.

8.3 Features using the vision module

Now that the vision module is created and implemented on the Sphero RVR robot, one
could implement a lot of new features.

For example, the environment could now generate more interactions in the swarm robots
system. Indeed, without the vision module, the interactions with the environment are
limited for the swarm robots. Using the vision module, it would be much easier to include
features that are part of the environment, such as symbols or markers placed on the walls.
This vision module greatly increases the potential stream of information available for the
robot, and by extension for the whole swarm of robots.

Human-swarm interactions could also be considered. Indeed, there exists already multi-
ple works using such approach. For example, Kakish, Vedartham, and Berman[19] can
interact with a swarm of robots using hand gesture recognition.
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Chapter 9

Conclusion

In this master thesis, I have presented a 360-degree vision module and methods for Sphero
RVR robot recognition in swarm robotics. This allows the robot to recognize and localize
its peers. This 360-degree vision module also extends the capabilities of the Sphero RVR.
Indeed, this vision module can be used to extract much more features in the future for
the robot, which greatly increase the stream of information for it, and by extension, for a
whole swarm of robots.

In order to design the vision module, I reviewed what is currently done in the literature
in swarm robotics, but also in robotics in a more general way. I also reviewed 360-degree
cameras on the market. Once I made a selection of suitable cameras for this vision module,
I conceived multiple designs in order to find the best in the context of swarm robotics for
robot recognition. I also chose the design of the vision module considering the potential
new features that can be extracted with this module, including human-swarm interactions.

The robot recognition is done using 3 different methods, which are based on colour seg-
mentation, on the ArUco library, and on a neural network. This robot recognition is
implemented using ROS. The three methods are designed and compared from a theoreti-
cal point of view.

I have then compared the methods designed for the robot recognition using an experimen-
tal dataset. This allowed to assess the performance of each method when the robots are
not moving. The results of this comparison have shown that the method using the ArUco
tags and the one based on a neural network were relatively good compared to the one
with colour segmentation, in term of position estimation. Moreover, from all the metrics
used to compare the algorithms, it appeared that the distance estimation was one of the
main issue and was hardly computed for every method. Also, the method using a neural
network gives satisfying results in terms of position estimation without the addition of a
marker on the robot, but appears to take more time to compute.

I have then conducted real-time experiments to assess the efficiency of the robot recog-
nition algorithms in an online application. The error on the estimations are higher than
what is found on the evaluation through the experimental datasets. Indeed, the time
spent by the methods to compute the robot positions when they are moving implies
higher errors. Moreover the method using ArUco markers is supposed to be the most
accurate one. However, motion blur can appear when the robots are moving faster, which
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greatly decreases the performance of this method. The neural network method, which is
even slower, can nevertheless detect robots on images containing motion blur. However,
because of its very low frequency, it is currently not suitable for a real-time application.

This vision module and the current implementation allow to easily implement new po-
tential features. Swarm robotics is a very interesting research field and having such
autonomous systems could really enhance real situations. Adding vision to such robots
greatly increases the possible information and features they can receive and extract. The
possibilities are nearly countless, and interactions with the environment are much easier
thanks to computer vision and to the vision module. I strongly believe that computer vi-
sion can highly enhance the current information a robot swarm receives and, by extension,
can lead to swarms of robots able to complete more complex tasks.
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Appendix A

Designs for the vision module

All the designs considered for the vision module are reported in this appendix.

The three selections of cameras are mentioned here.

1. 1 Raspberry Pi Camera Module (G) and 3 DFRobot SEN0286
Estimated cost = 92e64

2. 1 Raspberry Pi Camera Module (G), 1 Waveshare IMX335 5MP USB Plug-and-Play
Camera and 2 DFRobot SEN0286
Estimated cost = 113e97

3. 1 Raspberry Pi Camera Module (G) and 2 Waveshare IMX335 5MP USB Plug-and-
Play Camera
Estimated cost = 113e42

1.1 Selection of cameras 1

This selection contains 1 Raspberry Pi Camera Module (G) and 3 DFRobot SEN0286, and
is estimated to cost 92e64.

1.1.1 Symmetric placement of cameras

The design can be seen in Figure A.1.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.1: Selection of cameras 1 - Symmetric placement of cameras

This is a symmetric design, where the left and right cameras are in the perpendicular
direction of the Sphero RVR robot. The Raspberry Pi Camera Module (G) is placed
in the back, to allow the rest of the module to focus on the front part. However, this
placement implies dead angles on the front right and front left of the robot. This could
be a problem since, even if the vision module should have a 360-degree view, the region
of interest is most of the time in front of the vehicle.

1.1.2 Asymmetric placement of cameras

The design can be seen on Figure A.2.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.2: Selection of cameras 1 - Asymmetric placement of cameras

Compared to the symmetric design, the region of interest is way more covered, since the
left and right cameras are rotated a little bit more to the front. However, this implies to
have some dead angles in the back of the robot.

1.1.3 Asymmetric placement of cameras oriented upwards

The design can be seen on Figure A.3.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.3: Selection of cameras 1 - Asymmetric placement of cameras oriented upwards

Compared to a basic asymmetric design, where the cameras are placed oriented to the
front of the Sphero RVR robot, the cameras are a little bit oriented to the top. As it
could have been seen on Figure A.2-d, the cameras have a part of the image always seeing
too close. This design allows to see more upwards than before, allowing to get features
that are not at the ground level.

1.1.4 Asymmetric placement of cameras with bigger offset from
the center

The design can be seen on Figure A.4.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.4: Selection of cameras 1 - Asymmetric placement of cameras with bigger offset
from the center

In comparison with the basic asymmetric design, the side cameras are a little shifted to
the outside of the car, by being a little bit more on the wheels than in the design described
by Figure A.2. One of the problems of this previous design was that since the camera
was not on the edge of the car, it was keeping useless information in the images captured.
Indeed, the side cameras are always seeing part of the wheels. In order to avoid that, a
solution is to move the camera more on the wheels. However, this implies bigger dead
angles on the very front of the robot, since the cameras are more off-centre, as it can be
seen by comparing Figure A.2-c and Figure A.4-c. Moreover, it also implies bigger dead
angles in the back of the car, for the same reason. Also, since the camera are above the
wheels, a special support need to be designed.

1.1.5 Asymmetric placement of cameras with bigger offset from
the centre oriented upwards

The design can be seen on Figure A.5.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.5: Selection of cameras 1 - Asymmetric placement of cameras with bigger offset
from the centre oriented upwards

This design tries to take into account both problems stated by the design described in
(c) and in (d). However, compared to the design (d), corresponding to the same design
without the cameras being oriented upwards, the offset required is lower.

1.2 Selection of cameras 2

This design contains 1 Raspberry Pi Camera Module (G), 1 Waveshare IMX335 5MP USB
Plug-and-Play Camera and 2 DFRobot SEN0286, and is estimated to cost 113e97.

1.2.1 Symmetric placement of cameras

The design can be seen in Figure A.6.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.6: Selection of cameras 2 - Symmetric placement of cameras

This is a symmetric design, similar to what was described in the first selection of cameras
in (1-a), but the front camera has a wider view. This allows to have smaller dead angles
on the front. However, this placement still implies dead angles on the front right and
front left of the robot, even if they are much smaller. This could still be a problem since,
the region of interest is mostly in front of the vehicle.

1.2.2 Asymmetric placement of cameras

The design can be seen in Figure A.7.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.7: Selection of cameras 2 - Asymmetric placement of cameras

This is an asymmetric design, similar to what is described in (1-b), where the front camera
has still a wider view. However, the left and right cameras do not need to be as turned as
before, since the front camera has a larger field of view. Hence, the dead angles implied
by the similar design with the first selection of cameras, described in (1-b), are larger
than the design shown on Figure A.7. Indeed, the side cameras can cover more angles in
the back of the robot.

1.2.3 Asymmetric placement of cameras oriented upwards

The design can be seen in Figure A.8.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.8: Selection of cameras 2 - Asymmetric placement of cameras oriented upwards

This is an asymmetric design, similar to what is described in (b), but the cameras are
oriented more upwards. The idea is the same as the one described by the design in (1-c).
This way, the cameras can have more useful information.

1.2.4 Asymmetric placement of cameras with bigger offset from
the centre - version 1

The design can be seen in Figure A.9.

70



(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.9: Selection of cameras 2 - Asymmetric placement of cameras with bigger offset
from the centre - version 1

This design of vision module is conceived the same way as the one described in (1-d).
The idea is also to avoid seeing the wheels, since it doesn’t give any additional useful
information. However, as it can be seen on Figure A.9-c, compared to Figure A.7-c, the
dead angles on a very close range are increased in the front of the robot. The back of the
Sphero RVR robot has also bigger dead angles.

1.2.5 Asymmetric placement of cameras with bigger offset from
the centre - version 2

The design can be seen in Figure A.10.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.10: Selection of cameras 2 - Asymmetric placement of cameras with bigger offset
from the centre - version 2

This design is nearly the same as the one in (d). However, the side cameras are even more
turned to the front. This way, the dead angles that are appearing because of the offset
of the cameras are decreased. This unfortunately also means that the dead angles on the
back are increased, but it is less critical since the region of interest is mostly in the front
of the car.

1.2.6 Asymmetric placement of cameras with bigger offset from
the centre oriented upwards - version 1

The configuration can be seen in Figure A.11.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.11: Selection of cameras 2 - Asymmetric placement of cameras with bigger offset
from the centre oriented upwards - version 1

This design has the same idea as what is described in (1-e). This takes into account a
bigger offset and the cameras oriented upwards. Since the cameras look at a higher point
than they could do with the design described by (d), the offset required from the centre
is decreased.

1.2.7 Asymmetric placement of cameras with bigger offset from
the centre oriented upwards - version 2

The design can be seen in Figure A.12.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.12: Selection of cameras 2 - Asymmetric placement of cameras with bigger offset
from the centre oriented upwards - version 2

This design is nearly the same as the previous one described in (f), but it includes the
idea of the design in (e), which is to reduce the dead angles in the front of the robot. This
way, the vision module is able to have a better vision in the front, while having a higher
view than before.

1.3 Selection of cameras 3

This design contains 1 Raspberry Pi Camera Module (G) and 2 Waveshare IMX335 5MP
USB Plug-and-Play Camera, and is estimated to cost 113e42.

1.3.1 Symmetric placement of cameras

The design can be seen in Figure A.13.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.13: Selection of cameras 3 - Symmetric placement of cameras

This design aims at having a very wide field of view with only 3 cameras. The Raspberry
Pi Camera Module (G) is placed in the back, to allow the rest of the module to focus on
the front part. The 2 other cameras are placed in a way to overlap their vision on the
front part of the car. This way, the very front part of the robot is covered twice by both
cameras. However, since it is on the edge of both cameras, these parts of the images have
more distortions. Moreover, there are dead angles in the back of the car.

1.3.2 Symmetric placement of cameras oriented upwards

The design can be seen in Figure A.14.
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(a) Short range (b) Long range

(c) From above (d) From the right

Figure A.14: Selection of cameras 3 - Symmetric placement of cameras oriented upwards

The idea of this design is the same as what is described in (1-c) and in (2-c). The goal
is to avoid seeing the ground directly. It is indeed very unlikely to have an interesting
object directly next to the wheels, and it is preferred to have a wider view of interest by
looking a little bit more upwards.
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Appendix B

LEDs clustering algorithm

Figure B.1: LEDs on a Sphero RVR robot

The following algorithm is used in order to cluster the segmented LEDs. The term eye
identifies the LEDs on the front face of the Sphero RVR robot, while the term line de-
scribes the LEDS on the side and back faces of the Sphero RVR robot. The LEDs are
shown on Figure B.1. The LEDs clustering algorithm is described just below.

1. Choose segmented areas below a given height, since robots should be on the ground.

2. Identify if the segmented LEDs correspond to left eyes, right eyes or lines.

(a) Compute aspect ratio of the segmented areas, which corresponds to the ratio
between the width and the height.

(b) Eyes have an aspect ratio closer to 1 than lines. It is hence possible to differ-
entiate eyes and lines using a given threshold.

(c) Then, the left and right eyes need to be identified.

i. Divide the eye between its left and right parts.
ii. Compute the area of both parts.
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iii. If the left area is higher, it means that it is a right eye on the robot.
Otherwise, it is a left eye.

3. Once the LEDs are identified, the matching pair of eyes can be found.

(a) Find the closest left eye on the right of each right eye. If the matched eyes are
too far from each other, then they need to be considered as isolated.

4. Clusters that include both a pair of eyes and a line can also be identified.

(a) Compute the direction of the RVR containing a pair of eye, based on the area
of each eye. If the left eye is wider than the right one, it means that that the
robot is looking to the right, which means that the only possibility to add a
line to the cluster is on the left of the image. Otherwise, one should only check
on the right of the image.

(b) Check in that direction if there is a line close enough and add it to the cluster.

5. Lastly, clusters of lines only can be found.

(a) Compute the distance between pair of lines

(b) If they are close enough, add them as a cluster.
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Appendix C

Rasperry Pi setup

In order to use ROS for the RVR, a Raspberry Pi is used with Ubuntu. For this master
thesis, Ubuntu Server 20.04.4 LTS is used.

Also, in order to use the cameras, they have to be enabled by the operational system.
This can be done by adding the following lines in the /boot/firmware/config.txt file
of the Raspberry Pi.

start_x=1
gpu_mem=256

The gpu_mem variable corresponds to an amount in megabytes reserved for the GPU. By
default, it is set to 16mb. However, the camera requires more memory, and that is why
it has been increased. It could work with less memory, but using such high value do not
bring any problems and gives adequate results.

Once it has been setup and connected, ROS can be installed. ROS Noetic[34] is chosen
for this application. It is also used by the controller Raspberry Pi.

When working with ROS, a workspace need to be defined. A default name is given to it,
according to the tutorials[49], which is catkin_ws.

The setup file for the current terminal used for running ROS also need to be sourced.
In order to avoid the step of sourcing the file everytime, one could include the following
command in the ~/.bashrc file.

source /<path>/<to>/<workspace>/catkin_ws/devel/setup.bash

where of course, the /<path>/<to>/<workspace>/ corresponds to the path to the workspace
catkin_ws.
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Appendix D

Communication with the controller
Raspberry Pi

In order to communicate with the controller Raspberry Pi, an ethernet connection is used.
The idea is to set the two Raspberry Pis on the same network, in order to share the
different topics. This is based on the procedure described by Yamamoto[50].

As said before, an ethernet cable is required to link the two Raspberry Pis.

First, one should ensure that both computers have openssh-server and net-tools in-
stalled.

After that, the addresses of both Raspberry Pis need to be set. Since they will be on
the same network, and that they are alone, a simple address can be chosen for both of
them. For the sake of this thesis, 10.10.10.1 is given to the controller computer, and
10.10.10.2 for the vision module one.

In order to do so, the file corresponding to the network configuration in the /etc/netplan/
directory needs to be edited. In this thesis, it was named 50-cloud-init.yaml.

−−−
network :

v e r s i on : 2
r ende re r : networkd
e the rne t s :

eth0 :
dhcp4 : no
op t i ona l : t rue
addre s s e s :

− 1 0 . 1 0 . 1 0 .X/24
gateway4 : 1 0 . 1 0 . 1 0 . 1
nameservers :

addre s s e s : [ 8 . 8 . 8 . 8 , 1 . 1 . 1 . 1 ]
−−−

The X has to be replaced either by 1 for the file of the controller computer, or by 2 for
the vision module one.
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Once the changes are applied using the sudo netplan apply, the Raspberry Pis are able
to communicate through the ethernet interface.

However, in order to allow the sharing of topics in a ROS environment, one should say
who will be the master of the relation. In order to do that, one should explicitly say
that the controller computer is the master. This can be done by running the following
commands.

source /opt/ros/noetic/setup.bash
export ROS_MASTER_URI=http://10.10.10.1:11311
export ROS_HOSTNAME=10.10.10.X

As before, the X need to be replaced by either 1 for the controller computer, or 2 for the
vision module.

In order to avoid doing it every time the Raspberry Pis boots, these commands can be
added at the end of the ~/.bashrc file.

This ends the configuration of the communication between the two computers. This allows
any of the two computers to get access to any topic on the network.
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Appendix E

Dataset creation protocol for robot
recognition

5.1 Introduction

This dataset creation protocol has been designed in order to have a clear process to cre-
ate a dataset for robot recognition, using supervised learning. This methodology can be
extended to other robots than the one described here, which is the Sphero RVR robot.

The methodology is divided in 2 parts. First, the images need to be generated. After
that, the labelling of the images is done.

5.2 Images generation

5.2.1 Configuration

5.2.1.1 Target robot and cameras used

The current configuration of the target robot and of the cameras is described below.

• Target robot: Sphero RVR

• Cameras:

– DFRobot SEN0286

– Raspberry Pi Camera Module (G)

For this protocol, a high-resolution camera is also used. This creates a universal
dataset that is not dependent on the robot’s camera.

The number of datasets created depends on the number of different cameras used. For
instance here, the number of datasets would be 3.

5.2.1.2 Environments

Also, one should define the scope of environments in which the algorithm should operate.
It can of course generalize outside the known environments, but the quality would not be
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assessed by the testing dataset that would be defined once the whole dataset is determined.
For this example, only one environment is considered.

• IRIDIA[17] Sphero RVR arena

5.2.1.3 Cameras placement

Lastly, one should also know where to place the cameras before starting. The placement
of the cameras for this RVR robot is described using Blender on Figure E.1. A scene
is represented on Figure E.2. The views of all the cameras are also described on the
following figures (Figure E.3, Figure E.5, Figure E.4 and Figure E.6).

Figure E.1: Cameras

Figure E.2: Scene
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Figure E.3: Front camera view
(DFRobot SEN0286)

Figure E.4: Right camera view
(DFRobot SEN0286)

Figure E.5: Left camera view
(DFRobot SEN0286)

Figure E.6: Back camera view
(Raspberry Pi Camera Module (G))

As it can be seen, the robots are always observed with an horizontal view. Moreover, the
cameras are placed on the robot a little bit above the wheel, which corresponds to an
height of 9cm. These should be the same conditions as for the real cameras when creating
the dataset.

5.2.1.4 Special requirements

When creating a dataset, one should also take into account requirements specific to its
configuration and robot.
Swarm robotics
Since this protocol need to be generated in the context of swarm robotics, one could
take into account the robots can have very specific configurations compared to situations
for robot recognition in another context. Indeed, a very common behaviour for swarm
of robots is to aggregate[37]. This is a particular behaviour that is not common to all
situations outside the scope of swarm robotics. This needs to be taken into account by
adding configurations where robots are aggregated, in order to allow a dataset including
cases very specific to swarm robotics.

Sphero RVR
The Sphero RVR is using some LEDs, that can change colour. Since the algorithms us-
ing this dataset should be able to generalize to all RVRs, independently on the colour,
one should ensure that it is taken into account, by turning them off or by using random
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colours for the LEDs.

In this dataset, the LEDs are off.

5.2.2 Images capture procedure

The goal is to capture enough non-redundant images. In order to achieve this objec-
tive, the idea is, instead of taking pictures, recording videos of the robots in the desired
environment. The procedure is described below.

• For each environment:

1. Choose some spots inside the environment. The number depends on the size of
the environment. The bigger the environment, the higher the number of spots.

2. For each spot:

– Repeat X times (X needs to be defined):
(a) Choose a placement for the robots. The robots should be close enough

to be able to be considered as relevant by the dataset. However, the
dataset can challenge the algorithm, by placing sometimes the robots
a little bit further. The number of robots can also vary.

(b) For each camera:
i. Take videos of length L around the spot. (L needs to be defined)
ii. Keep videos without robots on the screen, in order to include images

where there are no robot on the image.

In order to choose the right parameters, one should first know what is the aimed size for
the dataset. According to Tatariants[46], the size can not be exactly known in advance.
However, he suggests that the dataset should not be too small, arguing that for an object
recognition with one class, 150 instances are enough for a dataset[46]. Nevertheless, it
is quite small and we will prefer to aim for a more complete dataset, in order to avoid
any issue of under-fitting. If the neural network that will train on this dataset completely
overfits, one could simply reduce the number of instances taken from the dataset. In the
litterature, it has been shown that in any case, the dataset should not be too small[39].
For example, Soekhoe, Putten, and Plaat have made an experience with 500 instances per
class, and is suggesting it as a good number for object recognition using deep convolu-
tional neural network. In order to have a complete dataset, the objective of 500 instances
for the dataset is chosen.

Based on this first assumption, the other parameters can be chosen. Also, in an ideal
situation, one should need to iterate the datasets once the neural network is trained, in
order to find the perfect dataset size for the given application[11].

The number of spot depends on the size of the environment. It also depends of course,
on the time allocated for the dataset creation, and the completeness of the dataset.
For this example, since the environment chosen is the IRIDIA[17] Sphero RVR arena,
which is a square with a length of 3.00m, the number of spots is set to 5.
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The number of times to iterate, which corresponds to the number of placements for the
robots for a given spot, has to be determined by the parameters expressed just above.
For this example, the number of times to iterate is set to 3 for every spot.

The length of the videos taken for every placement also need to be considered. It depends
on the same parameters as described before. However, it should not be too redundant, in
order to avoid overfitting of any model on the dataset. This means that it is not necessary
to take the same video on the exact same spot with the exact same placement of robots.
For this example, the length of the videos is estimated at 1 minute for every camera.

Lastly, one should also ensure that the special requirements are taken into account. Here,
since the RVR can emit light in different colours, the robots used need to have a changing
colour LED, in order to have images with RVRs having different colours for its LED.

Now that the procedure is set, and that the parameters are also, chosen, the time spent
for the overall image generation procedure can be estimated in a theoretical way.

The parameters are listed here.

• Number of environments N : 1

• Number of spots S:

1. For IRIDIA[17] Sphero RVR arena, S1: 5

• Number of placements per spot P : 3

• Number of cameras C: 3

• Length of the videos L: 1 minute

This estimation takes into account a series of assumptions.

• The change between environment ce is estimated at 10 minutes

• The change between spots cs is estimated at 2 minutes

• The change of placement cp for the robots is estimated at 2 minutes

• The change of camera is cc estimated at 1 minute

Under these assumptions, one could compute the theoretical time Tth spent for the ex-
periment.

Tth = N × ce +
N∑
i=1

Si × (cs + P × (cp + C × (cc + L)))

For this example, the time spent expressed in minutes is

Tth = 140

This image generation, under these assumptions and with this configuration, should take
theoretically 140 minutes.

86



5.2.3 Placement of robots

This step should be done before the experiment. It summarizes all the placements for the
robots for every spot for every environment.

5.2.3.1 IRIDIA[17] Sphero RVR arena

The arena is represented by the Figure E.7.

Figure E.7: IRIDIA[17] Sphero RVR arena representation

Then, there are 5 spots in this environment, and 3 placements per configuration, which
means 15 different placements in the arena.

1. Spot 1:
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Figure E.8: Placement 1 Figure E.9: Placement 2 Figure E.10: Placement
3

2. Spot 2:

Figure E.11: Placement
1

Figure E.12: Placement
2

Figure E.13: Placement
3

3. Spot 3:

Figure E.14: Placement
1

Figure E.15: Placement
2

Figure E.16: Placement
3

4. Spot 4:
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Figure E.17: Placement
1

Figure E.18: Placement
2

Figure E.19: Placement
3

5. Spot 5:

Figure E.20: Placement
1

Figure E.21: Placement
2

Figure E.22: Placement
3

As it can be noticed, the third placement for each spot takes into account that the robots
can aggregate and can be far away from each other. This way, these corner cases, that
are in fact quite common in swarm robotics, are considered.

Moreover, extra cases are considered where more than 2 robots are aggregating on Fig-
ure E.23, Figure E.24, Figure E.25 and Figure E.26.

Figure E.23: Extra
case 1

Figure E.24: Extra
case 2

Figure E.25: Extra
case 3

Figure E.26: Extra
case 4

This, of course, adds some time to the image generation. Knowing that only the areas
where the robots are aggregating is the relevant part in these configurations, only the
time spent for moving the robots and the cameras is considered.
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Textra = 4× (cs + cp + cc) = 20

This means that the total time for the image generation is increased by Textra.

Ttotal = Tth + Textra = 160

The total time for the image generation is estimated at 160 minutes.

5.2.4 Images from videos sampling

The videos are containing a lot of images, which are not all relevant. For example, 2
images in a row are very likely to have the nearly exact content. Hence, sampling too
frequently could be a bad idea. Consequently, a rate of 2 images per second is a reasonable
idea.

However, even by having a low frequence of sampling, some images will necessarily be
superfluous. For example, images where there is no robot needs to be included, in order
to leave cases where nothing need to be detected. However, it should not be the main
part of the dataset. A filter need to be applied to remove the unnecessary images of the
images generated.

With the current configuration of 1 minute per video, it means that each video generates
120 images. With the 19 different placements, it means a dataset of 2280 images, which
is already very complete, according to what was discussed before about the dataset size.
Indeed, the goal was 500 images for the dataset. However, one should take into account
that redundant images where no robot appears need to be removed.

5.3 Image labelling

Now that the images are generated, the phase of image labelling can start. Of course, one
should first ensure the validity of the images. Once this first filter is done, the labelling
phase can start.

5.3.1 Labelling tool

There exists multiple tools able to efficiently label an image or a segmentation based on
a stream of images.
Here is a non-exhaustive list of such tools.

• labelImg

• labelme

• CVAT

• Labelbox

• hasty

• Plainsight
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All of these tools offers the possibility to create a dataset from images. It allows to easily
label images and segment them.

5.3.2 Dataset extension

In order to make the dataset more robust and more complete, an idea is to artificially
extend the dataset. this step is not mandatory, but it can help the generalization of the
algorithm. This could include noisy, rotated images and shifted images. Another idea
could be to include some distortion on the image. This way, an algorithm could more
easily generalize its knowledge with other cameras.

5.4 Conclusion

To conclude, this methodology aims at helping people creating dataset for robot recogni-
tion, by describing a concrete example with the Sphero RVR robot.
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