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Figure 4.1: The results of the experiments regarding the estimation of the performance of finite-
state machines obtained by modifying state transition parameters for the aggregation mission.
Figure a) represents the normalized squared error between the measured performance and the
performance estimated by di↵erent estimators. Figure b) represents the correlation relation

between the discounted WIS estimator and the measured performance. Figure c) represents the
correlation between the WIS estimator and the measured performance.

0). The objective function is computed at each step as the percentage of the robots that have
successfully arrived in one of the two black areas. The value of the objective function is computed
for the black area with the most robots.

The normalized squared error is represented on the Y axis, while on the X axis from left to
right are: the naive estimator followed by the method proposed in this thesis, the discounted
weighted importance sampling DWIS , and then the last two estimators are the methods proposed
by Pagnozzi and Birattari (2021): the weighted importance sampling WIS and the proportional
weighted importance sampling PWIS .

When the normalized square error is closer to 0 it means the estimator is performing well
and as it goes further away from 0 the estimation is worse. From Figure 4.1 a), it can be seen
that the estimators are not performing better than the naive estimator.

To understand better the relation between the estimation and the measured performance,
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a correlation analysis was performed using a Person’s correlation test. A visualization of the
correlations presented in Figure 4.1 b) and c). The best two performing methods were analyzed in
this section while the analysis for the remaining method is present in the Appendix A. The results
show that the estimations of the DWIS method is correlated with the measured performance
(r(80) = 2.08, p = .04) and the estimations of the WIS method show a negative correlation with
the measured performance (r(80) = -2.19, p = 0.31). This happens because of the errors where
the WIS estimator gives an estimation of 0.

Figure 4.2: The results of the experiments regarding the estimation of the performance of finite-
state machines obtained by removing states for the aggregation mission.
Figure a) represents the normalized squared error between the measured performance and the
performance estimated by di↵erent estimators. Figure b) represents the correlation relation

between the estimations of the intermediate reward estimator and the measured performance.
Figure c) represents the correlation between the PWIS estimator and the measured

performance.

Regarding the state pruning experiments, all methods are performing significantly better
than the naive estimator (Figure 4.2). The new estimator proposed in this thesis IRE obtained
slightly better performance that the PWIS estimator and significantly better performance than
the WIS estimator.
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In Figure 4.2 b) and c), the scatter plots illustrate how well the estimators correlate with the
measured performance. The Pearson’s test shows that both methods shows a high probability
of being correlated (r(68) = 4.86, p = 7.58 · 10�6 for the IRE method and r(68) = 3.66, p =
0.0005) for the PWIS method). An important aspect to notice is that both methods tend to
overestimate the performance of certain finite-state machines. The best performing finite-state
machine according to the estimators is actually one of the worst performing according to the
measured performance. The IRE method is performing slightly better than PWIS since it also
estimates well some of the best performing finite-state machines.
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Shelter with constrained access

Figure 4.3: The results of the experiments regarding the estimation of the performance of finite-
state machines obtained by modifying state transition parameters for the shelter with constrained
access mission.
Figure a) represents the normalized squared error between the measured performance and the
performance estimated by di↵erent estimators. Figure b) represents the correlation relation
between the estimations of the discounted WIS estimator and the measured performance.

Figure c) represents the correlation between the proportional WIS estimator and the measured
performance.

In shelter with constrained access mission, the robots have to aggregate in an area that has
the access restricted meaning that the robots can enter only from one side. The objective function
is computed at each step and it is represented by the accumulated sum of robots that are in the
area until that step. In this mission, the best estimator is the DWIS .

An interesting aspect is that the estimator that was performing well in the previous exper-
iment, WIS, here has a very bad performance caused by a huge variance (Figure 4.3). This
di↵erence in estimation performance between missions can be explained by the fact that each



36 CHAPTER 4. EXPERIMENTS

missions requires di↵erent dynamics in order to be accomplished successfully and some dynamics’
impact might be harder to predict. Another reason could be the way the objective function is
computed.

Nevertheless, the performance of the discounted weighted importance sampling with interme-
diate rewards is consistent with the previous mission performing slightly better than the naive
estimator.

The correlation analysis shows that there is a good indication that both of the two best
performing methods, DWIS and PWIS , are correlated with the measured performance of the
finite-state machines (DWIS : r(56) = 5.66, p = 5.85 · 10�7 and PWIS : r(56) = 4.06, p = 0.15 ·
10�3). In this mission the two methods show less underestimations errors than in the previous
mission.

The correlation plot shows that the top ranked finite-state machine from the estimators
perspective are also the best ranked finite-state machine according to the actual measurements.
This is good news in the context of o↵ering extra information about the neighborhood to the
local search algorithm.

The state removal experiments results are presented in Figure 4.4. The estimator that per-
forms better is the IRE estimator. The WIS estimator shows a high variance and the PWIS

is performing similar to the native estimator. This result is di↵erent from the results obtained
in the state removal aggregation experiment. This is an indication that the previous prediction
methods do not generalize well to other missions. However, the IRE seems to be consistent in
prediction performance using state pruning over multiple missions.
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Figure 4.4: The results of the experiments regarding the estimation of the performance of finite-
state machines obtained by removing states for the shelter with constrained access mission.
Figure a) represents the normalized squared error between the measured performance and the
performance estimated by di↵erent estimators. Figure b) represents the correlation relation

between the estimations of the intermediate reward estimator and the measured performance.
Figure c) represents the correlation between the WIS estimator and the measured performance.

Foraging

In the foraging experiment, the two methods proposed in this thesis perform significantly better
than the naive, WIS and PWIS estimators. The WIS and PWIS have the same normalized
standard error as the naive estimator. In the correlation analysis in Figure 4.5 b) and c), again
the DWIS shows better correlation than the WIS estimator. This result is also confirmed by
the results of the Pearsons’ test. For DWIS the results are (r(30) = 0.81, p = 3.31 · 10�8 and for
WIS it seems that there is no indication that the estimation is correlated with the measured
performance r(30) = 0.03, p = 0.85.

The results of the state removal experiment in the foraging missions are showed in Figure 4.6.
The IRE estimator is again consistent in prediction performance with the previous experiments
performing much better than the naive estimator. In this mission, PWIS performs equally well
as the IRE estimator, both of them performing better than the WIS estimator.
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Figure 4.5: The results of the experiments regarding the estimation of the performance of finite-
state machines obtained by modifying state transition parameters for the foraging mission.
Figure a) represents the normalized squared error between the measured performance and the
performance estimated by di↵erent estimators. Figure b) represents the correlation relation
between the estimations of the discounted WIS estimator and the measured performance.

Figure c) represents the correlation between the WIS estimator and the measured performance.

In Figure 4.6 c), the PWIS estimator overestimates the performance of many finite-state
machines that have performance below 20. This behavior, however, does not happen when the
IRE estimator. The result of the Pearson test (IRE: r(74) = 0.79, p = 4.05 · 10�17 and PWIS :
r(74) = 0.72, p = 3.01 · 10�13) is that there is a significant indication that the results of both
methods are correlated with the measured performance.
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Figure 4.6: The results of the experiments regarding the estimation of the performance of finite-
state machines obtained by removing states for the foraging mission.
Figure a) represents the normalized squared error between the measured performance and the
performance estimated by di↵erent estimators. Figure b) represents the correlation relation

between the estimations of the intermediate reward estimator and the measured performance.
Figure c) represents the correlation between the PWIS estimator and the measured

performance.

Discussion

Having seen how the predictors perform in these three missions, it is important to notice a few
important things.

First of all, the state pruning estimators perform better than the transition parameter vari-
ation. Almost in all experiments the state pruning estimators perform significantly better than
the naive estimator. This is not the case for state transition parameters where the estimators
perform almost the same or worst compared to the naive one in aggregation and shelter with con-
strained missions. This is an indication that estimating the performance of finite-state machines
that were modified by changing the state transitions parameters is harder than estimating the
performance of finite-state machines obtained by removing a state from an original finite-state
machine. Removing a state that is essential for the well functioning of a control software is a
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Figure 4.7: The performance variation between the original finite-state machines and the modified
finite-state machines in both state variation and state pruning scenario.

perturbation that can make the performance drop to zero. Moreover, removing a state that is
rarely used will not have a big impact on the performance. This is a reason why estimating state
removal is easier: the change in performance is either very big or very small. In the case of state
transition parameter variation, the probability of a transition will change but this will not have
such a drastic impact on the new finite-state machine’s performance. The predictors will have to
estimate more subtle changes which is a harder task to achieve. This can be seen in Figure 4.7.
In this plot it is shown what impact the mutation of the original finite-state machine had on the
performance. The value on the Y axis, the normalized relative deviation, is computed using the
following formula:

normalized relative deviation =
original fsm performance�mutated fsm performance

original fsm performance

The domain is between minus infinity and 1. The value 0 means that the mutation had no
impact on the performance of the finite-state machine, the value 1 means that the new finite-
state machine obtained a score of 0 and a negative value means the mutated finite-state machine
performs better than the original one. In all missions, the variance of the normalized relative
deviation is higher for state pruning than it is for parameter variation. This is an indication
that removing a state has a higher impact on the performance of a finite-state machine than just
modifying a transition parameter.

Secondly, the DWIS and the IRE estimators are consistent in performance estimation across
the missions. In parameter variations, the DWIS is performing better or similar to the naive
estimator on all mission. In state removal, IRE is always performing significantly better than the
naive estimator. The WIS and PWIS are not consistent in the way they perform across multiple
missions. In shelter with constrained mission WIS is performing better and in the others PWIS

is performing better. This is problematic if this would be deployed in a local search algorithm
since the researcher would have to know which estimator to use for a particular mission.

4.3.2 Local search experiments

The results of the local search experiments for the foraging mission are presented in Figure 4.8.
The plot presents the results for di↵erent K values between 1 and 4. The perfect estimator always
estimates without any mistakes while the random estimator estimates randomly. On the Y axis
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it is represented the relative deviation from the original finite-state machine computed using the
following formula: pk(N) = poriginal�pmodified

poriginal
.

As the p k is closer to 0 it means that the modified finite-state machines obtain the same
score as the original one. If the p k value is positive the modified finite-state machines perform
worse than the originals and if the p k value is negative they perform better.

The value of the perfect estimator indicates that the best performing modified finite-state
machines perform slightly better than the original ones. When K is 1, only the best performing
finite-state machine is selected. The normalized relative deviation of the DWIS and WIS esti-
mators shows that when only the best performing control software according to their estimations
is considered, the measured performance decreases compared to the original finite-state machine.
As the K values increases, the DWIS and WIS estimators are getting closer to the performance
of the perfect estimator. The gap in estimation performance between the DWIS and the WIS
estimator is getting larger as the K value increases, the DWIS estimator performs significantly
better starting from K=3.

This results suggest that if the DWIS estimator would be used in a local search algorithm, the
top three finite-state machines from the neighborhood can be selected based on the performance
estimation and that would result on average in a better solution for the foraging mission.

The same experiment was performed for the aggregation mission and the results are presented
in Figure 4.9. The performance of the perfect estimator is an indication that the neighborhood
generated by modifying the state transitions contains also improving solutions. When K is equal
to 1, the methods are not performing better than a random estimator. When K is 2 or larger,
the DWIS approaches the performance of the perfect estimator and it is performing significantly
better than the random estimator, while the WIS is performing similar to the random estimator.
When K reaches 4, DWIS , WIS and the random estimator have similar prediction performance.

The DWIS is performing better than the random estimator when K has the value 2 or 3
and the random estimator is catching up when K is 4. In both missions, the estimators do
not achieve the same performance as the perfect estimator which is an indication that there is
room for improvements. Nevertheless, from these results it seems that the DWIS method could
improve the search of a neighborhood by suggesting three possible finite-state machines from the
neighborhood that are more likely to o↵er better performances.

Lastly, the results of the local search experiment for the shelter with constrained access
mission are presented in Figure 4.10. For this particular mission, it seems that the random
method behaves similar or better than all the other methods except the perfect estimator.



42 CHAPTER 4. EXPERIMENTS

Figure 4.8: The results of the local search experiment for the foraging mission. The 4 plots
correspond to di↵erent K values.

The K value represents the number of estimations from which the finite-state machine is
selected based on the measured performance.
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Figure 4.9: The results of the local search experiment for the aggregation mission.
The 4 plots correspond to di↵erent K values. The K value represents the number of estimations

from which the finite-state machine is selected based on the measured performance.
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Figure 4.10: The results of the local search experiment for the shelter with constrained access
mission.
The 4 plots correspond to di↵erent K values. The K value represents the number of estimations

from which the finite-state machine is selected based on the measured performance.
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Conclusion

Swarm robotics is a field that o↵ers great prospects for the future. To achieve its full potential,
the process of developing control software for a swarm of robots needs to be improved. In
the literature, there are many methods to generate the control software: manual, automatic
online and automatic o✏ine methods. The automatic methods are preferable otherwise the
control software has to be manually developed for every mission that the robots have to achieve.
One proposed solution that produced good results is AutoMoDe. AutoMoDe-Chocolate is an
automatic o✏ine method that uses an optimization algorithm to generate a finite-state machine
which represents the control software. In the reported results, AutoMoDe is capable of crossing
the reality gap better than other automatic methods.

The finite-state machine can be produced using various optimization algorithms. One possible
choice is to use local search. A local search algorithm would start from an initial control software
generated randomly and it would apply mutations on it in order to generate a neighborhood.
The best performing neighbor is picked as the new solution and its neighborhood is generated.
This process continues until a good enough solution is found. To evaluate the neighborhood of
finite-state machines, each one has to be executed in a simulator which can make the algorithm
run for a very long time.

A solution proposed by Pagnozzi and Birattari (2021) is to use importance sampling to predict
the performance of a finite-state machine that was obtained by modifying some state or transition
parameters from an original finite-state machine. In this thesis, new methods of predicting
the performance of a finite-state machine are proposed. These methods use more information
presented in the execution traces of the original control software such as intermediate states and
rewards to improve the prediction. The performance of the new methods and the ones presented
by Pagnozzi and Birattari (2021) are compared against each other and to a naive estimator by
running multiple experiments with multiple missions. Moreover, experiments in the context of
local search are also performed in order to understand how well the methods can predict the
performance of the neighborhood of a giving solution.

In the experiments where the methods are compared against a naive estimator, the new meth-
ods proposed in this thesis were consistent across multiple missions. They performed similar or
better than the naive estimator and there is no performance variance relative to the performance
of the naive estimator. However, the methods proposed by Pagnozzi and Birattari (2021) show
a larger variance in estimation performance across di↵erent missions. For example, in the aggre-
gation mission the WIS estimator was performing well, however, in the shelter with constrained
access mission its performance dropped and showed a large variance. A correlation analysis was
performed using Person’s test and it revealed that in most cases the new proposed estimation

45
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methods were positively correlated with the measured performance of the modified finite-state
machines.

Another conclusion that can be drawn from the results is that the methods can predict
more easily the performance of the finite-state machines obtained by removing states from the
original finite-state machine than to predict the change in performance from the ones obtained
by modifying state transition parameters. The main reason behind this might be that removing
a state causes bigger perturbation in a control software than modifying the parameter of a
transition. The methods can o↵er better estimations when the changes in performance are high
and they have a harder time estimating subtle changes.

Three experiments, one for each mission, were executed to understand how well could these
methods estimate the performance of neighbor solutions in the context of local search. The
results showed that theDWIS method can help achieve a slightly better solution than the random
estimator on average by running the simulator only for the top three finite-state machines that
obtained the highest performance prediction according to the method. An exception is the shelter
with constrained mission where the methods did not provide an improvement in performance
compared to the random estimator. The WIS estimator that was presented by Pagnozzi and
Birattari (2021) does not seem to achieve better solutions than the random estimator on average.
The gap between the performance of the methods presented here and the performance of the
perfect estimator shows that there is still room for improvements.

In all the experiments it can be noticed that the performance of the estimator varies from
mission to mission. This e↵ect is less seen in the case of the DWIS estimator which seems to
generalize better across missions. One of the reasons why the predictor could behave badly is a
high variance in the performance of a control software. This means that a control software that
is deployed on a swarm of robots could produce a score that varies substantially from one run
to another. The score that the predictor is trying to estimate is the average score obtained by a
particular finite-state machine over multiple runs and a large variance around this mean could
have a negative impact on this prediction.

The results presented here are promising and future work might improve the results. In the
methods developed so far a simplifying assumption was taken: the robots are behaving indepen-
dently and the traces of one robot are considered a single, independent episode. Nevertheless,
the behavior of the swarm emerges from the local interactions between the robots. A future
improvement that takes into consideration the joint probability of transitioning between states
across all the robots might o↵er a better performance. However, a problem with this approach
might be that more simulations have to be run in order to gather enough data to cover all possible
combinations of states and state transitions.

One problem with the way importance sampling is used in the DWIS is the fact that its
variance can become very large or even infinite (Sutton and Barto, 2018). In each experiment
performed in this thesis, the length of an episode is 2500. In order to compute the return for
the first state, the intermediate reward obtained in that state will have to be multiplied by
the importance sampling coe�cient that is the result of 2500 multiplications. This can add
a lot to the variance without adding any more value especially if the discount factor is closer
to 0. The idea presented by Sutton and Barto (2018) is to use a discounting-aware importance
sampling. By using this, the importance sampling coe�cients used to weight the returns obtained
at the beginning of an episode are computed until the horizon needed to cover the discounted
intermediate rewards that contribute to that state. By doing this, lower values of discount factor
can be used and the variance of the method might be reduced.

A good prediction mechanism that is capable of predicting the performance of a control
software can be used to improve the existing automatic design methods or even create new
better ones. Improved methods of designing control software for swarm robotics can help the
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field reach its full potential.

Code availability statement

The source code of the proposed technique can be found at https://github.com/vladiulianbogdan/
MasterThesisVUB-Prediction-Using-Importance-Sampling.
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Appendix A

Correlation Analysis

Figure A.1: The correlation between the PWIS estimator and the measured performance in the
aggregation parameter variation experiment.
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Figure A.2: The correlation between the WIS estimator and the measured performance in the
aggregation state removal experiment.
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Figure A.3: The correlation between the WIS estimator and the measured performance in the
shelter with constrained access parameter variation experiment.
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Figure A.4: The correlation between the PWIS estimator and the measured performance in the
shelter with constrained access state removal experiment.
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Figure A.5: The correlation between the PWIS estimator and the measured performance in the
foraging parameter variation experiment.
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Figure A.6: The correlation between the WIS estimator and the measured performance in the
foraging state removal experiment.
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The irace package: iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43–58.

Miglino, O., Lund, H. H., and Nolfi, S. (1995). Evolving mobile robots in simulated and real
environments. Artificial Life, 2(4):417–434.

Miglino, O., Nafasi, K., and Taylor, C. E. (1994). Selection for wandering behavior in a small
robot. Artificial Life, 2(1):101–116.

Mo↵ett, M. W. (1988). Cooperative transport by an asiatic ant. National Geographic Research
4, pages 386–394.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zu↵erey,
J.-C., Floreano, D., and Martinoli, A. (2009). The e-puck, a robot designed for education
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