
U
N

I
V

E
R

S
I

T
É

L

I
B

R
E

D
E

B
R

U
X

E
L

L
E

S

The influence of random walks on
automatic design of robot swarms
An experiment with AutoMoDe

Mémoire présenté en vue de l’obtention du diplôme
d’Ingénieur Civil en Informatique à finalité spécialisée

Gaëtan Spaey

Directeur
Professeur Mauro Birattari

Superviseurs
David Garzón Ramos, Miquel Kegeleirs

Service
IRIDIA

Année académique

2018 - 2019

This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme: DEMIURGE Project, grant agreement No 681872

Acknowledgements

First, I would like to thank my thesis director, Mauro Birattari, for his
support and for introducing me to the field of swarm robotics.

I would like to acknowledge David Garzón Ramos for helping me define the
outline of my master thesis, for assisting me with the set-up of the experiments
on the cluster and for giving me precious advice regarding the interpretation of
the results.

I would also like to thank Miquel Kegeleirs for providing me day-to-day
support in all aspects of my master thesis. He patiently accompanied me during
the set-up of ARGoS and AutoMoDe and helped me fix technical problems on
multiple occasions. Furthermore, he read this master thesis several times and
greatly helped me in improving it.

Finally, I would like to thank my fellow students and friends. Julian Ruddick
for helping me on numerous occasions in fixing technical problems, as well as
David Boyker, Samy Badreddine and Stéphane Sercu for providing me with
continuous feedback and support through the writing of this master thesis.

Résumé

Des études sur la robotique en essaim ont montré que des tâches complexes peu-
vent être résolues par de grands groupes de robots simples interagissant entre
eux et avec leur environnement. La plupart de ces tâches exigent que les robots
explorent leur environnement, ce qui fait de l’exploration une composante de
base du comportement des essaims de robots. Les comportements d’exploration
n’ont cependant pas fait l’objet d’évaluations approfondies sur ces derniers, en
particulier dans la conception automatique de logiciels de contrôle. C’est notam-
ment le cas de la méthode de conception modulaire automatique AutoMoDe,
pour laquelle les comportements d’exploration au sein des modules ont été ar-
bitrairement sélectionnés. La question suivante est donc à se poser : Quelle
est l’influence de différents comportements d’exploration sur la conception au-
tomatique d’essaims de robots ? Pour étudier cette problématique, nous intro-
duisons AutoMoDe Coconut, une version alternative d’AutoMoDe Chocolate
comportant plusieurs comportements d’exploration configurables intégrés dans
ses modules. Nous mesurons les performances et l’utilisation des modules issues
des deux versions d’AutoMoDe et les comparons afin de comprendre l’impact
de ces nouveaux comportements d’exploration. Les résultats montrent que Au-
toMoDe Coconut n’est pas plus performant que AutoMoDe Chocolate, même
dans les situations où les seuls comportements d’exploration disponibles pour
AutoMoDe Chocolate sont désavantagés. Cela peut s’expliquer par la nature de
la conception automatique, qui tend à générer des comportements d’exploration
particuliers à la tâche donnée plutôt qu’à utiliser des comportements spéficiques
prédéterminés.

Abstract

Studies on swarm robotics have shown that complex tasks can be solved by
large groups of simple robots interacting with each other and their environ-
ment. Most of these tasks require the robots to explore their environment,
making exploration a basic building block of the behaviors of robot swarms.
Exploration behaviors were however not extensively evaluated on robot swarms,
especially in automatic design of controllers. This is notably the case with
the automatic modular design approach AutoMoDe, for which the exploration
behaviors within the modules were arbitrarily selected. The following question
is therefore studied: What is the influence of different exploration behaviors,
such as random walks, on automatic design of robot swarms ? To tackle this
problematic, we introduce AutoMoDe Coconut, an alternate version of Auto-
MoDe Chocolate with multiple configurable exploration behaviors embedded
within its modules. We measure both the performances and the use of modules
of the two versions of AutoMoDe and compare them in order to understand the
impact of those new exploration behaviors. The results show that AutoMoDe
Coconut does not perform better than AutoMoDe Chocolate, even in situations
where the only exploration behaviors available to AutoMoDe Chocolate are at
an apparent disadvantage. This can be explained by the nature of automatic
design, which tends to generate custom exploration behaviors rather than use
specific predetermined ones.

Contents

1 Introduction 3

2 Related work 5
2.1 Swarm robotics . 5

2.1.1 Properties . 6
2.2 Exploration in swarm robotics . 7
2.3 Automatic design . 8

2.3.1 Evolutionary robotics . 8
2.3.2 Reality gap . 9

2.4 Automatic modular design . 10

3 AutoMoDe and exploration behaviors 11
3.1 AutoMoDe . 11

3.1.1 The racing approach . 12
3.1.2 Design process . 14
3.1.3 Modules of AutoMoDe . 15

3.2 Exploration behaviors . 16
3.2.1 Algorithms . 17

4 AutoMoDe Coconut 20
4.1 Problematic . 20

4.1.1 Implementation choice . 21
4.1.2 Exploration behaviors . 21

4.2 AutoMoDe Coconut . 22

5 Experiments 25
5.1 Evaluation protocol . 25
5.2 Missions . 27
5.3 Experimental setup . 31

6 Results and discussion 32
6.1 Experiments in closed environment 32

6.1.1 Performances comparison 32
6.1.2 Modules use comparison 33

1

6.2 Experiments in open environment 39

7 Conclusion 44

Appendices 52

A Evaluations in open environment 52

2

Chapter 1

Introduction

Swarms can be found under multiple forms in nature, be it in large crowds
of flocking birds, complex ant colonies or fish schools. These different swarms
of animals share the same core idea: the local interactions between a large
group of simple agents and with their environment can lead to intelligent global
behaviors [47]. Following the same idea, a swarm of robots is a large group of
robots whose collective behavior results from local interactions of the robots
between themselves and with their environment. Those robots operate without
relying on any external structure or any form of centralized control [16]. Those
characteristics make swarms of robots scalable, robust and flexible, allowing
them to reach applications unattainable by single robots. Such applications
often require the robots to explore their environment, be it to find specific
targets or simply gather information about it.

The design of control software for swarm robotics is an inherently complex
task. Indeed, there is no reliable way to anticipate the global behavior of a
swarm of robots based on the behavior of a single robot of the swarm [22]. It
is therefore common to resort to automatic design, for which multiple methods
have been developed. One of those approaches is the automatic modular design,
tackled with AutoMoDe [24]. In this method, the control software of the robots
is a probabilistic finite state machine. The possible states are predetermined
and consist in atomic behaviors, called modules, such as the exploration of the
environment, the attraction to light or the repulsion from other robots.

However, the exploration behaviors used within the modules of AutoMoDe
were chosen arbitrarily for the sake of simplicity. Indeed, the use of exploration
behaviors is rarely discussed in swarm robotics, and was never studied in
automatic design. One could therefore wonder whether or not injecting new
exploration behaviors within the modules of AutoMoDe would increase its
performances. In this context, we introduce AutoMoDe Coconut, a new version
of AutoMoDe with modified modules allowing the use of new exploration be-
haviors already evaluated with swarm robotics in the literature: random walks.

3

We evaluate AutoMoDe Coconut on multiple missions and compare it with the
original version of AutoMoDe both in terms of performances and behaviors
used. The goal of this experiment with AutoMoDe is, beyond verifying if it
increases its performances, to study the influence of random walks on automatic
design of robot swarms.

This master thesis is structured as follows.

• The related work regarding swarm robotics, automatic design and explo-
ration behaviors is mentioned in Chapter 2.

• The automatic modular design approach AutoMoDe is then detailed, along
with exploration behaviors seen in the literature that could be used in
automatic modular design, in Chapter 3

• AutoMoDe Coconut is introduced and detailed in Chapter 4.

• The experiments used to assess the performances of and behaviors gener-
ated by AutoMoDe Coconut are described in Chapter 5.

• The results of these experiments are shown and interpreted in Chapter 6.

• Finally, a brief summary of the findings of this master thesis is given along
with some concluding remarks in Chapter 7.

4

Chapter 2

Related work

Recent discoveries in artificial intelligence (AI) have changed the way some
complex problems have been tackled, from image recognition do decision models
design. Those new technologies have greatly benefited robotics. In particular,
AI has applications in the design of controllers in swarm robotics. Swarm
robotics presents different properties than classical robotics, encouraging local
interactions in a large group of simple robots rather than a complex unified
system. Usually, those simple robots need to explore their environment in order
to find key information necessary to solve a task. Therefore, the question of
which exploration behaviors should be used in this context is relevant.

While the design of the controller of the robot is usually handled by humans,
the complexity of manual design for swarm robotics has encouraged the devel-
opment of automatic design methods. However, those methods encountered
overfitting problems which led to the development to a new automatic modular
design approach, AutoMoDe.

This chapter covers the following topics. First, the concepts of swarm in-
telligence and swarm robotics are defined and some of their applications are
described (2.1). Different exploration behaviors used in swarm robotics are then
presented (2.2). Finally, an overview of the applications and characteristics of
automatic design in robot swarms is given (2.3) and the automatic modular
design method AutoMoDe is presented (2.4).

2.1 Swarm robotics

Swarm intelligence, as its name implies, is based on the assumption that a large
group (a swarm) of simple agents can show an intelligent behavior through the
interactions of the agents with each other and with their environment [16]. This
core idea was, for instance, applied in the Ant Colony Optimization algorithm
[17] inspired from real ants, where agents search the solution space of complex

5

optimization problems for the best solution. While doing so, those agents
indirectly interact with each other for a biased exploration of the solution
space. Those algorithms are used, among other applications, for adaptive
best-effort routing in IP networks with AntNet [12].

Swarm robotics is the application of the core idea of swarm intelligence to
robotics, where the goal is not about exploring a solution space but working
on a physical task. Indeed, swarm robotics studies the use of a swarm of
simple physical agents (robots) interacting locally to show an intelligent global
behavior. In order to be considered a swarm, a multi-robots system also needs
to present some specific properties. The most recurring of these properties in
the literature are fault tolerance, scalability, local interactions, decentralized
system and cooperation [10][45][47].

2.1.1 Properties

A swarm of robots should be both fault tolerant and scalable. The fault
tolerance is necessary to allow the whole system to keep working correctly
even if one of more robots fail, which is more likely to happen with multiple
robots. This property is helped by the swarm being redundant, with multiple
robots assigned to the same function. The scalability allows the swarm to
show no drastic change in performance with the addition or removal of robots
to the system. This property is enabled thanks to the local communication
and local sensing abilities of the robots. Indeed, as long as the density of the
swarm doesn’t change, the size of the swarm has no impact on the local behavior.

A swarm of robots should be completely decentralized, with no main con-
troller for the whole system. Furthermore, it should not have access to any kind
of global, centralized information. Otherwise, the system would not exploit
the advantages of local interactions altogether and lose its scalability and fault
tolerance properties. For example, a GPS or an internet access constitute
a centralized single point of failure that should be avoided in a swarm of
robots. Since there is no such centralized control or information to organize
the behavior of the swarm, the individual behavior of the robots should aim for
their cooperation to achieve the global goal.

Examples of applications of swarm robotics include a multi-agent con-
struction system inspired by mound-building termites, encompassing three
independent robots building a user-defined structure (Werfel et al. [53]).
Another example is Swarmonoid (Dorigo et al. [15]), a complex heterogeneous
system of cooperating robots including aerial eye-bots used for scouting, hand-
bots used for grabbing objects and foot-bots used to move the hand-bots.

6

2.2 Exploration in swarm robotics

Exploration is an integral part of problem solving in swarm intelligence, whether
it is in swarm optimization for the search of a solution in the solution space or
in swarm robotics for the search of key elements to the task at hand. For a
single robot, spatial information regarding its mission can simply be gathered
by more powerful sensors and then be processed immediately. The limited
range of the sensors of the robots in a swarm prevents this convenient behavior.
This forces the robots to move around the experiment space in order to find
this spatial information, relying on some kind of exploration behavior.

Therefore, different exploration behaviors have been studied in swarm
robotics. The first exploration behaviors for robots were inspired by physics
phenomenons, like the movement of particles in a fluid for the Brownian motion
[20] or the movement of bacteria depending on their chemical environment for
the chemotaxis [19]. An exploration behavior widely used in robotics is the
Lévy flight or Lévy walk [55], a random walk with a heavy-tailed step length
distribution. The Lévy walk is also used as part of more complex random walk
methods, such as the Yuragi-based adaptive searching behavior [38], which also
makes use of chemotaxis.

Most of these behaviors are designed for single robot exploration. While the
literature regarding exploration behaviors used in the context of swarm robotics
is sparse, some of the aforementioned methods were tested with a swarm of
robots. For instance, bacteria chemotaxis has been used for target search with
30 robots in simulation by Yang et al. [54]. A more complete work on the
subject has been conducted by Dimidov et al. [14] where different exploration
behaviors were evaluated with a hundred Kilobots.

More recently, common exploration behaviors were also tested for mapping
in a closed space with a swarm of ten E-Puck robots by Kegeleirs et al. [31].
There are also instances of those methods being specifically modified to work
more efficiently when used for exploration by a swarm of robots. For instance,
Pang et al. [39] presented a modified version of Lévy flight that increases the
step length when the swarm density is high, avoiding repeated exploration of
the same area in the process.

When exploring environments enclosed by walls or containing obstacles,
exploration behaviors need to be used along with some obstacle avoidance
method. Although they are often not considered in random walk experiments,
many obstacle avoidance methods have been mentioned in the literature. Those
methods are often pretty simple, like the vector field obstacle avoidance method
[7][8] that modifies the trajectory of the exploring robots with repulsive forces
representing the obstacles. Another example is the curvature-velocity method
[46] that handles obstacle avoidance as an optimization problem.

7

2.3 Automatic design

In classical single-robot systems, the design process of the controller is often
left to the human developer, the behavior of the robot being easy to derive
from its task. In swarm robotics however, the link between the local behavior
of the robots and the global behavior of the swarm is not that obvious. Indeed,
it is difficult to anticipate the behavior of a swarm of robots solely based on the
behavior of a single robot of the swarm [22]. This forces the manual design of
controllers in swarm robotics into a trial and error process [10], which is often
time consuming, prone to bias and errors and difficult to replicate [9].

It is therefore common in swarm robotics to resort mainly to two design ap-
proaches originally used for single-robot systems: the behavior-based approach
and evolutionary robotics. In the behavior-based approach, the controller of
the robots is created manually by a human developer. This process is based
on trial and error and requires evaluating the performances of the swarm as a
whole. With a control software based on a modular architecture, this method
has been easily applied to swarm robotics [10]. This modular architecture of
controlled design is also coupled with reinforcement learning methods by Parker
et al. [40] and Mataric et al. [35]. While the application of reinforcement
learning on this approach is successful to some extent, it encounters challenges
such as the difficulty to reward individual contributions based on the global
behavior or the large size of the state space.

2.3.1 Evolutionary robotics

Evolutionary robotics is an automatic design approach using artificial evolution
to generate the control software of the robots [37]. The said control software
takes the form of a neural network that takes as inputs the readings of the
sensors of the robots and as outputs the values to be fed to the actuators of the
robots. The neural network parameters and structure are optimized off-line in
simulation for a specific mission by the evolutionary algorithm [48][22]. This
approach was successfully used for the design of controllers in different types of
missions. It was first used for coordinated movement in simulation by Quinn
et al. [44], then with physical robots by Baldassarre et al. [2]. It was also used
for the avoidance of holes with the help of phototaxis capabilities (Christensen
et al. [13]), for the creation of communication networks with a swarm of aerial
robots (Hauert et al. [28]) and for a synchronization behavior (Trianni et al.
[49]).

Although the evolutionary robotics approach was used efficiently in var-
ious applications, the protocols used to apply it vary widely depending on
the missions themselves. Indeed, the focus for most of these studies was to
highlight the performances of evolutionary robotics in a particular situation,
with a design method configured specifically for this situation. As a result,

8

those studies fail to assess the repeatability and robustness of the approach, as
well as the impact of the reality gap [4].

2.3.2 Reality gap

The reality gap is the noticeable drop in performances of a robot controller
designed in simulation when it is evaluated with actual robots. This difference
is due to the fact that, unlike in simulation, there is a discrepancy between
reality and how the robot perceives (through its sensors) and interacts (though
its actuators) with it. The reality gap is particularly problematic for the off-line
automatic design of controllers meant for applications with real robots. Indeed,
the robot controllers designed to be efficient in simulation can perform poorly
in reality. Therefore, some research has been conducted in order to decrease
this performance drop and two approaches were tackled.

On one hand, some studies have tried to modify the simulated environment
to have it match as much as possible with reality. For instance, Jakobi et al.
[30] as well as Miglino et al. [36] fine-tuned the noise values to create a realistic
simulated environment. Bongard et al. [6] made the simulator and the robot
control software adapt to each other in a co-evolution approach. A similar
method is used by Zagal et al. [56] as well. On the other hand, other studies
have instead focused on making the controllers more resistant to the small
changes in inputs and outputs that the transition from simulation to reality
entails. The automatic modular design approach introduced by Francesca et al.
[24][23] is a good example of this method. Besides, Jakobi et al. [29] attempt
to modify the simulation to force the generated controllers to be more robust.
Finally, Urzelai et al. [50] show that evolutionary adaptive controllers can
adapt on-line to environmental changes without additional training.

According to Ligot and Birattari [33], the reality gap is not caused by the
reality being too complex or the simulation being too simple. Indeed, the
study manages to simulate the reality gap by changing the noise on environ-
mental values in a new simulated environment. This simulated reality, called
pseudo-reality, is not necessarily more complex than the simulation on which
the controller is trained. The pseudo-reality becomes a tool to evaluate the
robustness of a controller to the reality gap in simulation without relying on
expensive and time consuming robots experiments.

The reality gap is actually a manifestation of a broader problem present
in most fields of artificial intelligence, the bias-variance tradeoff. Indeed, the
controller tends to overfit the particular conditions encountered during the
design process in simulation. As long as the control software is refined in
subsets of possible behaviors with higher representational power, the automatic
design process will match it with the specifics of its simulated environment [21]
and hence make the control software vulnerable to the reality gap.

9

2.4 Automatic modular design

In order to tackle the reality gap (and by extension overfitting) problem met in
swarm robotics, Francesca et al. proposed the use of a new automatic modular
design process: AutoMoDe [24]. The point of AutoMoDe is to inject a bias in
the automatic design process by increasing the granularity of the architecture
of the control software. This modification is meant to reduce overfitting of the
solutions during the design process and reduce the reality gap for the generated
controllers.

The approach of AutoMoDe generates modular robot controllers in the
form of probabilistic finite state machines, composed of states and transitions.
Those states are selected among a set of preexisting atomic behaviors called
modules, while the transitions are also chosen among another set of preexisting
conditional state transitions. This new approach yields good results comparing
to a standard evolutionary approach called EvoStick and successfully overcomes
the reality gap.

The modular design architecture of AutoMoDe for the controllers was
arbitrarily restricted to finite state machines [24]. Indeed, other modular
architectures exist and could just as well be used for modular design in swarm
robotics. This possibility was explored by Kuckling et al. [32], who developed
Maple, an alternate version of AutoMoDe that uses behavior trees instead of
finite state machines with the same modules as the ones used in AutoMoDe.
Maple yielded results similar to AutoMoDe and was able to cross the reality
gap as well.

AutoMoDe was also extended with AutoMoDe Gianduja, a modification of
the modules of AutoMoDe providing communication capabilities between the
robots [27]. Those communication capabilities do not have fixed semantics, the
conditions for sending a message and the effects of receiving one being deter-
mined during the design process. The results of the evaluations of AutoMoDe
Gianduja showed that meaningful semantics were automatically associated to
messages.

10

Chapter 3

AutoMoDe and exploration
behaviors

AutoMoDe is an automatic modular design approach to the automatic design of
robot swarm controllers. This new approach is successful in crossing the reality
gap by avoiding overfitting the robot controller to the simulated environment.
To do so, it restricts the architecture of the generated control software to prob-
abilistic finite state machines using a preexisting set of states and transitions.

The preexisting states, or atomic behaviors, used by AutoMoDe embed
some exploration behaviors necessary for the robots to work on their missions.
Those behaviors were however chosen arbitrarily. Therefore, one could wonder
if exploration behaviors existing in the literature could be used in the context
of automatic modular design.

This chapter covers the following topics. At first, it describes more thor-
oughly the algorithm of AutoMoDe and its modules (3.1). Afterwards, it details
exploration behaviors seen in the literature that could be used in automatic
modular design (3.2).

3.1 AutoMoDe

AutoMoDe can be described by two important characteristics. First, by its
modular design restricting the controller software of the robots to probabilistic
finite state machines. Then, by its optimization algorithm, based on the racing
approach and used to determine the best finite state machine during the design
process.

The probabilistic finite state machines of AutoMoDe are composed of six
preexisting atomic behaviors called modules and six preexisting conditional

11

Figure 3.1: Finite state machine generated by AutoMoDe for an aggregation
mission. The robot controlled by this finite state machine explores the environ-
ment and stops when it finds a black spot. It also tends to be attracted to its
neighbors when it counts multiple surrounding robots.

state transitions. Each module is characterized by a set of parameters that can
be fine tuned when selected during the design process. Multiple modules of
the same type can appear in the same finite state machine, but not necessarily
with the same parameter values. Just like the modules, the conditional state
transitions have tunable parameters and can be used more than once in the
same finite state machine. The solution space, and therefore the search space
for the optimization algorithm, is composed of all the possible configurations of
states and transitions with all the possible parameters. A finite state machine
generated by AutoMoDe is shown in Figure (3.1) as an example.

3.1.1 The racing approach

The optimization algorithm used by AutoMoDe to determine the best finite
state machine configuration is based on the racing approach. This approach
consists in the evaluation of multiple candidate configurations using a systematic
way to allocate the computational resources among them [5]. The evaluation
of the candidates is performed step by step. At each step, or instance, all
the candidates are evaluated in parallel, the inefficient ones being removed as
soon as sufficient statistical evidence is gathered against them. The remain-
ing candidates are re-evaluated during the next step. A visual representation

12

Figure 3.2: Representation of the number of candidates evaluated for each in-
stance during the racing approach [5]. The dashed rectangle represents the same
values for a brute-force approach. The surfaces of those two shapes represent
the computational budget required to run the algorithm.

of the number of evaluated candidates for each instance is shown in Figure (3.2).

AutoMoDe Vanilla [24], the proof of concept of AutoMoDe, uses a racing
algorithm called F-Race [3]. The particularity of F-Race is that it uses a
ranking method to evaluate the candidates at each step of the evaluation, the
Friedman test. While the F-Race algorithm was efficient enough to show the
advantages of automatic modular design with AutoMoDe Vanilla, it failed to
exploit the full potential of the modules. Indeed, human experts were evaluated
as performing better than AutoMoDe with the same restrictions regarding the
architecture of the controllers.

Therefore, a new version of AutoMoDe called AutoMoDe Chocolate [23]
was developed with a new racing algorithm, I-Race [1][5]. I-Race, or iterated
F-Race, is as its name suggests an algorithm consisting in a series of iterations,
each of which is an execution of F-Race. In the first iteration, the candidate
configurations are generated randomly and uniformly based on the set of all
possible configurations. The candidates then undergo a first execution of
the F-Race algorithm. At the end of this iteration, the surviving candidates
are used as the seed to generate the new set of candidates used for the next
generation.

Thanks to this new racing algorithm, AutoMoDe Chocolate outperformed
both EvoStick and human designers in reality making it the state-of-the-art

13

Figure 3.3: Example of aggregation mission. This mission takes place in a
dodecagonal arena with 20 E-Puck robots.

AutoMoDe version. Furthermore, it successfully overcame the reality gap as
well.

3.1.2 Design process

In summary, the design process of AutoMoDe Chocolate is described below.
First, an experiment has to be manually designed by a human user. This
experiment is the mission on which the controllers are going to be evaluated.
AutoMoDe will therefore design a controller that is meant to perform efficiently
on this particular experiment. Parameters of the experiment include but are
not limited to: The spatial environment in which the experiment occurs or
arena (walls, light sources, floor color), the number of robots in the experiment,
the nature of the task to be accomplished by the robots (represented by an
objective function). An example of mission is shown in Figure (3.3).

This experiment is then fed to AutoMoDe, which starts the I-Race al-
gorithm. The I-Race algorithm works as explained above, evaluating the
performances of the candidate finite state machines on the experiment. Once
the computational power budget is depleted, AutoMoDe outputs the finite
state machine that performed the best on the given experiment.

In order to evaluate the controllers during the design process, AutoMoDe
needs to simulate the behavior of the robots resulting from the controller on the
given experiment. To do so, it uses ARGoS, a popular multi-physics simulator

14

for swarm robotics experiments developed by Pinciroli et al. [43][42]. It can
support multiple types of robots and handle large scale swarm simulations.
AutoMoDe uses it along with the plugin ”E-Puck for ARGoS” developed by
Garattoni et al. [25] in order to model the E-Puck robot.

3.1.3 Modules of AutoMoDe

The six modules of AutoMoDe are the building blocks of the controllers it
designs. Indeed, those modules are used as the states of the probabilistic finite
state machines which constitute the controllers. Some of these behaviors have
tunable parameters optimized by AutoMoDe. The available modules are the
following [24]:

• Exploration : The robot moves in a straight line. When it encounters an
obstacle, it turns on itself for a random number of control cycles uniformly
chosen between [0, τ], where τ is a parameter of the module. The param-
eter τ is an integer in the range [0, 100]. The robot turns away from the
direction of the obstacle. Note that a control cycle corresponds to a tenth
of a second.

• Stop : The robot stops moving.

• Phototaxis : The robot moves towards the light source(s), or moves in
a straight line if no light is perceived. This movement embeds a vector
field obstacle avoidance. The robot follows the two-dimensional vector
w = wl − k ∗ wo, where wl represents the perceived light vector, wo the
perceived obstacle vector and k a fixed value empirically set to 5. The
light vector wl is calculated with equation (3.1).

wl =

8∑
i=1

(ri, 6 bi) (3.1)

ri represents the reading of i, one of the eight light sensors of the robot
and bi the angle between this sensor and the front of the robot. The vector
wl therefore represents the average position of the sensed light(s) as the
sum of the eight vectors corresponding to light readings. Similarly, the
vector wo represents the average position of the sensed obstacle(s) as the
sum of the eight vectors corresponding to proximity readings.

• Anti-phototaxis : The robot moves away from the light source(s), or moves
in a straight line if no light is perceived. This movement embeds a vector
field obstacle avoidance. The robot follows the two-dimensional vector
w = −wl − k ∗ wo, where wl, wo and k are defined as in Phototaxis.

• Attraction : The robot moves towards the center of mass of the other
robots in communication range, or moves in a straight line if no other robot

15

is detected. This movement embeds a vector field obstacle avoidance. The
robot follows the two-dimensional vector w = α∗wr&b−k∗wo where wr&b

represents the range and bearing vector, α is a parameter of the module
and wo and k are defined as in Phototaxis. The parameter α is an integer
in the range [1, 5]. The range and bearing vector wr&b is calculated with
equation (3.2).

wr&b =
∑
m∈M

(rm, 6 bm) (3.2)

M is the set of messages received by the range & bearing module, rm and
bm the range and bearing of the robot corresponding to the message m.

• Repulsion : The robot moves away from the center of mass of the other
robots in communication range, or moves in a straight line if no other robot
is detected. This movement embeds a vector field obstacle avoidance. The
robot follows the two-dimensional vector w = −α ∗ wr&b − k ∗ wo where
wr&b, α, wo and k are defined as in Attraction.

Within those modules, two different exploration behaviors stand out. The
first and most obvious one is the Exploration module, consisting in a ballistic
motion with random rotation obstacle avoidance. Ballistic motion corresponds
to a straight-line movement. The second one is actually embedded withing four
modules: Phototaxis, Anti-phototaxis, Attraction and Repulsion. Indeed, if no
light source/no other robot is detected by a robot controlled by one of those
behaviors, it moves in a straight line while avoiding obstacles. This behavior
corresponds to a ballistic motion with vector field obstacle avoidance.

Those exploration behaviors within the modules of AutoMoDe were chosen
arbitrarily. One could wonder if other exploration behaviors could have been
selected instead of the ones currently used. Indeed, as shown in Section 2.2,
multiple exploration behaviors have been studied in the context of swarm
robotics, some of which might increase the efficiency of the exploration behav-
iors of AutoMoDe.

3.2 Exploration behaviors

While exploration behaviors are widely studied in classical robotics, only a
few were evaluated in the context of swarm robotics. The exploration be-
haviors that are most fitted for swarm robotics are simple ones, considering
the limited abilities of the robots in the swarm. For that reason, the studied
behaviors were ballistic motion and different variations of random walk. In-
deed, correlated random walk and Lévy walk were compared with a swarm
on a hundred Kilobots [14]. More recently, more random walk variations and
ballistic motion were tested for mapping with ten E-Pucks. [31]. Those varia-
tions were Brownian motion, correlated random walk, Lévy walk and Lévy taxis.

16

(a) Browmian motion [52]. (b) Lévy walk [51].

Figure 3.4: Comparison of Brownian motion and Lévy walk with two visual
examples. While the former constitutes a completely random movement, the
latter makes occasional jumps, covering further areas. The motion starts at the
coordinates [0, 0] and lasts 1000 steps.

• Brownian motion : This motion is inspired by the movement of a particle
in a fluid [20]. A particle in a fluid moves in a straight line but constantly
bumps into other particles, changing its trajectory. This motion can be
classified as an uncorrelated random walk, meaning that it has no bias
and is completely unpredictable, unlike the other three behaviors.

• Correlated random walk : This motion is a random movement where the
next direction of the trajectory is biased towards the previous one [11].
This results in a motion that encourages thoroughly exploring a local area
rather than moving further to discover new areas.

• Lévy walk : This motion corresponds to a random movement similar to the
Brownian motion [55]. However, it includes occasional large movements
in a straight line, or jumps. This results in an efficient exploration of large
environments along with some local deeper exploration.

• Lévy taxis : This motion, proposed by Pasternak et al. [41], is a balance
between a correlated random walk and a Lévy walk. Therefore, it offers
the advantages of the two methods, being efficient both in local and global
exploration of the environment.

3.2.1 Algorithms

Those four random walk variants are based on the same algorithm. When
started, the robot walks for a random number of steps Ml (move length) and
with a random rotation angle Ta, both calculated from a fixed probability

17

distribution. Once the robot has crossed the distance corresponding to the
move length, it calculates a new move length and turning angle based on
the same distributions. The differences between Brownian motion, correlated
random walk, Lévy walk and Lévy taxis lie in the choice of those probability
distributions, determined by key parameters µ and ρ.

Therefore, despite their significant differences, those four methods share
the same mathematical model with different parameters. The move length Ml

is calculated with equation (3.3), with Lmin representing the minimum move
length, r a random variable chosen in the range [0, 1] and µ the key parameter
governing the distribution.

Ml = Lmin ∗ r
1

1−µ (3.3)

The turning angle Ta is calculated with equation (3.4), with r representing
a random variable chosen in the range [0, 1], bias the directional bias added to
the turning angle and ρ the key parameter governing the distribution.

Ta =

[
2 ∗ arctan

(
1− ρ
1 + ρ

∗ tan
(
π ∗ (r − 0.5)

))]
+ bias (3.4)

The two key parameters µ and ρ are either fixed or within the same value
range depending on the random walk variant. For instance, correlated random
walk has the parameter µ fixed to 0, making the move length distribution
asymptotically Gaussian-like and the parameter ρ contained within the range
[0, 1], making the turning angle distribution a wrapped Cauchy. All the ranges
of the key parameters for the different random walk variants are detailed in
Table (3.1).

Move length µ Turning angle ρ

Brownian motion
Asymptotically
Gaussian-like

3 Uniform 0

Correlated
random walk

Asymptotically
Gaussian-like

3 Wrapped Cauchy ∈ [0, 1]

Lévy walk Power law ∈]1, 3] Uniform 0
Lévy taxis Power law ∈]1, 3] Wrapped Cauchy ∈ [0, 1]

Table 3.1: Different value ranges of the key parameters of the random walks,
along with the corresponding distributions [18].

18

It is interesting to note that the Lévy taxis method is a generalization of
the three other random walks. Indeed, it can be reduced to any other random
walk method given the right values of the key parameters µ and ρ. Lévy taxis
is therefore the most complete of the four since it encompasses all of them.

Ballistic motion is what could be considered as the most simple movement
method. The robot controlled by ballistic motion simply moves in a straight
line without ever stopping. In order to be actually useful, this motion needs
to be coupled with an obstacle avoidance method. It was evaluated with
two. First with the vector field obstacle avoidance method that modifies
the trajectory of the exploring robot with repulsive forces representing the
obstacles. Then with the random rotation method that makes the exploring
robot turn on itself for a random amount of time upon encountering an obstacle.

19

Chapter 4

AutoMoDe Coconut

As explained in Section 2.2, exploration is a primary behavior in swarm robotics.
Indeed it plays a role in the completion of most tasks requiring interactions
with elements of the environment, acting as building blocks of the individual
behaviors of the robots. Therefore, exploration has a significant role to play
within the modules of AutoMoDe.

Indeed, as shown in Section 3.1 AutoMoDe embeds two types of exploration
behaviors within its modules. However, those exploration behaviors were
chosen arbitrarily, for the sake of simplicity. Moreover, most relevant research
regarding random walks in swarm robotics were published after AutoMoDe. In
this context, we introduce AutoMoDe Coconut, an alternate version of Auto-
MoDe Chocolate with multiple configurable exploration behaviors embedded
within its modules.

This chapter covers the problematic regarding the exploration behaviors in
AutoMoDe and the options considered to answer it (4.1). This discussion is
followed by the description of AutoMoDe Coconut and its modified modules
(4.2).

4.1 Problematic

Two exploration behaviors stand out within the six modules of AutoMoDe:
ballistic motion with random rotations obstacle avoidance and ballistic motion
with vector field obstacle avoidance. Those exploration behaviors within the
modules of AutoMoDe were arbitrarily chosen for the sake of simplicity. Since
then, multiple exploration behaviors have been evaluated with swarm robotics
as shown in Section 3.2. Therefore, the following question becomes relevant
to investigate: How would new exploration behaviors embedded within the
modules of AutoMoDe impact its performances ? In particular, it would be

20

interesting to know how efficient the ballistic motions and random walks are in
AutoMoDe.

In order to answer this question, a modification of the modules of Auto-
MoDe is necessary. There is however several ways to implement new exploration
behaviors within the modules of AutoMoDe. For that reason, multiple imple-
mentation options were considered.

4.1.1 Implementation choice

The first attempt was simply to add a new module for each new exploration
behavior. However, this option does not change anything about the ballistic
motion embedded within the Phototaxis, Anti-phototaxis, Attraction and
Repulsion modules. Therefore, another idea was examined: It involves the
replacement of all the exploration behaviors in AutoMoDe with a specific
exploration behavior, either a ballistic motion or a random walk. While this
choice allows to directly measure the performance of an exploration behavior
in AutoMoDe, manually selecting the said exploration behavior injects a bias
in the automatic design process. Furthermore, it doesn’t allow the combination
of multiple different exploration behaviors within the same controller.

A last option was then considered. It consists in directly embedding all the
new exploration behaviors within all the modules, through a tunable module
parameter governing the type of exploration behavior used by the robot. This
option allows controllers to use any of the new exploration behaviors either as
a pure atomic behavior through the Exploration module, or as part of another
atomic behavior through the Phototaxis, Anti-phototaxis, Attraction or Re-
pulsion modules. It was therefore chosen to be implemented as an alternate
version of AutoMoDe Chocolate, AutoMoDe Coconut.

4.1.2 Exploration behaviors

The new exploration behaviors chosen to be implemented in AutoMoDe Co-
conut were the ballistic motion with random rotation obstacle avoidance, the
ballistic motion with vector field obstacle avoidance and the Lévy taxis random
walk. The two ballistic motion methods are already used as exploration behav-
iors in AutoMoDe Chocolate, the one with random rotation obstacle avoidance
in the Exploration module and the one with vector field obstacle avoidance
within the Phototaxis, Anti-Phototaxis, Attraction and Repulsion modules.
Making them available for all modules (except the Stop module) allows Au-
toMoDe Coconut to have the exact same modules as AutoMoDe Chocolate
given the right parameters. Furthermore, it helps in assessing the use of those
exploration behaviors both as stand-alone modules and as part of other modules.

21

The Lévy taxis random walk was chosen to be implemented in AutoMoDe
Coconut since it encompasses the four random walk methods (presented in
Section 3.2) given the right set of parameters. It is therefore the most general
type of random walk among the ones mentioned in this work. Further mentions
of random walk will refer to Lévy taxis.

4.2 AutoMoDe Coconut

AutoMoDe Coconut is a new version of AutoMoDe based on AutoMoDe Choco-
late. Besides its modified modules, it is the same automatic modular design
process as AutoMoDe Chocolate. The point of this new version is to assess the
performances of AutoMoDe with new exploration behaviors embedded within
its modules.

In AutoMoDe Coconut, each module (except the Stop module) has a new
tunable parameter ε governing the type of exploration behavior to be used. The
parameter ε is categorical and is represented by an integer in the range [0, 2].
If ε = 0, the exploration used is the ballistic motion with vector field obstacle
avoidance. If ε = 1, the exploration used is the ballistic motion with random
rotation obstacle avoidance. In this configuration, an additional parameter to
be tuned is added, the τ parameter governing the maximal number of rotations
done by the robot. If ε = 2, the exploration used is the random walk. In this
configuration, two additional parameters to be tuned are added, the µ and the
ρ parameters. They govern the distributions of the move length and turning
angle for Lévy taxis. For more details about those parameters, please refer to
Section 3.2.1.

The resulting new modules for AutoMoDe Coconut are the following (please
refer to Section 3.1.3 for more details about the original modules):

• Exploration : The robot explores the environment with an exploration
behavior depending on ε, a parameter of the module. The parameter ε is
an integer in the range [0, 2].

If ε = 0, the exploration behavior is a ballistic motion with vector field
obstacle avoidance. The robot follows the two-dimensional vector w =
wb − wo, where wb represents the ballistic vector and wo the perceived
obstacle vector. While the ballistic vector is trivial, defined as wb =
(1, 6 0), the obstacle vector wo is calculated with equation (4.1).

wo =
8∑

i=1

(ri, 6 bi) (4.1)

22

Where ri represents the reading of i, one of the eight proximity sensors of
the robot and bi the angle between this sensor and the front of the robot.
The vector wo therefore represents the average position of the sensed
obstacle(s) as the sum of the eight vectors corresponding to proximity
readings.

If ε = 1, the exploration behavior is a ballistic motion with random
rotation obstacle avoidance. The robot moves in a straight line. When
it encounters an obstacle, it turns on itself in the opposite direction for a
random number of control cycles uniformly chosen between [0, τ], where τ
is a parameter of the module. The parameter τ is an integer in the range
[0, 100].

If ε = 2, the exploration behavior is the random walk. The robot follows
the two-dimensional vector w = wLt −wo, where wLt represents the Lévy
taxis vector and wo is defined as in the ballistic motion with vector field
obstacle avoidance. The Lévy taxis vector is calculated as wLt = (1, 6 Ta)
where Ta is the turning angle defined by equation (3.4). This Turning angle
changes after a number of control cycles governed by the movement length
Ml defined by equation (3.3). These equations depend on the parameters
µ and ρ, both are parameters of the module. The parameter µ is real-
valued and chosen in the range]1, 3]. The parameter µ is real-valued as
well and chosen in the range [0, 1]. Please refer to Section 3.2.1 for more
details about the Lévy taxis algorithm.

• Stop : The robot stops moving.

• Phototaxis : The robot moves towards the light source(s) or, if no light is
perceived, adopts an exploration behavior depending on ε, a parameter of
the module. If some light is perceived, the behavior is exactly the same as
in the original Phototaxis module. If no light is perceived, the behavior
corresponds to the Exploration module.

• Anti-phototaxis : The robot moves away from the light source(s) or, if
no light is perceived, adopts an exploration behavior depending on ε, a
parameter of the module. If some light is perceived, the behavior is exactly
the same as in the original Anti-phototaxis module. If no light is perceived,
the behavior corresponds to the Exploration module.

• Attraction : The robot moves towards the center of mass of the other
robots in communication range or, if no other robot is detected, adopts an
exploration behavior depending on ε, a parameter of the module. If other
robots are detected, the behavior is exactly the same as in the original
Attraction module. If no other robot is detected, the behavior corresponds
to the Exploration module.

23

• Repulsion : The robot moves away from the center of mass of the other
robots in communication range or, if no other robot is detected, adopts an
exploration behavior depending on ε, a parameter of the module. If other
robots are detected, the behavior is exactly the same as in the original
Repulsion module. If no other robot is detected, the behavior corresponds
to the Exploration module.

24

Chapter 5

Experiments

In order to assess the performance impact of the new exploration behaviors
allowed by the new modules of AutoMoDe Coconut, this version of AutoMoDe
should be compared to AutoMoDe Chocolate on which it is based. To do
so, controllers are automatically designed by the two versions of AutoMoDe
for a set of specific missions. The performances of the controllers are then
assessed on those same missions. Missions are challenges to be handled by a
swarm of simple robots, such as aggregating on a colored spot or exploring the
environment.

This chapter covers the following topics. First, it describes the evaluation
protocol used to compare AutoMoDe Chocolate and AutoMoDe Coconut (5.1).
Then, it presents the fours missions used as the basis of the experiments (5.2).
Finally, it details the experimental setup of the experiments (5.3).

5.1 Evaluation protocol

The choice of the missions is motivated by the need to challenge both the
general problem-solving performances of the two versions and their exploration
capabilities. Therefore, the missions consist in missions already used to test
other versions of AutoMoDe as well as new missions specifically targeting
the exploration capabilities offered by the new exploration behaviors. The
chosen missions are aggregation, foraging, fast point finding and grid
exploration.

The evaluation protocol is the following. AutoMoDe Coconut and Auto-
MoDe Chocolate are both executed ten times on each of the four missions with
a budget of 100.000 evaluations. This design process produces ten controllers
per mission and version of AutoMoDe. Each of these controllers is then evalu-
ated once on his respective mission. The results of these evaluations are then

25

aggregated for each mission. The performance of the two version of AutoMoDe
can then be compared based on the performances of the controllers on each
mission.

The performance of the controllers is assessed not only in simulation, but
also in pseudo-reality. Pseudo-reality is another simulated environment with
modified noise on environmental values. With this modification, the pseudo-
reality helps in evaluating the robustness of the controller to the reality gap, as
explained in Section 2.3.2.

The evaluation of the performances of the controllers on each mission is
represented by notched box plots. For each mission, the score obtained in
simulation and in pseudo reality for AutoMoDe Chocolate and AutoMoDe
Coconut is reported. Statements about the relative performances of the two
versions of AutoMoDe on a specific mission are supported by the confidence
intervals of those box plots. The evaluation of the aggregated performances of
the controllers over all of the missions is represented by a Friedman test com-
paring AutoMoDe Chocolate and AutoMoDe Coconut. Once again, statements
about the relative performances of the two versions of AutoMoDe are sup-
ported by the confidence intervals of this test. Any statement like ”A performs
significantly better/worse than B” means that the confidence intervals of the
box plots of the scores obtained or the Friedman test for A and B do not overlap.

Notched box plots show relevant information regarding the data distribu-
tion. The minimum and maximum values are represented by horizontal bars.
The interquartile is defined by the upper and lower limits of the box. The
”notch” where the box becomes thinner represents the 95% confidence interval
of the median. The middle of the box, where it is the thinnest, is the median.
Furthermore, possible outliers are represented by small circles.

Besides the performances dictated by the objective function of the mission,
other information can prove useful. In order to interpret those performances,
one needs to have some insight into the modules used by the two versions of
AutoMoDe for the different missions. Two ways to measure the use of the
different modules during a mission are used.

The first one consists in counting, for each module, the proportion of
controllers using it in their finite state machine. While this measurement gives
some information about the finite state machines and the behavior of the
controller, it also shows modules that might not actually be used at run-time.
Indeed, some states of the finite state machines can be bypassed completely by
high-probability transitions, making them useless in the controller.

Therefore, the second measurement is the average (across all of the robots
of the swarm and all controllers of the mission) of the proportion of time
each robot uses the behavior of each module. While this measure gives a

26

much better idea of the actual use of the different modules at run-time,
it fails to differentiate important modules used for a short time and useless
modules used as transitions. For that reason, the two measurements are needed.

5.2 Missions

The missions were chosen as to allow AutoMoDe Coconut to exploit the
exploration behaviors offered by its new modules. The four missions are ag-
gregation, foraging, fast point finding and grid exploration. Each
mission takes place in a dodecagonal arena of 4.91 m2 surrounded by walls.
Those walls are tall enough to prevent the robots from seeing anything beyond
them. The floor is gray with the exception of black or white areas specific to
each mission. All missions are performed by a swarm of N = 20 E-Puck robots
for a duration t = 120 seconds. In the following descriptions, the coordinates
are in meters with the origin of the axes at the center of the arena. The x
axis is parallel to a wall of the arena and the y axis perpendicular to it. As a
reference for Figure (5.1), the x axis points right and the y axis point up. The
four missions are detailed below.

• aggregation : In this mission, the robots need to aggregate as fast as
possible on a black spot at the center of the arena. The floor of the arena
is completely gray except for a black circular area of diameter 0.60 m at its
center. At the beginning of the experiment, the 20 robots are randomly
placed in the whole arena. Figure (5.1a) shows the arena used for this
mission. The performance of the swarm is measured by the sum of the
time spent, in seconds, by each robot in the black area during the whole
duration of the mission. The corresponding objective function is defined
by equation (5.1).

Faggregation =

N∑
i=1

Ti (5.1)

Where N = 20 is the number of robots and Ti is the aggregated time spent
in the black area by the robot i during the whole duration of the mission.

• foraging : In this mission, the robots need to retrieve as many objects
as possible from two sources and drop them in a specific area, the nest.
The sources and nest are represented respectively by two black spots and
a white area. The two black spots are black circular areas of diameter
0.30 m located at the coordinates (0, 0.75) and (0,−0.75). The white
area covers the whole area of the arena where x > 0.60. Moreover, a light
source is placed behind the nest at the coordinates (1.25, 0) at 0.75 m from
the ground. Figure (5.1b) shows the arena used for this mission. Since
the E-Puck robot doesn’t have grasping capabilities, the transportation
of objects is abstracted. Therefore, it is supposed that a robot grabs an

27

object (if he isn’t already holding one) when it enters a source and drops
the object (if he has one) when it enters the nest. At the beginning of
the experiment, the 20 robots are randomly placed in the whole arena.
The performance of the swarm is measured by the sum of the number of
objects retrieved by each robot, abstracted as source-nest trips, during
the whole duration of the mission. The corresponding objective function
is defined by equation (5.2).

Fforaging =
N∑
i=1

Noi (5.2)

Where N = 20 is the number of robots and Noi is the number of objects
retrieved by the robot i.

• fast point finding : In this mission, the robots are supposed to find an
objective point in the top left of the arena as fast as possible. The floor of
the arena is completely gray except for the objective point, a white circular
area of diameter 0.20 m at the coordinates (−0.8, 0.6). At the beginning of
the experiment, the 20 robots are randomly placed in the right-hand half
of the arena so that no robot starts on the objective point. Figure (5.1c)
shows the arena used for this mission. The performance of the swarm is
measured by the time left after the objective point has been found by a
robot. The corresponding objective function is defined by equation (5.3).

Ffastpointfinding = ttot − tfound (5.3)

Where ttot is the duration of the experiment and tfound is the time taken
by the swarm of robots to find the objective point.

• grid exploration : In this mission, the robots are supposed to explore
and cover as much space as possible in the arena. The floor of the arena
is completely gray. At the beginning of the experiment, the 20 robots are
randomly placed in the whole arena. Figure (5.1d) shows the arena used
for this mission. In order to measure the performance of the swarm, the
arena is divided in a grid of 10 tiles by 10 tiles. For each tile is retained the
time tc elapsed since the last time it was crossed by a robot. Each time the
tile is crossed by a robot, this time is reset to 0. The performances of the
swarm are measured by the sum over all control cycles of the opposite of
the average time tc over all the tiles. The corresponding objective function
is defined by equation (5.4).

Fgridexploration =

Ncc∑
i=1

(
1

Nt

Nt∑
j=1

−tci,j
)

(5.4)

Where Ncc is the number of control cycles for the whole experiment, Nt

is the number of tiles and tci,j is the time, at the control cycle i, since the
tile j was crossed by a robot.

28

(a) aggregation mission (b) foraging mission

(c) fast point finding mission (d) grid exploration mission

Figure 5.1: Visualization of the arenas used for the four missions, along with an
example of initial positions for the robots.

29

(a) foraging with one missing wall. (b) foraging with three missing walls.

Figure 5.2: Visualization of the arenas used for the foraging mission with one
and three missing walls.

These missions were selected since, a priori, exploration should have a
different role in each of them. Indeed, it is reasonable to assume that aggre-
gation and foraging require the use of exploration as part of a more complex
behavior, and that better exploration methods should lead to an increase in
performance. Likewise, it is reasonable to expect better performances in fast
point finding and grid exploration since these missions should rely almost
exclusively on exploration.

Additionally, each of these missions was modified into two additional ver-
sions, one in which one wall is missing from the arena and the other one in
which three walls are missing. The class of the missions, so far defined within
closed walls, is therefore changed. It is considered here that any robot exiting
the arena is lost, and therefore removed from the experiment. The point of
those alternate versions of the missions is to study the use and performances
of the different exploration behaviors when exploration becomes a dangerous
endeavor for the robots.

Specifically, the walls removed are the same for all the experiments. When
one wall is removed, it is the leftmost wall of the arena located at the coordi-
nates (−1.25, 0). When three walls are removed, they are the leftmost wall of
the arena located at the coordinates (−1.25, 0) and the two walls adjacent to it.
The foraging missions with one and two missing walls are shown in Figure
(5.2).

30

5.3 Experimental setup

This section details the specific values of the parameters used for the evaluation
process and the specific tools used to represent the results of this evaluation. The
formalization of the capabilities of the E-Puck used to perform the experiments
is shown by the reference model in Table (5.1). The noise applied to the sensor
readings and actuator values for simulation and pseudo-reality is detailed in
Table (5.2).

sensor / actuator variables
proximity proxi ∈ [0, 1], with i ∈ {1, 2, ..., 8}
light lighti ∈ [0, 1], with i ∈ {1, 2, ..., 8}
ground groundi ∈ {white, gray, black}, with i ∈ {1, 2, 3}

range-and-bearing
n ∈ [0, 20]

rm ∈ [0, 0.70], with m ∈ {1, 2, ..., 20}
bm ∈ [0, 2π] rad, with m ∈ {1, 2, ..., 20}

wheels vl, vr ∈ [−0.12, 0.12] m/s

Table 5.1: Reference model RM1 of the E-Puck robot [26]. RM1 abstracts
sensors and actuators by defining the input and the output variables that are
made available to the control software at each control step. Sensors are defined
as input variables: the control software can only read them. Actuators are
defined as output variables: the control software can only write them. Input
and output variables are updated with a period of 100 ms.

sensor / actuator Simulation Pseudo− reality
proximity 0.05 0.05
light 0.05 0.90
ground 0.05 0.05
range-and-bearing 0.85 0.90
wheels 0.05 0.15

Table 5.2: Noise applied to the sensor readings and actuator values for both
simulation and pseudo-reality [33]. The values for the proximity, light, and
ground sensors determine the upper bounds of symmetric ranges for uniform
white noises. The value for the range-and-bearing sensor is the probability of
failing to detect a neighboring peer. The value for the wheels actuator is the
standard deviation of a Gaussian white noise with mean 0.

31

Chapter 6

Results and discussion

AutoMoDe Coconut was evaluated and compared with AutoMoDe Chocolate
according to the missions described in Section 5.2. The experiments were
executed as explained in Section 5.1 with the parameters detailed in Section
5.3. This section presents the results obtained from those experiments.

The results presented consist in the performances of the two versions of
AutoMoDe for each mission both in simulation and in pseudo-reality. Further-
more, the average use of the different modules across the controllers for each
mission is shown for both AutoMoDe Chocolate and AutoMoDe Coconut. For
the latter, the exploration behavior used by each module is also detailed. The
use of the different modules is measured by both their presence within the
finite state machines of the controllers and their relative time of use during the
missions.

This chapter is structured as follows. First, the results of the experiments
corresponding to the missions in a closed arena are presented and discussed
(6.1). Then, the impact of the removal of one or multiple walls of the arena is
shown for each mission (6.2).

6.1 Experiments in closed environment

6.1.1 Performances comparison

The performances of AutoMoDe Chocolate and AutoMoDe Coconut are pre-
sented in Figure (6.1). For the aggregation mission, the performances are
generally the same between the two versions of AutoMoDe. AutoMoDe Co-
conut seems to perform slightly better for the fast point finding mission but
since the 95% confidence intervals overlay, it cannot be said to be significantly
better than AutoMoDe Chocolate. Those intervals do not overlay for the grid
exploration mission, where AutoMoDe Coconut performs significantly worse

32

than AutoMoDe Chocolate. For the foraging mission however, AutoMoDe
Coconut performs significantly better than AutoMoDe Chocolate.

It should be noted that the scores measured in simulation and in pseudo-
reality for the same version of AutoMoDe are very similar for all missions.
Indeed, the scores cannot be said to be significantly worse in pseudo-reality
compared to simulation. This can be interpreted as a small reality gap, meaning
that the controllers designed by AutoMoDe Chocolate and AutoMoDe Coconut
should perform similarly in reality.

The aggregated performances of AutoMoDe Chocolate and AutoMoDe
Coconut across all missions are compared using the Friedman test. The results
of this tests are represented in Figure (6.2). They show that while AutoMoDe
Coconut has a slight edge thanks to its good performances in the foraging
mission, the global performances between the two versions of AutoMoDe are
not significantly different.

6.1.2 Modules use comparison

To interpret those results, one needs to have some insight into the modules used
by the two versions of AutoMoDe for the different missions. Besides, in order
to study the use of the different exploration behaviors within the modules of
AutoMoDe, the particular exploration behavior used along with each module
of AutoMoDe Coconut needs to be known. Therefore, the average use of each
module of AutoMoDe Chocolate is measured and shown below. Likewise, the
average use of each module of AutoMoDe Coconut is detailed along with the
actual exploration behaviors used. The exploration behaviors used by Auto-
MoDe Chocolate are not detailed since they are not parameters of the modules.
As a reminder, the exploration behaviors used in AutoMoDe Chocolate are a
ballistic motion with rotation obstacle avoidance in the Exploration module
and a ballistic motion with vector field obstacle avoidance in all the other
modules (except the Stop module).

For instance, the modules use for the aggregation mission is shown for
the two versions of AutoMoDe in Figure (6.3). The graph (6.3a) shows that all
controllers of AutoMoDe Chocolate use the Exploration, Stop and Attraction
modules. Ten percent of the controllers used the Repulsion module, but the
graph (6.3b) reveals that the module is never actually used. This second graph
also shows that the robots spend 57% of their time using the Stop module,
probably stopped on the black spot of the arena. They spend 31% of their time
looking for the black spot using the Exploration module and the remaining
12% of their time using the Attraction module.

The graphs regarding AutoMoDe Coconut show that its finite state machines
are very similar to the ones of AutoMoDe Chocolate. Indeed, while it uses

33

Figure 6.1: Performances across all missions for the experiments in closed arena.
Each graph represents the score obtained by all controllers of AutoMoDe Choco-
late and AutoMoDe Coconut in simulation and pseudo-reality on a particular
mission. Higher is better.

Chocolate

Coconut

0 5 10 15 20

rank in Simulation

D
e
si

g
n

M
e
th

o
d

Figure 6.2: Friedman test for the enclosed experiments. Lower is better.

34

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure 6.3: Use of the modules for aggregation in a closed arena.

the Exploration behavior a little less, it compensates with the Phototaxis and
Anti-phototaxis ones which, without light (as is the case in the aggregation
mission), act as the Exploration module. The exploration behaviors used are
mostly ballistic motion with vector field obstacle avoidance, along with some
ballistic motion with random rotation obstacle avoidance. This small change in
the exploration behaviors compared to AutoMoDe Chocolate is not significant
enough to have an impact on the performances. This explains why AutoMoDe
Chocolate and AutoMoDe Coconut perform similarly on the aggregation
mission.

The case of the foraging mission is interesting since it presents very
different behaviors between AutoMoDe Chocolate and AutoMoDe Coconut.
While the graph (6.4b) seems to indicate that the two versions of AutoMoDe
present the same behavior since the use percentages of the different modules
are very similar, the graph (6.4a) shows that there is a big difference between
the two versions of AutoMoDe in terms of finite state machines. Indeed, while
the use of Anti-phototaxis seems equally negligible for AutoMoDe Chocolate
and AutoMoDe Coconut (with 1% and 4% of use respectively), the former only
has 10% of its controllers including Anti-phototaxis and the latter has all of its
controllers including this module.

Even though it is not used for long periods of time, the Anti-phototaxis
module is extremely useful in the foraging mission since it can allow the
robots to exit the nest immediately after dropping their objects. The observa-
tions described above hint towards the fact that the controllers of AutoMoDe
Coconut use this feature, allowing them to perform better than the controllers
of AutoMoDe Chocolate for this particular mission. Figure (6.5) shows exam-
ples of those controllers.

35

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure 6.4: Use of the modules for foraging in a closed arena.

(a) Finite state machine generated
by AutoMoDe Chocolate.

(b) Finite state machine generated
by AutoMoDe Coconut.

Figure 6.5: Examples of finite state machines generated by the two versions of
AutoMoDe for the foraging mission.

36

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure 6.6: Use of the modules for fast point finding in a closed arena.

The modules use of AutoMoDe Coconut for the fast point finding
mission is a good example of very simple controllers with complex finite state
machines. Indeed, while the actual modules used during the mission almost
exclusively (with a use of 97%) consist in Exploration with ballistic motion and
vector field obstacle avoidance and Repulsion, the finite state machines are way
more diverse. They show a presence of all the modules, in particular Phototaxis
included in 40% of them, while none of these modules are used at all during the
mission (Except of course for Exploration and Repulsion). Those modules are
therefore useless in the behaviors of the controllers but have a strong presence
in the corresponding finite state machines.

Besides, the behaviors of the controllers generated by AutoMoDe Chocolate
and AutoMoDe Coconut are very similar, with almost the same use of the
Exploration and Repulsion behaviors. Even though only half of the controllers
of AutoMoDe Chocolate use the Repulsion behavior compared to all of them for
AutoMoDe Coconut, this small difference doesn’t have much impact on their
performances. The same can be said about the fact that AutoMoDe Coconut
uses Exploration with ballistic motion and vector field obstacle avoidance.
Indeed, the two versions of AutoMoDe are not significantly different in terms
of performances for this mission.

As shown in Figure (6.7), the modules used by the controllers for the grid
exploration mission are very similar between AutoMoDe Chocolate and
AutoMoDe Coconut. Since this similarity in the modules use is found both in
the finite state machines and during the mission, it is safe to assume that the
controllers generated by the two versions of AutoMoDe follow the same behav-
ior. The difference lies within the exploration behaviors used by the controllers

37

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure 6.7: Use of the modules for grid exploration in a closed arena.

of AutoMoDe Coconut. Indeed, they mostly use ballistic motion with vector
field obstacle avoidance and some random walk for the Exploration module,
and those two explorations behaviors equally for the Repulsion module. This
choice of exploration behaviors might cause the worse performances observed
with AutoMoDe Coconut on this particular mission.

A tendency that can be observed across the modules use of all the finite
state machines is that AutoMoDe Coconut is more likely to generate con-
figurations with useless modules than AutoMoDe Chocolate. This tendency
can be explained by the larger search space of the finite state machines of
AutoMoDe Coconut. This larger search space is caused by the additional
parameters to tune governing the choice of exploration behaviors to be used
by the modules. Indeed, the I-Race optimization algorithm used by the two
versions of AutoMoDe performs an elitist strategy, which often results in a
faster convergence to good parameter values. This has the disadvantage of
reducing the exploration of new alternative configurations [34]. Therefore, the
larger search space of AutoMoDe Coconut might cause a slower convergence
and a broader exploration of the possible configurations.

Besides generating less-specialized configurations with more useless modules,
this effect might also explain the better configurations found by AutoMoDe
Coconut for the foraging mission and the worse configurations for the grid
exploration mission. For the former, the broader exploration might allowed
AutoMoDe Coconut to evaluate configurations using a better strategy with
the Anti-phototaxis module, while AutoMoDe Chocolate converged faster to
configurations without this module. For the latter, the broader exploration did
not allow AutoMoDe Coconut to find a better strategy since the mission is
simpler. Its slower convergence made the final configuration less optimized than

38

the one found by AutoMoDe Chocolate, hence the difference in performances.

It should be noted that this interpretation of the results has not been
verified in this work. No further experiments were conducted to verify those
assumptions.

6.2 Experiments in open environment

The removal of one or three walls of the arena constitutes a hazard for the
robots, since any robot leaving the arena is discarded. Therefore, the removal
of walls results in an increase of difficulty for the missions since any discarded
robot can no longer contribute to the objective function. Figure (6.8) shows
that the removal of walls has a very different impact on the score depending on
the mission.

For the aggregation and fast point finding missions, there is no
significant difference between the missions with open and closed arenas. For
the case of the aggregation mission, this lack of difference can be explained
by the use of a strategy based on Attraction, preventing the robots to go to the
edges of the arena. For the fast point finding mission, the loss of multiple
robots doesn’t have much impact on the score since the point is found quickly
after the beginning of the experiment anyway.

The impact of the removal of the walls is much clearer for the foraging
and grid exploration missions with some significant differences compared
to the missions in closed arena. This is expected, since these missions both
require extensive exploration and as many robots as possible until the end of
the mission. The loss of robots is therefore both likely to happen and severely
punished in terms of performances.

Surprisingly, the performances of AutoMoDe Chocolate and AutoMoDe
Coconut are very similar for the grid exploration missions even with three
missing walls. Indeed, one could expect AutoMoDe Chocolate to completely
fail at this mission since its only exploration behaviors are based on ballistic
motion which makes it easy to send robots off the arena.

However, as shown in Figure (6.9), the configurations generated by Auto-
MoDe Chocolate tackle this problem by using an exploration behavior based
on the Exploration, Attraction and Repulsion modules. The configurations of
AutoMoDe Coconut do not rely at all on the Attraction module since they use
different exploration behaviors, in particular the random walk. The configura-
tions of AutoMoDe Chocolate compared to the ones of AutoMoDe Coconut are
particularly interesting since they show that even without exploration behaviors
fitting a particular problem, the automatic modular design can mix multiple

39

Figure 6.8: Performances across all missions for the experiments in closed and
open environments. Each graph represents the score obtained by all controllers
of AutoMoDe Chocolate and AutoMoDe Coconut in simulation on a particular
mission. Higher is better.

40

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure 6.9: Use of the modules for grid exploration with three missing walls.

modules to make a new one.

It is interesting to note that the use of the Phototaxis and Anti-phototaxis
modules in the foraging mission greatly increases for both versions of Au-
toMoDe in an open environment. This is effect is particularly noticeable
with AutoMoDe Chocolate. Indeed, while Figure (6.4b) shows a total use of
Phototaxis and Anti-phototaxis of 12% with a behavior mostly based on the
Exploration module, Figure (6.10b) shows that this use increases to 46%. This
drastic change indicates that a new strategy is performed by the robots. It is
reasonable to suppose that in an open environment, the light is used a lot more
by the robots. Thanks to the information given by the location of the light
source, they avoid going too far from the nest and are less likely to exit the arena.

It is remarkable that both versions of AutoMoDe are able to handle, to some
extent, this new class of missions. Furthermore, the modules use of the grid
exploration and foraging missions shows that the behaviors evolve with
their environment, focusing more on preserving the robots from exiting the
arena. On a side note, the reality gap is also successfully crossed by AutoMoDe
Chocolate and AutoMoDe Coconut for the missions in open environment. The
performances in simulation and pseudo reality as well as the modules use of the
two versions of AutoMoDe for each mission in open environment are shown in
appendix A for informational purposes only.

As shown by the Friedman tests in Figure (6.11) and Figure (6.12), the
performances of AutoMoDe Chocolate and AutoMoDe Coconut are not signif-
icantly different for the experiments in open environment. This means that
the new exploration behaviors brought by AutoMoDe Coconut do not allow it
to outperform AutoMoDe Chocolate in this new class of missions. However,

41

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure 6.10: Use of the modules for foraging with three missing walls.

Chocolate

Coconut

0 5 10 15 20

rank in Simulation

D
e
si

g
n

M
e
th

o
d

Figure 6.11: Friedman test for the experiments with one missing wall.

some exploration behaviors might be more efficient for some missions in open
environment without having a noticeable impact of the score.

To answer this interrogation, the evolution of the use of all the exploration
behaviors aggregated across all modules of AutoMoDe Coconut in closed and
open environments is presented in Figure (6.13). The trends of the curves is
approximately the same for the four missions. Indeed, it shows that as walls
are removed and the missions become more open, the use of ballistic motion
with vector field obstacle avoidance decreases while the use of the random walk
increases. This can be explained by the fact that ballistic motion is dangerous
when walls are missing, since the only way for the robot to turn is to collide with
a wall or another robot. The random walk is safer since it allows the robot to
exploit a smaller area and has less chance to send it to the other side of the arena.

42

Chocolate

Coconut

0 5 10 15 20

rank in Simulation

D
e
si

g
n

M
e
th

o
d

Figure 6.12: Friedman test for the experiments with three missing walls.

Figure 6.13: Evolution of the use of all the exploration behaviors aggregated
across all modules of AutoMoDe Coconut in closed and open environments.
Each graph represents the use percentage of each exploration behavior during
a particular mission.

43

Chapter 7

Conclusion

In this work, we introduced a new version of AutoMoDe, AutoMoDe Coconut.
AutoMoDe Coconut extends AutoMoDe Chocolate with new exploration be-
haviors. Indeed, it adds parameters to every module of AutoMoDe (except
the Stop module) to govern the exploration behavior used in the module. The
available exploration behaviors consist in the two types of ballistic motion
already present in AutoMoDe Chocolate and a random walk, Lévy taxis. The
point of AutoMoDe Coconut is to measure the impact of those new exploration
behaviors in automatic modular design.

We evaluated both AutoMoDe Chocolate and AutoMoDe Coconut on four
different missions in closed environment in order to compare their performances
and use of exploration behaviors. Those missions consist in aggregation,
foraging, fast point finding and grid exploration. They allowed us to
assess the exploration and general problem solving capabilities of the controllers
generated by the two versions of AutoMoDe. Additionally, those missions were
modified to make open environment versions with walls removed from the
arena. Extending the experiments to a new class of mission was meant to
reveal changes in the behaviors of the controllers and the choices of exploration
behaviors. The evaluation consisted in a measurement, for each controller and
each mission, of the score obtained and the modules used by all of the robots
of the swarm.

The results showed that AutoMoDe Chocolate and AutoMoDe Coconut
perform similarly across all missions in closed and open environments. With a
broader search space, AutoMoDe Coconut was at times unable to converge to
an efficient configuration as well as AutoMoDe Chocolate. However, this same
characteristic allowed AutoMoDe Coconut to explore more varied strategies,
making it more performant than its counterpart in other situations. The
behaviors of the two versions of AutoMoDe changed in an open environment,
focusing more on keeping the robots inside the arena. This evolution of the
behavior indicates that AutoMoDe might be able to handle this new class

44

of missions. Besides, random walk was chosen more consistently by Auto-
MoDe Coconut in open environments, avoiding the dangerous ballistic motion.
AutoMoDe Chocolate was however able to overcome its limited exploration
behavior by using it along with other modules. This indicates that additional
exploration behaviors are not necessary for AutoMoDe since it can generate
custom exploration behaviors when necessary.

While this master thesis studies exploration behaviors in AutoMoDe, fur-
ther research would be needed to tackle this subject in the broader context
of automatic design of robot swarms. Besides, while we can presume that
AutoMoDe can handle missions in open environments, additional studies would
be necessary to assess its performances for this new class of missions. On a side
note, it would be interesting to further investigate the impact of the size of the
search space on the configurations found by AutoMoDe.

45

Bibliography

[1] P. Balaprakash, M. Birattari, and T. Stützle. “Improvement Strategies for
the F-Race Algorithm: Sampling Design and Iterative Refinement”. In:
Hybrid Metaheuristics, 4th International Workshop, HM 2007. Vol. 4771.
LNCS. Berlin, Germany: Springer, 2007, pp. 108–122.

[2] G. Baldassarre et al. “Self-Organized Coordinated Motion in Groups of
Physically Connected Robots”. In: IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 37.1 (Feb. 2007), pp. 224–239. issn:
1083-4419. doi: 10.1109/TSMCB.2006.881299.

[3] M. Birattari et al. “A Racing Algorithm for Configuring Metaheuristics”.
In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO. Ed. by W.B. Langdon and et al. San Francisco CA: Morgan
Kaufmann, 2002, pp. 11–18.

[4] Mauro Birattari et al. “Automatic Off-Line Design of Robot Swarms: A
Manifesto”. In: (2019), p. 11.

[5] Mauro Birattari et al. “F-Race and Iterated F-Race: An Overview”. In:
Experimental Methods for the Analysis of Optimization Algorithms. Ed. by
Thomas Bartz-Beielstein et al. Berlin, Germany: Springer, 2010, pp. 311–
336. doi: 10.1007/978-3-642-02538-9_13.

[6] J. Bongard and H. Lipson. “Once More unto the Breach: Co-Evolving a
Robot and Its Simulator”. In: Artificial Life IX: Proceedings of the Con-
ference on the Simulation and Synthesis of Living Systems. Ed. by Jordan
Pollack and et al. 2004, pp. 57–62.

[7] J. Borenstein and Y. Koren. “Real-Time Obstacle Avoidance for Fast Mo-
bile Robots in Cluttered Environments”. In: , IEEE International Con-
ference on Robotics and Automation Proceedings. , IEEE International
Conference on Robotics and Automation Proceedings. May 1990, 572–
577 vol.1. doi: 10.1109/ROBOT.1990.126042.

[8] J. Borenstein and Y. Koren. “The Vector Field Histogram-Fast Obstacle
Avoidance for Mobile Robots”. In: IEEE Transactions on Robotics and
Automation 7.3 (June 1991), pp. 278–288. issn: 1042-296X. doi: 10.1109/
70.88137.

46

[9] Darko Bozhinoski and Mauro Birattari. “Designing Control Software for
Robot Swarms: Software Engineering for the Development of Automatic
Design Methods”. In: ACM/IEEE 1st International Workshop on Robotics
Software Engineering, RoSE. New York: ACM, 2018, pp. 33–35.

[10] M. Brambilla et al. “Swarm Robotics: A Review from the Swarm Engi-
neering Perspective”. In: Swarm Intelligence 7.1 (2013), pp. 1–41.

[11] Meng-Li Cao et al. “Experimental Comparison of Random Search Strate-
gies for Multi-Robot Based Odour Finding without Wind Information”.
In: (Jan. 1, 2015). doi: 10.5281/zenodo.33822.

[12] G. Di Caro and M. Dorigo. “AntNet: Distributed Stigmergetic Control for
Communications Networks”. In: Journal of Artificial Intelligence Research
9 (Dec. 1, 1998), pp. 317–365. issn: 1076-9757. doi: 10.1613/jair.

530. url: https://jair.org/index.php/jair/article/view/10217
(visited on 08/05/2019).

[13] Anders Lyhne Christensen and Marco Dorigo. “Evolving an Integrated
Phototaxis and Hole-Avoidance Behavior for a Swarm-Bot”. In: Proceed-
ings of the 10th International Conference on the Simulation and Synthesis
of Living Systems (Alife X). Citeseer, 2006, pp. 248–254.

[14] Cristina Dimidov, Giuseppe Oriolo, and Vito Trianni. “Random Walks in
Swarm Robotics: An Experiment with Kilobots”. In: Swarm Intelligence.
Ed. by Marco Dorigo et al. Lecture Notes in Computer Science. Springer
International Publishing, 2016, pp. 185–196. isbn: 978-3-319-44427-7.

[15] M. Dorigo et al. “Swarmanoid: A Novel Concept for the Study of Het-
erogeneous Robotic Swarms”. In: IEEE Robotics Automation Magazine
20.4 (Dec. 2013), pp. 60–71. issn: 1070-9932. doi: 10.1109/MRA.2013.
2252996.

[16] Marco Dorigo and Mauro Birattari. “Swarm Intelligence”. In: Scholar-
pedia 2.9 (Sept. 29, 2007), p. 1462. issn: 1941-6016. doi: 10 . 4249 /

scholarpedia.1462. url: http://www.scholarpedia.org/article/
Swarm_intelligence (visited on 08/06/2019).

[17] Marco Dorigo, Mauro Birattari, and Thomas Stützle. “Ant Colony Opti-
mization: Artificial Ants as a Computational Intelligence Technique”. In:
2006. doi: 10.1109/CI-M.2006.248054.

[18] R. Emery et al. “Adaptive Lévy Taxis for Odor Source Localization in
Realistic Environmental Conditions”. In: 2017 IEEE International Con-
ference on Robotics and Automation (ICRA). 2017 IEEE International
Conference on Robotics and Automation (ICRA). May 2017, pp. 3552–
3559. doi: 10.1109/ICRA.2017.7989407.

[19] J. J. Falke et al. “The Two-Component Signaling Pathway of Bacterial
Chemotaxis: A Molecular View of Signal Transduction by Receptors, Ki-
nases, and Adaptation Enzymes”. In: Annual Review of Cell and Devel-
opmental Biology 13 (1997), pp. 457–512. issn: 1081-0706. doi: 10.1146/
annurev.cellbio.13.1.457. pmid: 9442881.

47

[20] Richard P. Feynman, Robert B. Leighton, and Matthew Sands. The Feyn-
man Lectures on Physics, Vol. 1: Mainly Mechanics, Radiation, and Heat.
1 edition. Reading/Mass.: Addison Wesley, Feb. 11, 1977. 560 pp. isbn:
978-0-201-02116-5.

[21] Dario Floreano, P. Husbands, and S. Nolfi. “Evolutionary Robotics”. In:
Handbook of Robotics (2008), pp. 1423–1451.

[22] G. Francesca and M. Birattari. “Automatic Design of Robot Swarms:
Achievements and Challenges”. In: Frontiers in Robotics and AI 3.29
(2016), pp. 1–9.

[23] Gianpiero Francesca et al. “AutoMoDe-Chocolate: Automatic Design of
Control Software for Robot Swarms”. In: Swarm Intelligence 9.2-3 (Sept.
2015), pp. 125–152. issn: 1935-3812, 1935-3820. doi: 10.1007/s11721-
015-0107-9. url: http://link.springer.com/10.1007/s11721-015-
0107-9 (visited on 07/25/2019).

[24] Gianpiero Francesca et al. “AutoMoDe: A Novel Approach to the Au-
tomatic Design of Control Software for Robot Swarms”. In: Swarm In-
telligence 8.2 (June 2014), pp. 89–112. issn: 1935-3812, 1935-3820. doi:
10.1007/s11721-014-0092-4. url: http://link.springer.com/10.
1007/s11721-014-0092-4 (visited on 07/25/2019).

[25] L. Garattoni et al. Software Infrastructure for E-Puck (and TAM).
TR/IRIDIA/2015-004. Belgium: IRIDIA, Université libre de Bruxelles,
2015.

[26] K. Hasselmann et al. Reference Models for AutoMoDe. TR/IRIDIA/2018-
002. Belgium: IRIDIA, Université libre de Bruxelles, 2018.

[27] Ken Hasselmann and Mauro Birattari. Modular Automatic De-
sign of Collective Behaviors for Robots Endowed with Local Com-
munication Capabilities: Supplementary Material. Published: \par
http://iridia.ulb.ac.be/supp/IridiaSupp2019-005/. 2019.

[28] Sabine Hauert, Jean-Christophe Zufferey, and Dario Floreano. “Evolved
Swarming without Positioning Information: An Application in Aerial
Communication Relay”. In: Autonomous Robots 26.1 (2009), pp. 21–32.

[29] N. Jakobi. “Evolutionary Robotics and the Radical Envelope-of-Noise Hy-
pothesis”. In: Adaptive Behavior 6.2 (1997), pp. 325–368.

[30] N. Jakobi, P. Husbands, and I. Harvey. “Noise and the Reality Gap: The
Use of Simulation in Evolutionary Robotics”. In: Advances in Artificial
Life. Ed. by Federico Morán and et al. Vol. 929. LNCS. London, UK:
Springer, 1995, pp. 704–720.

[31] Miquel Kegeleirs, David Garzon, and Mauro Birattari. “Random Walk
Exploration for Swarm Mapping”. In: (2019), p. 13.

48

[32] Jonas Kuckling et al. “Behavior Trees as a Control Architecture in the Au-
tomatic Modular Design of Robot Swarms”. In: Swarm Intelligence. Ed.
by Marco Dorigo et al. Vol. 11172. Cham: Springer International Pub-
lishing, 2018, pp. 30–43. isbn: 978-3-030-00532-0 978-3-030-00533-7. doi:
10.1007/978-3-030-00533-7_3. url: http://link.springer.com/10.
1007/978-3-030-00533-7_3 (visited on 07/25/2019).

[33] Antoine Ligot and Mauro Birattari. “Simulation-Only Experiments to
Mimic the Effects of the Reality Gap in the Automatic Design of Robot
Swarms”. In: (2019), p. 27.

[34] M. López-Ibáñez et al. “The Irace Package: Iterated Racing for Automatic
Algorithm Configuration”. In: Operations Research Perspectives 3 (2016),
pp. 43–58.

[35] M. J. Matarić. “Learning in Behavior-Based Multi-Robot Systems: Poli-
cies, Models, and Other Agents”. In: Cognitive Systems Research 2.1
(2001), pp. 81–93.

[36] O. Miglino, HH. Lund, and S. Nolfi. “Evolving Mobile Robots in Simulated
and Real Environments”. In: Artificial life 2.4 (1995), pp. 417–434.

[37] S. Nolfi and D. Floreano. Evolutionary Robotics. Cambridge MA: MIT
Press, 2000.

[38] S. G. Nurzaman et al. “Yuragi-Based Adaptive Searching Behavior in Mo-
bile Robot: From Bacterial Chemotaxis to Levy Walk”. In: 2008 IEEE In-
ternational Conference on Robotics and Biomimetics (2009). url: https:
//www.academia.edu/11042187/Yuragi-based_adaptive_searching_

behavior_in_mobile_robot_From_bacterial_chemotaxis_to_Levy_

walk (visited on 08/05/2019).

[39] Bao Pang et al. “A Swarm Robotic Exploration Strategy Based on an
Improved Random Walk Method”. In: Journal of Robotics 2019 (Mar. 13,
2019), pp. 1–9. issn: 1687-9600, 1687-9619. doi: 10.1155/2019/6914212.
url: https://www.hindawi.com/journals/jr/2019/6914212/ (visited
on 08/04/2019).

[40] L. E. Parker. “Task-Oriented Multi-Robot Learning in Behavior-Based
Systems”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS. Piscataway NJ: IEEE Press, 1996, pp. 1478–1487.

[41] Zohar Pasternak, Frederic Bartumeus, and Frank Grasso. “Lévy-Taxis:
A Novel Search Strategy for Finding Odor Plumes in Turbulent Flow-
Dominated Environments”. In: Journal of Physics A: Mathematical and
Theoretical 42 (Oct. 13, 2009), p. 434010. doi: 10.1088/1751-8113/42/
43/434010.

[42] C. Pinciroli et al. “ARGoS: A Modular, Parallel, Multi-Engine Simulator
for Multi-Robot Systems”. In: Swarm Intelligence 6.4 (2012), pp. 271–295.

[43] Carlo Pinciroli. The ARGoS Website. url: https://www.argos-sim.
info/ (visited on 08/07/2019).

49

[44] Matt Quinn et al. “Evolving Controllers for a Homogeneous System
of Physical Robots: Structured Cooperation with Minimal Sensors”. In:
Philosophical Transactions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences 361.1811 (2003), pp. 2321–2343.

[45] Erol Şahin. “Swarm Robotics: From Sources of Inspiration to Domains of
Application”. In: Swarm Robotics, SAB. Ed. by Erol Şahin and William
M. Spears. Vol. 3342. LNCS. Berlin Heidelberg, Germany: Springer, 2004,
pp. 10–20.

[46] R. Simmons. “The Curvature-Velocity Method for Local Obstacle Avoid-
ance”. In: Proceedings of IEEE International Conference on Robotics and
Automation. Proceedings of IEEE International Conference on Robotics
and Automation. Vol. 4. Apr. 1996, 3375–3382 vol.4. doi: 10.1109/ROBOT.
1996.511023.

[47] Ying Tan and Zhong-yang Zheng. “Research Advance in Swarm
Robotics”. In: Defence Technology 239 (Mar. 31, 2013). doi: 10 .

1016/j.dt.2013.03.001.

[48] V. Trianni. Evolutionary Swarm Robotics. Berlin, Germany: Springer,
2008.

[49] Vito Trianni and Stefano Nolfi. “Self-Organizing Sync in a Robotic Swarm:
A Dynamical System View”. In: IEEE Transactions on Evolutionary Com-
putation 13.4 (2009), pp. 722–741.

[50] J. Urzelai and D. Floreano. “Evolutionary Robotics: Coping with Envi-
ronmental Change”. In: Proceedings of Conference on the Genetic and
Evolutionary Computation Conference, GECCO. Ed. by L. Darrell Whit-
ney and et al. San Francisco CA: Morgan Kaufmann, 2000, pp. 941–948.

[51] User:PAR. English: A Plot of a Thousand Steps in a Levy Flight with α=1
and β=0 (A Cauchy Distribution). The Angular Directions Are Uniformly
Distributed, and the Step Size Is Cauchy Distributed. Feb. 25, 2010. url:
https://commons.wikimedia.org/wiki/File:LevyFlight.svg (visited
on 08/17/2019).

[52] User:PAR. English: An Example of 1000 Steps of an Approximation to a
Brownian Motion Type of Lévy Flight in Two Dimensions. The Origin of
the Motion Is at [0, 0], the Angular Direction Is Uniformly Distributed and
the Step Size Is Distributed According to a Lévy (i.e. Stable) Distribution
with α=2 and &beta=0; (i.e. a (Normal Distribution). Feb. 25, 2010. url:
https://commons.wikimedia.org/wiki/File:BrownianMotion.svg

(visited on 08/17/2019).

[53] Justin Werfel, Kirstin Petersen, and Radhika Nagpal. “Designing Col-
lective Behavior in a Termite-Inspired Robot Construction Team”. In:
Science 343.6172 (Feb. 14, 2014), pp. 754–758. issn: 0036-8075, 1095-
9203. doi: 10.1126/science.1245842. pmid: 24531967. url: https:
/ / science . sciencemag . org / content / 343 / 6172 / 754 (visited on
08/08/2019).

50

[54] Bin Yang et al. “Self-Organized Swarm Robot for Target Search and Trap-
ping Inspired by Bacterial Chemotaxis”. In: Robot. Auton. Syst. 72.C (Oct.
2015), pp. 83–92. issn: 0921-8890. doi: 10.1016/j.robot.2015.05.001.
url: http://dx.doi.org/10.1016/j.robot.2015.05.001 (visited on
08/05/2019).

[55] V. Zaburdaev, S. Denisov, and J. Klafter. “L\’evy Walks”. In: Reviews
of Modern Physics 87.2 (June 9, 2015), pp. 483–530. doi: 10 . 1103 /

RevModPhys.87.483. url: https://link.aps.org/doi/10.1103/

RevModPhys.87.483 (visited on 08/05/2019).

[56] J. C. Zagal and J. Ruiz-Del-Solar. “Combining Simulation and Reality in
Evolutionary Robotics”. In: Journal of Intelligent & Robotic Systems 50.1
(2007), pp. 19–39.

51

Appendix A

Evaluations in open
environment

This appendix contains the performances and modules use measured during
the experiments in open environment. Those results are the ones that were not
shown in Section 6.2.

52

Figure A.1: Performances across all missions for the experiments with one miss-
ing wall

53

Figure A.2: Performances across all missions for the experiments with three
missing walls

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure A.3: Use of the modules for aggregation with one missing wall.

54

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure A.4: Use of the modules for foraging with one missing wall.

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure A.5: Use of the modules for fast point finding with one missing wall.

55

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure A.6: Use of the modules for grid exploration with one missing wall.

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure A.7: Use of the modules for aggregation with three missing walls.

56

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure A.8: Use of the modules for foraging with three missing walls.

(a) Modules use in the finite state machines (b) Modules use during the mission

Figure A.9: Use of the modules for fast point finding with three missing
walls.

57

