
U
N

I
V

E
R

S
I

T
É

L

I
B

R
E

D
E

B
R

U
X

E
L

L
E

S

Design of robot swarms by optimization:
An instance of AutoMoDe based on simulated annealing

Mémoire présenté en vue de l’obtention du diplôme
d’Ingénieur Civil en informatique à finalité Intelligence Artificielle

Keneth Efrén Ubeda Arriaza

Director
Professor Mauro Birattari

Supervisor
Jonas Kuckling

Service
IRIDIA - Institut de Recherches Interdisciplinaires et de Developpements en

Intelligence Artificielle
Année académique

2018 - 2019

This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme: DEMIURGE Project, grant agreement No 681872

Preface

I would like to thank my thesis promotor, Mauro Birattari, for let me be part of this
amazing project. I would also thank my supervisor, Jonas Kuckling, for all the help
during the development of this thesis. And for his guidance and advises that allowed
me to finish this work. I want to thank David Garzón Ramos, for his encouragement
and help in the last stage of the development of this work. My sincere gratitude also
goes to my wife, Yamina, who was there in every moment to support me in all she
could. Finally I thank my parents Luis Ubeda and Berta Arriaza for their effort,
that allowed me to extend my academic career.

To Katerin Elei Ubeda Arriaza, who will be always my little sister.
Para Katerin Elei Ubeda Arriaza, quien siempre será mi hermanita.

Bienaventurado el hombre que tiene en ti sus fuerzas,
En cuyo corazón están tus caminos.

Salmo 84:5

Keneth Efrén Ubeda Arriaza

i

Contents

Preface i
Abstract v
Résumé vii
List of Figures and Tables ix
List of Abbreviations and Symbols xiii
1 Introduction 1

1.1 Swarm robotics . 1
1.2 Control Software design for robot swarms 4
1.3 Stochastic local search . 5
1.4 Overview . 7

2 State-of-the-art 9
2.1 Control software design . 9
2.2 Evolutionary robotics . 12
2.3 Modular design . 13
2.4 Simulated Annealing . 14
2.5 Contribution . 15

3 AutoMoDe 17
3.1 Components of the automatic design process 17
3.2 Control software search space . 19
3.3 Optimization algorithm . 21
3.4 AutoMoDe Python extension . 23

4 AutoMoDe-Annealing Implementation 25
4.1 Simulated annealing . 25
4.2 Component-based simulated annealing 26
4.3 Optimization process . 27
4.4 Implementation . 28

5 Experimental Setup 33
5.1 Robot platform and reference model 33
5.2 Missions . 33
5.3 Simulated annealing default configuration 36
5.4 Experiments protocol . 37

iii

Contents

5.5 Statistical analysis . 38
6 Experiments and Results 41

6.1 Budget influence . 41
6.2 Acceptance criterion influence . 43
6.3 Window size influence . 47
6.4 Restart mechanism influence . 51
6.5 Comparison . 55

7 Conclusions and Future work 59
A Low and High Budget Analysis 65
B Parameters run time analysis 75

B.1 Acceptance criterion . 75
B.2 Window size . 76
B.3 Restart mechanism . 78

Bibliography 81

iv

Abstract

Robot swarms are groups of simple robots that can collectively accomplish missions
that can not be accomplished by individual robots. The collective behavior of a robot
swarm results from the individual interactions of the robots with their peers and
with the environment. Despite of their simple nature, designing control software for
robot swarms is a challenging endeavor—no methodology exists to determine how the
individual robots should be programmed to obtain a desired collective behavior. The
local interactions are difficult to predict, and in most cases, the design of the control
software is manual and trial-and-error process. Still, robot swarms are becoming a
prominent field in robotics because they are fully distributed, highly redundant and
flexible systems.

In recent years, an effort has been devoted to the design of control software for
robot swarms by automatic methods. AutoMoDe—Automatic Modular Design—is
an automatic off-line approach to this purpose. In AutoMoDe, the design process
is cast into an optimization problem that is solved off-line. In this thesis, I present
AutoMoDe-Annealing: a new instance of AutoMoDe that implements simulated
annealing as optimization algorithm. In particular, I study the influence of the com-
ponents of simulated annealing when they operate with different optimization budgets
and over different control architectures. I conduct my research with an empirical
assessment of the control software produced for standard swarm missions: Foraging
and Aggregation. Alongside, I compare the performance of AutoMoDe-Annealing
with respect to the formerly published AutoMoDe-Chocolate and AutoMoDe-Maple,
and the still-under-development AutoMoDe-Iterated. Results show that the control
software architecture has the major influence in the performance of the produced
control software. AutoMoDe-Annealing is capable of producing appropriate control
software in the form of probabilistic finite state machines and behavior trees. Robot
swarms designed with AutoMoDe-Annealing and probabilistic finite state machines
outperformed the robot swarms designed with AutoMoDe-Chocolate and AutoMoDe-
Maple. In the case of AutoMoDe-Annealing and behavior trees, the robot swarms
performed similarly to AutoMoDe-Chocolate and AutoMoDe-Maple.

v

Résumé

Les essaims de robots sont des groupes de robots simples pouvant accomplir col-
lectivement des missions impossibles à accomplir par des robots individuels. Le
comportement collectif d’un essaim de robots résulte des interactions individuelles
des robots avec leurs pairs et avec l’environnement. Malgré leur nature simple,
la conception d’un logiciel de contrôle pour les essaims de robots est une tâche
ardue. Il n’existe aucune méthodologie permettant de déterminer la manière dont les
robots individuels devraient être programmés pour obtenir le comportement collectif
souhaité. Les interactions locales sont difficiles à prévoir et, dans la plupart des cas,
la conception du logiciel de contrôle est un processus manuel et un processus d’essai
et d’erreur. Néanmoins, les essaims de robots sont en train de devenir un domaine de
premier plan en robotique car ce sont des systèmes entièrement distribués, hautement
redondants et flexibles.

Ces dernières années, un effort a été consacré à la conception de logiciels de
contrôle pour essaims de robots utilisant des méthodes automatiques. AutoMoDe —
Conception modulaire automatique — est une approche automatique en différé à
cette fin. Dans AutoMoDe, le processus de conception est transformé en un problème
d’optimisation qui est résolu en différé. Dans cette thèse, je présente AutoMoDe-
Annealing: une nouvelle instance d’AutoMoDe qui implémente le simulated anneal-
ing en tant qu’algorithme d’optimisation. J’étudie en particulier l’influence des
composants du simulated annealing lorsqu’ils fonctionnent avec différents budgets
d’optimisation et sur différentes architectures de contrôle. Je mène mes recherches
avec une évaluation empirique du logiciel de contrôle produit pour les missions
d’essaim standard: Foraging et Aggregation. En parallèle, je compare les perfor-
mances d’AutoMoDe-Annealing à celles d’AutoMoDe-Chocolate et AutoMoDe-Maple,
précédemment publiées, et d’AutoMoDe-Iterated, encore en cours de développement.
Les résultats montrent que l’architecture du logiciel de contrôle a une influence
majeure sur les performances du logiciel de contrôle produit. AutoMoDe-Annealing
est capable de produire un logiciel de contrôle approprié sous forme de machines prob-
abilistes à états finis et d’arbres de comportement. Les essaims de robots conçus avec
AutoMoDe-Annealing et avec des machines à états finis et probabilistes ont surpassé
les essaims de robots conçus avec AutoMoDe-Chocolate et AutoMoDe-Maple. Dans
le cas d’AutoMoDe-Annealing et des arbres de comportement, les essaims de robots
ont fonctionné de manière similaire à AutoMoDe-Chocolate et AutoMoDe-Maple.

vii

List of Figures and Tables

List of Figures

1.1 Social insects and animals [40]. 2
1.2 Swarm robotics system [69] . 4
1.3 Traveling Salesman Problem [45] . 6

2.1 The design challenge in swarm robotics [24]. 10
2.2 Off-line automatic design. 11

3.1 Probabilistic Finite State Machine . 21
3.2 Behavior tree architecture . 22

4.1 Initial solutions for AutoMoDe Chocolate (A) and Maple (B). 28

5.1 E-puck robot [14] . 34
5.2 Foraging scenario. 35
5.3 Aggregation with Ambient Cues scenario. 36

6.1 Budget influence. In this figure, we can observe the performance of
Annealing-BT—First row— and Annealing-FSM—Second row— through
an increasing simulation budget. The first column corresponds to the
aggregation mission and the second to foraging. The assessment in
simulation is represented by dark-gray thin boxes, while pseudo-reality is
represented by light-gray thicker boxes. 42

6.2 Performance during the design process. This figure shows the
evolution of the control software performance in run time. Columns show
the results for each budget. Rows represent the missions used for the
assessment. The Annealing-BT and Annealing-FSM performance is
represented by a light-gray and dark-gray line, accordingly. The
performance results are shown within a 95% confidence interval. 43

6.3 Acceptance criterion 25K. This figure shows the performance of
Annealing-BT and Annealing-FSM over three different acceptance
criteria, Mean, Median and Wilcoxon test, in two missions. The thin
light-gray boxes represent assessment in simulation and the thicker
dark-gray boxes assessment in pseudo-reality. 44

ix

List of Figures and Tables

6.4 Acceptance criterion 50K. This figure shows the performance of
Annealing-BT and Annealing-FSM over three different acceptance
criteria, Mean, Median and Wilcoxon test, in two missions. The thin
light-gray boxes represent assessment in simulation and the thicker
dark-gray boxes assessment in pseudo-reality. 45

6.5 Acceptance criterion 100K. This figure shows the performance of
Annealing-BT and Annealing-FSM over three different acceptance
criteria, Mean, Median and Wilcoxon test, in two missions. The thin
light-gray boxes represent assessment in simulation and the thicker
dark-gray boxes assessment in pseudo-reality. 46

6.6 Window size 25K. This figure shows the performance of Annealing-BT
and Annealing-FSM over three different window sizes, 5, 10 and 15. The
columns represent the missions: aggregation and foraging. The thin
light-gray boxes represent assessment in simulation and the thicker
dark-gray boxes assessment in pseudo-reality. 48

6.7 Window size 50K. This figure shows the performance of Annealing-BT
and Annealing-FSM over three different window sizes, 5, 10 and 15. The
columns represent the missions: aggregation and foraging. The thin
light-gray boxes represent assessment in simulation and the thicker
dark-gray boxes assessment in pseudo-reality. 49

6.8 Window size 100K. This figure shows the performance of
Annealing-BT and Annealing-FSM over three different window sizes, 5,
10 and 15. The columns represent the missions: aggregation and foraging.
The thin light-gray boxes represent assessment in simulation and the
thicker dark-gray boxes assessment in pseudo-reality. 50

6.9 Restart mechanism 25K. This figure shows the performance of
Annealing-BT and Annealing-FSM over four different restart
mechanisms: Default, NoRestart, RunRestart and Reheat. The columns
represent the missions used for the assessment: foraging and aggregation.
The thin light-gray boxes represent assessment in simulation and the
thicker dark-gray boxes represent assessment in pseudo-reality. 52

6.10 Restart mechanism 50K This figure shows the performance of
Annealing-BT and Annealing-FSM over four different restart
mechanisms: Default, NoRestart, RunRestart and Reheat. The columns
represent the missions used for the assessment: foraging and aggregation.
The thin light-gray boxes represent assessment in simulation and the
thicker dark-gray boxes represent assessment in pseudo-reality. 53

6.11 Restart mechanism 100K. This figure shows the performance of
Annealing-BT and Annealing-FSM over four different restart
mechanisms: Default, NoRestart, RunRestart and Reheat. The columns
represent the missions used for the assessment: foraging and aggregation.
The thin light-gray boxes represent assessment in simulation and the
thicker dark-gray boxes represent assessment in pseudo-reality. 54

6.12 Aggregation comparison. The light-gray boxes represent assessment
in simulation and the thicker dark-gray boxes assessment in pseudo-reality. 56

x

List of Figures and Tables

6.13 Foraging comparison. The light-gray boxes represent assessment in
simulation and the thicker dark-gray boxes assessment in pseudo-reality. 57

A.1 Notch box-plot for low budgets. 65
A.2 Run time analysis low budgets. 67
A.3 Notch box-plot for high budgets. 68
A.4 Run time analysis high budgets. 72
A.5 Box plots for all budgets. 73

B.1 Annealing-BT run time performance, for acceptance criterion. 75
B.2 Annealing-FSM run time performance, for acceptance criterion. 76
B.3 Annealing-BT run time performance, for window size. 77
B.4 Annealing-FSM run time performance, for window size. 77
B.5 Annealing-BT run time performance, for restart mechanism. 78
B.6 Annealing-FSM run time performance, for restart mechanism. 79

List of Tables

3.1 Summary table of Behaviors and conditions. 20
3.2 Framework components. This is the software with its versions and

description, used as a framework to develop or extend AutoMoDe. . . . 24

4.1 Simulated annealing components . 27
4.2 PFSM perturbation operators. 29
4.3 BT perturbation operators. 29

5.1 Reference model RM1.1 [41]. Sensors and actuators of the e-puck robot.
The period of control cycle is 100 ms. 34

5.2 Default configuration simulated annealing 37

A.1 Low budget summary table. 66
A.2 Performance over 20 different instance of control software generated with

AutoMoDe-Annealing. 66
A.3 High budget summary table for AAC. 68
A.4 Performance over 20 different instance of control software generated with

AutoMoDe-Annealing for aggregation in high budgets. 69
A.5 High budget summary table for Foraging. 69
A.6 Performance over 20 different instance of control software generated with

AutoMoDe-Annealing for foraging in high budgets. 70

xi

List of Abbreviations and
Symbols

Abbreviations
AutoMoDe Automatic Modular Design
ANN Artificial Neural Networks
BT Behavior Trees
ER Evolutionary Robotics
FSM Finite State Machines
OA Optimization Algorithm
PFSM Probabilistic Finite State Machine
SA Simulated Annealing
SLS Stochastic Local Search
SPA Plan-Sense-Act

Symbols

T Temperature
T0 Initial Temperature
α Cooling factor
s Solution
s∗ Optimal solution
ŝ Incumbent Solution
π Optimization problem instance

xiii

Chapter 1

Introduction

Swarm intelligence can be defined as a discipline of artificial intelligence that uses
the collective behavior of groups of social insects and animal societies as a source of
inspiration to design algorithms and multi-agent systems. Some of these societies are
ants, termites, bees and wasps, flocks of birds and schools of fish. Individuals of such
societies individually can do only very simple tasks but collectively they can solve
very complex tasks [7]. For instance, if we take the example of ants, in which we see
that a single ant is not able to construct by itself a whole nest. However, collectively
a group of ants can cooperate to build sophisticated nests. An ant colony can also,
efficiently, find a food source by means of leaving pheromones in the way and thus
identify the best path to the food source, by following the path with the stronger trail
of pheromones. Beni and colleagues [4] used the term swarm intelligence in the 1980s,
in a context of cellular robotic systems where simple agents organize themselves by
means of nearest-neighbor interactions. After that, the term moved on to cover a
wide range of studies from optimization to social insects studies as documented in
the seminal book Swarm intelligence, From Natural to Artificial Systems by Dorigo,
Theraulaz, and Bonabeau, published by Oxford University Press [8].

In the field of computer engineering, swarm intelligence has become a very
important research field thanks to its various applications, for example in robotics
[78], operational research [25], continuous optimization problems [50], and networking
protocols [19, 20]. For instance, in optimization one of the most successful algorithms
based on swarm intelligence is Ant Colony Optimization [26] which is inspired in
the collective behavior of groups of ants that interact by leaving pheromones to
communicate to other ants which path is the best one to reach the food source.

1.1 Swarm robotics

Swarm robotics is the application of swarm intelligence principles in robotics. It
represents an approach to the coordination of a large number of robots whose main
source of inspiration is the collective behavior of social insects such as ants, wasps,
and termites. The feature in common among these insect societies is that individually
the insects are able only of performing simple tasks but by cooperating they can

1

1. Introduction

Figure 1.1: Social insects and animals [40].

accomplish relatively complex tasks. The emergence of collective behavior when
applying swarm intelligence principles on multi-robot systems is rather impressive
since it emerges despite the fact that individually, they are relatively incapable, despite
the lack of centralized coordination and despite the simplicity of local interactions.

1.1.1 Definition

E. Shahin has defined swarm robotics as follows: “Swarm robotics is the study of
how a large number of relatively simple physically embodied agents can be designed
such that a desired collective behavior emerges from the local interactions among
the agents and between the agents and the environment” [79]. In this definition, we
can observe three key concepts: simplicity, collective behavior, and local interactions.

2

1.1. Swarm robotics

Simplicity promotes cooperation, since it means that the robots have limitations
in their individual capabilities relative to the task they are trying to solve. The
collective behavior emerges from the interaction among individuals, the environment
and neighbors. There is no leader, which means that the swarm is self-organized
and no external infrastructure interferes which means that the swarm is autonomous.
Locality meaning that the limitation of interactions to a restricted local neighborhood
allows the robot to perform independently from the actual swarm size. This in return
makes the system scalable (w.r.t the swarm size). Additionally, robots can operate
in a multi-task and parallel manner when they switch from task to task according to
their environment or neighbors (conditions). In summary autonomy, self-organization,
redundancy, locality, and parallel execution promote robustness, scalability, and
flexibility in the system, which are system-level properties exhibited by a swarm
robotic system. They are observed in natural swarms and remain as desirable
properties of multi-robot systems.

• Robustness: Is the ability of the robot swarm system to operate despite
environment disturbances and malfunctioning individuals. This can be done
because swarms are redundant and no single-point-of-failure systems, the loss
of an individual can be compensated by another one. Also, coordination among
the robots is decentralized, so if part of the swarm is destroyed the other part
could still operate and sensing is distributed making the system robust against
local perturbations.

• Flexibility: Is the ability of the system to use different coordination strategies
to tackle tasks of a different nature.

• Scalability: Is the ability of the system to increase the number of robots in the
swarm impacting the performance positively or without impacting performance
considerably. For this property it is important, for the coordination mechanisms
and strategies developed, to take into consideration the operation of the swarm
under varying swarm sizes.

1.1.2 Applications

Swarm robotics has multiple potential applications such as rescue missions, surveil-
lance, exploration in risky areas (e.g. space missions), path-finding. For instance,
environmental robots can be used as garbage collectors and pest eradication. Some
other industrial applications include waste disposal and micro cleaners. Ship main-
tenance and ocean cleaning could be performed by swarms of underwater robots.
In aerospace technology, teams of flying robots may perform satellite maintenance.
In the aircraft industry, a swarm of robots can perform engine maintenance elim-
inating the need for costly disassembly for routine preventive maintenance. Some
researchers envision microsurgical robots designed to perform specific manipulation
tasks without the need for conventional surgical techniques. It is important to notice
that small robots, micro, and nanorobots may need to operate in very large groups

3

1. Introduction

Figure 1.2: Swarm robotics system [69]

or swarms to affect the macroworld. Approaches directly inspired or derived from
swarm intelligence may be the only way to control and manage such groups of small
robots. These applications are benefited from swarm robotics since all of them imply
group of agents trying to solve missions and which have to cooperate together in
order to achieve the objective (cleaning, maintenance, explore dangerous places,
explore unreachable places). Also, when working with multi-agent systems, swarm
robotics helps to solve redundancy and autonomy problems.

1.2 Control Software design for robot swarms

Control Software is the piece of software that allows the robot to use the input
information to perceive its environment and allows it to perform actions (actuate).
For instance, if we think of a cleaning robot within a house, the robot must identify
what is garbage and then take it to the recycle bin. So, the robot physically has
motors, wheels, and a mechanism to take objects, however, the robot needs a piece
of software that allows him to decide when to use each of his parts. This is when
the control software is necessary, so we can say that the control software is a piece
of software that allows the robot to decide when to use its parts depending on the
situation or environment. In the case of the cleaning robot, the controller has to
identify that an object is a garbage, this can be done by means of a camera. Then it
has to perform an action, which could be taking or not the object. If it detects that

4

1.3. Stochastic local search

it is garbage, the next action will be taking it to the recycle bin. To summarize the
previous example, we can say that a robot has sensors (i.e. cameras) that feed the
controller of the robot to make a decision and actuators (i.e. motors) that allow the
controller sending signals for the robot to perform actions.

1.2.1 Control software representation

This piece of software can be logically represented in different architectures such as:
sense-plan-act (SPA) [71], subsumption (Reactive) [13], Artificial Neural Networks
(ANN) [27], probabilistic Finite State Machines (PFSM)[brooks1986robust] and
Behavior Trees (BT) [63]. In swarm robotics for manual design it is common to
use SPA and Reactive architectures while for automatic design of control software
designers often use ANN, PFSM and BT. In ANN architectures, sensor’s lectures
are used as inputs and the outputs are mapped to actuators. In PFSM, behaviors
are represented as states that contain actions, and robots can move from one state
to another by means of conditions which comes from sensors lectures (environment
and interaction with neighbors). In BT architectures a behavior tree is a tree
structure that contains one root node, control nodes, and execution nodes (actions
or conditions).

1.2.2 A challenging task

The control software design for a robot swarm is a challenging task since it is difficult
to determine how these simple robots should be programmed to perform user-designed
tasks from local interactions only. To tackle this problem there are two approaches:
ad-hoc and principled. In ad-hoc approaches, behaviors of individuals are designed
manually to achieve a desired swarm-level behavior. In principled approaches instead
of designing a specific swarm-level behavior, a general methodology is proposed.
An example of a general methodology is the use of artificial evolution, for example,
feedforward or recurrent multi-layer perceptrons to encode behaviors. On the other
hand, Francesca and Birattari proposed a novel general methodology in 2013 called
AutoMoDe that stands for Automatic Modular Design [32]. This new approach is
inspired in the technique used in machine learning for dealing with the bias-variance
tradeoff and aims to automatically design control software for robot swarms from
existing independent modules.

1.3 Stochastic local search
Nowadays stochastic local search is a well-known technique used in different fields,
machine learning, operations research in general to solve hard-computing combi-
natorial problems. It is common to think of an artificial intelligence problem as a
combinatorial optimization problem. For instance, we can think of a salesman who
has to visit multiple cities only once and he wants to visit those in the most efficient
way, where efficient means minimizing the traveled distance. This is a popular
mathematics combinatorial problem called Traveling Salesman Problem (TSP) where

5

1. Introduction

Figure 1.3: Traveling Salesman Problem [45]

the expected behavior of the computer, in order to solve the problem, is to explore
all the possibilities, by combining groups of cities, and optimize the outcome. To
tackle these kinds of problems, there are mathematical models based on constraints
and objective functions that guarantees to find the optimal solution. However, these
called “exact methods” are hard to solve for computers, in terms of time complexity,
and when the search spaces are too big (in TSP when the number of cities increases
[48]) it just becomes infeasible to find the optimal solution in a reasonable amount
of time.

1.3.1 SLS for combinatorial optimization problems

Stochastic local search (SLS) uses the same model of constraint and objective functions
but it applies probabilistic techniques to approximate good solutions. Meaning that
a local search technique will try to find the optimal solution by interacting within
a neighborhood (other feasible solutions) and move through the search space by
selecting the most probable path to the optimal solution. It is important to mention
that, in SLS algorithms moving into the neighborhood and the search initialization
can be randomized.

When trying to tackle hard combinatorial optimization problems, stochastic
local search offers from very simple techniques such as first improvement , best
improvement to more sophisticated ones such as Simulated Annealing [52] Tabu
search [36], Lin-Kernighan Algorithm [60], among others. In contrast to exact
methods, local search technique can converge rather fast, even in big search spaces
and approaches very closely to the global optimum solution. This fact makes local

6

1.4. Overview

search robust techniques, that can be adapted to different needs. However, one of
the weaknesses of local search techniques is that, in general, they are incomplete,
which means that they don’t ensure to find the global optimal solution if there is one,
instead they usually get trapped in a local optimum. However, some local search
techniques (i.e. simulated annealing), are probabilistically complete meaning that if
they run for enough time, they will find the global optimal solution, if there is one.

1.4 Overview
In this work, I explore a SLS algorithm as an optimization algorithm within Auto-
MoDe. I test the performance of this technique and compare it with the AutoMoDe
Chocolate and Maple versions. The SLS technique implemented is Simulated An-
nealing which is a probabilistic complete algorithm that has the ability of escaping
local optima. So, my hypothesis consists in observing if a SLS technique within
an automatic off-line modular design approach can perform as good as current
techniques for automatic design of control software for robot swarms. I compare the
algorithm with other techniques and observe its robustness w.r.t the reality gap by
testing the generated control software, in simulation and pseudo-reality. I also study
the influence of different parameters on the performance of the optimization process.

Chapter 2. I start by deepening into state-of-the-art techniques to design control
software for robot swarms, covering two different approaches, automatic modular
design, and evolutionary techniques. I also present some works of Simulated Annealing
in the context of robotics.

Chapter 3. I present AutoMoDe-Annealing, which is a method of automatic
design based on AutoMoDe. The difference with other instances of AutoMoDe is
that it uses simulated Annealing as optimization algorithm. I give details over the
framework used to develop the method and how the automatic design is translated
to an optimization problem that can be tackled by stochastic search techniques.

Chapter 4. I explain the settings of the experimental setup that includes a de-
scription of the robots, simulation environment, the missions and protocol used to
assess the method.

Chapter 5. I present the results of the experiments I performed to assess the
AutoMoDe-Annealing in two parts. The first part studies some parameters influence
over the SA and the second part shows a comparison between AutoMoDe-Annealing,
AutoMoDe-Chocolate, AutoMoDe-Maple and AutoMoDe-Iterated—Another instance
of AutoMoDe with iterative improvement as optimization algorithm.

Chapter 6. Finally, I present the conclusions and future work in chapter 6.

7

Chapter 2

State-of-the-art

Swarm robotics has been mainly inspired by the observation of groups of social
animals such as ant and bee colonies, flocks of birds and school of fish. These groups
of animals exhibit a swarm intelligence: the individual actions of each animal leads
swarm to exhibit a rather complex behavior. The distributed nature of the swarm
that endows it with properties that are also desirable in artificial systems: swarms are
robust, scalable and flexible [22]. In particular, those properties are relevant to the
design of multi-robot systems. The study of robot systems that display properties of
robot swarms has been defined as swarm robotics [23]. Despite the fact that swarm
robotics has been largely studied in the past years [31], no well-defined methodology
exists for the development of robot swarms. The need for engineering-based methods
for the development of robot swarms was first introduced by Kazadi et al. [49] and
further explored by Winfield et al. [88]. Brambilla et al. [10] give a complete definition
of the concept of swarm engineering: it is the systematic application of scientific and
technical knowledge in the requirement specification, modeling, design, realization,
verification, operation and maintenance of swarm systems. My research is closely
related to the concept of swarm engineering: I investigate the effectiveness of state-
of-the-art optimization algorithms in the automatic design and realization of robot
swarms. In this chapter, I present related work on the automatic design of control
software for robot swarms and, in addition, relevant literature and applications in
robotics of the optimization methods I consider in my thesis.

2.1 Control software design

The design of robot swarms refers to the planning and development of swarm systems
on the basis of a priori known initial specifications. For example, a common idealized
application for robot swarms is the planetary exploration [80]. In such case, a swarm
might be required to explore the surface of the planet while taking samples of ground.
Those specifications provide to the designer the basis on which to select the number
and type of robots that are needed, as well as the appropriate exploratory collective
behavior to achieve the mission. However, there is no mature or precise method to
design the control software for the individual robots so that it will produce the desired

9

2. State-of-the-art

Figure 2.1: The design challenge in swarm robotics [24].

collective behavior in the swarm [11]. In most cases, the intuition and experience
of the human designer is the key to the development of efficient robot swarms [31].
As an alternative to the manual design, recent work has been devoted to investigate
the automatic design of robot swarms. Brambilla et al. [10] discuss literature on the
approaches to the design of robot swarms, and present a taxonomy that divides the
design methods into behavior-based design and automatic design.

2.1.1 Behavior-based design

The behavior-based design of robot swarms is mainly an iterative process of trial
and error. The individual behavior of each robot is implemented, studied and
improved until the desired collective behavior is obtained. In some cases, the design
process benefits from previous studies on social animals that provide a mathematical
model from which to predict the relationship between individual and collective
behaviors [82, 35, 55]. As mentioned before, a promising alternative to behavior-
based design is the automatic design of robot swarms. The control software for the
individual robots is produced without the explicit intervention of the developer.

2.1.2 Automatic design

In automatic design, the problem of designing the control software is translated
into an optimization problem: there is a search space comprising different design
choices, and an optimization algorithm is used to explore it [6]. Another classification
for automatic methods refers to the differences in the design and deployments
environments. Under this criterion, they are classified into on-line and off-line
methods. There are two main approaches to the automatic design of robot swarms:
evolutionary robotics and modular design [31].

10

2.1. Control software design

(A) General methodology (B) One shot method

Figure 2.2: Off-line automatic design.

On-line methods

In on-line methods, the design process takes place when the robot swarm already
has been deployed in its operational environment. On-line methods are commonly
used under mission-specific studies and their main advantage is that they facilitate
the adaptation of robot swarms to changes in their work-space [12, 39]. A relevant
study that proposes an on-line method for multi-robot systems was published by
Parker [74]. The author proposed L-ALLIANCE, a behavior-based control architec-
ture that allows the on-line optimization of internal parameters of control software.
Matarić [65] surveyed various behavior-based control architectures that allow the
on-line optimization of parameters. Lee and Arkin [56] applied learning momentum
[18] to a multi-robot system.

Off-line methods

On the contrary, off-line methods design robot swarms before they are deployed in
their operational environment. The design process iteratively considers, evaluates
and discards different instances of control software. In order to support this process,
the evaluation of the control software is performed in computer-based simulations—
achieving then faster evaluations and preventing damage of the robots. This work
is related to off-line methods which is why I will describe relevant off-line methods
in the following section. On-line and off-line methods have different characteristics
which make them suitable in different situations. First, on-line methods profit from
the information on the actual operational environment and can be fine-tuned to

11

2. State-of-the-art

operate there. Off-line methods rely on the representation of the environment that
often is provided by a simulator. Second, on-line methods are constrained to design
control software over a reduced design space. The design process is performed
by the robots themselves and often the computational resources are limited [87].
Moreover, designers must discard potentially dangerous control software from the
design space to reduce damage risk. On the other hand, off-line methods operate a
priori and under fast simulations [6]. Hence, they can afford larger design spaces.
Finally, on-line methods are fully distributed processes. The robots cannot count
on any centralized entity to measure performance and guide the search—they rely
on their inner and collective experience to evaluate the control software [76]. In
off-line methods, the search can be guided by global information acquired within the
computer-based simulations [75].

2.2 Evolutionary robotics
Evolutionary robotics [72] is an approach to the automatic design, that applies
evolutionary computation—Artificial principle of natural selection and evolution—
techniques to single [37, 44] and multi-robot systems [9, 21, 85, 81]. Neuro-evolution
is the most studied automatic design approach in swarm robotics. It uses an
evolutionary algorithm to optimize the parameters of an artificial neural network
that takes as an input sensor readings, and returns actuation commands. The
application of the evolutionary robotics approach in swarm robotics is known by the
name of evolutionary swarm robotics [84]. Some of the important characteristics
shared in works related to evolutionary swarm robotics are: (i) All the robots of the
swarm execute identical copies of the same control software; (ii) During the design
process, the objective function is globally and centrally evaluated. It is computed,
evaluating the performance of the swarm as a whole; (iii) The optimization algorithm
used within the design process is an evolutionary algorithm that features elitism,
recombination and mutation operators. Most of the research is aimed to prove the
feasibility of the approach, if a particular collective behavior can be obtained via
artificial evolution.

2.2.1 Evolutionary swarm robotics

The firsts in adopting an evolutionary approach in the context of swarm robotics
were Quinn et al. [77], they obtained a coordinated motion behavior by using an
evolutionary algorithm to optimize control software based on a neural network.
After this work, several robot swarms designed via evolutionary robotics have been
described in the literature. For example, Christensen and Dorigo [17] showed
that using evolution is possible to obtain a swarm of robots that is able to perform
simultaneously, hole-avoidance and photo-taxis. Under similar settings, Baldassarre et
al. [3] obtained coordinated motion with a swarm of four physically connected robots.
Hauert et al. [43] used evolutionary robotics to obtain the control software for a swarm
of aerial robots that are required to establish a wireless communication network.
Trianni and Nolfi [85] studied the design of self-organizing behaviors via evolution.

12

2.3. Modular design

Waibel et al. [86] investigated the influence on the performance of different selective
pressures (individual and collective) and different team compositions (homogeneous
and heterogeneous swarms). Ferrante et al. [30] used a method based on grammatical
evolution to evolve task specialization in a robot swarm. In particular, the authors
highlighted the environmental conditions that are necessary for task specialization
to emerge.

The research in evolutionary swarm robotics has been influenced by the current
trends in evolutionary computation, for example, studies on novelty search [57]
promote diversity alongside performance. Results show that novelty search is robust to
issues that impact the classical evolutionary formulation, including early convergence
and stagnation. Gomes et al. [38] introduced novelty search in the context of swarm
robotics. They used novelty search to automatically develop control software for
aggregation and resource sharing.

2.3 Modular design
In recent years, modular control architectures have been proposed as alternative to
neuro-evolution. The control software is obtained by combining modules either via
manual or automatic design. Duarte et al. [28] presented an approach based on the
hierarchical decomposition of complex behaviors into simpler behaviors. The simple
behaviors are generated manually or via evolutionary robotics to later on be combined
using high-level neural networks. The results—simulation only—indicate that the
approach outperforms the classical, monolithic evolutionary approach. Similarly,
Duarte et al. [29] used hierarchical decomposition to obtain control software for a
patrolling task. The control software comprises low-level behaviors and one module
that arbitrates the low-level behaviors. The low-level behaviors were implemented
as neural networks and were obtained via evolution. The arbitrator was manually
written. The downside of the approach is that hierarchical decomposition is task-
dependent and has to be done manually by the designer.

2.3.1 AutoMoDe

Francesca and Birattari proposed a novel general methodology [32] in 2013 named
AutoMoDe: Automatic Modular Design. This new approach is inspired in the
technique used in machine learning for dealing with the bias-variance trade-off, which
consists of injecting an appropriate bias to obtain suitable general solutions with low
variance. AutoMoDe produces control software for robot swarms by selecting and
combining preexisting modules (the bias) in the form of a probabilistic finite state
machine (PFSM). What AutoMoDe-Vanilla—the first release of AutoMoDe—uses
the optimization algorithm F-RACE [5] to build control software in the form of finite
state machines. Th PFSMs is indeed, the architecture of the control software.

The performance of AutoMoDe-Vanilla, was assessed against three other different
techniques methods. Evostick [59], a method based on neuro-evolution and considered
state-of-the-art for control software design; U-human, that is unconstrained humans
that can use a programming language to develop the control software ; and C-human,

13

2. State-of-the-art

that is constrained humans that could only use some predefined modules and combine
them to develop a control software. The results of this study showed that AutoMoDe
performed better than U-humans and Evostick but not yet than C-humans. The
conclusion was, that F-Race was not powerful enough, and it could be improved to get
better results with AutoMoDe. In consequence, AutoMoDe-Chocolate—The second
instance of AutoMoDe—replaced F-Race [61] with Iterated F-Race [61] (I-Race).
I-Race is an improved version of F-Race , that when used in AutoMoDe, allowed
Chocolate to outperform Vanilla, U-humans and C-humas.

Other researchers have explored further the capabilities of AutoMoDe. Kuckling et
al. [53] proposed AutoMoDe-Maple which is a variant of AutoMoDe where they explore
the possibility of adopting behavior trees as an architecture for the control software
of robot swarms. The results of their experiments show that behavior trees are viable
and promising architecture to automatically generate control software. Hasselmann et
al. [42] present an automatic design method that generates communication-based
behaviors for robot swarms. AutoMoDe-Gianduja extends AutoMoDe Chocolate.
Endowing the robots with the capability of transmitting messages.

2.4 Simulated Annealing
The Simulated Annealing search is an analogy [66] to the state of physical systems
composed of particles in statistical mechanics. At high temperatures, the particles
are less unbounded to move, and the structure is subject to significant changes.
The temperature decreases over time, and with it the probability for a particle to
move, until the system reaches a state of lowest energy, its ground state. These
ideas were turned into heuristics methods for tackling combinatorial optimization
problems by Kirkpatrick et al. [51] , and independently V Černý (1985) [15]. The
physical temperature is translated into a “temperature” parameter, the state of the
physical system corresponds to a candidate solution, the ground state corresponds
to the globally optimal solution, and a change of state corresponds to a move to a
neighbouring candidate solution.

In few words, Simulated Annealing is a stochastic local search algorithm, inspired
by the work of Metropolis et al. [66], that starts from an initial solution and it
iteratively explores the neighbourhood of the current solution. The main characteristic
of Simulated Annealing is that it always accepts improving solutions and also
worsening solutions probabilistically depending on the decline of quality in the
solution and a parameter called temperature.

2.4.1 Simulated Annealing work

Simulated Annealing is one of the oldest and most studied metaheuristics. In fact,
Alberto Franzin and Thomnas Stutzle [34] they found more than 6000 articles with
the keyword “Simulated Annealing” in the title. Simulated Annealing is a high
performing heuristics for many problems [1, 70]. In robotics, Simulated Annealing
has been mostly used to solve path planning and obstacle avoidance problems. Park et
al. [73] implemented Simulated Annealing algorithm as a technique for escaping

14

2.5. Contribution

local minima in local and global path planning. Martınez-Alfaro et al. [62] used the
simulated annealing algorithm to obtain a collision-free optimal trajectory among
fixed polygonal obstacles. Janabi-Sharifi et al. [47] proposed an integrated approach
to local and global path planning of robots in stationary environments. Miao et
al. [67] they enhanced a standard Simulated Annealing algorithm. They improved
the computing performance of the Simulated Annealing implementation significantly.
The Simulated Annealing implementation achieved optimal or near-optimal robot
path solution, making its real-time and on-line applications possible. Tavares et
al. [83] studied the sensitivity of each SA continuous parameter in the context of a
robot path planning problem. Miao and Tian [67] propose a simulated annealing
based approach to determine the optimal or near-optimal path quickly for a mobile
robot in dynamic environments with static and dynamic obstacles.

To the best of my knowledge Simulated Annealing has not been used in the
context of swarm robotics. In particular, there is no literature that refers to Simulated
Annealing for the automatic design of control software for robot swarms.

2.5 Contribution
I presented promising methods for the automatic design of control software for robot
swarms, however consolidated literature on the topic is still missing. The majority of
the published studies do not present comparisons between different methods. Indeed,
some fundamental questions are hardly addressed in the current literature: Which
automatic method is the best under which conditions? How general is method X?
How well does method X perform on different tasks? These kind of questions are
fundamental for the development of a mature science. For that reason in this work,
I use a different optimization algorithm—Simulated Annealing—, within AutoMoDe.
Simulated Annealing has not been tested in the automatic design context so far,
but has shown good results for many other combinatorial optimization problems.
Simulated Annealing has been also used for the path-planning problem in the context
of robotics. I use Simulated Annealing to build a new variant of AutoMoDe—
AutoMoDe-Annealing—, so I can compare against AutoMoDe-Chocolate, AutoMoDe-
Maple and AutoMoDe-iterated. I also study the performance of the method in two
different missions, to test its generalization property. I test this, by means of an
empirical study for which I give more detail in chapter 5.

15

Chapter 3

AutoMoDe

An automatic design method is an iterative process supported by an optimization
algorithm that explores a set of control software candidates searching for the best
solutions for a given task. The control software candidates are sampled from the set
of all possible controllers which is the software control search space. Each control
software candidate is evaluated using an objective function which gives a metric
on the quality of the control software. In other words, the quality of the control
software represents its efficacy in solving given tasks when instantiated in a robot
swarm. Commonly, the evaluation of the objective function is performed using
computer-based simulations of the chosen robotic platform and the experimental
setting in which the final system will operate. The objective function guides the
optimization algorithm by selecting the best candidates for the next iterations, in
the search for the best control software solutions. Usually, at the end of this process,
the obtained control software is instantiated and tested using real robots.

In this chapter I describe the components of the automatic design process,
specifically of AutoMoDe. I focus then in the two important components for the
development of this work: The control software search space and the optimization
algorithm. Finally I describe the Python extension of AutoMoDe that I used to
develop my solution, AutoMoDe-Annealing.

3.1 Components of the automatic design process

The process of an automatic design method can be divided in 6 components: control
software search space, objective function, optimization algorithm, refer-
ence model and scenario.

Control software search space. It represents the space of all the possible con-
trollers that the automatic design method can generate. A controller is composed
of a pre-defined architecture chosen by the human designer, and a set of design
parameters.

17

3. AutoMoDe

Objective function. It is a mathematical function used to evaluate the perfor-
mance of the swarm in a specific task. It plays a critical role since it guides the
search process of the optimization algorithm.

Optimization algorithm. It explores the control software search space for suitable
controllers to solve the given task. It terminates the search either by meeting a
threshold on the objective function metric or after exhausting a pre-defined number
of evaluations.

Reference model. The reference model includes the he specific robot used in the
swarm. But is not limited to the robot itself but it comprises the capabilities of the
robots. That means that in the automatic design, the method designs control software
for a group of robots with the same characteristics— behaviors and conditions. The
capabilities of the robots influence the method since different capabilities result in
different behaviors. Since the design process is done in simulation it is necessary
to have a simulated version of the reference model. However, there is an important
limitation when working in simulation, which is the reality gap [64, 46]. The reality
gap is the difference between reality and the simulation models used in the automatic
design process. There is a recent study [58] arguing that it is unnecessary to assume
reality is more complex than simulation models for the effects of the reality gap
to occur. they show that performance drop and rank inversion can occur if one
automatically designs control software in simulation using a model and then assesses
it in simulation on another model that hey call a pseudo-reality.

Scenario. It represents the environment in which the swarm operates and which
has to be carefully replicated in the simulation tool. It includes the characteristics of
the environment such as the size and the geometry of the environment, among others.
AutoMoDe-Vanilla, AutoMoDe-Chocolate and AutoMoDe-Maple as automatic design
methods, use the same tools for some elements and differs in others.

3.1.1 Common components among instances of AutoMoDe

I first describe the common elements between AutoMoDe-Vanilla, AutoMoDe-
Chocolate and AutoMoDe-Maple to then point out to the differences among them.
This is the list of common elements among the three aforementioned instances of
AutoMoDe:

• Reference model: The three instances of AutoMoDe use an extended version
of the e-puck [68] robots for which I give more details in chapter 5, see Table 5.1.
In the three AutoMoDe instances, the robot swarm is simulated using ARGoS
[75], a multi-engine simulator of swarm robotics systems I give more details in
chapter 5.

• Objective function: This is task-dependent, no method-dependent, and it is
the same function across the variants when comparing them.

18

3.2. Control software search space

• Scenario: These are the same when comparing the AutoMoDe variants but
are independent to the method.

3.1.2 Distinct components

In section 3.2 and 3.3 I explain the elements that are different in the three aforemen-
tioned instances of AutoMoDe. The distinct components are: the search space and
optimization algorithm.

3.2 Control software search space

AutoMoDe-Vanilla, AutoMoDe-Chocolate and AutoMoDe-Maple work with preexist-
ing constituent behaviours and preexisting conditions. In fact, the three of them work
with the same six preexisting low-level behaviors and six conditions. The following
description is provided as it was in the original paper.

Low-level Behaviors. (i) Exploration is a random walk strategy. The robot
goes straight until an obstacle is perceived by the front proximity sensors. Then, the
robot turns on the spot for a random number of control cycles drawn in {0, . . . , τ},
where τ is an integer parameter ∈ {0, . . . , 100}. (ii) Stop orders the robot to stay
still. (iii) Phototaxis moves the robot towards a light source. If no light source
is perceived, the robot goes straight. (iv) Anti-phototaxis moves the robot away
from the light source. If no light source is perceived, the robot goes straight. (v)
Attraction moves the robot in the direction of the neighboring peers. The speed of
convergence towards the detected peers is controlled by a real parameter α ∈ [1, 5].
If no peer is detected, the robot goes straight. (vi) Repulsion moves the robot
away from the neighboring peers. The real parameter α ∈ [1, 5] controls the speed
of divergence. Obstacle avoidance is embedded in all low-level behaviors, with the
exception of stop.

Conditions. (i) Black-, (ii) gray- and (iii) white- floor are true with probability
β ∈ [0, 1] if the ground sensor perceives the floor as black, gray, or white, respectively.
(iv) Neighbor-count is true with a probability computed as a function z(n) ∈ [0, 1]
of the number of robots detected via the range-and-bearing board. A real parameter
η ∈ [0, 20] and an integer parameter ξ ∈ {0, . . . , 10} control the steepness and the
inflection point of the function, respectively. (v) Inverted-neighbor-count is true
with probability 1− z(n). (vi) Fixed-probability is true with probability β ∈ [0, 1].
The parameters β, η and ξ must be tuned by the automatic design process.

3.2.1 Control Software architecture

AutoMoDe-Vanilla and AutoMoDe-Chocolate use the same architecture for the
control software which is Probabilistic Finite State Machine (PFSMs). On the other
hand, AutoMoDe Maple uses behavior trees as architecture. The search space then,

19

3. AutoMoDe

Low-level behavior Description
exploration random walk movement
stop stay still state
attraction physics-based attraction to neighboring robots
repulsion physics-based repulsion from neighboring robots
phototaxis moves the robots towards the light
anti-phototaxis moves the robots against the light

Transition condition Description
black-floor black floor under the robot
gray-floor gray floor under the robot
white-floor white floor under the robot
neighbor-count number of neighboring robots grater than η
inverted-neighbor-count number of neighboring robots lower than η
fixed-probability transition with a fixed probability

Table 3.1: Summary table of Behaviors and conditions.

is constituted by the behaviors, conditions and the architecture used to represent
the control software for the robot swarm.

Probabilistic Finite State Machines

PFSMs are composed of atomic behaviors linked by conditional state transitions.
Both the atomic behaviors and the conditional state transitions use the sensors and
actuators of the e-puck. In figure 3.1 we can observe an example of PSFM obtained
with AutoMoDe. For more details I refer the reader to the original paper [33].

Behavior Trees

The BT architecture is a tree structure that contains one root node, control nodes
and execution nodes which are the actions and conditions. This architecture aims
to enhance expressiveness and structural modularity. Modularity can simplify the
implementation of optimization algorithms based on local manipulations. It could
also allow pruning unused part of the tree to increment readability. One more
advantage is that a sub-tree could be optimized independently of each other and
used then used to form another tree that represents a more complex behavior. In
figure 3.2 We can observe an example of BT obtained with AutoMoDe Maple. For
more details I refer the reader to the original paper [53].

20

3.3. Optimization algorithm

Stop

Exploration

Exploration

Phototaxis

InvertedNeighborsCount
(w:13.55, p:2)

Grey_Floor(p:0.5)White_floor(p:0.17)
Black_Floor(p:0.47)

InvertedNeighborsCount
(w:3.85, p:3)

Figure 3.1: Probabilistic Finite State Machine

Constraints

Both PFSMs and BT are limited in the number of states and nodes that can be used
in a single controller. PFSMs is limited to up to four states, and up to four outgoing
transitions per state. BT is restricted to a fixed top-level sequence* node that has
up to four subtrees as children. Each subtree contains a selector node with exactly
two children: one condition node and one action node. Kuckling et al. [54] shows
that the search space for PFSMs in Chocolate is bigger than the search space for
BT, even though the behaviors and conditions are exactly the same.

3.3 Optimization algorithm
As I explain in subsection 3.2 the control software design consists of a set of behaviors
and conditions Table 3.1, and the control architecture (PFSMs-Chocolate and BTs-
Maple). First, I describe the optimization problem as follows.

For AutoMoDe-Vanilla and Chocolate, the problem consists in finding the best
PFSM that meets the constraints in the number of states and transitions, and
maximizes/minimizes an objective function. Where the PFSM represents the control
software, therefore a solution. Given the constraints, the PFSM should meet them
to be a feasible solution. The objective function is the metric used to measure the
robot swarm in a given mission. For AutoMoDe Maple, the problem consists in

21

3. AutoMoDe

->*

?

Attraction(att:4.75)Fixed_Probability(p:0.60)

Figure 3.2: Behavior tree architecture

finding the best BT that meets the constraints in the number of nodes and levels, and
maximizes/minimizes an objective function. Where the BT represents the control
software, therefore a solution. Given the constraints, the BT should meet them to be
a feasible solution. The objective function is the metric used to measure the robot
swarm in a given mission.

AutoMoDe Vanilla was implemented with F-Race [5] as optimization algorithm,
which is a racing algorithm for tuning meta-heuristics. F-Race seemed to be appro-
priate in the context of control software for tobot swarms for its ability to handle
stochacity in the evaluation candidates. Later on, Francesca et al. [32]. realized that
the optimization could be improved to obtain better control software. In consequence,
they substituted F-Race with Iterated F-Race in Chocolate [2].

Maple only defers from Chocolate in the control software architecture, thus it also
uses Iterated F-Race as optimization algorithm. In Iterated F-Race, the optimization
procedure consists of a series of iterations. Each iteration is an execution of the
F-Race algorithm. Firstly, an initial set of candidate solutions - control software
designs - is generated by sampling the space of feasible solutions in a uniformly
random way. The initial control software candidates are evaluated in first execution
of the F-Race algorithm. Once the F-Race algorithm is finished, the surviving
controllers - the controllers that were not discarded in the optimization process -
are used as an initial point to generate a new set of control software candidates on

22

3.4. AutoMoDe Python extension

which the following iteration will operate. The new set of candidates is obtained by
sampling the space of feasible solutions according to a distribution that gives a higher
probability of being selected to solutions that are close to the surviving solutions.
The new set of control software candidates is evaluated in a further execution of
F-Race. The process is iterated and stops when a budget of evaluations, set by the
designer, has been performed.

3.4 AutoMoDe Python extension
For implementing AutoMoDe-Annealing I worked on top of a framework built by
Kuckling. He has participated in the development of AutoMoDe Maple [53] and is
currently investigating local search strategies to improve the optimization process in
automatic design of control software for robot swarms. He implemented an iterative
improvement algorithm to test AutoMoDe with a local search technique as optimiza-
tion algorithm. For that, he used Python as programming language. However, all
the simulation environment is simulated with ARGOS [75], which is implemented in
C++. ARGOS works with plugins so, the e-puck robots [68], AutoMoDe-Chocolate
and AutoMoDE-Maple are implemented as ARGoS plugins. What he did is isolate
the local search implementation into Python and he wrapped the ARGoS modules to
use them for the local search process. In the first instance of AutoMoDe the authors
also isolated the optimization process in the programming language R.

3.4.1 ARGoS plugins

First of all, it is better to know how AutoMoDe is implemented and how it works.
AutoMoDe is implemented as plugins and it uses the ARGoS version 3 as simulation
engine. Specifically, we use ARGoS3-beta48 to simulate the swarm of robots. The
ARGoS3-epuck v48, is a plugin for ARGoS that implements the e-puck robot. The
epuck robot is the robot platform in used in AutoMoDE. Together these two programs
form the environment that we use to perform the simulations. The focus of them is to
provide the performance of a robot swarm in a specific mission, as quick as possible
but accurately. Basically, this is where the reality is simulated. The results should
be as close to reality as possible. AutoMoDe-FSM (Chocolate) and AutoMoDe-BT
(Maple) are the ARGoS plugins that contain the control architecture for AutoMoDe.
These plugins use the epuck-DAO, which is an abstraction layer that gives limited
but focused access to the sensors and actuators of the e-puck robot. The AutoMoDe
plugins also use other module called loopfunctions. The loopfunctions plugin is in
charge of setup and control the simulated missions. Together these implementations
form what the developing environment to develop or extend AutoMoDe.

3.4.2 Python setup

Originally the optimization process in AutoMoDe was executed in R. For the instance
of AutoMoDe presented in this work I use a Python extension that wraps the

23

3. AutoMoDe

Table 3.2: Framework components. This is the software with its versions and
description, used as a framework to develop or extend AutoMoDe.

Software name Description Version

ARGoS Physics-based simulator designed
to simulate large-scale robot swarms. 3-beta48

ARGoS-epuck Plugin that enables the use of the
E-puck robot in ARGoS. 3-epuckv48

epuck-DAO An abstraction layer that gives access to
the sensors and actuators of the epuck. 2019-Thesis-DesignByOptimization

AutoMoDe-FSM AutoMoDe Chocolate module that
contains PFSMs as control architecture. 2019-Thesis-DesignByOptimization

AutoMoDe-BT AutoMoDe Maple module that
contains PFSMs as control architecture. 2019-Thesis-DesignByOptimization

loopfunctions Implementations that set up and control
the missions (i.e. final scores). 2019-Thesis-DesignByOptimization

Python Programming language used
to implement local search strategies. 3.4

environment described in subsection 3.4.1. The Python program, for local search,
creates a representation for a controller, PFSMs for Chocolate and BT for Maple. It
has no knowledge about the implementation of the individual ARGoS modules and
is working blindly on the design of the control software. It works blindly because the
local search has no insight on how the modules work, the mission or anything else.
That, allows to simply import a different Python file with modules or set a different
mission and the local search will behave the same. Yet, the local search needs some
information about the quality of the control software. For evaluating the control
software quality, it passes the control software to the implementation of AutoMoDe
in ARGoS and AutoMoDe returns a single value—given by the loopfunctions module.
The control software is actually a representation that in this case depends on the
version of AutoMoDe. The value returned is the performance metric that corresponds
to the value obtained by evaluating the objective function.

24

Chapter 4

AutoMoDe-Annealing
Implementation

AutoMoDe-Annealing is a new instance of AutoMoDe that uses as simulated annealing
as optimization algorithm. The idea behind using simulated annealing is to validate
if a local search technique can perform as good as state-of-the-art methods of control
software design for robot swarms. This instance of AutoMoDe is able to handle
finite state machines and behavior trees as control software architecture. In this
chapter I explain the algorithm used for the implementation of simulated annealing
as optimization algorithm for AutoMoDe. I give an explanation of each the simulated
annealing components. Later, I explain how the algorithm works in the context of
automatic off-line design. Finally I retake the components of simulated annealing to
describe their implementation in this work.

4.1 Simulated annealing
As stated before in chapter 2, simulated annealing is a stochastic local search
algorithm with the ability to escape local optima. SA is characterized by the
possibility of probabilistically accepting worsening moves. The acceptance criterion
used by simulated annealing is often the Metropolis condition (Kirkpatric et al. [52],
Metropolis et al. [66]), which always accepts a neighboring candidate solution when
it is better or equal to the current solution.This criterion also accepts a worse
neighboring candidate solution with the following probability:

exp (−∆(s′, s)/T) (4.1)

Where s ∈ S, s is a candidate solution in the set S of all possible candidate solutions,
and f : S → R is the objective function. f(s) is the objective function value of
candidate solution s. ∆(s′, s) is the objective function difference of two candidate
solutions s and s′, and T is the parameter temperature. A worsening solution is
accepted with a probability that depends on both the amount of worsening ∆(s′, s)
and T . If ∆(s′, s) is small, there is no big difference in solution quality and a solution
is more likely to be accepted when the temperature is high - which typically happens

25

4. AutoMoDe-Annealing Implementation

at the beginning of the search. When the temperature is low, which usually happens
towards the end of the search, improving candidate solutions are prioritized. However,
if ∆(s′, s) is big enough and close to the temperature value, accepting a worse solution
will be less likely to happen.

The temperature controls the transition from an initial exploratory behaviour to
a final exploitative one. Selecting high enough temperature values will end with, the
algorithm failing to converge towards good solutions, and for too low temperature
values, the probability of getting trapped in sub-optimal regions is higher. It loses
the missing chance to escape from local optima solutions.

4.2 Component-based simulated annealing
Franzin and Stützle [34] decompose the simulated annealing algorithm in nine different
components: Initial Solution, Neighborhood, Initial Temperature, Stopping Criterion,
Acceptance criterion, Exploration criterion, Temperature Length, Cooling Scheme
and Temperature Restart. The algorithm is shown in Algorithm 1. The Initial

Algorithm 1: Component-based simulated annealing algorithm
Data: Problem instance π
Input: Neighborhood N for the solutions, Initial Solution s0
Output: Best solution s∗ found during the search

1 best solution s∗ := incumbent solution ŝ := s0;
2 i := 0;
3 T0 := initialize temperature according to Initial Temperature;
4 while Stopping Criterion is not met do
5 choose a solution si+1 in the Neighborhood of ŝ according to Exploration

Criterion;
6 if si+1 meets Acceptance Criterion then
7 ŝ := si+1;
8 if ŝ improves over s∗ then
9 s∗ := ŝ;

10 if Temperature Length is met then
11 update temperature according to Cooling Scheme;
12 reset temperature according to Cooling Scheme;
13 i := i+ 1
14 return s∗

Solution and the Neighborhood are problem-specific components, and are taken as
the input of the algorithm. The other seven components, which are directly related
to the algorithm, are described in the following list. The decomposition of the SA
algorithm in these nine components is a key representation to better understand the
algorithm, and for identifying which components are potentially more relevant to the
automatic modular design. Therefore, I used this structure to implement my own

26

4.3. Optimization process

Table 4.1: Simulated annealing components

Component Description
Initial solution Problem-specific
Neighborhood Problem-specific
Initial temperature Starting value of the temperature parameter.
Stopping criterion Determines when the execution is finished.
Exploration criterion Chooses a solution in the neighborhood.
Acceptance criterion Determines if a new solution replaces the incumbent solution.
Temperature lentgth Indicates if the temperature is updated.
Cooling scheme Updates the temperature value in each iteration.
Temperature restart Resets the temperature to its initial value, or another higher value

version of Simulated Annealing that works as optimization algorithm for AutoMoDe
Chocolate and Maple. I give more details of the components in the section 4.4.

4.3 Optimization process

Inspired by Algorithm 1 the execution of SA for AutoMoDe works as follows. SA
starts by taking as input the Initial Solution, the Neighborhood, a problem instance π.
The initial solution is a BT or FSM that models the stop behavior. The neighborhood
is defined by perturbation operators and the instance is represented by the mission
that the robot swarm is attempting to solve. Then SA proceeds by initializing its
internal status, in particular setting a value for the initial temperature. In this
implementation is a fixed value.

Starting from the initial solution, SA iteratively selects one candidate solution
in the Neighborhood according to the Exploration Criterion. A neighbor would be
the current controller after randomly applying a perturbation operator. The new
candidate solution is evaluated against the incumbent candidate solution using the
acceptance criterion—Metropolis condition; if it also improves over the best solution
found so far—global-best controller—, it becomes the new global-best candidate
solution. The Temperature Length determines whether the temperature parameter
has to be updated. In this case by default is 1, which means that the temperature will
change in every iteration. If the temperature length indicates that the temperature
should be updated, the Cooling Scheme sets the temperature to its new value. For
this implementation, the Cooling Scheme is set by the experimenter before start the
run and it stays constant along the optimization process.

To favour a new phase of exploration, the Temperature Restart scheme controls
whether the temperature should be reset to a higher value. At each iteration, the
Stopping Criterion is checked. The algorithm will stop after have exhausted a budget
of simulations. If the criterion is met the algorithm terminates returning the best
candidate solution. The best candidate solution is the best control software obtained
in the design process.

27

4. AutoMoDe-Annealing Implementation

(A) FSM

Stop_0

(B) BT

?

->*

Fixed_Probability Stop

Figure 4.1: Initial solutions for AutoMoDe Chocolate (A) and Maple (B).

4.4 Implementation

I used the simulated annealing component-based algorithm, so I could try some
variants of simulated annealing with different components and observe from which
one, automatic design could get more benefit. Concretely, what I implemented is
a simulated annealing algorithm that aims to study the optimization process of
automatic design of control software for robot swarms. In the following subsection I
describe the implementation of each simulated annealing component. See Table 4.1
to remember the components.

4.4.1 Initial Solution

The initial solution to start the algorithm is the minimal controller. The minimal
controller is the representation of the stop behavior with a fixed probability in PFSM
for Chocolate and BT for Maple as it is shown in Figure 4.1.

4.4.2 Neighborhood

There is no an explicit neighborhood, instead the neighborhood is defined by pertur-
bation operators. The perturbation operators for PFSMs are listed in Table 4.2 and
for BTs in Table 4.3.
Just to recall, there are some restrictions when constricting either a BT or PFSM.
These restrictions has to be met in order to have a feasible solution in the neighbor-
hood. For behavior trees: Each behavior tree that is composed of a sequence∗-node
with 1-4 children. Each of these children is a selector node with exactly two children,
a condition node and an action node (in that order). For PFSMs: Each finite state
machine with up to 4 states and 16 transitions such that no state has more than
4 outgoing transitions, but also that every state has at least 1 outgoing transition.

28

4.4. Implementation

Table 4.2: PFSM perturbation operators.

Operator Description

Change initial state Changes the initial state
of the PFSM.

Add state Add a new state to the
PFSM.

Remove state Removes an state from
the PFSM.

Change state behavior Swap a randomly-selected
behavior with other behavior

Change state behavior parameter Change a randomly-selected
parameter of a state

Add transition Adds a new transition to
the PFSM.

Remove Transition Removes a new transition to
the PFSM.

Change transition begin Change the starting state of a
randomly selected transition.

Change transition end Change the ending state of a
randomly selected transition.

Change transition condition Swaps the condition of a randomly
selected transition

Change trans/condition parameter Changes a parameter of the
condition of a transition.

Table 4.3: BT perturbation operators.

Operator Description

Add sub-tree Add a new action/condition
sub-tree.

Remove sub-tree Removes a sub-tree randomly
selected.

Change sub-tree order Randomly select and moves a
sub-tree to a new position.

Change action-node behavior Changes an action-node
behavior randomly.

Change action-node parameters Changes an action-node
parameter.

Change condition-node condition Swaps the condition of a random
condition-node.

Change condition-node parameters Changes a single parameter for
one condition.

29

4. AutoMoDe-Annealing Implementation

Additionally, no transition is allowed to be pointing back into the same state it
originated from. This leads to the special case of a PFSM with only one state. In this
case, it will have no transitions. The graph described by the states and transitions
needs to be at least weakly connected.

4.4.3 Initial temperature

For this implementation of SA the initial temperature will use the simple option, a
fixed value T0 = k. I made this design decision because it seems that this parameter
has not such a big impact on the performance [34], so I could focus on more relevant
parameters.

4.4.4 Stopping criterion

I have also implemented various stopping criteria. Even though for the experiments,
I only use the Budget stopping criterion.

• Time termination. It terminates after a fixed amount of time. It should be
set before starting the run.

• Discount termination. It terminates when the temperature has reached a
given value. It should be set before starting the run.

• Budget termination. It terminates when a given number of simulations have
been performed.

4.4.5 Exploration criterion

The exploration criterion is mostly random exploration, but is restricted by the
number of perturbation operators implemented, see Table 4.2, 4.3. The exploration
strategy for this implementation has two components: perturbation operators and a
moving window of random seeds.

Perturbation operators. In each iteration, one perturbation operator is randomly
chosen and applied to generate a neighbor solution. There is a list to keep track
of the operators that have been already applied to generate neighbors. So if the
operator is in the list another operator is chosen. When all the operators have been
used, the list is cleaned making all the operators eligible for generating new solutions
again.

Random seed window. First I need to explain that for each controller I don’t
make one evaluation but a set of evaluations of the controller over a set of random
seeds. The point of that was to obtain more robust controllers that are not biased
over one particular random seed since our search process is stochastic. What happens
now is that instead of one seed the controller could be biased in a group of seeds. We
use a mechanism to avoid bias over a particular group of random seeds. It consists of

30

4.4. Implementation

keeping moving windows of random seeds over all the run. For example, the windows
could have size 10 which means that each controller has to be evaluated over 10
different random seeds. If we set the window moving to 2, that means that after
each iteration of the search, the first two seeds are going to be discarded and two
new ones will enter the set. In summary, each controller is going to be evaluated
in the previous 8 random seeds + 2 new seeds in each iteration after the first one
and thus decreasing the probability to get biased. This mechanism is part of the
exploration criterion because it affects the intensification process of the algorithm by
changing the seeds in which a controller is evaluated. When changing the seeds we
could have a decrease in the quality of the solution. But it promotes exploration by
moving the window seed over the search process.

4.4.6 Acceptance criterion

I implemented various acceptance criteria, in part for extending the functionality
of the Jonas’ framework but also because I use some of them to test my SA imple-
mentation. In the context of local search and specifically in this work, I refer to
acceptance criteria as the mechanisms to evaluate a set of results obtained from one
solution against another set of results generated by a perturbed solution. This is
because as I explained in the Exploration criterion, I evaluate the controllers over a
set of random seeds. So if my window size is ten, I end up with a vector of 10 values
each of them corresponding to the result of the objective function used to measure
the solution quality. Since to measure the quality of a solution we use a vector, it
makes sense to aggregate the results to build a metric and then compare the quality.
It also thinks in more robust methods to compare sets as are signed-rank statistical
tests. For those reasons, I implemented the following acceptance criteria.

• Mean.It takes the mean of the set of values returned by the evaluation of the
performance of the controller in a given mission.

• Median. It takes the median of the set of values returned by the evaluation
of the performance of the controller in a given mission.

• Max.It takes the maximum value of the set of values returned by the evaluation
of the performance of the controller in a given mission.

• Min. It takes the minimum of the set of values returned by the evaluation of
the performance of the controller in a given mission.

• T-Student test. T-student test with mean in a 0.95 confidence interval.

• Wilcoxon test. Wilcoxon test that compares median ranks among sets in a
0.95 confidence interval.

• Metropolis condition. Classical metropolis condition that can work with
any other acceptance criteria listed above. It means that to get ∆(s′, s) the
metropolis could use the Mean, Median, Wilcoxon test, etc.

31

4. AutoMoDe-Annealing Implementation

Metropolis is the acceptance criterion used for SA and the others are for local search
in general.

4.4.7 Temperature length

The default implementation of SA in this work has T length = 1 but, we will see in
chapter 5 that I try other variants of SA with a different Temperature Length.

4.4.8 Cooling Scheme

The cooling mechanism of this implementation follows a geometric scheme Ti+1 =
α× Ti where Ti is the temperature in a given iteration i and Ti+1 is the temperature
for the next iteration i+ 1. And α ∈ [0, 1] is a fixed value that has to be set before
starting the search.

4.4.9 Restart mechanism

This SA algorithm can handle three different types of restart mechanisms.

• Restart after a percentage of the initial temperature remains. The temper-
ature restarts with the original Initial temperature value. For example, when
the temperature is has reached the 1 % of its initial value.

• Restart k times in a whole run.The temperature restarts with the original
Initial temperature value. For example one restart at the 50% of the run.

• Reheat, which means reset the temperature value to a higher value. The new
temperature value is calculated over the temperature that has generated a
bigger improvement during the run so far.

4.4.10 Parallelism

One important feature we achieved in this implementation is that the controller
evaluations—candidate solution evaluations—can be performed in parallel in an MPI
environment. MPI stands for Message Passing Interface. It is a standardized and
portable message-passing system developed for distributed and parallel computing.
This is useful if the experimenter has access to a computing cluster since it can
significantly reduce the experiments time. Otherwise, if there is a window of 10
random seeds and we are comparing two controllers, in the worst case the algorithm
should wait until 20 simulations (10 for one controller, 10 for the other) are being
executed one by one. We can distribute every simulation to a different computing
unit. Therefore we should wait at most the time the slowest simulation takes to
move forward into the optimization process.

32

Chapter 5

Experimental Setup

To assess the capabilities of AutoMoDe-Annealing, I conducted a series of experiments
in which AutoMoDe-Annealing is used to automatically design the control software for
robot swarms that are aimed to perform two different tasks: aggregation and foraging.
I selected these two tasks because they are common benchmarks in swarm robotics.
I assess AutoMoDe-Annealing for two control software architectures: probabilistic
finite state machines and behavior trees. Every experiment is then performed
for AutoMoDe-Annealing-FSM and AutoMoDe-Annealing-BT. The experiments
consist, firstly, in studying the simulation budget— 5K, 10K, 25K, 50K and 100K
simulations— influence over the design process. Additionally, I study three parameters
of the optimization algorithm: the acceptance criterion, window size, and restart
mechanism. This study is done to observe the influence of the parameters over the
design process. Finally, I compare both instances of AutoMoDe-Annealing against
AutoMoDe-Chocolate, AutoMoDe-Maple, AutoMoDe-Iterated-BT and AutoMoDe-
Iterated-FSM.

5.1 Robot platform and reference model
AutoMoDe-Annealing is specialized for a swarm of e-puck robots Figure 5.1. The
e-puck robot is a small wheeled robot designed for research and education [68]. The
e-puck robot has eight IR transceivers used as light and proximity sensors. It is
also equipped with a range-and-bearing board that comprises 12 IR emitters and 12
receivers equally distributed along the perimeter of the board and pointed radially
and outwards, on the horizontal plane. The range-and-bearing board allows the
e-puck to reliably send and receive messages within a range of 0.7 m. The reference
model adopted in this research for the robot platform described above is given in
Table 5.1.

5.2 Missions
As I explained in the previous chapters, the control software is designed for a specific
mission. This mission is described by an objective function and the optimization

33

5. Experimental Setup

Figure 5.1: E-puck robot [14]

Table 5.1: Reference model RM1.1 [41]. Sensors and actuators of the e-puck robot.
The period of control cycle is 100 ms.

Sensor/Actuator Parameters Values
proximity proxi, with i ∈ {0, . . . , 7}
light lighti, with i ∈ {0, . . . , 7}
ground groundi, with i ∈ {0, . . . , 2} {black, gray, white}
range-and-bearing n {0, . . . , 19}

Vd ([0, 0.7]m, [0, 2π] radian)
wheels vl, vr m/s

algorithm optimized the outcome of the objective function. Below I describe the
missions, accompanied by its objective function, I used to assess the robot swarm
with the control software generated by AutoMoDe-Annealing.

5.2.1 Foraging

This mission is inspired by the behavior of ants which search for food sources
distributed around their nest. The main challenge is to find the optimum search
strategies that maximize the collection of food. The foraging scenario is shown in
Figure 5.2. The arena contains two source areas represented by black circles and a
nest represented by white area. A light is placed behind the nest to help the robots

34

5.2. Missions

Figure 5.2: Foraging scenario.

to navigate. In this version of foraging, a robot gets an object when it enters in a
source. The robot leaves the object in the nest, when it arrives to the white zone.
The goal of the swarm is to retrieve as many objects as possible. The objective
function is:

Fforaging = Ni (5.1)

where Ni is the number of objects retrieved.

5.2.2 Aggregation with Ambient Cues

The main objective of aggregation is to group all the robots of a swarm in a region
of the environment. Aggregation is a very useful building block, as it allows a
swarm of robots to get sufficiently close one to another so that they can interact.
In swarm robotic systems the aggregation mission can be considered as one of the
fundamental behaviors. It can act as a precursor to other behaviors such as flocking
and self-assembly. The aggregation scenario is shown in Figure 5.3. The arena
contains two circular regions, one black and one white, each of them with the same
diameter. The black region is located closer to the light source, which is on the left
side of the arena. The robots have to aggregate on the black region and can use
the light and the white region to orientate themselves. The performance measure is

35

5. Experimental Setup

Figure 5.3: Aggregation with Ambient Cues scenario.

defined in terms of an objective function to maximize:

Faggregation =
T∑

t=1
N(t) (5.2)

where N(t) is the number of robots on the black region at time t.

5.3 Simulated annealing default configuration

I have set default values for the simulated annealing that works as optimization
algorithm in AutoMoDe-Annealing. The default values for the components and
parameters are shown in Table 5.3. This configuration was used to study the budget
impact and comparison. It was also the starting point for the parameter analysis.
In each parameter study I only change the parameter of study and the rest of the
parameters remains with the same values.

36

5.4. Experiments protocol

Table 5.2: Default configuration simulated annealing

Component Type Value
Initial solution Stop behavior Fixed probability
Neighborhood Based on perturbation operators
Initial temperature Fixed value 125.0
Stopping criterion Budget of simulations 5K
Acceptance criterion Metropolis condition Mean
Exploration criterion Random exploration Perturbation operators and window
Temperature length Fixed value 1
Cooling scheme Geometric cooling 0.9782
Temperature restart fixed value Every 5000 simulations

5.4 Experiments protocol
The experiments presented in this work respect the following protocol: there is
no human intervention in the automatic design process. The main objective of
the experiments is to assess the expected performance of AutoMoDe-Annealing
in designing control software for a robot swarm. I run three sets of experiments:
budget analysis, parameter analysis and comparison. In the budget analysis, I
run AutoMoDe-Annealing in five different design budgets. A design budget is the
total number of simulation runs that AutoMoDe-Annealing can use to design the
control software. The five design budgets are: 5000, 10000, 25000, 50000 and
100000 simulation runs. For each design budget, I execute 20 independent runs of
AutoMoDe-Annealing. I obtain 20 instances of control software; I then assess the
performance of these instances on simulation and pseudo-reality by performing 10
runs of each of them. By assessing in simulation and pseudo-reality I quantify the
effects of the pseudo-reality gap. The initial position and orientation of the robots
are obtained by running the constituent behavior exploration for a random number
of seconds in {1, 2, . . . , 20}. In the parameter analysis, I study 3 parameters that I
consider relevant in the simulated annealing algorithm for this problem: acceptance
criterion, window size and the restart mechanism. The same assessment protocol
as for the budget analysis applies for this study. Finally, AutoMoDe-Annealing is
compared with AutoMoDe-Chocolate, AutoMoDe-Maple, and AutoMoDe-Iterated.
This last instance of AutoMoDe, AutoMoDe-Iterated is still in development, but it
is interesting to compare it with the others because it is also based on a stochastic
local search algorithm, the iterative improvement.

5.4.1 Budget influence

The automatic design of control software for robot swarms is a heavy task for the
computer given that it has to perform lots of simulations. It is then interesting to
study the design method for various budgets of simulation. I study this so I can find
how AutoMoDe-Annealing performs for relatively low budgets–5K and 10K—and
bigger ones-25K,50K and 100K. This is also interesting because we can observe if

37

5. Experimental Setup

for bigger budgets the method can still take advantage or it converges after some
number of simulations.

5.4.2 Acceptance criterion influence

Simulated annealing is a highly configurable algorithm. One of the most important
parameters is the acceptance criterion. The study of this parameter aims to observe
the performance of different acceptances criterion for 25K, 50K and 100K budget of
simulations.

5.4.3 Window size influence

In a stochastic local search algorithm, the exploration criterion is quite important. It
is important because too much exploration can end up in a no converging algorithm.
However, if there isn’t enough exploration the algorithm can easily get stuck in a
locally optimal solution. Finding a good balance is then important for the algorithm
to converge and get closer to the global optima solutions. I study this by changing
the window size for three budgets of simulation: 25K, 50K and 100K.

5.4.4 Restart mechanism influence

Restarting a stochastic local search algorithm is a mechanism to escape from stagna-
tion. In this case simulated annealing, every time it restarts, is more likely to explore
and accept worse solutions. It is then important to find the best mechanism in this
problem to observe its influence over the control software performance that has been
generated.

5.4.5 Comparison

A comparison with other design methods is very important because I can immediately
know if my method can compete against state-of-the-art methods. I perform a
comparison against AutoMoDe-Chocolate and AutoMoDe-Maple—two state-of-the-
art methods—and another instance of AutoMoDe based on a local search algorithm.
I make the comparison for three budgets of simulation: 25K, 50K, and 100K.

5.5 Statistical analysis

Concerning the results of the design method, I present notched box-and-whisker
boxplots. A notched box-and-whisker boxplot gives a visual representation of a
sample. The horizontal thick line denotes the median. The lower and upper sides
of the box are called upper and lower hinges and represent the 25th and 75th
percentile of the observations, respectively. The upper whisker extends either up
to the largest observation or up to 1.5 times the difference between upper hinge
and median—whichever is smaller. The lower whisker is defined analogously. Small
circles represent outliers (if any), that are observations that fall beyond the whiskers.

38

5.5. Statistical analysis

Notches extend to ±1.58IQR/
√
n, where IQR is the interquartile range and n = 20

is the number of observations. Notches indicate the 95% confidence interval on the
position of the median. If the notches of two boxes do not overlap, the observed
difference between the respective medians is significant [16]. In the boxplots, we
include also the results obtained in simulation in order to appraise the impact of the
pseudo-reality gap on the design methods. Results obtained in pseudo-reality are
represented by wide light-gray boxes and those obtained in simulation by narrow
dark-gray boxes.

39

Chapter 6

Experiments and Results

In this chapter, I present the results of assessing control software generated by my
implementation of AutoMoDe, AutoMoDe-Annealing. I assess the method in a
simulation environment and pseudo-reality. In the first section, I present a study of
the budget influence over the method. In the second section, I present the influence of
the acceptance criterion over three different simulation budgets. In the third section,
I present the influence of the window size parameter over the method, through three
different simulations budgets. In the fourth section, I present the results of the restart
mechanism influence in the algorithm. I try four different mechanisms. Finally,
in the last section I compare AutoMoDe-Annealing against AutoMoDe-Iterated,
AutoMoDe-Maple and AutoMoDe-Chocolate. In every experiment, AutoMoDe-
Annealing is assessed for behavior trees and finite state machines. I refer to them
as AutoMoDe-Annealing-BT and AutoMoDe-Annealing-FSM respectively. It is
important to mention that, in every study the method is evaluated for two missions:
aggregation with ambient cues—I refer to it as aggregation—and foraging. These
missions are explained in more detail in Chapter 5.

6.1 Budget influence

The automatic design process uses a budget of simulations that helps to explore
the control software search space. This is an important subject of study because
simulating swarm of robots could be a hard-computing process. In Figure 6.1 the
performance is shown through five different increasing budgets. We can observe
that for Annealing-BT in aggregation, the budget appears not to have any influence.
Even if we compare 5K and 100K there is no significant difference. For foraging,
Annealing-BT seems to be affected by the budget, since the results look less disperse
when increasing the budget. An overall observation for Annealing-BT is that we can
not find a significant difference between simulation and pseudo-reality.

On the other hand, Annealing-FSM shows a modest improvement when increasing
the simulation budget. However, we cannot appreciate the increment in performance
when going from 5K to 10K but from 5K to 25K, which means that we should consider
bigger differences in the budget to observe a significant improvement. We can also

41

6. Experiments and Results

5K 10K 25K 50K 100K
2500

5000

7500

10000

12500

15000

17500
Ob

je
ct

iv
e

fu
nc

tio
n

AGGREGATION

5K 10K 25K 50K 100K
10

20

30

40

50

60

70

80 AutoM
oDe-Annealing-BT

FORAGING

5K 10K 25K 50K 100K
Simulation budget

2500

5000

7500

10000

12500

15000

17500

Ob
je

ct
iv

e
fu

nc
tio

n

asd

5K 10K 25K 50K 100K
Simulation budget

10

20

30

40

50

60

70

80 AutoM
oDe-Annealing-FSM

asd

Figure 6.1: Budget influence. In this figure, we can observe the performance
of Annealing-BT—First row— and Annealing-FSM—Second row— through an
increasing simulation budget. The first column corresponds to the aggregation
mission and the second to foraging. The assessment in simulation is represented by
dark-gray thin boxes, while pseudo-reality is represented by light-gray thicker boxes.

observe that either for simulation and pseudo-reality the modest improvement persists.
However, for bigger budgets, 50K and 100K the loss of performance is bigger.

Run time analysis

It is also interesting to observe the evolution of the algorithm in run time. We
can observe in Figure 6.2 how the optimization algorithm is evolving in time over
five different budgets. The figure shows how for a budget of 5K and 10K there is

42

6.2. Acceptance criterion influence

5000

10000

15000

Ob
je

ct
iv

e
fu

nc
tio

n

Budget-5K Budget-10K Budget-25K Budget-50K

AGGREGATION

Budget-100K

0 200 400
Run-time step

0

20

40

60

Ob
je

ct
iv

e
fu

nc
tio

n

0 500
Run-time step

0 1000 2000
Run-time step

0 2000 4000
Run-time step

0 5000
Run-time step

FORAGING

Figure 6.2: Performance during the design process. This figure shows the
evolution of the control software performance in run time. Columns show the results
for each budget. Rows represent the missions used for the assessment. The Annealing-
BT and Annealing-FSM performance is represented by a light-gray and dark-gray line,
accordingly. The performance results are shown within a 95% confidence interval.

no difference in the evolution of the design process in time for Annealing-BT and
Annealing-FSM. Nonetheless, for bigger budgets 25K, 50K and 100K Annealing-FSM
starts taking advantage of the budget increment over Annealing-BT. Both methods
converge rather fast but Annealing-FSM keeps modestly increasing the performance
when increasing the simulation budget in both missions.

6.2 Acceptance criterion influence
This is one of the most important parameters in local search algorithms since the
algorithm relies on the acceptance criterion as a mechanism of accepting or not a new
candidate solution. If the criterion is too tight, the probability of getting trapped
in a local optimum is higher. If the criterion accepts any candidate solution then
it becomes a random walk and thus the algorithm could never converge. Either
for Annealing-BT as for Annealing-FSM, the algorithm uses a custom Metropolis
condition acceptance criterion. It is custom because the implemented method
evaluates multiple instances of one controller. So, to evaluate the difference in quality,
I use by default the mean value of the set of results corresponding to the objective
function metric. In this study, I asses the use of Mean, Median and Wilcoxon
test as aggregates of the instances to after evaluate the Metropolis condition as
an acceptance criterion. The results are shown for 25K, 50K and 100K simulation
budgets.

6.2.1 25K

In Figure 6.3, we observe that for a budget of 25K simulations there are no significant
differences among the three criteria neither for Annealing-BT nor for Annealing-FSM

43

6. Experiments and Results

MEAN MEDIAN WILCOXON
6000

8000

10000

12000

14000

16000
Ob

je
ct

iv
e

fu
nc

tio
n

AGGREGATION

MEAN MEDIAN WILCOXON
30

40

50

60

70

80 AutoM
oDe-Annealing-BT

FORAGING

MEAN MEDIAN WILCOXON
6000

8000

10000

12000

14000

16000

Ob
je

ct
iv

e
fu

nc
tio

n

MEAN MEDIAN WILCOXON
30

40

50

60

70

80 AutoM
oDe-Annealing-FSM

Figure 6.3: Acceptance criterion 25K. This figure shows the performance of
Annealing-BT and Annealing-FSM over three different acceptance criteria, Mean,
Median and Wilcoxon test, in two missions. The thin light-gray boxes represent
assessment in simulation and the thicker dark-gray boxes assessment in pseudo-reality.

in both missions. However, we observe that the Wilcoxon test criterion suffers the
less with regard to the pseudo-reality gap with exception of Annealing-FSM for
foraging. This is expected since the Wilcoxon test is a rank-based test that can better
describe differences between sets. However, the Wilcoxon test could need a bigger
number of instances to have a better description of the set it is trying to compare.
For this case, the sets are about 10 samples when it is empirically recommended to
have at least 30 samples to have confidence in the results.

44

6.2. Acceptance criterion influence

MEAN MEDIAN WILCOXON

8000

10000

12000

14000

16000

Ob
je

ct
iv

e
fu

nc
tio

n

AGGREGATION

MEAN MEDIAN WILCOXON
40

50

60

70

80 AutoM
oDe-Annealing-BT

FORAGING

MEAN MEDIAN WILCOXON

8000

10000

12000

14000

16000

Ob
je

ct
iv

e
fu

nc
tio

n

MEAN MEDIAN WILCOXON
40

50

60

70

80 AutoM
oDe-Annealing-FSM

Figure 6.4: Acceptance criterion 50K. This figure shows the performance of
Annealing-BT and Annealing-FSM over three different acceptance criteria, Mean,
Median and Wilcoxon test, in two missions. The thin light-gray boxes represent
assessment in simulation and the thicker dark-gray boxes assessment in pseudo-reality.

6.2.2 50K

In Figure 6.4 we observe that either in simulation and pseudo-reality, Annealing-BT
and Annealing-FSM don’t show any significant difference. However, we observe
that for Annealing-BT, Wilcoxon and Mean start getting a difference w.r.t the
Median criterion. For Annealing-FSM in aggregation, we observe that the loss of
performance between simulation and reality is more evident but again Wilcoxon
shows more resistance to the pseudo-realty gap.

45

6. Experiments and Results

MEAN MEDIAN WILCOXON

8000

10000

12000

14000

16000

18000
Ob

je
ct

iv
e

fu
nc

tio
n

AGGREGATION

MEAN MEDIAN WILCOXON
30

40

50

60

70

80 AutoM
oDe-Annealing-BT

FORAGING

MEAN MEDIAN WILCOXON

8000

10000

12000

14000

16000

18000

Ob
je

ct
iv

e
fu

nc
tio

n

MEAN MEDIAN WILCOXON
30

40

50

60

70

80 AutoM
oDe-Annealing-FSM

Figure 6.5: Acceptance criterion 100K. This figure shows the performance of
Annealing-BT and Annealing-FSM over three different acceptance criteria, Mean,
Median and Wilcoxon test, in two missions. The thin light-gray boxes represent
assessment in simulation and the thicker dark-gray boxes assessment in pseudo-reality.

6.2.3 100K

We observe in Figure 6.5 that for a budget of 100K the difference among criteria is
still no clear. Annealing-FSM for aggregation shows in pseudo-reality that the Mean
and Median perform significantly better than Wilcoxon. However, Annealing-BT for
aggregation Wilcoxon shows a modest improvement in simulation and pseudo-reality.
Another observation is that Annelaing-FSM in pseudo-reality keeps increasing when
increasing the budget but not as much as it increases in simulation.

46

6.3. Window size influence

6.3 Window size influence
As a reminder, the window size refers to the fact that for evaluating a control software
candidate I use 10 instances of one mission. This means that one controller generated
by the design method is simulated 10 times by changing the initial conditions of the
environment without affecting the objective function of the mission. Decreasing the
window size means that I evaluate less the same controller per time step. Increasing
the window size means that I evaluate the same controller over more initial conditions.
In this study I asses a minor, 5 instances, windows and bigger, 15 instances, windows
w.r.t the default which is 10 instances. The results of the study are presented in
three subsections: 25K, 50K and 100K. These values represent the simulation budget
used to study the variants of the original configuration.

6.3.1 25K

The results of studying the windows size for a budget of 25K simulations is shown
in Figure 6.6. We can observe that the only case in which we can find a significant
difference is in Annealing-BT. For aggregation Annealing-BT with a window size
of 15 is significantly better than a window size of 5. This is interesting because
when the window is lower the number of steps the optimization algorithm tries
to improve is higher. So, in the case of Annealing-BT for aggregation we observe
that more attempts to improve are not helping the algorithm to yield better results.
On the other hand, Annealing-FSM doesn’t show a clear difference across window
sizes, neither simulation nor pseudo-reality. However, we can observe an increase of
dispersion when the window size increasing in the foraging mission.

6.3.2 50K

The results for a budget of 50K simulations are shown in Figure 6.7. We can observe
that the performance of Annealing-BT for a window size of 15 instances keeps
increasing in aggregation and foraging as well. However, the differences between
10 and 15 are not significant. For Annealing-FSM there is no significant difference
among the window sizes. One observation is that in aggregation a window size of 15
helps to decrease the dispersion of the results.

6.3.3 100K

The pattern of Annealing-BT with a window size of 15 is repeated for a budget of
100K simulations as we can observe in Figure 6.8. This time the improvement is more
clear with respect to a windows size of 10, although it is not significantly different yet.
For Annealing-FSM in simulation get better with more budget but the pseudo-reality
gap is bigger too. Another observation is that for foraging Annealing-FSM with
window a size of 5 get less dispersed than the other sizes, but still, a not significant
difference is found.

47

6. Experiments and Results

5.0 10.0 15.0

6000

8000

10000

12000

14000

16000

Ob
je

ct
iv

e
fu

nc
tio

n

AGGREGATION

5.0 10.0 15.0

30

40

50

60

70

80 AutoM
oDe-Annealing-BT

FORAGING

5.0 10.0 15.0
Window size

6000

8000

10000

12000

14000

16000

Ob
je

ct
iv

e
fu

nc
tio

n

5.0 10.0 15.0
Window size

30

40

50

60

70

80 AutoM
oDe-Annealing-FSM

Figure 6.6: Window size 25K. This figure shows the performance of Annealing-
BT and Annealing-FSM over three different window sizes, 5, 10 and 15. The columns
represent the missions: aggregation and foraging. The thin light-gray boxes represent
assessment in simulation and the thicker dark-gray boxes assessment in pseudo-reality.

48

6.3. Window size influence

5.0 10.0 15.0
2500

5000

7500

10000

12500

15000

17500

Ob
je

ct
iv

e
fu

nc
tio

n

AGGREGATION

5.0 10.0 15.0
40

50

60

70

80 AutoM
oDe-Annealing-BT

FORAGING

5.0 10.0 15.0
Window size

2500

5000

7500

10000

12500

15000

17500

Ob
je

ct
iv

e
fu

nc
tio

n

5.0 10.0 15.0
Window size

40

50

60

70

80 AutoM
oDe-Annealing-FSM

Figure 6.7: Window size 50K. This figure shows the performance of Annealing-
BT and Annealing-FSM over three different window sizes, 5, 10 and 15. The columns
represent the missions: aggregation and foraging. The thin light-gray boxes represent
assessment in simulation and the thicker dark-gray boxes assessment in pseudo-reality.

49

6. Experiments and Results

5.0 10.0 15.0
8000

10000

12000

14000

16000

18000

Ob
je

ct
iv

e
fu

nc
tio

n

AGGREGATION

5.0 10.0 15.0
40

50

60

70

80 AutoM
oDe-Annealing-BT

FORAGING

5.0 10.0 15.0
Window size

8000

10000

12000

14000

16000

18000

Ob
je

ct
iv

e
fu

nc
tio

n

5.0 10.0 15.0
Window size

40

50

60

70

80 AutoM
oDe-Annealing-FSM

Figure 6.8: Window size 100K. This figure shows the performance of Annealing-
BT and Annealing-FSM over three different window sizes, 5, 10 and 15. The columns
represent the missions: aggregation and foraging. The thin light-gray boxes represent
assessment in simulation and the thicker dark-gray boxes assessment in pseudo-reality.

50

6.4. Restart mechanism influence

6.4 Restart mechanism influence
Restarting local search algorithms is a technique used to avoid stagnation. That is
why I consider the study of the restarting mechanism in my research. Additionally,
The default restart mechanism could be affecting the dispersion of solutions, especially
for Annealing-FSM as we can observe in the budget analysis (Figure 6.1). I evaluate
4 different restarting mechanisms: Default, NoRestart, RunRestart and Reheat. The
study is organized in 3 sections where each one corresponds to the assessment for
three different budgets: 25K, 50K and 100K budget of simulations.

6.4.1 25K

The results of the restart mechanism study for a 25K budget of simulations are
presented in Figure 6.9. For Annealing-BT the restart mechanism doesn’t present
a significant difference across mechanisms and missions. The restart mechanism in
Annealing-FSM also shows no impact across different mechanisms and missions. It
only reports a bigger loss of performance when assessing it in pseudo-reality but
no significant difference is found, except for Reheat that is significantly worse in
pseudo-reality for the aggregation mission.

6.4.2 50K

The results of this study for a 50K budget of simulations are found in the Figure 6.10.
For Annealing-BT as for 25K there is no influence of the restart mechanism across
missions. For Annealing-FSM, there are significant differences across mechanisms.
For NoRestart and RunRestart the dispersion is very low while for Default and Reheat
the dispersion is bigger. These last two mechanisms restart 10 times during the
design process. So the result shows that in fact restarting is affecting the dispersion
of the solution for the foraging mission.

6.4.3 100K

The results for a 100K budget of simulations are presented in Firugre 6.11. For
Annealing-BT the pattern of no influence remains. For Annealing-FSM we observe
that for the foraging mission, the three of the alternative restart mechanisms behave
similarly and show low dispersion w.r.t the Default mechanism. This gives another
hint of what could be affecting the dispersion, which is the temperature value used
in the simulated annealing algorithm.

51

6. Experiments and Results

Default
NoRestart

RunRestart
Reheat

4000

6000

8000

10000

12000

14000

16000

18000

Ob
je

ct
iv

e
fu

nc
tio

n

AGGREGATION

Default
NoRestart

RunRestart
Reheat

30

40

50

60

70

80

AutoM
oDe-Annealing-BT

FORAGING

Default
NoRestart

RunRestart
Reheat

4000

6000

8000

10000

12000

14000

16000

18000

Ob
je

ct
iv

e
fu

nc
tio

n

Default
NoRestart

RunRestart
Reheat

30

40

50

60

70

80

AutoM
oDe-Annealing-FSM

Figure 6.9: Restart mechanism 25K. This figure shows the performance of
Annealing-BT and Annealing-FSM over four different restart mechanisms: Default,
NoRestart, RunRestart and Reheat. The columns represent the missions used for the
assessment: foraging and aggregation. The thin light-gray boxes represent assessment
in simulation and the thicker dark-gray boxes represent assessment in pseudo-reality.

52

6.4. Restart mechanism influence

Default
NoRestart

RunRestart
Reheat

6000

8000

10000

12000

14000

16000

Ob
je

ct
iv

e
fu

nc
tio

n

AGGREGATION

Default
NoRestart

RunRestart
Reheat

20

30

40

50

60

70

80

90 AutoM
oDe-Annealing-BT

FORAGING

Default
NoRestart

RunRestart
Reheat

6000

8000

10000

12000

14000

16000

Ob
je

ct
iv

e
fu

nc
tio

n

Default
NoRestart

RunRestart
Reheat

20

30

40

50

60

70

80

90 AutoM
oDe-Annealing-FSM

Figure 6.10: Restart mechanism 50K This figure shows the performance of
Annealing-BT and Annealing-FSM over four different restart mechanisms: Default,
NoRestart, RunRestart and Reheat. The columns represent the missions used for the
assessment: foraging and aggregation. The thin light-gray boxes represent assessment
in simulation and the thicker dark-gray boxes represent assessment in pseudo-reality.

53

6. Experiments and Results

Default
NoRestart

RunRestart
Reheat

8000

10000

12000

14000

16000

18000

Ob
je

ct
iv

e
fu

nc
tio

n

AGGREGATION

Default
NoRestart

RunRestart
Reheat

30

40

50

60

70

80

90

AutoM
oDe-Annealing-BT

FORAGING

Default
NoRestart

RunRestart
Reheat

8000

10000

12000

14000

16000

18000

Ob
je

ct
iv

e
fu

nc
tio

n

Default
NoRestart

RunRestart
Reheat

30

40

50

60

70

80

90 AutoM
oDe-Annealing-FSM

Figure 6.11: Restart mechanism 100K. This figure shows the performance of
Annealing-BT and Annealing-FSM over four different restart mechanisms: Default,
NoRestart, RunRestart and Reheat. The columns represent the missions used for the
assessment: foraging and aggregation. The thin light-gray boxes represent assessment
in simulation and the thicker dark-gray boxes represent assessment in pseudo-reality.

54

6.5. Comparison

6.5 Comparison
In this experiment, I compare six different instances of AutoModDe. Three of
the instances are based on behavior trees: Maple, Iterated-BT, and Annealing-
BT. The other three instances are based on probabilistic finite state machines:
Chocolate, Iterated-FSM and Annealing-FSM. These methods were evaluated for
three budgets of 25K, 50K and 100K simulations. For this comparison, I use the
default implementation of the simulated annealing algorithm. These instances
of AutoMoDe differ either for the optimization algorithm used—I-Race, iterative
improvement or simulated annealing—and the control software architecture—BT
or FSM—. The results are presented in two subsections Aggregation 6.5.1 and
Foraging 6.5.2. Each of these sub-sections presents the results of comparing the
AutoMoDe instances over the aforementioned budgets in its respective mission,
aggregation and foraging accordingly.

6.5.1 Aggregation

In Figure 6.5.1 we can observe results for the aggregation mission assessment. For the
BT-based methods, we can observe no significant difference among Maple, Iterated
and Annealing is found. They perform rather similar. On the other hand in the
FSM-based methods, iterative Iterated and Annealing shows, for all budgets, a
significant difference w.r.t Chocolate.

6.5.2 Foraging

In Figure 6.5.2 we can observe results for the foraging mission assessment. For the
BT-based methods, we can observe no significant difference among Maple, Iterated
and Annealing. They perform rather similar. Another observation is that the three
methods decreases the dispersion of solutions when increasing the simulation budget.
On the other hand in the FSM-based methods, iterative Iterated and Annealing
shows, for all budgets, a significant difference w.r.t Chocolate. But this time in
the Chocolate is closer to Iterated and Annealing methods. Another observation is
that Chocolate present 2 of 3 cases, a significant difference between simulation and
pseudo-reality. Iterated also presents a significant difference between simulation and
reality over the three budgets assessed. Only simulated annealing, in the three of the
budgets, doesn’t show a significant difference between simulation and pseudo-reality.

55

6. Experiments and Results

Figure 6.12: Aggregation comparison. The light-gray boxes represent assess-
ment in simulation and the thicker dark-gray boxes assessment in pseudo-reality.

Maple Iterated Annealing
8000

10000

12000

14000

16000

Ob
je

ct
iv

e
fu

nc
tio

n
BT-Architecture

Chocolate Iterated Annealing

Budget-25K

FSM-Architecture

Maple Iterated Annealing
8000

10000

12000

14000

16000

Ob
je

ct
iv

e
fu

nc
tio

n

Chocolate Iterated Annealing

Budget-50K

Maple Iterated Annealing
8000

10000

12000

14000

16000

Ob
je

ct
iv

e
fu

nc
tio

n

Chocolate Iterated Annealing

Budget-100K

56

6.5. Comparison

Figure 6.13: Foraging comparison. The light-gray boxes represent assessment
in simulation and the thicker dark-gray boxes assessment in pseudo-reality.

Maple Iterated Annealing

30

40

50

60

70

80

90

Ob
je

ct
iv

e
fu

nc
tio

n

BT-Architecture

Chocolate Iterated Annealing

Budget-25K
FSM-Architecture

Maple Iterated Annealing

30

40

50

60

70

80

90

Ob
je

ct
iv

e
fu

nc
tio

n

Chocolate Iterated Annealing

Budget-50K

Maple Iterated Annealing

30

40

50

60

70

80

90

Ob
je

ct
iv

e
fu

nc
tio

n

Chocolate Iterated Annealing

Budget-100K

57

Chapter 7

Conclusions and Future work

In this thesis, I presented AutoMoDe-Annealing: a new instance of AutoMoDe that
uses simulated annealing—a method based on local search—as optimization algorithm.
AutoMoDe-Annealing operates along two architectures for the control software of
robot swarms. I conceived AutoMoDe-Annealing-FSM to operate with probabilistic
finite state machines, and similarly, I conceived AutoMoDe-Annealing-BT to operate
with behavior trees. I assessed the performance of AutoMoDe-Annealing in two
standard swarm missions: aggregation and foraging. In both cases, I studied the
influence of the budget of simulations available in the design process. More precisely,
I conduced experiments whit AutoMoDe-Annealing and design budgets of 5K, 10K,
25K, and 100K simulations.

The first conclusion I wish to draw lies on the difference of the design by opti-
mization of probabilistic finite state machines and behavior trees. As a matter of fact,
the results obtained during the development of this thesis showed that AutoMoDe-
Annealing performs differently for these two control architectures. Regarding behavior
trees, results showed that higher design budgets do not increase significantly the
performance of the swarm. In the best case, higher design budgets were translated
in a reduction of the variance in the performance of the solutions—as an example
one could compare the results for foraging with budgets of 5K and 100K. On the
other hand, higher budgets were translated into a modest but noticeable increase in
performance for control software in the form of finite state machines. Differences on
the performance of AutoMoDe-Annealing-FSM and AutoMoDe-Annealing-BT can
be justified by the difference in the search space. FSM has a bigger search space than
BT ??. Still, AutoMoDe-Annealing was capable of producing appropriate control
software in both cases—an indicator of the generalization properties of the method.
When only the design budget was considered, AutoMoDe-Annealing converged to sta-
ble solutions with budgets of 25K simulations. After 25K simulations, no noticeable
increase in performance was visualized neither in simulation nor in pseudo-reality.

The second conclusion I wish to draw is that indeed the design process is influenced
by the selection and parametrization of the components of my simulated annealing
implementation. Yet, further research is necessary to determine and concretize the
nature of that influence. I studied in depth the components of simulated annealing

59

7. Conclusions and Future work

to better understand its potential to become an alternative optimization method for
AutoMoDe. In particular, I focused my study on the acceptance criterion, exploration
and restart mechanism. I studied the influence of these components over design
budgets of 25K, 50K and 100K simulations. Results showed that difference on
the components parametrization of the algorithm becomes relevant only in higher
design budgets. Experiments with a budget of 25K simulations did not show evident
differences in performance. For 50K the method starts showing some differences in
performance—still, I could not find enough statistical evidence of them. Results
showed that the major influence of the variation of the parameters appears in
experiments with a design budget of 100K simulations. However, there is no clear
pattern that could highlight the advantage of one specific parametrization of the
components I considered—the results vary across different budgets, architectures
and missions.

In regards to the acceptance criterion, only AutoMoDe-Annealing-FSM in ag-
gregation showed an statistically significant improvement over the other methods
considered. On the other hand, AutoMoDe-Annealing-BT was more influenced than
AutoMoDe-Annealing-FSM by changes in the the window size. In both missions,
AutoMoDe-Annealing-BT benefited from an increase of the window size up to fifteen
instances. On the contrary, AutoMoDe-Annealing-FSM did not present significant
differences neither by increasing nor by decreasing the windows size. The last
component of the algorithm that I studied was the restarting mechanism. In this
case, there was a notorious advantage of changing the default restarting mechanism
w.r.t. the original implementation. In the first place, I implemented an obligatory
restarting mechanism after ever 5K simulations. After conducting my study, I was
able to determine that its better to promote a more exploitation-based optimization
algorithm with non-restarting or a restarting-once mechanism.

The third conclusion I wish to draw is that there is a strong evidence that
automatic design methods based on local search optimization—such as simulated
annealing—can perform as good as standard state-of-the-art design methods. In
my experiments, AutoMoDe-Annealing-BT performed similarly to state-of-the-art
methods and AutoMoDe-Annealing-FSM was able to outperform them. Despite of
being an empirical proof obtained under certain hypothesis, it is a step further to bring
diversity into the optimization methods available to the the off-line automatic modular
design of robot swarms—so far restricted to rank-based and evolutionary optimization
algorithms. I compared AutoMoDe-Annealing-BT and AutoMoDe-Annealing-FSM
against two standard design methods—AutoMoDe-Chocolate and AutoMoDe-Maple—
and one under-development instance of AutoMoDe based on iterated improvement—
AutoMoDe-Iterated. In overall, results showed that AutoMoDe-Annealing and
AutoMoDe-Iterated perform similarly, and in some cases better, than the standard
methods. Differences are more evident in a per-mission basis. In aggregation,
AutoMoDe-Annealing-FSM performed similarly and AutoMoDe-Iterated performed
significantly better than AutoMoDe-Maple, and AutoMoDe-Chocolate. On the other
hand, AutoMoDe-Annealing-BT performed similarly to AutoMoDe-Chocolate and
AutoMoDe-Maple. In foraging, AutoMoDe-Annealing-FSM performed significantly
better than AutoMoDe-Chocolate and slightly better than AutoMoDe-Maple in

60

lower design budgets. AutoMoDe-Annealing-BT performed similarly to AutoMoDe-
Chocolate and AutoMoDe-Maple without being affected by the simulation budget.
In all cases, the control software was produced by the default configuration of
AutoMoDe-Annealing. It would be expected, that better results could be obtained
after studying further the influence of the components in the simulated annealing
algorithm. For example, the restarting mechanism could be changed in order to
promote an exploitation in the optimization algorithm. That could reduce the
variance in the performance of AutoMoDe-Annealing in large budgets.

A central point of the automatic modular design is to provide an alternative to
the simulation over-fitting of control software produced by means of neuro-evolution.
I used pseudo-reality as an indicator to understand how AutoMoDe-Annealing could
be affected by the reality gap. Still, a remaining step on my research is the assessment
of the control software, I produced, on real robots. I will devote future work to
implement, analyze and present the true capabilities of design methods based on
local search to surpass the reality gap in the automatic generation of control software
for robot swarms. Alongside, I will extend the scope of my experimental set-up by
increase the number of components, possible parametrization, and missions I consider
to assess AutoMoDe-Annealing. It is my contention that a further exploration of the
algorithm properties would bring clarity to the capabilities of simulated annealing as
an alternative to the design of robot swarms by optimization.

61

Appendices

63

Appendix A

Low and High Budget Analysis

In this appendix shows the budget analysis from another perspective. It shows the
budgets categorized in two groups: low budgets and high budgets. It also contains
the tables with results obtained when assessing AutoMoDe-Annealing.

A.0.1 Low budgets

This section shows the results obtained when assessing AutoMoDe-Annealing for low
budgets: 5K and 10K simulations.

Figure A.1 shows AutoMoDe-Annealing-BT and AutoMoDe-Annealing-FSM in
two different mission. It is interesting to observe that Annealing-BT performs slightly
better than Annealing-FSM.

In Table A.1 we can observe a statistical summary of the results for low budgets.
In Table A.2 we observe the results over the 20 generated controllers for each control
software atrchitecture and missions.

5K 10K
budget

4000

6000

8000

10000

12000

14000

16000

sc
or

e

mission = aac

5K 10K
budget

30

40

50

60

70

80

mission = foraging

arch
BT
FSM

Figure A.1: Notch box-plot for low budgets.

65

A. Low and High Budget Analysis

(A) AAC
BT5K BT10K FSM5K FSM10K

count 20.00 20.00 20.00 20.00
mean 9642.00 10420.05 9971.26 11990.52
std 1914.39 1359.17 2603.80 2356.86
min 2868.60 6749.10 4898.90 9051.00
25% 9425.10 9638.75 8344.22 9741.45
50% 9851.20 10283.55 10092.50 12059.55
75% 10541.90 11449.30 10451.55 14000.50
max 12750.40 12599.60 16427.80 16393.60

(B) FOR
BT5K BT10K FSM5K FSM10K

20.00 20.00 20.00 20.00
51.30 55.02 49.64 60.39
11.45 7.56 11.11 11.47
34.10 37.70 28.50 46.40
40.15 51.78 42.48 48.32
53.25 58.00 48.50 59.70
61.82 60.62 56.40 66.77
65.90 62.90 79.90 80.10

Table A.1: Low budget summary table.

(A) AAC
BT5K BT10K FSM5K FSM10K

0 7798.0 11796.0 7031.3 9528.9
1 9526.0 9597.5 10252.6 13965.3
2 9642.9 9652.5 9603.0 12983.1
3 10028.1 9806.5 13490.9 10311.8
4 12750.4 9516.9 10110.0 9221.5
5 10885.7 10715.1 8540.7 10244.8
6 10157.6 9071.9 7754.8 12860.8
7 10744.5 9928.3 4898.9 14605.7
8 9342.9 10906.2 9925.1 14106.1
9 10486.4 11775.1 10369.0 10081.0
10 9541.0 12238.2 10129.4 9051.0
11 2868.6 10619.0 12066.6 9675.9
12 9674.3 11918.0 7754.8 15080.7
13 11247.0 9948.1 10075.0 12830.8
14 10450.2 10955.3 9881.9 16393.6
15 8306.1 12599.6 10203.5 9524.0
16 9452.5 9388.7 6710.6 11288.3
17 9115.5 11340.7 10699.2 13488.6
18 10708.4 6749.1 16427.8 9763.3
19 10113.9 9878.2 13500.1 14805.3

(B) FOR
BT5K BT10K FSM5K FSM10K

54.5 60.6 40.0 61.1
40.0 53.8 39.1 46.4
48.6 58.7 44.5 61.7
35.8 37.7 43.8 48.9
62.6 60.3 56.1 58.1
49.4 60.3 79.9 46.6
62.5 42.2 59.8 46.6
61.3 62.9 55.5 66.6
34.1 61.4 54.4 56.9
65.9 60.7 38.7 67.3
35.6 62.4 44.3 59.6
60.2 48.7 58.2 80.1
41.2 56.4 52.5 77.5
61.6 52.2 42.4 77.3
57.3 53.3 28.5 46.5
64.3 50.5 57.6 46.5
40.2 40.9 57.3 78.3
35.8 61.4 42.5 58.5
63.0 58.4 43.4 63.4
52.0 57.6 54.3 59.8

Table A.2: Performance over 20 different instance of control software generated
with AutoMoDe-Annealing.

66

Run-time analysis

In Figure A.2 we can observe that Annealing-BT and Annealing-FSM behaves
similarly. However for 10K simulations FSM seems to get an little advantage at
the end of the run. That advantage is not reflected in the assessment, most likely
because in the assessment Annealing-FSM lose more quality.

0 100 200 300 400

2000

4000

6000

8000

10000

12000

14000

sc
or

e

mission = aac | budget = 5.0

0 200 400 600 800

mission = aac | budget = 10.0

0 100 200 300 400
step

0

10

20

30

40

50

60

sc
or

e

mission = foraging | budget = 5.0

0 200 400 600 800
step

mission = foraging | budget = 10.0

arch
BT
FSM
budget
5.0
10.0

Figure A.2: Run time analysis low budgets.

A.0.2 High budgets

This section contains the results of assessing AutoMoDe-Annealing for high budget:
25K, 50K and 100K.

Figure A.3 shows that the difference between Annealing-FSM and Annealing-BT
is bigger when increasing the budget for both missions.

67

A. Low and High Budget Analysis

25K 50K 100K
budget

10000

12000

14000

16000

sc
or

e

mission = aac

25K 50K 100K
budget

45

50

55

60

65

70

75

80

mission = foraging

arch
BT
FSM

Figure A.3: Notch box-plot for high budgets.

AAC

Table A.3 shows a statistical summary of the results obtained when assessing
AutoMoDe-Annealing for the aggregation mission. Table A.4 show the results

(A) BT
BT25K BT50K BT100K

count 20.00 20.00 20.00
mean 10735.44 10822.67 10377.99
std 1095.27 1028.23 1129.67
min 9000.20 9152.20 8502.20
25% 9959.45 10127.20 9325.80
50% 10806.75 10597.65 10518.60
75% 11422.02 11443.10 11056.98
max 12774.90 13083.20 12629.00

(B) FSM
FSM25K FSM50K FSM100K

20.00 20.00 20.00
14299.07 15561.46 15819.14
1868.06 1351.38 1498.11

10354.80 13180.20 12786.70
13356.02 14510.03 14237.82
13915.95 16307.85 16359.65
15664.70 16661.03 16994.90
17335.20 17113.70 17242.30

Table A.3: High budget summary table for AAC.

of the 20 instances of control software generated with AutoMoDe-Annealing for the
aggregation mission.

Foraging

Table A.5 shows a statistical summary of the results obtained when assessing
AutoMoDe-Annealing for the foraging mission. Table A.6 show the results of the 20
instances of control software generated with AutoMoDe-Annealing for the foraging
mission.

68

(A) BT
BT25K BT50K BT100K

0 12007.5 10271.8 9494.2
1 10129.6 11676.5 10425.2
2 10287.1 11365.3 12629.0
3 11178.1 10298.3 8804.1
4 11897.9 11973.5 10850.7
5 9606.6 12436.7 12111.5
6 9797.3 9152.2 9294.9
7 11082.9 11010.5 9283.2
8 9082.9 10413.9 9336.1
9 9530.6 12201.7 10719.6
10 10700.7 10781.4 11704.8
11 10013.5 9620.4 10611.8
12 11263.4 10176.1 10425.4
13 10912.8 11040.5 11157.1
14 12774.9 10799.2 9738.0
15 12208.4 13083.2 9270.9
16 10145.7 10393.5 11324.8
17 9000.2 9922.7 11023.6
18 10922.9 9855.5 10852.8
19 12165.9 9980.5 8502.2

(B) FSM
FSM25K FSM50K FSM100K

10354.8 16929.9 17242.3
13615.0 16277.2 17134.4
15966.8 16565.6 16479.0
13776.1 17113.7 16240.3
13385.3 13399.2 17135.8
13745.3 16624.9 16892.7
14189.8 16763.9 15812.5
13914.3 16694.4 17033.3
13268.2 13315.2 13890.3
13172.7 16649.9 16963.9
14017.0 14097.3 16828.1
13917.6 16746.6 15885.9
15564.0 14742.4 14061.5
17206.6 15402.5 16982.1
14821.0 16430.4 14097.5
13053.7 15111.7 14284.6
16761.4 14597.2 17201.8
11132.1 14248.5 13206.0
16784.4 13180.2 16224.2
17335.2 16338.5 12786.7

Table A.4: Performance over 20 different instance of control software generated
with AutoMoDe-Annealing for aggregation in high budgets.

(A) BT
BT25K BT50K BT100K

count 20.00 20.00 20.00
mean 58.67 58.31 59.48
std 4.11 5.81 3.62
min 48.70 43.10 53.90
25% 56.08 55.52 57.28
50% 58.60 59.85 58.60
75% 61.85 62.40 61.52
max 64.20 65.50 68.40

(B) FSM
FSM25K FSM50K FSM100K

20.00 20.00 20.00
68.11 66.61 69.68
9.43 9.81 10.09
50.40 48.20 45.60
59.85 58.95 61.45
70.10 63.45 74.35
75.70 76.32 77.80
81.20 80.60 80.40

Table A.5: High budget summary table for Foraging.

69

A. Low and High Budget Analysis

(A) BT
BT25K BT50K BT100K

0 58.8 51.4 56.4
1 63.6 62.7 62.6
2 55.7 56.5 56.8
3 56.7 60.4 53.9
4 53.4 57.7 62.2
5 48.7 62.3 57.5
6 57.0 52.3 66.0
7 60.5 65.5 58.8
8 64.2 57.2 68.4
9 56.1 43.1 58.4
10 63.9 64.3 57.4
11 56.1 50.5 61.3
12 55.4 65.2 56.9
13 61.3 61.4 64.1
14 63.5 59.3 58.8
15 59.2 57.9 58.8
16 63.6 62.3 57.4
17 56.0 52.6 60.2
18 58.4 60.7 56.2
19 61.2 62.9 57.4

(B) FSM
FSM25K FSM50K FSM100K

71.6 59.0 62.2
75.2 74.6 74.2
50.4 76.3 74.5
61.6 67.3 60.7
77.6 58.8 77.7
57.8 55.8 58.3
62.6 76.4 78.1
74.9 61.2 45.6
81.2 78.3 79.9
60.0 48.2 67.5
79.8 80.2 76.9
59.4 58.7 74.8
57.4 60.3 69.7
76.6 76.2 80.4
74.6 62.6 75.6
76.6 59.5 79.7
68.6 76.7 61.7
66.6 64.3 60.2
54.3 57.3 55.4
75.4 80.6 80.4

Table A.6: Performance over 20 different instance of control software generated
with AutoMoDe-Annealing for foraging in high budgets.

70

Run-time analysis

In Figure A.4 we can observe that Annealing-BT is outperformed by Annealing-FSM
in all budgets. The advantage of Annealing-FSM with respect to Annealing-BT
increases when the budget increases. For the aggregation mission the difference is
more clear than for foraging.

71

A. Low and High Budget Analysis

0 500 1000 1500 2000

2000

4000

6000

8000

10000

12000

14000

16000

sc
or

e
budget = 25.0 | mission = aac

0 500 1000 1500 2000

0

10

20

30

40

50

60

70

budget = 25.0 | mission = foraging

0 1000 2000 3000 4000

2000

4000

6000

8000

10000

12000

14000

16000

sc
or

e

budget = 50.0 | mission = aac

0 1000 2000 3000 4000

0

10

20

30

40

50

60

70

budget = 50.0 | mission = foraging

0 2000 4000 6000 8000
step

2000

4000

6000

8000

10000

12000

14000

16000

sc
or

e

budget = 100.0 | mission = aac

0 2000 4000 6000 8000
step

0

10

20

30

40

50

60

70

budget = 100.0 | mission = foraging

arch
BT
FSM
budget
25.0
50.0
100.0

Figure A.4: Run time analysis high budgets.

72

A.0.3 All budgets

In Figure A.5 we can observe how the budget affects Annealing-BT and Annealing-
FSM. Annealing-BT doesn’t show a major impact despite of the decrease of dispersion
in the foraging mission. On the other hand Annealing-FSM keeps increasing for
bigger differences in budget.

4000

6000

8000

10000

12000

14000

16000

18000

sc
or

e

mission = aac | arch = BT mission = aac | arch = FSM

sa
algo

30

40

50

60

70

80

sc
or

e

mission = foraging | arch = BT

sa
algo

mission = foraging | arch = FSM

budget
5.0
10.0
25.0
50.0
100.0

Figure A.5: Box plots for all budgets.

73

Appendix B

Parameters run time analysis

This appendix contains the results in run time for the parameters study presented in
Chapter 6. The appendix is divided in parameters. And the run-time analysis are
categorized by control software architecture.

B.1 Acceptance criterion
In Figure B.1 and Figure B.2 we can observe the performance of the control soft-
ware generated by AutoMoDe-Annealing in run time. The figures show that the
performance is rather similar. However Wilcoxon test looks less noisy than the other
criteria.

Figure B.1: Annealing-BT run time performance, for acceptance criterion.

75

B. Parameters run time analysis

Figure B.2: Annealing-FSM run time performance, for acceptance criterion.

B.2 Window size
The performance of AutoMoDe-Annealing when using different window sizes values
is shown in Figure B.3 and Figure B.4. We can observe that the biggest the windows
the less attempts of improvement the algorithm will do. However in all the cases a
window size of 15 seems to be superior to the others.

76

B.2. Window size

Figure B.3: Annealing-BT run time performance, for window size.

Figure B.4: Annealing-FSM run time performance, for window size.

77

B. Parameters run time analysis

B.3 Restart mechanism
The performance of AutoMoDe-Annealing when using different restart mechanism is
shown in Figure B.5 and Figure B.6. We can observe that the for aggregation all the
mechanisms perform quite similar. However we can observe a different trend in the
forging mission. We observe that Not restarting take more time to converge but at
the end it converges. Also it is shown that the algorithm converges in approximately
2000 time steps.

Figure B.5: Annealing-BT run time performance, for restart mechanism.

78

B.3. Restart mechanism

Figure B.6: Annealing-FSM run time performance, for restart mechanism.

79

Bibliography

[1] E. Aarts, J. Korst, and W. Michiels. Simulated Annealing, pages 187–210.
Springer US, Boston, MA, 2005.

[2] P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for
the F-Race algorithm: Sampling design and iterative refinement. In Hybrid
Metaheuristics, 4th International Workshop, HM 2007, volume 4771 of LNCS,
pages 108–122. Springer, Berlin, Germany, 2007.

[3] G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and S. Nolfi.
Self-organized coordinated motion in groups of physically connected robots.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
37(1):224–239, 2007.

[4] G. Beni and J. Wang. Swarm intelligence in cellular robotic systems, proceed.
nato advanced workshop on robots and biological systems, tuscany, italy, june
26-30. Y.: NATO, 1989.

[5] M. Birattari. Tuning Metaheuristics: A Machine Learning Perspective. Springer,
Berlin Heidelberg, Germany, 2009.

[6] M. Birattari, A. Ligot, D. Bozhinoski, M. Brambilla, G. Francesca, L. Garattoni,
D. Garzón Ramos, K. Hasselmann, M. Kegeleirs, J. Kuckling, et al. Automatic
off-line design of robot swarms: A manifesto. Frontiers in Robotics and AI, 6:59,
2019.

[7] C. Blum and X. Li. Swarm intelligence in optimization. In Swarm intelligence,
pages 43–85. Springer, 2008.

[8] E. Bonabeau, D. d. R. D. F. Marco, M. Dorigo, G. Theraulaz, et al. Swarm
intelligence: from natural to artificial systems. Number 1. Oxford university
press, 1999.

[9] J. Bongard. Evolutionary robotics, vol. 56, 2013.

[10] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41,
2013.

81

Bibliography

[11] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41,
2013.

[12] N. Bredeche, J.-M. Montanier, W. Liu, and A. F. Winfield. Environment-driven
distributed evolutionary adaptation in a population of autonomous robotic
agents. Mathematical and Computer Modelling of Dynamical Systems, 18(1):101–
129, 2012.

[13] R. Brooks. A robust layered control system for a mobile robot. IEEE journal
on robotics and automation, 2(1):14–23, 1986.

[14] A. Brutschy, L. Garattoni, M. Brambilla, G. Francesca, G. Pini, M. Dorigo, and
M. Birattari. The tam: abstracting complex tasks in swarm robotics research.
Swarm Intelligence, 9(1):1–22, 2015.

[15] V. Černỳ. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of optimization theory and applications,
45(1):41–51, 1985.

[16] J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey. Graphical Methods For
Data Analysis. Wadsworth, Belmont CA, 1983.

[17] A. L. Christensen and M. Dorigo. Evolving an integrated phototaxis and hole-
avoidance behavior for a swarm-bot. In Proceedings of the 10th International
Conference on the Simulation and Synthesis of Living Systems (Alife X), pages
248–254. Citeseer, 2006.

[18] R. J. Clark, R. C. Arkin, and A. Ram. Learning momentum: online performance
enhancement for reactive systems. In Proceedings 1992 IEEE International
Conference on Robotics and Automation, pages 111–116. IEEE, 1992.

[19] G. Di Caro. Ant colony optimization and its application to adaptive routing in
telecommunication networks. 2004.

[20] G. A. Di Caro, F. Ducatelle, and L. M. Gambardella. Theory and practice
of ant-based routing in dynamic telecommunication networks. In Reflexing
interfaces: The complex coevolution of information technology ecosystems, pages
185–216. IGI Global, 2008.

[21] S. Doncieux and J.-B. Mouret. Beyond black-box optimization: a review of
selective pressures for evolutionary robotics. Evolutionary Intelligence, 7(2):71–
93, 2014.

[22] M. Dorigo and M. Birattari. Swarm intelligence. Scholarpedia, 2(9):1462, 2007.
revision #138640.

[23] M. Dorigo, M. Birattari, and M. Brambilla. Swarm robotics. Scholarpedia,
9(1):1463, 2014.

82

Bibliography

[24] M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura,
M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, et al. Swarmanoid: a
novel concept for the study of heterogeneous robotic swarms. IEEE Robotics &
Automation Magazine, 20(4):60–71, 2013.

[25] M. Dorigo, V. Maniezzo, A. Colorni, et al. Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, man, and cybernetics,
Part B: Cybernetics, 26(1):29–41, 1996.

[26] M. Dorigo and T. Stützle. The ant colony optimization metaheuristic: Al-
gorithms, applications, and advances. In Handbook of metaheuristics, pages
250–285. Springer, 2003.

[27] M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi,
J.-L. Deneubourg, F. Mondada, D. Floreano, et al. Evolving self-organizing
behaviors for a swarm-bot. Autonomous Robots, 17(2-3):223–245, 2004.

[28] M. Duarte, S. Oliveira, and A. Christensen. Evolution of hierarchical controllers
for multirobot systems. In Artificial Life Conference Proceedings 14, pages
657–664. MIT Press, 2014.

[29] M. Duarte, S. Oliveira, and A. Christensen. Hybrid control for large swarms
of aquatic drones. In Artificial Life Conference Proceedings 14, pages 785–792.
MIT Press, 2014.

[30] E. Ferrante, A. E. Turgut, E. Duéñez-Guzmán, M. Dorigo, and T. Wense-
leers. Evolution of self-organized task specialization in robot swarms. PLoS
computational biology, 11(8):e1004273, 2015.

[31] G. Francesca and M. Birattari. Automatic design of robot swarms: achievements
and challenges. Frontiers in Robotics and AI, 3(29):1–9, 2016.

[32] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari. Auto-
mode: A novel approach to the automatic design of control software for robot
swarms. Swarm Intelligence, 8(2):89–112, 2014.

[33] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari. Auto-
MoDe: A novel approach to the automatic design of control software for robot
swarms. Swarm Intelligence, 8(2):89–112, 2014.

[34] A. Franzin and T. Stützle. Revisiting simulated annealing: A component-based
analysis. Computers & operations research, 104:191–206, 2019.

[35] R. Fujisawa, S. Dobata, K. Sugawara, and F. Matsuno. Designing pheromone
communication in swarm robotics: Group foraging behavior mediated by chemi-
cal substance. Swarm Intelligence, 8(3):227–246, 2014.

[36] F. Glover and M. Laguna. Tabu search. In Handbook of combinatorial optimiza-
tion, pages 2093–2229. Springer, 1998.

83

Bibliography

[37] D. E. Goldberg and J. H. Holland. Genetic algorithms and machine learning.
Machine learning, 3(2):95–99, 1988.

[38] J. Gomes, P. Urbano, and A. L. Christensen. Evolution of swarm robotics
systems with novelty search. Swarm Intelligence, 7(2-3):115–144, 2013.

[39] E. Haasdijk, N. Bredeche, and A. Eiben. Combining environment-driven adapta-
tion and task-driven optimisation in evolutionary robotics. PloS one, 9(6):e98466,
2014.

[40] H. Hamann. Towards swarm calculus: Universal properties of swarm performance
and collective decisions. In Swarm Intelligence, pages 168–179, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[41] K. Hasselmann, A. Ligot, G. Francesca, and M. Birattari. Reference models for
AutoMoDe. Technical Report TR/IRIDIA/2018-002, IRIDIA, Université libre
de Bruxelles, Belgium, 2018.

[42] K. Hasselmann, F. Robert, and M. Birattari. Automatic design of
communication-based behaviors for robot swarms. In International Conference
on Swarm Intelligence, pages 16–29. Springer, 2018.

[43] S. Hauert, J.-C. Zufferey, and D. Floreano. Evolved swarming without positioning
information: an application in aerial communication relay. Autonomous Robots,
26(1):21–32, 2009.

[44] J. H. Holland et al. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT
press, 1992.

[45] H. Hoos and T. Stüzle. Stochastic Local Search: Foundations & Applications.
Morgan Kaufmann, San Francisco CA, 2004.

[46] N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: the use of
simulation in evolutionary robotics. In F. Morán and et al., editors, Advances in
Artificial Life, volume 929 of LNCS, pages 704–720, London, UK, 1995. Springer.

[47] F. Janabi-Sharifi and D. Vinke. Integration of the artificial potential field
approach with simulated annealing for robot path planning. In Proceedings of
8th IEEE International Symposium on Intelligent Control, pages 536–541. IEEE,
1993.

[48] D. S. Johnson and M. R. Garey. Computers and intractability: A guide to the
theory of NP-completeness, volume 1. WH Freeman San Francisco, 1979.

[49] S. Kazadi et al. Swarm engineering. 2000.

[50] J. Kennedy. Particle swarm optimization. Encyclopedia of machine learning,
pages 760–766, 2010.

84

Bibliography

[51] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies.
Journal of statistical physics, 34(5-6):975–986, 1984.

[52] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[53] J. Kuckling, A. Ligot, D. Bozhinoski, and M. Birattari. Behavior trees as
a control architecture in the automatic modular design of robot swarms. In
M. Dorigo and et al., editors, Swarm Intelligence, ANTS, volume 11172 of
LNCS, pages 30–43. Springer, Cham, Switzerland, 2018.

[54] J. Kuckling, A. Ligot, D. Bozhinoski, and M. Birattari. Search
space for AutoMoDe-Chocolate and AutoMoDe-Maple. Technical Report
TR/IRIDIA/2018-012, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium,
2018.

[55] T. H. Labella, M. Dorigo, and J.-L. Deneubourg. Division of labor in a group of
robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous
and Adaptive Systems (TAAS), 1(1):4–25, 2006.

[56] J. B. Lee and R. C. Arkin. Adaptive multi-robot behavior via learning momentum.
In C. S. George Lee, editor, IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, pages 2029–2036, Piscataway NJ, 2003. IEEE Press.

[57] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary computation, 19(2):189–223, 2011.

[58] A. Ligot and M. Birattari. On mimicking the effects of the reality gap with
simulation-only experiments. In M. Dorigo and et al., editors, Swarm Intelligence,
ANTS, volume 11172 of LNCS, pages 109–122. Springer, Cham, Switzerland,
2018.

[59] A. Ligot, K. Hasselmann, B. Delhaisse, L. Garattoni, G. Francesca, and M. Bi-
rattari. AutoMoDe, NEAT, and EvoStick: implementations for the e-puck robot
in ARGoS3. Technical Report TR/IRIDIA/2017-002, IRIDIA, Université libre
de Bruxelles, Belgium, 2017.

[60] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498–516, 1973.

[61] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stüt-
zle. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58, 2016.

[62] H. Martınez-Alfaro and S. Gomez-Garcıa. Mobile robot path planning and
tracking using simulated annealing and fuzzy logic control. Expert Systems with
Applications, 15(3-4):421–429, 1998.

85

Bibliography

[63] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren. Towards a uni-
fied behavior trees framework for robot control. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 5420–5427. IEEE, 2014.

[64] M. Matarić and D. Cliff. Challenges in evolving controllers for physical robots.
Robotics and autonomous systems, 19(1):67–83, 1996.

[65] M. J. Matarić. Learning in behavior-based multi-robot systems: policies, models,
and other agents. Cognitive Systems Research, 2(1):81–93, 2001.

[66] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6):1087–1092, 1953.

[67] H. Miao and Y.-C. Tian. Dynamic robot path planning using an enhanced
simulated annealing approach. Applied Mathematics and Computation, 222:420–
437, 2013.

[68] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Mag-
nenat, J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a robot
designed for education in engineering. In P. Gonçalves, P. Torres, and C. Alves,
editors, Proceedings of the 9th Conference on Autonomous Robot Systems and
Competitions, pages 59–65, Portugal, 2009. Instituto Politécnico de Castelo
Branco.

[69] F. Mondada, G. C. Pettinaro, A. Guignard, I. W. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo. Swarm-bot: A new
distributed robotic concept. Autonomous robots, 17(2-3):193–221, 2004.

[70] A. G. Nikolaev and S. H. Jacobson. Simulated Annealing, pages 1–39. Springer
US, Boston, MA, 2010.

[71] N. J. Nilsson. Shakey the robot. Technical report, SRI INTERNATIONAL
MENLO PARK CA, 1984.

[72] S. Nolfi, D. Floreano, and D. D. Floreano. Evolutionary robotics: The biology,
intelligence, and technology of self-organizing machines. MIT press, 2000.

[73] M. G. Park, J. H. Jeon, and M. C. Lee. Obstacle avoidance for mobile robots
using artificial potential field approach with simulated annealing. In ISIE 2001.
2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat.
No. 01TH8570), volume 3, pages 1530–1535. IEEE, 2001.

[74] L. E. Parker. Task-oriented multi-robot learning in behavior-based systems. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS,
pages 1478–1487, Piscataway NJ, 1996. IEEE Press.

86

Bibliography

[75] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. Gambardella,
and M. Dorigo. ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intelligence, 6(4):271–295, 2012.

[76] J. Pugh and A. Martinoli. Distributed scalable multi-robot learning using
particle swarm optimization. Swarm Intelligence, 3(3):203–222, 2009.

[77] M. Quinn, L. Smith, G. Mayley, and P. Husbands. Evolving controllers for a
homogeneous system of physical robots: Structured cooperation with minimal
sensors. Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 361(1811):2321–2343, 2003.

[78] E. Şahin. Swarm robotics: From sources of inspiration to domains of application.
In E. Şahin and W. M. Spears, editors, Swarm Robotics, SAB, volume 3342 of
LNCS, pages 10–20, Berlin Heidelberg, Germany, 2004. Springer.

[79] E. Şahin. Swarm robotics: From sources of inspiration to domains of application.
In International workshop on swarm robotics, pages 10–20. Springer, 2004.

[80] A. Seeni, B. Schäfer, and G. Hirzinger. Robot mobility systems for planetary
surface exploration–state-of-the-art and future outlook: a literature survey.
Aerospace Technologies Advancements, page 492, 2010.

[81] F. Silva, M. Duarte, L. Correia, S. M. Oliveira, and A. L. Christensen. Open
issues in evolutionary robotics. Evolutionary computation, 24(2):205–236, 2016.

[82] K. Sugawara and T. Watanabe. Swarming robots-foraging behavior of simple
multirobot system. In IEEE/RSJ International Conference on intelligent robots
and systems, volume 3, pages 2702–2707. IEEE, 2002.

[83] R. S. Tavares, T. Martins, and M. d. S. G. Tsuzuki. Simulated annealing with
adaptive neighborhood: A case study in off-line robot path planning. Expert
Systems with Applications, 38(4):2951–2965, 2011.

[84] V. Trianni. Evolutionary swarm robotics: evolving self-organising behaviours in
groups of autonomous robots, volume 108. Springer, 2008.

[85] V. Trianni. Evolutionary robotics: model or design? Frontiers in Robotics and
AI, 1:13, 2014.

[86] M. Waibel, L. Keller, and D. Floreano. Genetic team composition and level of
selection in the evolution of cooperation. IEEE Transactions on Evolutionary
Computation, 13(3):648–660, 2009.

[87] R. Watson, S. Ficici, and J. Pollack. Embodied evolution: distributing an
evolutionary algorithm in a population of robots. Robotics and Autonomous
Systems, 39(1):1–18, 2002.

87

Bibliography

[88] A. F. Winfield, C. J. Harper, and J. Nembrini. Towards dependable swarms and
a new discipline of swarm engineering. In International Workshop on Swarm
Robotics, pages 126–142. Springer, 2004.

88

	Preface
	Abstract
	Résumé
	List of Figures and Tables
	List of Abbreviations and Symbols
	Introduction
	Swarm robotics
	Control Software design for robot swarms
	Stochastic local search
	Overview

	State-of-the-art
	Control software design
	Evolutionary robotics
	Modular design
	Simulated Annealing
	Contribution

	AutoMoDe
	Components of the automatic design process
	Control software search space
	Optimization algorithm
	AutoMoDe Python extension

	AutoMoDe-Annealing Implementation
	Simulated annealing
	Component-based simulated annealing
	Optimization process
	Implementation

	Experimental Setup
	Robot platform and reference model
	Missions
	Simulated annealing default configuration
	Experiments protocol
	Statistical analysis

	Experiments and Results
	Budget influence
	Acceptance criterion influence
	Window size influence
	Restart mechanism influence
	Comparison

	Conclusions and Future work
	Low and High Budget Analysis
	Parameters run time analysis
	Acceptance criterion
	Window size
	Restart mechanism

	Bibliography

