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Abstract

In the past years, AutoMoDe has been introduced as a novel approach to the
design of robot swarms. In AutoMoDe, an optimisation algorithm assembles and
tunes predefined modules into control software, maximizing the score of the swarm
against a particular mission-specific objective function assessed in a simulation en-
vironment. AutoMoDe achieves a relatively smooth transition between simulation
and real world by introducing bias using only high-level modules.

A version of AutoMoDe, called Maple, introduced behaviour trees as a possible
control software structure for assembling modules, reusing the modules, optimisa-
tion algorithm and missions of previous AutoMoDe versions. This work pursues
the exploration of behaviour trees by defining a new version of AutoMoDe, called
Cedrata. Cedrata introduces a new set modules, specifically created to be used in
behaviour trees, and assesses the performance of behaviour trees in new missions.
Experiments include comparison between Maple and Cedrata, but also against
manual designs.

Results give interesting insights. Behaviour trees and the set of modules allow
human designers to reach good performances in a small amount of time. One some
missions, Cedrata reaches the best performances; but on some other missions the
optimisation algorithm seems to fail in finding the optimal solution. Results also
demonstrate that the freedom given on the tree structure have an impact on the
quality of the generated control software.



Résumé

Ces dernière années, AutoMoDe a été présenté comme une nouvelle approche
pour la conception d’essaims de robots. Dans AutoMoDe, un algorithme d’opti-
misation assemble et paramètre des modules prédéfinis en un logiciel de contrôle,
tout en maximisant le score obtenu par l’essaim dans une mission donnée exécutée
en simulation. Les logiciels peuvent ensuite être portés sur de vrais robots avec
relativement peu de différences en terme de performances grâce au biais introduit
par AutoMoDe qui encourage l’utilisation de modules de haut niveau.

Une version d’AutoMoDe, appelée Maple, a introduit les arbres de comporte-
ment comme une structure viable pour assembler les modules. Maple réutilise les
modules, l’algorithme d’optimisation et les missions de versions précédentes d’Au-
toMoDe. Dans ce document, une nouvelle version d’AutoMoDe appelée Cedrata
poursuit l’étude des arbres de comportement. Cedrata introduit un nouvel en-
semble de modules, construits spécifiquement pour les arbres de comportement, et
évalue ces arbres dans de nouvelles missions. Les expériences présentées proposent
une comparaison entre Cedrata et Maple, mais aussi avec des logiciels conçus
manuellement.

Les résultats aboutissent à des observations intéressantes. Les arbres de com-
portement et l’ensemble de modules permettent de concevoir des logiciels de ma-
nière aisée en peu de temps. Sur certaines missions, Cedrata atteint les meilleures
performances ; sur d’autres l’algorithme d’optimisation échoue dans la recherche
de la meilleure solution. Les résultats montrent en outre que la liberté donnée à la
structure des arbres de comportement influe sur la qualité des logiciels générés.
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Chapter 1

Introduction

Swarm intelligence, as defined by Dorigo, Birattari, et al. [15], is “the discipline
that deals with natural and artificial systems composed of many individuals that
coordinate using decentralized control and self-organization”.

In swarm intelligence, groups of simple behaving individuals achieve complex
behaviours without central control. In nature, such kind of systems include colony
of ants, termites and bees, flocks of birds, herds, etc [55].

The collective behaviour emerges from the interactions between the individuals
and their environment and, more importantly, the local interactions between indi-
viduals. These interactions can be of multiple kind: direct communication (mes-
sage exchange), indirect communication through the presence or absence of other
individuals or through the environment. The last one is called stigmergy [24]. For
example, ants achieve to find routes between food sources and the nest by deposit
of pheromones. Through feedback mechanisms, pheromones trails get reinforced
and allow ants to navigate more efficiently in their environment. Such swarms are
generally relatively homogeneous, i.e. individuals are all indistinguishable from
each other or belong to a few typologies.

Swarm intelligence systems present interesting properties [49]:

Robustness: The swarm is able to pursue its task when an individual is lost or
unable to function properly, even if it is often at the cost of some efficiency.
Indeed, no individual is absolutely required to achieve the target goal, and
they can be replaced by others when a loss or another problem occurs. As
cooperation is an emergent effect of the swarm, even parts of homogeneous
swarms can be removed without provoking the discontinuation of the opera-
tions. This also holds for heterogeneous swarms, as long as there is sufficient
robots of each typology. The multitude and simplicity of individuals also
reduce the chance of error at the collective level. Simple individuals are less
error-prone than complex ones, and the multitude reduce the risk of missing
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information in the environment.

Flexibility: The swarm is capable to adapt its collective behaviour depending on
the environmental conditions. Furthermore, it allows the swarm to perform
parallel tasks, by organizing itself in multiple teams where individuals, spa-
tially separated, create different collective behaviours. That way, a single
swarm can tackle different aspects of a complex mission.

Scalability: The swarm can handle the addition or removal of individuals with-
out changing how the parts interacts between themselves. Individuals only
interacts with other locally, meaning that the number of interactions of an
individual will not tend to grow with the size of the swarm population. It
means that in some tasks, without the need to update existing individuals,
a swarm intelligence system performance can be improved simply by adding
individuals.

These three properties, in addition of the simplicity of the individuals, make
swarm intelligence systems appealing for applications in various engineering fields.
The study of domains were swarm intelligence principles are applied to create new
systems is called swarm engineering.

Swarm intelligence includes swarm optimisation [7] and swarm robotics fields [3].
In swarm optimisation, algorithms are designed using the swarm intelligence prin-
ciples to solve optimisation problems. This include algorithms like Ant Colony
Optimisation (ACO) originally developped by Dorigo, Colorni, and Maniezzo [16]
or Particle Swarm Optimisation (PSO) by Kennedy and Eberhart [33].

1.1 Swarm Robotics
Swarm robotics is an approach were we design at set of relatively simple robotic
agents following the principles of swarm intelligence in order to achieve a task [2].
In particular, robots that implement the swarm intelligence principle have the
following characteristics [9]:

• They are autonomous;

• They are localized in the environment and they can modify it (stygmergy);

• They have local-only sensing and communication capabilities;

• They have no global knowledge (no central control);

• They cooperate in order to achieve a collective task.
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Ideally, robots are designed in a way these design concepts make them implement
the swarm intelligence properties seen before: the swarm must be robust, flexible
and scalable [49].

One of the difficulties is predicting how collective behaviours can emerge from
local control software. It makes the designing such of robots a difficult task. In
swarm robotics, the designer work on robot hardware and software is done at the
individual level but the relevance and performance of the produced design are
evaluated at the collective level.

Multiple approaches to the design of robot swarms have been studied in the past
years, but we can separate them in two categories: manual design and automatic
design.

In manual design, the designer iteratively implement the behaviour of the
robots, evaluate the collective performance of the swarm in experiments against a
particular task and improve the individual implementation based on the results of
the experiments. The design stops when the collective behaviour that is obtained
is sufficiently close the the desired one.

In automatic design, an optimisation algorithm takes the place of the designer
and generate the control software of the robot. Various researchers have stud-
ied swarm robotics from an automatic design angle, and we can classify these
researches using three criteria:

1. Off-line or on-line methods [5]. In off-line methods, robots are trained in a
simulated environment and the obtained software is uploaded afterwards in
real robots. In on-line methods, the software is continuously improved while
real robots execute their task.

2. The design method. Two of them are mainly used to design control software:
Reinforcement Learning (RL) [32] and Evolutionary Robotics (ER) [45]. In
RL, robots receive a reward for each action that they take. Over time,
they create a policy that map the robot state to the best action to do, i.e.
the action that should give them the higher reward. In ER, robots control
software are simulated in populations over multiple generations. The best
control software are selected and improved over generations using principles
inspired by the biological theory of evolution [12].
Others design methods includes Novelty Search [23], a derivative of ER where
new individuals are created in way they differentiate from the previous gen-
erations instead of exploiting best software so far. It makes the process
divergent instead of convergent and thus promotes exploration of the search
space. Racing algorithms [4] are an other alternative, were a set of candidates
is evaluated multiple times and weak ones are progressively eliminated.

5



3. The control software structure. These structure include Neural Networks,
Virtual Force functions, Probabilistic Finite State Machine (PFSMs), Be-
haviour Trees (BTs), etc.

1.2 Off-line design
In this work, we are interested in automatic off-line design [5]. In automatic off-line
design, the problem of designing control fortware for robot swarm is transformed
into an optimisation problem. The software is then uploaded in the robots that
operate in the real world. This method works as an opposite to on-line automatic
design, were software is updated as robots already started their task in the target
environment.

A method that can be used in off-line automatic design is Evolutionary Robotics.
They often create control software in the form of Neural Networks [44].

Evolutionary Robotics has already been applied successfully to design control
software. As examples, Sperati, Trianni, and Nolfi [53] used evolutionary robotics
to design a robot swarm that discover paths between two locations. Hauert, Zuf-
ferey, and Floreano [27] designed control software for a swarm of aerial robots.
Duarte et al. [17] designed neural control software for aquatic surface robots on
multiple missions.

An evolutionary algorithm, in the context of automatic off-line design, works
as follows:

1. An initial set of individuals is created, with randomly generated chromo-
somes.

2. Each individual is decoded into a robot control software, for example a neu-
ral network. In a simulated environment, robots controlled by the decoded
software are evaluated against a specific collective task objective.

3. The individuals that lead to the best robots performance are selected. New
individuals are generated from them using genetic rules, e.g. chromosomes
exchanges and random mutations.

4. The algorithm restarts at step 2 and iterate for a specified number of gener-
ations or until a particular condition is met.

One of the concerns about automatic off-line design is called the reality gap [5].
The reality gap is the fact that it is generally difficult to predict the performance of
a robot swarm that has been trained in a simulated environment, creating a “gap”
between the performance in design and in experiences. Evolutionary Robotics
methods often suffer from this gap [25].
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1.3 AutoMoDe
Simulations are widely used to design the control software of robots swarm. They
do not involve real robots, so they cancel the risk of material damage. They also
are often quicker than real world experiments, as long as the experimenter have
the sufficient computational power. However, from the robot point of view, the
simulation environment is never strictly identical or indistinguishable from the real
world environment, or even another simulation environment. A control software
that makes the swarm perform a task adequately in simulation may not lead to
the same result in an other environment. This is what the reality gap is about:
the performance difference between simulation and real environment.

A swarm robotics design method should reduce the impact of the reality gap
on the final task performance in real world. Some methods fail to overcome this
gap, leading to less effective or even non-functional swarms [14].

Multiple techniques have been proposed to deal with this reality gap. Jakobi,
Husbands, and Harvey [28] tuned the simulation sensors and actuator noise to
reduce behaviour difference between simulation and real world. Zagal, Ruiz-del-
Solar, and Vallejos [57] proposed a training method were simulations and real world
experiments are done successively. Fitness difference between these experiments
allow to adapt the parameters of the simulator.

Francesca et al. [20] proposed to look at the reality gap problem as a generaliza-
tion problem as it can be done in machine learning. In machine learning, learning
algorithms are subject to bias/variance trade-off [22]. When the learning algorithm
present a low bias, variance on the results produced is high, meaning that the al-
gorithm is highly sensible to the input values and present difficulties to generalize
to new data. Robot control software can be seen as functions that map sensors
input to actuators, and such functions are also subject to bias/variance trade-off,
as illustrated by Lawrence, Tsoi, and Back [36]. A low bias in the control software
may lead to a bad generalization and thus less efficient collective behaviour when
the robots are deployed into a different environment. It is typically the case when
the swarm is moved from simulation to real world, and this can explain why the
reality gap cause problems. Francesca et al. [20] proposed AutoMoDe as a method
that is inherently biased and thus mitigates the effects of the reality gap.

To achieve this mitigation, AutoMoDe (that stands for Automatic Modular
Design) introduces predefined and tunable modules that act as bias and that must
be combined into control software. The set of modules is designed according
to the capabilities of the robots that are considered. These modules and the
structure in which they are assembled depends on the particular study that have
been conducted. These studies, that are called AutoMoDe flavours, include as
a non exhaustive list: Vanilla [20], Chocolate [19], Gianduja [26], Maple [35],
Waffle [50], TuttiFrutti [21], Coconut [52], IcePop [34].
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These studies have shown that AutoMoDe flavours successfully manages to
mitigate the reality gap, by comparison against an Evolutionary Robotics method
that have been called Evostick [18].

1.4 Behaviour Trees
AutoMoDe flavours traditionally assemble their predefined modules into PFSMs.
AutoMoDe-Maple introduced behaviour trees [39] as a possible control software
structure.

Behaviour trees, originally developed for video games [10, 40] and recently used
in swarm robotics [30, 51, 31, 42], are tree-like structures that implement two-ways
control transfers [11]. When they are executed, a tick is propagated through the
tree. As results of being ticked, a node execute a predefined behaviour and return
a value describing the progression state of its task, allowing the parent node to act
consequently.

A behaviour tree contains multiple types of nodes. Leaf nodes are either con-
dition or actions nodes, that respectively test sensor input or execute an unitary
task. Intermediate nodes are called control nodes. The way they tick their children
and their return value depend of the return value of their children.

1.5 Scope of this work
This work sets up in the development and study of AutoMoDe by studying the
potential use and exploitation of behaviour trees. This includes the creation of a
new modules set that is specifically designed to be used in behaviour trees; defining
new missions that highlight the possibilities of this new set; and analysing the
performances of this new design method.

The Chapter 2 explains the concept of behaviour trees and gives an overview of
how they are used today in swarm robotics. The AutoMoDe flavours on which this
work is based are detailed in Chapter 3. The Chapter 4 lists related state of the art
studies and explains differences between these studies and AutoMoDe-Maple and
this work. The Chapter 5 lists the changes that this work introduce compared to
the previous versions of AutoMoDe. The Chapter 6 gives a description of the tasks
that will be used to evaluate the new AutoMoDe version developed in this work.
The Chapter 7 explains the experiments conducted and the methods that have
been used. The Chapter 8 describes the results obtained. Finally, the Chapter 9
concludes this work.
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Chapter 2

Behaviour Trees

Behaviour trees are structures that offer a way to organise and execute different
tasks in autonomous agents, such as robots [10].

This chapter explains how behaviour trees work, gives a short motivation of
the concept and draws an overview on how they are used today in robotics.

2.1 Structure
The definition of behaviour trees that will be used is the one proposed by Marzinotto
et al. [39], which is also used by Maple.

A behaviour tree is a tree-like structure that contains one root node, control
nodes and execution nodes. Execution nodes are always leaf nodes, and control
nodes are placed in between the root and the leaf nodes. The root node periodically
generates a signal called tick that is propagated through the tree, in a way that
depends of the control nodes. Once a node is ticked, it execute its algorithm
and return one value that can be either success, failure or running. Execution
nodes and are either action nodes or condition nodes, and control nodes are either
Sequence, Selector, Decorator or Parallel. A behaviour tree example is shown in
figure 2.1.

Condition nodes are tests on the outside world. They cannot alter the state of
the agent that run the tree, and can return only success or failure. Action nodes
are actions or behaviours that the agent can execute. They can alter the state of
the agent and can return any value in success, failure or running. The latter means
that the action is still being performed by the agent, indicating that the action
will take more that a tick cycle to be executed. It is necessary that the action give
control back to the tree in such cases, so the agent can react to external stimuli
when executing the action.

Control nodes distribute the tick on their children and return success, failure

9



?

?∗

A2C3

→∗

→

C2A1

C1

Figure 2.1 – A behaviour tree example. Control nodes, condition nodes and action
nodes are respectively represented by squares, diamonds and circles.

or running depending on the value returned by the ticked children.

Selector (?) When enabled, it ticks its children sequentially as long as they return
failure. When a child returned success or running, it immediately stops and
returns the children value. If all children returned failure, the node returns
failure.

Selector* (?∗) Same as Selector, but if a child returned running at the previous
execution, the node restarts with this child, ignoring the previous ones in
the children list.

Sequence (→) When enabled, it ticks its children sequentially as long as they
return success. When a child returned failure or running, it immediately
stops and returns the children value. If all children returned success, the
node returns success.

Sequence* (→∗) Same as Sequence, but if a child returned running at the pre-
vious execution, the node restarts with this child, ignoring the previous ones
in the children list.

Parallel (⇒) When enabled, it ticks all its children sequentially. If the number of
succeeding children is greater than S, the node returns success. If the number
of failing children is greater than F , the node returns failure. Otherwise, the
node returns running. S, F ∈ N are parameters of the node.
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Decorator (δ) The Decorator node have only one child. When enabled, it exe-
cutes a function set as parameter and return the value given by the function.
Depending on the function, the child can be ticked or not.

Modularity is one of the main advantages of using behaviour trees. The reuse
of sub-trees, even in a same tree instance, is a common use of this modularity.
To implement such cases, some behaviour trees framework allows nodes to have
multiple parents [29]. This usage is however discouraged by Marzinotto et al.
[39], who rather advice to encapsulate such sub-trees in dedicated actions node.
By doing this, the human tree readability is increased, without loss of generality.
Consequently, in this work, nodes will be allowed to have one parent at maximum.

2.2 Advantages
Behaviour trees were initially developed as tools for creating artificial characters in
video games [10, 40], replacing finite states machines that were previously widely
used. The main advantage of behaviour trees is their inherent modularity: tasks
and subtrees can be easily reused in multiple places, as they not need knowledge
about the nodes higher up in the tree.

The modularity gain that comes from the behaviour trees can be explained
from their two-way control transfers that they implement [11]. The different levels
of a behaviour tree act like the function call stack of a programming language: at
some point, the program can delegate some work by calling a function (respectively
a node in the context of behaviour trees) which will provide some feedback about
the executed task in the form of a return value. In the same way a function can be
called in different places in a computer program, a node or a subtree in a behaviour
tree can be reused. Functions or nodes are independent of their calling context; it
is not their task to know what has to be done after their work.

This is fundamentally different of what finite state machines do. Finite state
machines implements a one-way control transfers: when a transition is activated
and the machine switch to a new state, it becomes the responsibility of this new
state to decide what have to be done next. It becomes way more difficult to
add, removes or reuse part of the state machine, as it will break the execution
path. To continue with the programming language comparison, finite state ma-
chine transitions are comparable to Goto statements, which are known to be a bad
programming habit [13].
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2.3 Use in robotics
In consequence of their development in the industry, behaviour trees started to
be used and studied by academics in robotics and AI [10]. As examples, Bagnell
et al. [1] developed their robotic platform around behaviour trees. Bojic et al. [8]
extended the JADE (Java Agent DEvelopment) framework with behaviour trees
to overcome difficulties with large finite state machines. Ogren [46] argue that
behaviour trees may be used to improve modularity and complexity in the context
of Unmanned Aerial Vehicle (UAV).

More recently, behaviour trees have been studied to be used in coordination
with automatic design. As example, Nicolau et al. [43] automatically assembled
behaviour trees into agents that navigate in platform games using Grammatical
Evolution (GE). More specifically, the use of behaviour trees and automatic design
methods to create control software in the context of robots swarms have been
studied by Jones et al. [30], Scheper et al. [51], Jones et al. [31], Neupane and
Goodrich [42] and as an AutoMoDe flavour by Kuckling et al. [35].
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Chapter 3

AutoMoDe

AutoMoDe [20] is an approach to the automatic off-line design of control soft-
ware for robots swarm developed at IRIDIA. The aim of AutoMoDe is to provide
software that are resistant to the reality gap (section 1.3).

This chapter details the flavours of AutoMoDe on which this work is based.
Vanilla is the first flavour that has been published, and it describes the basis of
the approach. Chocolate introduced a new racing algorithm, that is the one that
will be used in this work. Maple introduced Behaviour Trees, the control software
structure which will be deepened in this work.

3.1 Main concepts
This section introduces the basis of AutoMoDe, and how the approach can be
applied to a specific robotic platform.

AutoMoDe is a design approach, that describes how bias can be injected in an
automatic design process. This bias takes the form of predefined modules, in the
form of behaviours and conditions. Behaviours are basic and unitary tasks that
the robots can execute, and conditions are probabilistic tests on the sensory input
of the robots. Both behaviours and conditions have parameters that can be fine
tuned by the optimisation process, allowing AutoMoDe to adapt the modules to
the particular task for which they are required.

The set of behaviours and conditions depends of the capabilities of the robots
that are considered for the current process. Specializing AutoMoDe for a robotic
platform begins by creating the reference model of the platform, that defines an
interface between the hardware and the control software. Essentially, the reference
model gives a list of variables that can be read and/or written by the software,
along with an update period. The reference model implicitly defines the set of
possible tasks than can be executed by the robots. The list of modules should

13



then be created on the basis of this reference model. It has to be noted that the
reference model and the list of modules depend on the robotic platform, but are
independent of the particular tasks that has to be achieved.

AutoMoDe flavours also define a control software structure, in which behaviours
and conditions modules are assembled. The commonly used structure is the Prob-
abilistic Finite State Machine (PFSM). In this work, we will study the use of
Behaviour Trees.

The last thing needed to make a flavour an automatic design method is the
optimisation algorithm, that is used to assemble the module into control software
designed for a particular task. In the following AutoMoDe flavours, the opti-
misation algorithm that are used are racing algorithms. This not imposed by the
guidelines of the AutoMoDe approach, and other flavour used different algorithms.
For example, AutoMoDe-IcePop [34] study the efficiency of a Simulated Annealing
algorithm.

To achieve such software creation, the algorithms need a measure of the effi-
ciency of the robot swarm against the particular task for which they are designed.
In AutoMoDe, this is referred as the objective function. This objective function,
coupled with the description of the environment, initial position of the robots,
etc. is referred as the mission. Missions are not linked with a particular flavour
and exist independently of them, but are often designed in a way to highlight and
assess particularities. For example, AutoMoDe-Gianduja [26] introduced commu-
nication based behaviour and conditions, and defined new missions that promotes
such communication to assess its new modules.

3.2 AutoMoDe-Vanilla

Francesca et al. [20] introduced AutoMoDe-Vanilla as the first flavour of Auto-
MoDe. In their paper, the authors defined several notions and concepts that were
reused in the following versions of AutoMoDe, including this work.

Vanilla produces control software in the form of probabilistic finite state ma-
chines. Finite state machines are composed of states and transitions. States are
chosen among the list of behaviours and transitions among a list of conditions.
Behaviour are executed endlessly until a transition is triggered and that a new
behaviour is selected, and conditions are used as trigger for transitions to react to
particular events.

Francesca et al. designed Vanilla for the e-puck robots [41]. They are two
wheeled robots, designed for research and educations, that are extended with
ground sensors and range-and-bearing board for Vanilla. Their reference model
is shown in Table 3.1. The control software can read the variables proxi, lighti,
gndi, n, rm and ∠bm and writes the variables vl and vr. The range-and-bearing
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Table 3.1 – E-puck reference model used in Vanilla and Chocolate.

Sensors/Actuators Variables
Proximity proxi ∈ [0, 1], ∠qi, with i ∈ {1, 2, ..., 8}
Light lighti ∈ [0, 1], ∠qi, with i ∈ {1, 2, ..., 8}
Ground gndi ∈ {0, 0.5, 1}, with i ∈ {1, 2, 3}
Range-and-bearing n ∈ N and rm, ∠bm, with m ∈ {1, 2, ..., n}
Wheels vl, vr ∈ [−v, v], with v = 0.16m/s
Update period: 100ms

module can reliably exchange messages at a distance of 0.7m.
The variables are defined in the following ways: proxi is the reading of the i-th

proximity sensor and ∠qi is the angle of the i-th sensor with respect to the head
of the robot; the proximity reading equals 0 when no obstacle is perceived in a
range of 0.03m and equals 1 when an obstacle is closer than 0.01m. lighti is the
reading of the i-th light sensor and ∠qi is the angle of the i-th sensor with respect
to the head of the robot; the light reading equals 0 when the sensor perceives only
ambient light and equals 1 when the sensor saturates. gndi is the reading of the
i-th ground sensor; it is equals to 0, 0.5 or 1 when the sensor perceive respectively
a black, grey or white ground. n is the number of robots perceived by the range-
and-bearing module in the neighbourhood; rm and ∠bm are respectively the range
and bearing of the m-th neighbour. vr and vl are the speed of the right and left
wheels of the robots. The readings are updated with a period of 100ms.

Based on this model, 6 behaviours and 6 conditions have been created. Each
behaviour is associated to a state, and is executed as long as no outgoing transi-
tion is triggered. At each control cycle, all conditions of outgoing transitions are
evaluated. If one or more transitions are enabled, one of them is randomly selected
and the current state is updated accordingly.

Behaviours
Exploration The robot moves straight, until a proximity sensor placed at the

front of the robot perceives an obstacle, i.e. proxi > 0.1 ∀i ∈ {1, 2, 7, 8}.
When it happens, the robots turns on itself for a random number of control
cycles in {0, 1, ..., τ} where τ is an integer in [1, 100]. The robots turns in
the opposite direction of ∠qi where i = maxi∈{1,2,7,8} proxi.

Stop The robot does not move.

Phototaxis The robot moves toward the light source, in the direction of vector
w = w′− kw0, which is computed as a function of the light attraction vector
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w′ defined as:

w′ =
{
wl = ∑8

i=1(lighti,∠qi) if light is perceived,
(1,∠0) otherwise.

and the obstacle avoidance component kw0, where k is a constant fixed to 5
and w0 is defined as follows:

w0 =
8∑
i=1

(proxi,∠qi)

Antiphototaxis The robot moves away from the light source. The behaviour
is defined in the same way as Phototaxis but using w′ defined as a light
repulsion vector:

w′ =
{
−wl if light is perceived,
(1,∠0) otherwise.

where wl is defined in Phototaxis behaviour.

Attraction The robot use range-and-bearing to go in the directions of the robots
in the neighbourhood. Obstacle avoidance is embedded as in Phototaxis, the
robot moves in the direction w = w′ + kw0 where w′ is computed as follows:

w′ =
{
wr&b = ∑n

m=1( α
rm
,∠bm) if robots are perceived,

(1,∠0) otherwise.

where α is real parameter in [1, 5].

Repulsion The robot moves away from the other robots in the neighbourhood.
The behaviour is defined in the same way as Attraction but using w′ defined
as follows:

w′ =
{
−wr&b if robots are perceived,
(1,∠0) otherwise.

where wr&b is defined in Attraction behaviour.

Conditions
Black-floor When all grounds sensors detect a black floor, the transition is en-

abled with probability β.

Gray-floor When all grounds sensors detect a gray floor, the transition is enabled
with probability β.
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White-floor When all grounds sensors detect a white floor, the transition is en-
abled with probability β.

Neighbor-count Transition is enabled with probability

z(n) = 1
1 + eη(ξ−n)

where n is the number of robots in the neighborhood, η ∈ [0, 20] and ξ ∈
{0, 1, ..., 10} are parameters.

Inverted-neighbor-count Same as Neighbor-count but with probability 1−z(n).

Fixed probability Transition is enabled with probability β, where β is a param-
eter.

Behaviours and conditions are tuned and assembled into a finite state machine
by the F-Race algorithm [4]. F-Race sequentially evaluates candidate configura-
tions (here, finite state machines) in simulation using an objective function that is
dependant of the current task for which the software is designed for. F-Race pro-
gressively discards the configurations that are statistically weaker than the others.
Each run is started with a different random seed, e.g. a different position distri-
bution of the robots on the experiment space. The candidate configurations are
created by randomly selecting states, transitions and the values of the parameters
of each module. To restrain the configuration space and keep up with the idea of
biased software, the generated finite states machines were allowed to have at most
four states and four transitions.

The quality of generated control software by AutoMoDe-Vanilla have been
evaluated on two missions: Aggregation and Foraging. Both missions are carried
out by a swarm of 20 robots.

In the Aggregation mission, the arena is composed of a grey floor and two black
circular areas (Figure 3.1). Robots are initially randomly distributed and have to
aggregate on only of the two areas. The objective function is

Faggregation = max(Na, Nb)
N

where N = 20 is the swarm size, and Na and Nb are the number of robots on the
two black areas at the end of the experiment.

In the Foraging mission, the arena is composed of food sources and a nest
(Figure 3.2). Robots must move a maximal number of objects from the sources
to the nest. As e-pucks do not have grabbing capabilities, robots are considered
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(a) Simulation (b) Real arena

Figure 3.1 – Aggregation arenas[20]. Both of these arenas are dodecagonal arenas of
4.91m2, centred at the coordinates (0;0). The ground is grey except for two black circular
areas that have a radius of 0.35m and that are centred in (0.6; 0)m and (−0.6; 0)m.

(a) Simulation (b) Real arena

Figure 3.2 – Foraging arenas[20]. Both of these arenas are dodecagonal grey arenas
of 4.91m2, centred at the coordinates (0;0). The sources are two circular black areas
with a radius of 0.15m and are centred in (0.75; 0)m and (−0.75; 0)m. A light source is
positioned behind the nest, at 0.75m over the coordinate (0; 1.25)m.
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having picked an object when entering in the source and having dropped their
object when entering in the nest. The objective function is

Fforaging = No

where No is the number of objects deposited in the nest.
Francesca et al. used Vanilla to create control software for these two missions

using irace R package [38, 54] for the optimization algorithm and ARGoS [47] for
the simulator. The results were compared to the ones generated by evolutionary
robotics method that the authors called Evostick, a method that they already
successfully used in previous experiments [18]. In Evostick, the control software
is created in the form of a two layered feed-forward neural network with a constant
structure defined based on the reference model. The optimisation algorithm then
learns the weight to associate with each connection.

It has to be noted that AutoMoDe-Vanilla and Evostick are automatic design
methods, meaning that they create control software without human intervention,
apart from the initial conception of modules and the neural network structure. In
particular, the modules, the neural network or the design process should not be
modified because of mission particularities or previous experiments results analysis.

Both methods were assessed using the same missions definition and criteria, and
using multiple optimisation budgets. Results are in the form of plots in the original
paper by Francesca et al. [20]. Comparison between Vanilla and Evostick show
that Vanilla fulfils its objective against the reality gap problem. The robots
trained with Vanilla perform similarly in simulation and in real world exper-
iments. In simulation, their performance may be lower than Evostick–it was
especially the case in Foraging mission. However, Vanilla performs significantly
better than Evostick in real world experiments.

3.3 AutoMoDe-Chocolate

After testing Vanilla against Evostick, Francesca et al. [19] extended the ex-
periment by testing both methods on new missions, and against human designed
control software. They kept the same robotic platform, reference model and set
of modules, but added two human design methods called U-Human and C-Human.
The performance of the four methods were evaluated against five new missions.

In U-Human, the designer is free to implement the software the way he wants,
without any structural restrictions. As in Vanilla and Evostick, the designer can
use a simulator to assess the performance of its control software and iteratively
improve it by a trial-and-error process. In the experiments described by Francesca
et al., the designer can have all resources he needs at his disposal, including pre-
viously developed code.
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In C-Human, the designer is constrained to use the same software representation
as in Vanilla, meaning that he must create a finite state machine with at most
four states and four transitions, using the same set of modules. The designer
replaces the optimisation algorithm that were used in Vanilla. As in U-Human,
the designer iteratively improve its solution by a trial-and-error process.

The four design methods were tested using five new missions, designed to be
achievable by robots that conforms to the e-puck reference model (Table 3.1). All
these missions take place in the same dodecagonal arena used for the Aggregation
and Foraging missions described before. The arena definition and the objective
function of these missions can be found in the original paper written by Francesca
et al. [19].

The results obtained after the experiments lead to multiple observations. Firstly,
as expected from the results obtained with Aggregation and Foraging missions,
Vanilla performs significantly better than Evostick in real world conditions.
Secondly, U-Human seems to suffer from the reality gap similarly as Evostick, and
so was outperformed in reality by Vanilla. Thirdly, C-Human showed to be re-
sistant to the reality gap while significantly outperforming Vanilla and thus the
two other methods.

The comparison between U-Human and C-Human confirms that the bias/variance
trade-off approach taken by Francesca et al. [20] can solve the reality gap prob-
lem. On the other hand, it shows that Vanilla, while having a set of module
appropriated for its reference model, is not able to produce as good results as an
human designer. This highlight the fact that the optimisation algorithm adopted
by Vanilla is not able to fully exploit the modules potential.

Francesca et al. [19] created a new version of AutoMoDe called Chocolate,
which shares reference model, set of modules, finite state machine structure with
Vanilla. The difference lies in the optimisation algorithm that is used to build
the control software. Vanilla uses F-Race [4], Chocolate uses Iterated F-Race
[6]. Iterated F-Race consists of sequential runs of F-Race, where the best candi-
date configurations of each iteration serve as seed to generate the candidates of
the next iteration. In the first iteration, candidates are generated randomly and
uniformly from the feasible candidates space as in classical F-Race. In the fol-
lowing iterations, the candidates are sampled following a probability distribution
that depends on the remaining candidates of the previous generation in a way to
favours candidates that are close to them. Chocolate adopts the Iterated F-Race
algorithm that is proposed by López-Ibáñez et al. [38] in the irace R package.

Francesca et al. ran Chocolate on the five missions that were used previously
and compared the scores of the generated control software against the performance
of Vanilla and C-Human obtained before. As expected, the results show that
Chocolate significantly outperforms Vanilla, but also C-Human. This show that,
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on these five missions, the Iterated F-Race is a sufficiently advanced optimisation
algorithm to outperforms human designers. As previous results show that C-Human
performs better than U-Human, we can extend the conclusion to the fact that
Chocolate outperforms humans whether they are constrained to modules or not.

3.4 AutoMoDe-Maple

Both Vanilla and Chocolate assembled their modules into probabilistic finite
state machines. With AutoMoDe-Maple, Kuckling et al. [35] wanted to assess
behaviour trees as control software structure for swarm robotics.

Maple works in a similar way as Chocolate and Vanilla. Given a set of mod-
ules, a mission and a simulation environment, an optimisation algorithm tune and
assemble selected modules into a control software. To assess properly behaviour
trees against finite state machines, Maple use the exact same reference model, set
of modules and optimisation algorithm as Chocolate.

However, behaviour trees are inherently different from finite state machine,
making Vanilla modules not directly suitable for use in behaviour tree. In par-
ticular, states are meant to be run indefinitely, until a transition is triggered and
cause a state switch. Translated into a behaviour tree action, it will mean that
this action will always return running. This can be a problem, because a Sequence
or a Selector control node will stop to tick its children when it sees a running child,
meaning that any subtree placed after an action will never be executed.

To overcome this problem that could happen with the Vanilla modules, Maple
restrict the structure of the tree to the one depicted at Figure 3.3. The root node
is a Sequence* node and have Selector nodes as children. Each Selector node has
exactly two children: one condition node and one action node, in that order. To
match with the Vanilla and Chocolate restriction to have maximum four states,
behaviour trees in Maple cannot have more than four Selector sub-trees.

In such trees, an action will be ticked as long as its associated condition return
failure. When the condition return success, the Selector node will stop and return
success. The Sequence* then tick the next Selector sub-tree, until its condition
returns success.

Kuckling et al. compared Maple against Chocolate and Evostick on the two
missions initially developed for Vanilla: Foraging and Aggregation. Results
showed that both Chocolate and Maple outperforms Evostick, which suffers from
the reality gap. Control software generated by Maple and Chocolate reach equiv-
alent performances, by using similar strategies.

Although Maple provides good results, it obviously restricts the behaviour trees
potential, and this both because of the modules and because of the imposed struc-
ture. In this work, a new set of modules will be designed to benefit as much as
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Figure 3.3 – Behaviour tree structure used in Maple. Control nodes, condition nodes
and action nodes are respectively represented by squares, diamonds and circles. The first
Selector sub-tree is highlighted using a dotted box. In this example, the tree contains
three Selector sub-trees, but Maple allow it to contain up to four.

possible from the behaviour trees return values. With actions that stops at some
point by no longer running indefinitely, a more flexible structure for behaviour
trees will be adopted.
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Chapter 4

Related Work

Behaviour trees were only recently used in the context of automatic design of robot
swarms. This chapter gives an overview of the state of the art studies in this field,
compares them with AutoMoDe-Maple and explains the defaults they share with
it.

The use of behaviour trees and automatic design methods to create control
software in the context of robots swarms have been studied in multiple papers
[30, 51, 31, 42], including AutoMoDe-Maple [35]. However and as specified before,
behaviour trees implement two-way control transfers, and these studies do not
make full use of it. In particular, we can see that the defined action nodes in most
of these papers do not fully exploit the range of return values, that include success,
failure and running. On another perspective, the results obtained in some of these
papers also illustrate well the effects of the reality gap.

Jones et al. [30] used behaviour trees as control software structure to design,
through genetic programming, a swarm of robots performing a foraging task. This
paper, in many aspects, is similar to what is done with Maple. They are both
off-line automatic design methods, evaluated on a related mission (Foraging). The
robots used have similar capabilities; in particular, the only actuator they have is
their locomotion system who allows them to move on the experiment arena. The
set actions proposed by Jones et al. [30] include movements–straight and left/right
turn–of 1 tick duration for each of them. Such actions return running at the first
tick, and success at the second one. It also have to be noted that theses actions,
when used in experimental setup, show an significant effect of the reality gap on
the produced control software. Following the conclusions of AutoMoDe and as
explained by the authors themselves, it may highlight the fact that such actions
should be encapsulated in higher level behaviours.

Scheper et al. [51] designed an evolutionary robotics process to create behaviour
trees for the DelFly Explorer, a flapping wing micro air vehicle, making them
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explore a square room and searching for an open window to escape. In their work,
the behaviour tree interact with the sensors through a blackboard, that give access
to the variables of the robot reference model, with read or write access depending
of the variable. In such situations, actions are reduced to variable assignments,
and hence can only succeed, meaning that they always return the same value. It
can also be noted that they allow their control software to directly set the value of
the actuators, which is comparable to the direct assignment of outputs from the
neural network to the actuators in Evostick, the evolutionary method that were
used as control method in the first versions of AutoMoDe. Like Evostick, Scheper
et al. [51] show a significant impact of the reality gap on their results.

Jones et al. [31] used behaviour trees to implement an on-line automatic design.
They obtained promising results by showing that a fully evolved control software
can be obtained in 15 minutes. The actions in the set they used work in similar
way than the actions Scheper et al. [51] used, i.e. they are actions that directly
set variables of the robot reference model, which reduce the power of the two-way
control transfers of behaviour trees. However, as they do an on-line automatic
design, remarks about reality gap does not apply here.

Neupane and Goodrich [42] defined a grammar based on behaviour trees to
represent the control software of their robots. They used it to create software for
foraging, cooperative transport and nest maintenance missions. Although they do
not detail the internal functioning of their actions–and thus the possible return
values–, they seem to propose higher level behaviours.

Most of the studies presented use low level actions, where it is difficult to
propose informative return values to the parent nodes. It seems though that such
values are important to make the behaviour trees work at full power: without
proper return value from actions, the control nodes cannot react and change the
execution flow in the tree. A way of overcoming this issue is the addition of
condition nodes before or after actions. This is however not an ideal solution,
since it increase the complexity of the tree and do not fill the absence of running
values.

In addition to this and according to the result obtained by the authors, such
low level actions also comes with effects due to the reality gap. We can expect
that introducing high-level behaviour could solve multiple problems at once, giving
more expressiveness to the actions, reducing the size and complexity of the tree,
and managing the effects of the reality gap.

24



Chapter 5

AutoMoDe-Cedrata

In this chapter, a new flavour of AutoMoDe, called Cedrata, will be defined. This
new flavour essentially introduce a new set of modules for the e-puck robots [41].
This modules redesign include the introduction of a new reference model, evolution
of some behaviours from Vanilla and the introduction of new ones. This set is
meant to be assemble into a behaviour tree, which will have different constraints
that the ones proposed for AutoMoDe-Maple.

5.1 The new reference model
The design of new modules is motivated by the lack of state information given
by ones of previous AutoMoDe versions (see section 3.4). Based on the three
return values that exist in behaviour trees–success, failure and running–, we easily
imagine action behaviours that represent unitary tasks that are meant to end at
some point or eventually fail.

Behaviours proposed in Vanilla are designed to be used in finite state machine,
i.e. to run indefinitely until a transition is triggered. Some of them can be extended
to include success and failure conditions, and it has been done (see section 5.2).
However, most of them cannot be translated so easily.

The solution that was adopted was to use the range-and-bearing actuators of
the e-puck robots to extend the capabilities of the robots compared to Vanilla,
and thus allowing the creation of new behaviours. The new reference model is
shown in figure 5.1. It introduces signals, exchanged between robots by the range-
and-bearing with every message. A robot always send a signal value sm, that can
be equal to 0, which is a special value that means no signal and that is sent by
default, or a integer in {1, ..., 6}. Signal values does not have particular meaning,
it is the role of the designer to give them one depending on the mission.

This reference model allow direct communication between the robots. It is
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Sensors/Actuators Variables
Proximity proxi ∈ [0, 1], ∠qi, with i ∈ {1, 2, ..., 8}
Light lighti ∈ [0, 1], ∠qi, with i ∈ {1, 2, ..., 8}
Ground gndi ∈ {0, 0.5, 1}, with i ∈ {1, 2, 3}
Range-and-bearing n ∈ N, rm, ∠bm and sm ∈ {0, 1, ..., 6},

with m ∈ {1, 2, ..., n}
Wheels vl, vr ∈ [−v, v], with v = 0.16m/s
Update period: 100ms

Table 5.1 – The E-puck reference model used by Cedrata. This is the same as the one
used in Vanilla (see Table 3.1) with the addition of a signal sm exchanged using the
range-and-bearing actuator.

commonly known that computer communication is error-prone: messages can be
lost, answers may be unexpected, etc. On the other hand, a exchange between
two communicants reach a successful end when all the required messages have
been exchanged. The addition of communication in the form of signals allows the
creation of a variety of behaviours exploiting the success and failure return values.

The communication system have been kept simple: robots have only 7 different
messages that they can exchange (when including the 0 signal). This choice have
been made for two reasons: (i) to stick with AutoMoDe philosophy of bias intro-
duction by having only high level behaviours at the disposition of the optimisation
algorithm, (ii) because a large message space will greatly increase the possible
control software space and will make the task of the optimisation process harder.
The second one is especially important when the optimisation process need to find
concordant signals between two or more signal based behaviour that are present in
the tree: all discordant signal combinations will lead to inefficient control software.

5.2 Modules
This section lists and defines the set of modules that will be used. In the follow-
ing descriptions of the signal based conditions and behaviours, the set of signals
{1, ..., 6} will be denoted S. Some behaviours can use a special value any that is
activated if any of the signals in S is received. The set S∗ = S ∪{any} will denote
the sets used by these behaviours.

Conditions
The new set of conditions is shown below. Conditions are kept unchanged from
Vanilla, with the addition of the Receiving Signal condition.
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Black-floor When all grounds sensors detect a black floor, the transition is en-
abled with probability β.

Gray-floor When all grounds sensors detect a gray floor, the transition is enabled
with probability β.

White-floor When all grounds sensors detect a white floor, the transition is en-
abled with probability β.

Neighbour-count Transition is enabled with probability

z(n) = 1
1 + eη(ξ−n)

where n is the number of robots in the neighbourhood, η ∈ [0, 20] and
ξ ∈ {0, 1, ..., 10} are parameters.

Inverted-neighbour-count Same as Neighbour-count but with probability 1−
z(n).

Fixed probability Transition is enabled with probability β, where β is a param-
eter.

Receiving signal Returns success if the robot has perceived a neighbour sending
s ∈ S∗ in the last 10 ticks. Returns failure otherwise.

Behaviours
The new set of behaviours is shown below. The Exploration behaviour is kept
unchanged from Vanilla. Exploration have been previously used in a lot of sce-
narios, and it has been considered too basic to be removed from the set of actions.
The old Attraction and Repulsion behaviours have been upgraded into the new
Grouping and Isolation behaviours, that add thresholds on the number of neigh-
bours as conditions of success and failure. The new Meeting, Acknowledgment and
Emit Signal behaviours have been added to let the robot use the new signal frame-
work. The old Phototaxis and Antiphototaxis behaviours have been dropped, in
order to keep a small set of available modules for the optimisation process.

Exploration is a random walk strategy. The robot moves straight until it per-
ceives an obstacle in front of itself. Then the robot turns on the spot for a
random number of tick in {0, ..., τ}, where τ ∈ {1, ..., 100} is a parameter.
This behaviour always return running.

Stop orders the robot to stay still. This behaviour always return running.
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Grouping The robot tries to get closer from its neighbours by moving in the
direction of the geometric centre of its neighbours. If the number of neigh-
bours becomes greater than Nmax, the behaviour succeeds. If the number of
neighbours becomes smaller than Nmin, the behaviour fails. Otherwise, it
returns running. As in Attraction, the speed of convergence is controlled by
the parameter α ∈ [1, 5].
The Grouping behaviour has embedded collision avoidance as in Vanilla
behaviours: the robot moves in the direction w = w′ − kw0, where w′ is
computed as follows:

w′ =
{
wr&b = ∑n

m=1( α
rm
,∠bm) if robots are perceived,

(1,∠0) otherwise.
and where kw0 is the obstacle avoidance component, where k is a constant
fixed to 5 and w0 is defined as follows:

w0 =
8∑
i=1

(proxi,∠qi)

Isolation The robot tries to move away from its neighbours by moving in the
opposite direction of the geometric centre of its neighbours. If the num-
ber of neighbours becomes smaller than Nmin, the behaviour succeeds. If
the number of neighbours becomes greater than Nmax, the behaviour fails.
Otherwise, it returns running. As in Repulsion, the speed of divergence is
controlled by the parameter α ∈ [1, 5].
The Isolation behaviour use the same embedded collision avoidance than in
Grouping, but with w′ defined as follows:

w′ =
{
−wr&b if robots are perceived,
(1,∠0) otherwise.

where wr&b is defined in Grouping behaviour.

Meeting The robot listens for a signal s ∈ S∗ emitted by another robot(s) and
moves forward towards the geometrical centre of the emitters. The behaviour
returns success if the distance between the robot and the geometrical centre
is smaller than a distance dmin. The behaviours fails if the robot did not have
perceived a robot that send the expected signal. Otherwise, the behaviour
returns running.
The Meeting behaviour use the same embedded collision avoidance than in
Grouping, but with w′ defined as follows:

w′ =
{
wr&b = ∑

m∈S∗
r
( α
rm
,∠bm) if robots are perceived,

(1,∠0) otherwise.
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where S∗r is the set of robots that have a signal that match with s.

Acknowledgment The robot send a signal s ∈ S and waits for a answer in
the form of the same signal. The behaviour returns success if the signal is
received or running if not. After tmax ticks, the behaviour returns failure if
the signal is still not received. This behaviour also sets the wheels velocity
to zero.

Emit Signal Sets the emitted signal to s ∈ S ∪{0} for the current tick. This be-
haviour always returns success. This behaviour also sets the wheels velocity
to zero.

The implementation of the reference model that is used here keeps received
messages up to 10 ticks in memory, if a newer message by the same robot is not
received before. It means that if the description of a behaviour say that the robot
must perceive a signal s, this signal could have been send 10 ticks ago.

5.3 Behaviour tree structure
In Maple, with running being the only value that behaviours can return, the
tree have been constrained to a particular structure to avoid problems with the
execution flow. With the new set of behaviour, the problem is greatly reduced,
although not completely removed: the Exploration and Stop behaviours are still
in the set. However, it means that the behaviour tree can reasonably be assembled
in a more flexible way. Allowing the design process to change the structure and
choose the control nodes type moves toward a better exploitation of the two-way
control transfer.

In Cedrata, the optimisation process can create a tree that have maximum
two levels and maximum three children per node. Unlike Maple, all branches are
not forced to have a depth of two: the root can have children that are action or
condition nodes. The optimisation process can choose any control node type from
Sequence, Sequence*, Selector or Selector*. To match with the Maple restriction
of four behaviours and four conditions, the tree is allowed to have at most four
action nodes and four condition nodes. The constraints on the depth and on the
number of children implicitly impose that the tree contains no more than four
control nodes. The structure of such trees is depicted in figure 5.1.

In opposition of Vanilla or Maple where a behaviour has to be executed at
each tick of the the control software, the tree structure adopted in Cedrata allows
the tree to stop after ticking only conditions, depending of the chosen control
nodes. It means that some actuators may not be updated properly. It can be
dangerous in the case of the wheels velocity, because the robot may keep moving
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Figure 5.1 – The behaviour tree structure used with the new modules. Control nodes,
condition nodes and action nodes are respectively represented by squares, diamonds and
circles. Nodes that can be control, actions or conditions are showed using dashed boxes.
A node of the second level can be an action or condition node, in this case it have no
children. It has to be noted that the tree is allowed to have maximum four conditions
and four actions, making this example impossible in practice due to the nine leaf nodes
that it has.

without the control of a behaviour and the embedded collision avoidance. If no
behaviour is ticked during the tree execution, the wheels velocity is assumed to be
zero. The same goes for the emitted signal, which is set to zero if no behaviour
explicitly set it.
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Chapter 6

Missions

This chapter lists and describes missions that will be used to compare Maple with
Cedrata.

This list include missions that were used in previous AutoMoDe studies along
with new ones that are designed to assess the use of the new behaviours that were
introduced in the previous chapter. The missions listed in this chapters are either:
(i) missions for which Maple already show successful results, and for which we are
interested in the performance of Cedrata; (ii) missions that promotes the uses of
the new features introduced with the new modules, like the signal framework. In
such missions, Cedrata is expected to demonstrate better results than Maple.

6.1 Foraging
Francesca et al. [20] designed the Foraging missions for Vanilla. These missions
were reused by Kuckling et al. [35] to assess the performance of Maple.

In the Foraging mission, the robots must take objects from sources and carry
them to a nest. As the e-puck robots have no grabbing capabilities, they are
considered having picked an object when they enter a source, and having dropped
off the object when entering the nest.

The Foraging arena is depicted in figure 6.1. The arena contains two black
spots that act as sources, and a white area that act as nest. To help robots to
navigate in their environment, a light source is placed behind the nest.

Initially, all robots are placed randomly over the whole arena, including sources
or the nest. The mission lasts during 250 seconds or equivalently 2500 control steps.
The objective function is

Fforaging = No

where No is the number of objects deposited in the nest.
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Figure 6.1 – The Foraging mission arena. It is a dodecagonal arena with an apothem of
1.231 meters centred at the coordinates (0; 0). The ground is grey except for the sources
and the nest. The sources are two black circle of radius 0.15m centred in (−0.75; 0)m
and (0.75; 0)m. The nest is a white area that contains all the positions that are under
−0.6m on the vertical axis. A light is placed at 0.75m over the position (0,−1.25)m and
is represented in yellow.

It is worth to remind that the new set of behaviours used by Cedrata do not
provide access to the light readings, and thus that the robots are unable to exploit
the light placed behind the nest.

6.2 Marker Aggregation
In the Marker Aggregation mission, the swarm must aggregate on a predefined sub
area of the arena. The difficulty comes from the fact the border of this aggregation
area is not perceivable by the robots; instead a small black patch called the marker
is placed at the centre of the aggregation area.

The Marker Aggregation arena is depicted in figure 6.2. The aggregation arena
is large enough to contain the whole swarm of 20 robots. The marker size is
designed to be able to contain only a small fraction of the robot swarm, but large
enough to be easily found by the robots if they randomly explore the space. The
mission is designed to promote communication inside the swarm. The robots that
are in the aggregation area but not over the marker do not have any sensor that
can tell them if they are in the aggregation area or not; they should get this
information from their neighbours that have this knowledge, i.e. the robots that
are over the marker.
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Figure 6.2 – The Marker Aggregation mission arena. It is a dodecagonal arena with an
apothem of 1.231 meters centred at the coordinates (0; 0). The ground is grey except for
a black circle of radius 0.15m centred in (−0.7; 0)m called the marker. The aggregation
area is a circle of 0.4m centred over the marker and that is not perceivable by the robots.

At the beginning of the mission, all robots are randomly placed in the whole
arena. Some of them may be placed in the aggregation arena, or even over the
marker. The mission lasts during 250 seconds or equivalently 2500 control steps.
The objective function is

FMarkerAggregation =
2500∑
i=0

N i
A

where N i
A is the number of robots in the aggregation arena at tick i.

6.3 Stop
The Stop mission has originally been developed by Hasselmann, Robert, and Birat-
tari [26] for AutoMoDe-Gianduja, a flavour that introduce communication based
behaviour in the set of modules. This mission is designed to promote communi-
cation between the robots, making it suited for the new set of modules and the
signal framework introduced in this work.

In the Stop mission, the robots must explore the arena to find a white spot
and then stop moving. The white spot is considered as being discovered as soon
as a robot enters it, and the whole swarm should to stop the quicker as possible
after that. That is promoting communication between the robots, since only one
of them have the information that stopping is now required.
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Figure 6.3 – The Stop mission arena. It is a dodecagonal arena with an apothem of
1.231 meters centred at the coordinates (0; 0). The ground is grey except for a white
circle of radius 0.1m centred in (−0.8; 0.6)m.

The Stop mission arena is depicted in figure 6.3. The arena ground is grey,
except for a small white spot placed on the top-left of the arena, near the walls.

Initially, all robots are placed in the right part of the arena, i.e. at positions
where the first coordinate is a positive number. The mission lasts during 250
seconds or equivalently 2500 control steps. The original mission was meant to run
only for 120 seconds, but have been extended here to keep all considered missions
on the same time constraint. The objective function is computed as follows:

FStop = 100000−
t̄N +

t̄∑
t=1

N∑
i=1

Īi(t) +
2500∑
t̄

N∑
i=1

Ii(t)


where t̄ is the tick at which a robot pass over the white spot for the first time,
N = 20 is the swarm size and Ii(t) and Īi(t) are defined as follows:

Ii(t) =
{

1 if robot i is moving;
0 otherwise. Īi(t) = 1− Ii(t)

A robot is considered a moving if it has travelled more than 5mm in the last tick.
This objective function encourages the robots to find the spot quickly with the
term t̄N and the first summation for t < t̄, and promotes that robots stop quickly
after the discovery tick t̄ with the second summation.
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Chapter 7

Experimental Setup

In this chapter, a comparison procedure between three alternative design methods
will be described. The design methods include Maple, Cedrata and manual design
using the set of modules and the tree structure of Cedrata.

Control software will be compared against each other and against the reality
gap. This should allow to evaluate (i) the swarm performance evolution from
Maple to Cedrata; (ii) the efficiency of the optimisation algorithm on the new set
of modules by comparison to manual designs. In particular, we are interested in
the following questions:

1. Do the use of behaviour trees with more adapted modules and a more flexible
structure than in Maple effectively increase the expressiveness of the control
software, under the same restrictions of four conditions and four actions ?

2. Do Cedrata present a good resistance against the reality gap, like the others
flavours of AutoMoDe ?

3. As seen previously in Chocolate [19], the choice of the optimisation algo-
rithm, under identical budget constraints, influence greatly the performance
of the generated control software. Is the Iterated F-Race algorithm, that was
used for Chocolate and Maple and reused in this work, adapted for the new
set of modules ?

To answers these questions, a series of experiments will be conducted.

7.1 Design methods
The experiments described in this chapter will involve comparison between mul-
tiple design methods, that include Maple, Cedrata, and manual design run by
experts.
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Maple is a flavour of AutoMoDe that assembles the modules from Vanilla
and Chocolate into behaviour trees. Using modules that are not designed for
behaviour trees, Maple restricts the structure of the generated trees. The optimi-
sation algorithm used is Iterated F-Race.

Cedrata is a flavour of AutoMoDe that assembles into behaviour trees modules
that were designed for them. In particular, they have a greater expressiveness to
the behaviour trees return values. Unlike Maple, the tree structure is allowed to
be more flexible and is designed by the optimisation algorithm. As Maple, the
optimisation algorithm used is Iterated F-Race.

In the manual design method, an human designer builds the control software
of the robot using the Cedrata set of modules and assembles them into behaviour
trees, under the same constraints than Cedrata. The method is similar to the
C-Human introduced by Francesca et al. [19] in the Chocolate study (see section
3.3). In the design process, the designer have access to a visual interface that
allow them to build trees and test them in the ARGoS simulator [47]. He have
access to the value of the objective function as automatic methods and to a visual
representation of the arena and the behaviour of the swarm for inspection. The
designers are chosen among people that have knowledge in swarm robotics, but
not on this study. In particular, they do not have prior knowledge in behaviour
trees.

7.2 Protocol
For each mission, design methods will be executed with different budgets: 100,000
and 200,000 simulation runs. For each budget size, 10 runs of the methods are run
and lead to 10 control software. The manual design will be done by four human
designers for each mission, with a maximum design duration of 4 hours. During the
writing process of this work, additional experiments with budgets of 20,000 and
50,000 simulation runs have been performed for the missions Marker Aggregation
and Foraging, and they will be included in the results.

To assess the performance of the control software against the reality gap, the
best procedure is to make robots execute the mission they were designed for in a
real environment. However, the experiments were done and this work was written
during the 2020 lockdown due to the COVID-19 pandemic [48]. As result, the
experimental setup for real world robot experiments was not accessible. Instead,
the impact of reality gap is tested using pseudo-reality.

Ligot and Birattari [37] showed that the effect of the reality gap can be mim-
icked in simulation-only environments. In particular, they created a new simula-
tion model that reproduce the rank reversal that have been observed with Vanilla,
Chocolate and Evostick in real world conditions.
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Table 7.1 – Design and pseudo-reality simulation models

Sensor/actuator MA MB

Proximity 0.05 0.05
Light 0.05 0.90
Ground 0.05 0.05
Range-and-bearing 0.85 0.90
Wheels 0.05 0.15

Simulation models are shown in table 7.1. The model MA is the design model,
i.e. the model that is used by the optimisation process. The model MB is the
pseudo-reality model, i.e. the model that is used to assess the reality gap. The
numbers shown in the table are the noise values that are applied to each sensor
readings and actuator values. For the proximity, light and ground sensor, a uniform
white noise is applied: a random value uniformly taken in [−p; p], where p is the
number shown in the table, is added to the sensor reading. For the range-and-
bearing sensor, the table number is the probability of message loss. For the wheels
actuator, the number is the standard deviation of a Gaussian noise with mean 0
that is added to the velocity value.

7.3 Reference Designs
In addition to the behaviour trees created by the manual designs method, a refer-
ence tree will be added for each mission. These reference designs are not part of
the experimental protocol and are designed by people with knowledge of the study.
They are built using the newly defined set of behaviours and the same constraints
on the tree structure, but without time constraints. These designs will only serve
as examples strategies to solves the missions for comparison purposes, and are not
in the knowledge of the human designers.

The manual design method already gives, by comparison with the automatic
design, a measure of the efficiency of the optimisation algorithm on that new set
of modules. The introduction of the reference designs serves additional objectives.
Firstly, behaviour trees have initially be developed to ease the design of control
software. Following this idea, coming up with efficient control software for each
mission should not be a hard task for a human designer. This point should be
assessable through comparison between the manual designs (under experimental
conditions) and the reference designs. Secondly, the reference designs will serve as
examples to show the possibilities of the new modules set.

In the following subsections, we will describe for each mission the behaviour
tree that has been designed and the strategy that is behind it.
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→∗

?

ExpWflr

ESig?

ExpMeetBflr

Figure 7.1 – Hand design for the Foraging mission. The conditions and actions names
have been abbreviated in the following way: Bflr: Black-floor; Meet: Meeting; Exp:
Exploration; FPrb: Fixed Probability; ESig: Emit Signal; Wflr: White-floor.

Foraging
The Foraging mission was initially designed with a light over the nest area to
guide robots in their search. However, the new set introduced here do not have
light detection capabilities, making the obtention of this information beyond the
capabilities of the robots, regardless of the fact that a human or an optimisation
algorithm is designing the software.

The design that have been implemented is shown in figure 7.1. In this design,
robots exploit the signal framework to send indications about the location of the
food sources to their neighbours. When a robot find a food source, it emits a
one-tick signal. The signal can then be received by robots that are in search of a
food source to attract them to it.

The tree is organised in three subtrees. The first one executes until the robot
find a food source (black floor). During that search, the robot will be attracted to
a signalling neighbour, if any, or explore randomly. The second subtree executes
after the discovery of the food source and emit the signal. The third subtree is a
random exploration until the nest (white floor) is found.

Marker Aggregation
In the Marker Aggregation mission, the robot must aggregate on a spot that is
set in a way in which all robots cannot have the localisation information. This
mission was designed to force the robots in using the signal framework.

The design that have been implemented is shown in figure 7.2. In this de-
sign, robots explore the arena until they find the marker. Then, using the signal
framework, they will attract their neighbours to the aggregation area.
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?

Exp→

MeetGflr

→

ESigBflr

Figure 7.2 – Hand design for the Marker Aggregation mission. The conditions and
actions names have been abbreviated in the following way: Bflr: Black-floor; ESig:
Emit Signal; Gflr: Gray-floor; Meet: Meeting; Exp: Exploration.

The tree is organised in three subtrees, that correspond to three situations of
the robot. The first one is meant to be executed when the robot is on the marker.
When the Black-floor condition returns success, the robot send a signal and the
tree execution stop there. If the robot is not on the marker, the second subtree is
executed and makes the robot go towards the marker using the Meet behaviour.
If the Meet behaviour could not find matching signal, because the marker has not
been found yet or because the emitting robots are too far away, the third subtree
is executed and makes the robot explore the area, until it either find a signal or
find the marker.

Stop
In the Stop mission, robots must find a white spot in the arena. Once found, all
robots must stop moving as quickly as possible.

The reference design is shown in figure 7.3. In this design, robots will send and
forward signals to their neighbours to transmit the information of the white spot
discovery. If a robot received a signal, it stops; if it do not receive any signal, it
explore the arena in order to find the white spot.

The tree is divided in three subtrees. The first one tests if the robot is over
the white spot. If that is the case, it sends a signal and do not move. If the robot
is not on the white spot, the second subtree is executed and tests if the robot
receives a signal, meaning that the white spot has been found. If that is the case,
it retransmits the signal and do not move. If the third subtree is executed, it means
that no signal is received and thus, with high probability, that the white spot has
not been discovered yet. When it happens, the robot explores the arena until it
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ESigWflr

Figure 7.3 – Hand design for the Stop mission. The conditions and actions names
have been abbreviated in the following way: Bflr: Black-floor; ESig: Emit Signal; RSig:
Receiving Signal; Exp: Exploration.

finds the white spot or receives a signal meaning that it has been discovered.
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Chapter 8

Results

This chapter presents the results of the three design methods described previously,
by mission. It gives a comparison between Maple, Cedrata and the manual design,
evaluates the performance of the Iterated F-Race algorithm on the new set of
modules by comparison with manual design, and verifies that the Cedrata still
mitigates the effects of the reality gap as the previous flavours of AutoMoDe.

In the following sections, methods are often claimed to "perform significantly
better" or "outperform" another method. It implies that a Wilcoxon rank sum
test [56] has been performed with a confidence of 95%.

8.1 Foraging
The performance of the three design methods on the Foraging mission are shown
in figure 8.1. The figure includes results with 100, 000 and 200, 000 design budgets
for automatic methods, with 10 designs for each method and each budget. The
results of the four manual designs and the reference design are the same in the
two plots. The performance evolutions of Maple and Cedrata in function of the
budget size are shown in figure 8.2. The figures include the results in both design
and pseudo-reality environments.

The plots present similar results for all budget sizes, and a detailed inspection of
the created behaviour trees shows that the adopted strategies, for each automatic
method, are the same regardless of the budget. Maple presents slightly lower
results on small budget sizes, but the difference is not significant and essentially
comes from the module tuning. The fact that strategies does not evolve with the
budget size implies that finding these strategies are not a difficult task for the
optimisation process, because it manages to do it even with low budgets.

Maple uses the light to navigate more easily from the food sources to the nest.
A typical tree is shown in figure 8.3. The first Selector subtree makes the robots
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(a) Budget: 100, 000 simulation runs
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(b) Budget: 200, 000 simulation runs
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Figure 8.1 – Foraging mission results. The performance of control software assessed
in the design and pseudo-reality environments are showed using respectively narrow and
wide boxes.

(a) Maple
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(b) Cedrata
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Figure 8.2 – Results evolution per budget size on the Foraging mission. The perfor-
mance of control software assessed in the design and pseudo-reality environments are
showed using respectively narrow and wide boxes.
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Figure 8.3 – A typical design of Maple for the Foraging mission. Abbreviations: Bflr:
Black-floor; Exp: Exploration; Wflr: White-floor; Pha: Phototaxis; Gflr: Gray-floor;
APha: Antiphototaxis.

explore randomly the arena until they find a source. At this point, the Black-
floor condition returns success and the robot switches to the second subtree, that
makes it move in the direction of the light, which is placed behind the nest. When
arrived, the third subtree is executed and makes the robot quickly leave the nest
by moving away from the light. Although being efficient, this strategy does not
make use of local communication.

With no light-related modules, the strategy adopted by Cedrata is more prim-
itive. All the generated trees contain an Exploration behaviour which make the
robot explore until the end of the mission. Eventually, the robot will pass over a
food source and then over the nest. As in Maple, this strategy does not involve lo-
cal interactions. A tree example is shown in figure 8.4. In this example, we can see
an Exploration behaviour but also two conditions that could have been removed:
the Fixed probability does not trigger a particular action, and the Neighbour-
count is, in this case, too high to ever return success. As for the shown tree, a
lot of generated control software contains what we can call superfluous modules,
i.e. modules that do not play a part in the strategy. This is something that also
happens sometimes with Maple, but in a way more limited way. This could be
explained by the constraints on the tree structure: Maple impose subtrees that
have one condition and one action node, leaving few possibilities to add extrane-
ous node. On the contrary, a superfluous module can easily be added in Cedrata
and, as it will not influence the performance of the swarm, be kept through the
optimisation iterative process.

On all budget sizes and both design and pseudo-world environments, Maple
outperforms Cedrata, but also the manual and reference desings. This can be
simply explained by the presence and absence of light-based behaviours, which
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Figure 8.4 – Example design of Cedrata for the Foraging mission. Abbreviations:
FPrb: Fixed probability; Ngb: Neighbour-count; Exp: Exploration.

gives a huge advantage to Maple.
Human designers used the same strategy as Cedrata, which is based on the

Exploration behaviour. However, it seems that the optimisation process does a
better job at creating trees for this strategy, that can be explained by the budget
size. Even the lower budget of 20, 000 simulation runs is a lot more than the runs
that a human designer can execute in four hours, allowing the automatic method
to test a greater amount of configurations and modules tuning. Although visually
providing better results, the confidence of the Wilcoxon test is not high enough to
conclude that Cedrata outperforms the manual designs.

No human designer used the strategy developed in the reference design, which
is to use the signal framework to attract robots to the food sources. However,
some of the manual designs reach as good performances as the reference design
(and Cedrata do even better), which leads to two conclusions. Firstly, the use of
signal that is done in the reference design does not give a substantial advantage.
Secondly, it supports the motivations behind the introduction of behaviour trees
in artificial intelligence, that is the convenience of the design. In this experiment,
designers with no prior knowledge of behaviour trees are able to understand the
concepts behind them and reach as good performances as the reference design,
where we could have expected lower performances due to the four hours time
window.

All three methods showed to be resistant to the reality gap, at least in the
pseudo-world experiment. By extension, and using the conclusions of Ligot and
Birattari [37], we can assume that they should also demonstrate to be resistant
against the reality gap in the context of a real experiment.
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8.2 Marker Aggregation
The performance of the three design methods on the Marker Aggregation mission
are shown in figure 8.5. The figure includes results with 100, 000 and 200, 000
design budgets for automatic methods, with 10 designs for each method and each
budget. The results of the four manual designs and the reference design are the
same in the two plots. The performance evolutions of Maple and Cedrata in
function of the budget size are shown in figure 8.6. The figures include the results
in both design and pseudo-reality environments.

As in Foraging, Maple shows similar results in all budgets, meaning that the
used strategy is probably easy to find for the optimisation process. A typical tree is
shown in figure 8.7. The strategy works in three steps that correspond to the three
subtrees. At first, the robot explore randomly the arena until it finds the black
marker. Then, the robot aggregate with its neighbours. If the robot leaves the
marker, the third subtree is executed and makes the robot stop. The Neighbour-
count condition is parametrized in a way that it shouldn’t return success at any
point. The Stop behaviour is interesting, because it prevent the robot to leave the
aggregation area by blocking it at the border of the marker; however robots in such
state impede the others that are in search of the marker. This problem is solved
in the reference design because robots in the marker can tell their neighbours that
the marker is close using a signal, but Maple does not have such communication
capabilities.

On the other side, Cedrata gives different performances for each budget sizes,
with clear improvements for increasing budget sizes, as shown in figure 8.6b. It
proposes two main strategies: one that is similar to what Maple does and one
that is similar to the one adopted in the reference design. The global performance
of the automatic design is influenced by how many strategies of each kind are
generated. In this experiment, the designs generated with the lower budget sizes
20, 000 and 50, 000 contain only Maple-like designs. The experiment with a budget
of 100, 000 simulation runs gave one reference-like strategy out of ten. When the
budget increase to 200, 000 simulation runs, this proportion increase to four out of
ten. This increasing proportion of reference-like design can directly be linked to
the budget size. The implementation of the Iterated F-Race algorithm provided
by irace [38] use the same initial number of iterations regardless of budget, using
higher budgets to increase the exploration of new designs at each iteration. The
reference-like design seems to be a difficult design to find for the optimisation
process; and it is more easily discovered with greater exploration.

In low budget experiments, Maple and Cedrata use the same strategy, but
Maple presents better performances. In higher budget experiments, Cedrata in-
cludes reference-like trees that are more efficient, but this proportion is not suffi-
cient for the Wilcoxon test to conclude that Cedrata outperforms Maple. However,
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(b) Budget: 200, 000 simulation runs
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Figure 8.5 – Marker Aggregation mission results. The performance of control software
assessed in the design and pseudo-reality environments are showed using respectively
narrow and wide boxes.
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(b) Cedrata
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Figure 8.6 – Results evolution per budget size on the Marker Aggregation mission. The
performance of control software assessed in the design and pseudo-reality environments
are showed using respectively narrow and wide boxes.
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ExpBflr

Figure 8.7 – Typical design of Maple for the Marker Aggregation mission. Abbrevi-
ations: Bflr: Black-floor; Exp: Exploration; Gflr: Grey-floor; Attr: Attraction; Ngb:
Neighbour-count.

we can expect the proportion to increase even more with higher budgets, until a
time where Cedrata outperforms Maple.

Cedrata also leads to more variety in the trees: for a same strategy, trees
with different topology are created. Trees also present superfluous modules, as
seen in Foraging. An example of a Maple-like design is shown in figure 8.8. This
tree contains some modules that are not useful: the two Emit Signal behaviours
send signals that will never be perceived, as no other signal-based modules are
present; the Sequence* subtree will always only execute its first child because the
Stop behaviour will always return running. This can be explained using the same
reasoning that has been made about the Foraging mission, which is that Cedrata
is more flexible on the tree structure.

The manual designs use a strategy that is similar to the one used in the reference
design but with better module tuning, making them outperforming the reference
design. As in Foraging, it clearly highlights the convenience of behaviour trees.
The manual designs also outperform Cedrata, although for the 200, 000 budget
size the confidence of the Wilcoxon test is not sufficient enough to draw a strict
dominance. However, by considering only designs trees that uses the same strategy,
Cedrata performs similarly. This is particularly visible on the 100, 000 budget size
plot: the top points above the 40, 000 score correspond to the one tree that uses
the reference-like strategy, and they clearly present equivalent performances to
the manual designs. As in the comparison with Maple, we can expect that, with
a higher budget, the proportion of reference-like trees increase, and that Cedrata
finishes by giving equivalent results to the manual designs for all generated trees.

All three design methods successfully manage to mitigate the effects of the
pseudo-reality gap. The performance in pseudo-reality of the reference design
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?∗

ESig→∗

StopWflrStop

→

ESigExpGflr

Figure 8.8 – Example of Maple-like tree of Cedrata for the Marker Aggregation mis-
sion. Abbreviations: Gflr: Grey-floor; Exp: Exploration; ESig: Emit Signal; Wflr:
White-floor.

show a bit lower performance, but the confidence on the Wilcoxon test does not
allow to conclude on a statistical difference.

8.3 Stop
The performance of the three design methods on the Stop mission are shown in
figure 8.9. The figure includes results with 100, 000 and 200, 000 design budgets
for automatic methods, with 10 designs for each method and each budget. The
results of the four manual designs and the reference design are the same in the
two plots. The performance evolutions of Maple and Cedrata in function of the
budget size are shown in figure 8.10. The figures include the results in both design
and pseudo-reality environments.

As in Foraging, both automatic design methods show similar performance for
the two budget sizes and use the same strategies in both experiments, meaning
that strategies exposed here are easy to find for the optimisation process.

A behaviour tree example from Maple is shown in figure 8.11. It makes the
robots explore the arena until they find sufficient amount of neighbours to stop.
A robot often finds the white spot before stopping. This behaviour allows the
swarm to reach an honourable score, but it fails to fill the objective of the mission
which is the communication of the white spot discovery. This failure is expected,
as Maple do not have direct communication at its disposal. The figure 8.11 also
illustrate how Maple can suffer from superfluous modules as in Cedrata: here, we
have two subtrees that could have been merged into one.

Cedrata uses a different strategy: robots simply isolate form the others. It
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(a) Budget: 100, 000 simulation runs
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(b) Budget: 200, 000 simulation runs
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Figure 8.9 – Stop mission results. The performance of control software assessed in the
design and pseudo-reality environments are showed using respectively narrow and wide
boxes.
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(b) Cedrata
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Figure 8.10 – Results evolution per budget size on the Stop mission. The performance
of control software assessed in the design and pseudo-reality environments are showed
using respectively narrow and wide boxes.
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StopBflr

?

ExpNgb

?
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Figure 8.11 – Example design of Maple for the Stop mission. Abbreviations: Ngb:
Neighbour-count; Exp: Exploration; Bflr: Black-floor.

makes the swarm expand and covers all the arena, giving a high probability to
find the white spot. They manage to get a relatively high score because the ob-
jective function consider that a robot that moves slower than 5mm per second is
not moving, and robots in the Isolation behaviour often pass under this threshold.
Some trees have an Exploration behaviour for when robots do not detect neigh-
bours, as showed in figure 8.12. This tree contains again superfluous modules,
especially the three Receiving signal conditions for signal that can’t be sent, which
is very common for control software generated with Cedrata.

The results of Cedrata on the Stop mission are surprising: they are lower
than the ones of Maple, although without statistical significance according to the
Wilcoxon test. We could have expected that Cedrata reaches at least the same per-
formances as Maple, considering that the generated trees of Maple on this mission
are in the search space of Cedrata. Besides, Cedrata has direct communication
modules at its disposal that should give it a substantial advantage over Maple. In
this mission, the optimisation algorithm of Cedrata fails to correctly exploit the
modules and the behaviour trees characteristics at its disposal. The reasons of
that failure are unclear, but following the discussion on the Marker Aggregation
results the large control software space of Cedrata could make it difficult for the
optimisation process to find interesting strategies because they are lost in a too
big amount of less-efficient ones. This hypothesis gets more convincing given the
fact that the strategy adopted by Cedrata is mainly based on a single Isolation
behaviour, making it easy to find.

The human designers used strategies that are similar to the one used as refer-
ence, making the manual designs and the reference design the only methods that
fulfil satisfactorily the objective of the mission, i.e. the communication of the white
spot discovery. This leads to higher scores, making the reference design outper-
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Figure 8.12 – Example design of Cedrata for the Stop mission. Abbreviations: Isol:
Isolation; RSig: Receiving signal; Wflr: White-floor; Exp: Exploration.

forming both Maple and Cedrata, and the manual design outperforming Cedrata.
The Wilcoxon test does not gives enough confidence to conclude that the manual
design also outperforms Maple, even if visually the results seems to be globally
higher.

Unlike previous missions, the manual designs are less efficient than the reference
one. However, the difference is minimal, and we can still support the idea that
behaviour trees are convenient to use.

For all methods, some simulation runs, either in the design or in the pseudo-
reality environment, show very low results (almost equal to zero) compared to the
other simulation runs. These results correspond to some experiments where no
robot find the white spot. Visually, it is the reference design that miss the least
to find the white spot, but keep in mind that plots of different methods are not
based on the same amount of designs: ten for the automatic methods, four for the
manual designs and only one reference design.

As in the previous two missions, all methods showed to be resistant against the
pseudo-reality gap.
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Chapter 9

Conclusion

In this work, a new flavour of AutoMoDe called Cedrata has been introduced to
pursue the work started with a previous one called Maple, which introduced be-
haviour trees. Maple uses modules from earlier flavours, which have been designed
for finite state machines. This forces the behaviour tree to adopt a particular
structure. Cedrata introduce a new set of modules that are specifically designed
for behaviour trees, and allowing the tree to have a more flexible structure.

Both methods have been compared on three different missions. These exper-
iments included manual designs, done by human designers on the module set of
Cedrata under the constraint of four design hours, and reference designs, done
as manual ones but without time constraints and with the objective of serving as
examples. Multiple observations can be extracted from the results.

The manual designs are, in average, as good as the reference ones. It means
that, under the experimental conditions of four hours, designers with no prior
knowledge of behaviour trees are able to understand and use them to solve mis-
sions efficiently. This highlights one of the advantages of behaviour trees, that are
claimed to be convenient to design agents in artificial intelligence. This also sup-
port that behaviour trees should be an interesting choice for AutoMoDe flavours
control software structure.

Behaviour trees are convenient to design for human designers, but it seems to
be more difficult for automatic processes. In this work, Cedrata was unable to
reach as good performances as the manual or reference designs on some missions.
This fraction seems to increase with experiment budget, but no experiment here
have a sufficiently high budget to make Cedrata a serious alternative to manual
designs. Based on the Marker Aggregation mission results, we could have stated
that it is only a matter of budget, and that Cedrata should give performant results
as soon as we provide enough budget. However, the results in the other two
missions contradicts that, since we cannot observe any evolution that is function
of the budget. The problem may lie in the optimisation algorithm, which may be
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unadapted for Cedrata. One of the main problem may be the size of the search
space, which is larger in Cedrata than it is in Maple. Due to the flexible structure
of the trees, the search space contains a lot of redundant control software due to
the high quantities of superfluous modules that we find in Cedrata trees.

In this work, a new set of modules was introduced to make better use of the
return values that is a part of the functioning of behaviour trees. However, the
comparison between new modules and ancient ones, respectively used by Cedrata
and Maple, do not show clear evidence that the new modules improved the perfor-
mance of the swarm. In the Foraging mission, Maple performs better, but it uses
light-based behaviours that have been removed from the new module set used by
Cedrata. In the Marker Aggregation mission, Cedrata performs better, but the
mission is designed to promote communication between the robots and Cedrata
possess the new signal-based behaviours that are not accessible to Maple. Clearly,
the performance of the automatic methods depends primarily on the mission and
how well suited the design method and its reference model are to deal with the in-
formation present in the mission, and not on the specificity of modules against the
structure in which they are assembled in. This does not allow to draw a conclusion
about the dominance of the one design method over the other.

The Stop mission promotes communication as Marker Aggregation, but instead
of performing well as we could have expected, Cedrata is the method that performs
the worse among all. This is surprising because Cedrata have a advantage over
Maple as it possess signal-based modules. At least, Cedrata should have reached
the performances of Maple since the control software generated by the latter are
included in the search space of Cedrata. This highlights even more the fact that
the optimisation process fails in creating good control software in Cedrata.

9.1 Future work
Cedrata is a second step, after Maple, into making behaviour trees a usable struc-
ture to use in AutoMoDe, but multiple things still need to be brightened up. In
particular, the comparison between Maple and Cedrata gives interesting observa-
tions but leaves unanswered questions.

Firstly, Cedrata introduces both a new set of modules and a new tree structure
and the results provided make it hard to attribute a better or worse performance
to one of the changes. For example, in the Stop mission, the Cedrata reference
model should have lead to better performances since it adds the possibility to
exchange signals; however Cedrata led to lower results than Maple. The problem
may reside in the set of modules, the flexibility of the tree structure, or both of
them. Without further experiments, it is difficult to attribute the results to one of
the proposed causes. One solution to isolate the structure flexibility would be to
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include removed modules from Maple back in Cedrata, and redo the comparison
on missions where Maple is performant, like Foraging. However, we already stated
that the optimisation process has difficulties searching in the control software space
of Cedrata, and this addition will probably worsen the performances of Cedrata
instead of improving them. To dig deeper in that direction, experiments can be
extended to include new flavours that use Cedrata modules but with a restricted
architecture or Maple modules with a more flexible architecture. Another solution
would be to use different missions, that are designed in a way such that Maple and
Cedrata come up with similar strategies, to evaluate how easily the optimisation
process find these strategies.

Another observation draw from the results is that Cedrata includes more su-
perfluous modules in its architecture than Maple. This leads to the hypothesis
that the number of such modules is related to the freedom given on the control
structure. An interesting experiment to confirm or infirm that would be to run
different optimisation processes on the same set of modules but with increasing
degrees of freedom.

More generally, Iterated F-Race, the optimisation algorithm used by Cedrata,
seems to be unable to efficiently explore the control software space. Increasing
budget would be a first solution, but will likely not work on all missions, since the
results in the Foraging and the Stop mission did not show to improve with the
budget. Another idea would be to assess the use of other optimisation algorithms,
like the Simulated Annealing that already has been tested in IcePop [34] or the
Novelty Search [23] that is a divergent algorithm that promotes exploration. Re-
search can also be oriented with the idea of reducing the number of superfluous
modules, because it will reduce the size of the search space without reducing its
possibilities since superfluous modules are, by definition, not altering the behaviour
that emerge from their tree.
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