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Abstract

Many research in the field of robotics claims that difficult missions with sub-tasks
can be solved in a more feasible way through the collaboration of simple robots.
That turns the challenge into how to build a controller for these individual robots
and establish collaboration among them.

Different approaches are presented for this purpose, some are manual design
and others are automatic. My work uses an automatic design with evolutionary
robotics approach that uses neural networks as controllers. My method for evolv-
ing and producing controllers is NEAT.

It is challenging to understand the behavior of the neural network, however I still
can work to improve its performance by tackling its components i.e. nodes and
links if I have some clues about its input & output. This thesis provides a family
methods that aims to improve the performance of the neural networks from differ-
ent aspects by analyzing the components, the connections, and the functionality.

Keywords: NEAT, robot swarms, single-robot, LSTM, heterogeneous neural
networks, topology.



Chapter 1

Introduction

In this thesis, I introduce a family of methods for automatic design of controllers
applicable in two domains: single-robot and robot swarms.

Swarm robotics is an approach emerged on the field of swarm intelligence, where
simple robots in the swarm interact and share information with each other in ad-
dition to their interaction with the surrounding environment. These interactions
happen locally and they lead to create a global collactive behaviour. This collec-
tive behaviour can help to fulfill complex missions that an individual robot is not
able to do (Brambilla, Ferrante, Birattari, & Dorigo, 2013). Automatic design of
controllers for robot swarms is challenging due to their distributed natures and
the local interactions between the robots. These interactions cause the swarms
behaviour (Beni & Wang, 1993).

The distributed nature of robot swarms makes them capable of dealing with many
issues that can occur during the execution. Some of those issues are the central-
ization and being a single point of failure. This occurs when all components of the
system are not equally important. This leads to a breakdown in the entire system
if one of its components fails, this in turn indicates a lack of reliability (Dooley,
2001).

In addition, the traditional software that are vulnerable to previous pitfalls can
be attributed to a high cost and exponential complexity with lack of scalability. If
the system suffers from the non-scalability that makes it unable to accommodate
any growth in it regarding the existing functionalities or adding extra functions
(Bondi, 2000). Therefore, using swarm would have two main advantages: it gen-
erates a collective behavior to solve complex missions using simple robots, as well
as, avoiding such negatives because of its decentralized and self-organized nature.
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On the other hand, the high uncertainty of the local interactions between the robots
makes it difficult to design and define a specific behavior for individual robot. In
fact, the literature is still lacking of a general methodology for designing collective
behaviors, and to bridge the gap, plenty of methods are presented for designing
collective behaviors (Brambilla et al., 2013).

Automatic design is a promising approach to design controllers for robot swarms.
It proceeds by casting the assigned mission into an optimization problem with an
objective function that needs to be optimized, and it is reflected in the behavior
of robots. The size of search space is based on the definition of the objective
function, and it is explored by employing an optimization method (Francesca &
Birattari, 2016).

The family of methods in this thesis relies on evolutionary robotics approach
to design and produce controllers automatically. The controllers in evolution-
ary robotics are neural networks, and they are evolved by using an evolutionary
method (Nolfi, Floreano, & Floreano, 2000).

Each method I introduce explores and analyses the neural networks from a spe-
cific aspect: node structures, topologies, and activation functions. The family
of methods that I propose uses a neuroevolution method called Evolving Neural
Networks through Augmenting Topologies (NEAT) to evolve a neural network,
and to produce an automatic design controller for the assigned mission. NEAT
is a popular method used frequently in reinforcement learning missions, and it
shows an outstanding ability to produce controllers with good performance. It
also considered as one of the prominent method in neuroevolution field (Stanley
& Miikkulainen, 2002).

The missions that are conducted to verify the efficiency of NEAT and to evaluate
the family of the methods that I present are: T-maze experiments for single-robot,
aggregation with two spots and surface and perimeter coverage missions for robot
swarms.

1.1 Objective of the thesis
The objective of this thesis is to design and evolve neural networks automatically
as controllers for single-robot and robot swarms missions.

The presented methods in this thesis try to enhance the general performance of
the produced controllers by analyzing the neural networks and impact their inter-
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nal mathematical computation during the design phase. The family of methods
that I propose will use the evolutionary method NEAT for this purpose.

The need for more advanced computation during the operation is essential and
important in complex missions especially those that use sequential data.

1.2 Main contributions of the thesis
I propose and evaluate methods for the automatic design of controllers. These
methods control the flow of the received data inside the neural networks by the
means of their components structure and the relationships among them.

I consider three aspects to seek differences in the performance of the neural net-
work:

• The architecture of the neural network: New type of nodes will be em-
bedded into the neural network in NEAT. These nodes are Long short-term
memory LSTM (Greff, Srivastava, Koutnı́k, Steunebrink, & Schmidhuber,
2017)

• The topology of the neural network: A novel way of connecting the nodes
in the network will be introduced under the name R-evostick. This topology
causes a delay in computation which in turn may help to use historical data
for decision making.

• The functionality of the neural network: The activation function in the
nodes of the neural network may play a significant role in its performance in
which using more than one activation function helps to enrich the learning
phase.

1.3 Structure of the thesis
The introduction chapter describes the context, the objective and the contributions
of this thesis. Chapter 2 presents related work to the thesis. Chapter 3 gives
information about the methodology with a detailed description of the family of
methods that I proposed. Chapter 4 addresses the experimental set-up in my the-
sis . Chapter 5 shows the results of my case studies with a discussion about the
performance. Chapter 7 concludes the thesis with some final remarks and a brief
summary of the accomplished work. Chapter 6 provides some guidelines for fu-
ture work based on the thesis contribution.

3



Chapter 2

Related work

In the last decades, plenty of research with different methods for automatic de-
sign of controllers in the field of robotics have been introduced with different
approaches for creating robot behavior (Francesca & Birattari, 2016). In this the-
sis, I discuss studies aimed to design controllers for robot swarms and single-robot
with the intention of illustrating the difference between automatic design and the
manual design. This chapter focuses on research in literature that use the same
methods i.e NEAT, with different types of neural networks.

2.1 Swarm robotics
Swarm robotics was established primarily through the observation of animals and
insects that work cooperatively in groups e.g: swarms of birds and colonies of
ants, wasps, and many other species in nature that have a the same characteris-
tics in terms of decentralized and self-organised nature(Tan & Zheng, 2013). The
swarm robotics system consists of simple constituents that can communicate lo-
cally, and interact with environment as well in order to emerge a collective global
behavior (Beni & Wang, 1993). This swarm behavior which results from local in-
teractions of simple components contributes to solve difficult missions (Brambilla
et al., 2013).

2.1.1 The manual design of controllers
Solving a mission manually imposes the designer to think and deal with it as a
single entity, making the procedure dependent on trial and error method. If the
designer manages to develop a method for building controllers to solve the mis-
sion, these developed controllers will work only on the considered mission, and
the method will fail to solve another missions.
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The same idea can be found in the design of controllers for robot swarms. The
main approach for that is called behavior-based and it works on the swarm-level
to solve the task (Jones, 2004). In fact, this approach is inspired by observing the
collective behavior of social animals, and it relies on the trial and error technique
for building the controller without providing a specific guideline for the develop-
ment of the individual robot behavior (Brooks, 1986).

Although, behavior-based approach is popular in literature, however, it is still ac-
companied with many obstacles such as time consuming along with lots of effort
required because it primarily depends on the experience of the designer. Also, the
lack of generalization, where the produced controller works only on the task that
has been built for (Brambilla et al., 2013).

Some of the methods that are used to generate a controller for Foraging task are:
Central Place Foraging Algorithm (CPFA) (Hecker & Moses, 2015) which is a
group of hand-coded behaviors divides the foraging task into multiple states and
transitions controlled by a set of parameters. Another algorithm is called Dis-
tributed Deterministic Spiral Algorithm (DDSA)(Fricke, Hecker, Griego, Tran, &
Moses, 2016) and it exclusively search the arena looking for seeds by using the
square search pattern. These two algorithms are compared to NEAT method in
section 2.2.2.

In single-robot case, the manual design of the controller will be easier because
there is no collective behavior resulting from local interactions between the robots
like the case of the swarms, and the produced controller will be applied only on
one robot.

The procedure for building a manual controller for single-robot missions depends
also on trail and error method, and the same method that is designed to build con-
troller for robot swarms can be used for single-robot in case the developed method
does not include local interactions between the robots like Distributed Determinis-
tic Spiral Algorithm (DDSA)(Fricke et al., 2016). As mentioned before the robot
in DDSA method follows a certain pattern to search the arena, and since there is
no local interactions taking place, therefore, the mission can be conducted with
one robot. This is also applied in automatic design.

2.1.2 The automatic design of controllers
Due to difficulties and shortcomings in the manual design of controllers for robot
swarms, there are several endeavors to generate a control software based on the
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individual-level behaviors for robot swarms in an automatic way (Brambilla et al.,
2013). The porminent approaches of automatic design of controllers are: evo-
lutionary robotics that used to evolve a neural network by receiving the sensor
readings of an individual robot as numerical values. These values represent the
input of the neural network and then feed the values of its output into the actuators
of the robot (Nolfi et al., 2000). This method can be applicable on a number of
missions (Brambilla et al., 2013).

There are several types of evolutionary algorithms that use a genetic representation
in their implementation (Vikhar, 2016). Each of these algorithms is applicable on
certain types of problems. The most famous ones are:

• Genetic algorithm (GA): It is the common use in EA. It uses the traditional
genetic operations such as recombination, selection and mutation (Davis,
1991). and usually strings with binary numbers are used for describing the
problem.

• Neuroevolution (NE): It is close to genetic algorithm, but it rather uses a
genome as an artificial neural network to solve the problem by modifying
its parameters and its shape (Floreano, Dürr, & Mattiussi, 2008). One of
its most prominent methods is NeuroEvolution of Augmenting Topologies
(NEAT) (Stanley & Miikkulainen, 2002).

Another approach for automatic design of controller depends on the usage of prob-
abilistic finite state machines (PFSMs) as in AutoMoDe (Francesca, Brambilla,
Brutschy, Trianni, & Birattari, 2014). This approach selects and combines con-
stituents behaviors from a set of preexisting parametric modules composed of
states and transitions. The selection operation is done via an optimization al-
gorithm. The two outstanding research in this approach are Vanilla AutoMoDe
(Francesca et al., 2014) and AutoMoDe-Chocolate (Francesca et al., 2015).

The main difference Vanilla AutoMoDe and AutoMoDe-Chocolate is the adopted
optimization algorithm. Some may criticize the fact that the repository of preex-
isting parametric modules contains only few states and few transitions, however,
as a matter of fact, this small search space rather helps to produce a more efficient
controller and also helps to handle a well-known issue called reality gap (Jakobi,
Husbands, & Harvey, 1995).

The reality gap issue might happen when the produced controller in simulation
is applied on real robots. Actually the reason for this is due to the fact that the
simulator tries to emulate the real world but it does not exactly reflect it, and when
I produce a control software by simulation it might exploit some aspects that are
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not exactly the same in reality. Therefore, it will be better to add constraints or
noise to the simulation environment to reduce the representational power of the
controller.

It should also be noted that the developed control software by probabilistic fi-
nite state machines is readable by human unlike the controllers that is obtained by
an evolutionary algorithm. The neural network is considered as a black box.

In evolutionary robotics and in any approach of automatic design, the definition of
the objective function in the assigned mission is an important part that plays a ma-
jor role in the behavior of the robot(s). The two highlighted ways to determine the
objective function of the mission are: single objective optimization (SOO) which
focuses on one goal to optimize, and multi-objective optimization (MOO) that
has to deal with several sub-goals. The selection between these two approaches
depends mainly on the nature of the mission (Trianni & López-Ibáñez, 2015).

2.2 The literature review of NEAT
NEAT is a powerful evolutionary method that uses the representation of the genome
for generating the controllers. A more detailed presentation of NEAT can be found
in Chapter 3.2. In literature, NEAT has been used frequently to solve different
problems due to its performance.

2.2.1 NEAT in the design of neural networks for general pur-
pose robotics

NEAT is largely applied for the single-robot, and with robotics arm for rein-
forcement missions, like the resarch that was attempting to solve a double pole-
balancing problem by using two different versions of NEAT: the standard version
of Neat, and the Feature Selective Neat (FS-NEAT) (Ethembabaoglu, Whiteson,
et al., 2008).

The main difference between these two variants is the initial topology, where the
standard version starts with a fully connected feed forwards neural network with-
out any hidden layers. There is a method called Evostick uses the same type of
neural network for swarms of e-puck robots (Mondada et al., 2009). It is been used
in AutoMode research (Francesca et al., 2014) (Francesca et al., 2014) (Francesca
et al., 2015), whereas, FS-NEAT starts with a simpler structure, where it considers
the full connection as an added complexity, instead it starts with a topology that
contains only one input connected to the output.
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FS-NEAT topology is sensible, but since both structures have the ability to evolve
and grow, it may end up with a trade-off between the complexity of NEAT which
has larger search space, and the time consuming for evolving the structure of FS-
NEAT. In other words, it may take time in both sides: for evolving the simpler
structure and for finding a solution in the more complex structure.

It was expected when the authors made certain modifications on some parame-
ters of NEAT by increasing the possibility of mutation on the structure in order to
grow rapidly. Nevertheless, the results were not exactly as they expected. They
divided the processing stage into two phases according to the structure, in the first
phase, they expected better performance with the standard NEAT because of its
structure, and in the second phase, they expected FS-NEAT to outperform NEAT
after evolving its structure. However, The behavior of FS-NEAT in the second
phase was contrary to expectations. Therefore, I can draw a conclusion that the
sound evolution of the topology is not always guaranteed, and this could be at-
tributed to the trade-off that I mentioned.

NEAT has been also combined with different methods to seek better performance.
The most famous method that is mixed with NEAT is Novelty Search (Lehman
& Stanley, 2008). The main idea behind this method is to reward the novel so-
lutions instead of trying to optimize the current solution towards the fixed goal.
The purpose of Novelty Search is to avoid convergence towards a local optimum.
This well-known problem is called deception (Goldberg, 1987), and it can be a
challenging problem in genetic algorithms. Therefore, the solution that has been
provided by Novelty Search is by rewarding solutions according to their unique-
ness compared to each other.

(Lehman & Stanley, 2011) used NEAT with Novelty Search to solve two rein-
forcement missions: Biped Walking experiment and Maze experiment. Each ex-
periment is run with different budget i.e. different parameter settings in NEAT,
especially the population size which represents the number of organisms in the
evolving stage. It is worth mentioning that there are no fixed rules for setting the
budgets. Most of them were assigned based on the difficulty of the mission and
the experience of the researchers. Nevertheless, it should be noted that the use of
different parameter settings indicates human intervention in the design, and that
makes the design not fully automatic (M. Birattari et al., 2019)

For Biped Walking experiment, the robot is controlled by an artificial neural net-
work that receives the input from a ground sensor placed in each foot. The ob-
jective is that the robot must travel the longest possible distance from the initial
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position. Using Novelty Search may result in benefits by avoiding deceptiveness
cases that might arise because of the difficulty of the problem (Goldberg, 1987)

Figure 2.1: The results of the biped experiment.
(Lehman & Stanley, 2011)

The importance of Novelty Search lies in its rapid convergence towards the goal.
However, if the problem can be well-handled by the standard NEAT then the final
result of NEAT will be very close to NEAT with Novelty Search as shown in the
result of the maze experiment with medium map.

Figure 2.2: The results of the maze experiment.
(Lehman & Stanley, 2011)
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2.2.2 NEAT in the automatic design of controllers for single-
robot and robot swarms

Designing an automatic controllers for robots swarms by using evolutionary algo-
rithms is very common (Francesca & Birattari, 2016), especially with Neuroevo-
lution methods where NEAT method becomes very popular for automatic design,
and it is considered the most likely method that produces effective controllers with
good performance (Stanley & Miikkulainen, 2002).

The work of (Ericksen, Moses, & Forrest, 2017) manifests the advantage of auto-
matic design by NEAT for robot swarms over other approaches. The conducted
mission was foraging, and the features that the authors highlighted and discussed
in their work were the adaptability to scalability as well as generalization. It
should be noted that foraging mission is not trivial, it includes a series of sub-
tasks that need to be fulfilled in order, namely, searching the environment looking
for the seeds, picking up the seeds from the source, deliver them in the nest, and
cooperate with other robots for emerging the collective behavior taking into ac-
count the awareness of the collisions.

The authors used three approaches to solve the mission: Central Place Foraging
Algorithm (CPFA) (Hecker & Moses, 2015), Distributed Deterministic Spiral Al-
gorithm (DDSA) (Fricke et al., 2016), and NeatFA (NEAT Foraging Algorithm).

For testing the generalization, they evaluated NeatFA on three different kinds of
environment according to the distribution of the seeds in the environment: Ran-
dom, semi-clustered, and clustered. The results showed the ability of NeatFA to
adapt to the environmental conditions without having to change the implementa-
tion or use any hand-coded algorithms.

To test the scalability, several experiments were conducted with different size
of swarm starting with two robots until 30 robots. The performance of NeatFA
and CPFA were comparable, while DDSA performance decreased because of the
crowding at the nest, since DDSA uses square pattern for exclusive searching cen-
tered at the nest, there is high possibility to have crowding issue at the nest when
the size of the swarm increased, thus, the performance will declined. It might be
difficult to improve DDSA without changing its way of searching to avoid this
issue. This reflects a major pitfall in manual approaches.

The power of any approach comes from its ability to adapt to various circum-
stances and the ability to deal with different missions. And if these qualities are
guaranteed in multiple methodologies it would be preferable to choose the less
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complex one.

As the case in the research (Gomes, Urbano, & Christensen, 2012) where the
authors introduced Novelty Search with NEAT and compare it with the standard
Fitness-based NEAT to solve the aggregation mission. In this mission, the robots
roam the environment and cluster with each other until they end up with one ag-
gregate. According to their performance, Novelty Search actually helps in swift
convergence towards the ultimate goal, nevertheless, Fitness-based NEAT was
eventually able to fulfill the objective, and their final results were comparable.
Hence, in any mission, my focus must be on the nature of the mission, as well as,
on the capability and the complexity of the approach that can be used to solve it.

In fact, It should also be highlighted that most of the experiments were conducted
in simulation, and even when they were conducted on real robots they were exe-
cuted within conditioned environment in laboratories, and that is still far from real
world. Few researchers took a step forward, and they presented their work in real
world environment such as (Duarte et al., 2016). The authors of this research used
the aquatic environment to execute the swarm robotics experiments:

Homing: navigation to a given place while avoiding the obstacles i.e. other
robots.

Dispersion: maintain a fixed distance between the robots to cover the largest
area on the water without losing contact.

Clustering: to assemble the aquatic robots in one aggregate.

Monitoring: monitor certain areas by setting boundaries to determine the area
of interest that should be covered by the robots.

The method for generating the controller was NEAT, and it applied on aquatic
robots equipped with the following features: Wi-Fi for communication; Compass
and GPS for navigation. notwithstanding, some of these features are violating the
swarm robotics principles (Dorigo, Birattari, & Brambilla, 2014). For instance,
GPS could provide information beyond the local domain. However, their obtained
results in the real environment were very good with decent adaptation in terms of
scalability and robustness. These research help us to draw a conclusion that NEAT
in the automatic design of controllers represents a promising technique for robot
swarms.
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2.3 Recurrent neural networks in robotics
Recurrent neural networks (RNNs) are largely used in machine learning and they
have an advantage in terms of capability over the standard simple neural networks
due to the use of historical data from the previous states (Rumelhart, Hinton, &
Williams, 1985). There are many variants of RNNs based on the architecture of
their units or based on the topologies i.e. the connections among the nodes.
In this thesis, I will focus on the use of these two categories in robotics.

Elman is a one of the recurrent neural network variants that is designed to learn
sequential time-varying data. Elman contains an extra layer called context layer
and it connects to the hidden layer with recurrent relation (Elman, 1990).

Figure 2.3: The structure of the Elman unit.

The hidden node Ht receives data from the input node Xt, and the context
node Ct. The complexity of the Elman increases by adding nodes in the context
layer which requires new weights to connect with the hidden layer.

There are some endeavours to use Elman in swarm robotics such as (Gross &
Dorigo, 2009). The objective is to move and transport an object to a specific target
by taking advantage of the self-assemble principle in swarm robotics. The authors
used an evolutionary method for evolving the neural network. The evolved neural
network will independently control the robot in terms of: looking for the object to
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transfer. Deciding where to move, and where to connect with other robots. In the
experiment, different number of robots -up to 16 robots- were used to form the
swarm.

The advantage of the evolutionary method becomes clearer when the size of the
swarm increases, otherwise, with manual method, the number of the rules to con-
trol the swarm will increase and that makes the controller more complicated.
During the experiment, the robots behaved in two different way, whether they
connected with each other and transferred the object or they surrounded the ob-
ject and pushed it to the target location without being physically connected to it.
The results of the experiment were vary based on the properties of the object e.g.
weight, shape, and height. The methodology of the authors showed the ability to
deal fairly with the increased number of the robots. However, since the robots in
the simulator were not subject to individual failure. This can be a serious limita-
tion for evolving the controller.

Another variant of recurrent neural network is Long short-term memory (LSTM),
and it was proposed (Hochreiter & Schmidhuber, 1997) to deal with the exploding
and vanishing gradient problems (Hochreiter, Bengio, Frasconi, Schmidhuber, et
al., 2001). LSTM becomes popular and it has been used frequently in deep learn-
ing field due to its ability to preserve the historical information over a long period
of time and use it later for decision making. This ability comes from the special
architecture of its unit which equipped with multiple gates to control the flow of
data (Greff et al., 2017).

LSTM can process a sequence of data unlike the simple feedforward neural net-
work. The simple standard neural network deals only with single data input.
LSTM works to establish a relation among the elements of the input or between
the input and the output e.g. regression problems. However, it can also be appli-
cable on classification problems (Graves & Schmidhuber, 2005). Some research
in literature attempt to combine NEAT with LSTM to improve the performance as
in the research (Rawal & Miikkulainen, 2016). the purpose for this combination
is to enhance the capability of recall. The authors introduces a novel unsupervised
optimization method that maximizes the data stored in the LSTM network, and it
is called Info-max. They used this method in order to overcome the challenges
associated with LSTM. In fact, the architecture of LSTM unit makes it vulnerable
to deceptive solutions due to the number of new embedded weights that make the
search space for solution too large.

The authors conducted two experiments: sequence classification, by receiving
two kind of input -1 and 1, and the input could be interleaved with 0’s for dis-
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traction. The produced controller should determine which input has been received
more. The other experiment is sequence recall like the T-maze experiment, and the
agent should turn towards the right direction according to the ordered instructions
received at the beginning of the experiment. Their methodology for producing a
controller splits the design stage into two phases. One for evolving LSTM units
by using the unsupervised method Info-max, and the other phase is for evolving
the simple nodes by using NEAT based on the objective function.

It is reasonable that the authors with their method tried to cope with the com-
plexity of LSTM units, moreover, this method might not be applicable on every
platform, for instance, in case of using a simulator, it could be difficult to split the
design phase into phases unless that is done manually i.e. run the design phase
multiple times and each time only parts of the system will be affected based on
constraints set by the designer. However, this human intervention affects the prin-
ciple of developing the controller automatically.

There is also a simple observation regarding the information provided as input
to the neural network. In the sequence recall experiment. The neural network has
two input: the ordered instructions as a guide for the desired destination and the
distance from the T-junction.

It seems as if the authors fed the neural network with the maze itself by pro-
viding information about the position if its T-junctions, and instead of letting the
agent learns through exploration, it rather makes the agent memorizes the maze
beforehand. That even violate one of the principles in swarm robotics by receiving
global data if the corridor in the T-maze is too long, and the agent cannot observe
the T-junction locally. The results of the study were reasonable based on the used
structures and it reflected the importance of handling the complexity of LSTM.
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Figure 2.4: The results of sequence recall experiment.
(Rawal & Miikkulainen, 2016)

Mazes are well-known experiments for single-robot case. There are plenty of
research use this case of study to train a robot for exploring and decision mak-
ing through reinforcement learning. (Jakobi, 1997) is one of the early research
that used T-maze experiment with Khepera robot (Mondada, Franzi, & Guignard,
1999) . The main topic of the research is about the reality gap issue, nevertheless,
I are still interested in the set-up of the experiment.

The authors applied a recurrent neural network with two kinds of input: ambient
light as a guide to the correct path and IR sensors to avoid obstacles. The neu-
ral network used two different activation functions: one for the output that feed
the actuators to move, and the other for the non-motor neurons. With a fitness
function sums the traveled distance of the first corridor -Y axis- and the second
corridor -X axis- plus 100 reward for the correct path. The trials had been carried
out many times, and the results showed the ability of Khepera robot to learn and
choose the correct path successfully.

This successful attempt encouraged other researchers to reproduce the mission
and to compare the results like the research (Koos, Mouret, & Doncieux, 2013).
In this research, the authors used the e-puck robot (Mondada et al., 2009) and they
tried to reproduce the same T-maze experiment with a some modification on the
set-up i.e. the implementation is slightly different and the color sensors is used
instead of the light sensors. The authors attributed these modifications to the lack
of detail in the set-up of the original work and because of the use of a different
kind of robot.

Even the reward in the fitness function was altered and became 1000 for the cor-
rect path. This could be related to the size of the maze that they set. The result
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outperformed the one in the original work, however, it is still questionable whether
the produced work actually reflects the original one.

Since I use the same type of robot namely e-puck (Mondada et al., 2009), it might
be a good idea to reproduce the T-maze experiment of (Koos et al., 2013) to test the
NEAT capability. Although, some information in the research was not mentioned
regarding the design phase like updating the weights, however, I still can repro-
duce the experiment because I only need information about the fitness function,
the structure of the neural network, and its input & output. Further information
about the reproducing experiment can be found in chapter ?? .

There are other research use different strategies to deal with the T-maze exper-
iment like the research (Blynel & Floreano, 2003). The authors used continuous
time recurrent neural networks (CTRNNs) to avoid the modifications of synap-
tic strengths i.e. the weights by using for example back-propagation or Hebbian
learning. Instead, the learning process is done by exploiting internal network dy-
namics.

The neural network is fed by data about the rewarded-zone using the floor sen-
sor, in addition to IR sensors to avoid the obstacles. The authors applied their
methodologies using a T-maze and parts of double T-maze. The results showed
the ability of CTRNNs to learn and utilize the environmental information to create
a behavior from the internal computations in the neural network.
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Chapter 3

Methodology

In this chapter, additional information is mentioned regarding the methods that
have been used, and detailed information about the automatic design with different
kind of methods.

3.1 Automatic design
Automatic design is a promising approach to design controllers in robotics. Its vi-
ability came from the idea of casting the considered mission into an optimization
problem and build an objective function for it to guide and optimize the perfor-
mance. The state of the art in automatic design for robot swarms is yet undefined
properly in literature. There are some achievements that help to make progress
like having different approaches for the automatic design: Off-Line methods, On-
Line methods, however, there are challenges reflected in the lack of appropriate
comparison among the published works obstruct that progress (Francesca & Bi-
rattari, 2016).

There is a tread-off between On-Line and Off-Line methods in automatic design:
in Off-Line methods the design phase occurs before distributing the swarm in
the operational environment. Usually, the evaluation is performed in simulation.
The advantages of Off-Line methods lie in avoiding damages could happen in the
real robots during the design phase, and they also consumes less time in evalua-
tion. While in On-Line methods, the design phase takes place when the swarm
has been distributed in the operational environment. These methods can benefit
from extra information provided in the operational environment which can be re-
flected in the produced controllers. Nevertheless, the approach can suffers high
time-consumption and it might risk and cause damages to robots unless removing
the candidate design that can be dangerous. It should also be noted that remov-
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ing candidates and instances from the design phase can reduce the search space
of the optimization method which may affect the general performance as well
(Francesca & Birattari, 2016).

3.2 Evolving Neural Networks through Augmenting
Topologies (NEAT)

In Neuroevolution (NE), NEAT is a promising alternative for reinforcement learn-
ing tasks that relies on genetic algorithms for evolving and training the neural
networks (Stanley & Miikkulainen, 2002). The sound stages and the concrete de-
meanor of NEAT make it powerful. It starts with an initial simple structure as
a starting genome that evolves and becomes more complex during the training
session. The artificial neural networks will be considered here as genomes, and
during the design phase NEAT will create multiple generations contain species
with a fixed number of organisms based on its population size parameter, each of
these organisms carries a genome as a fingerprint that has a specific topology with
specific weights.

Every organism in the species will be executed on a the same number of ex-
periments to measure its performance and to update the weights of its genome.
After the execution phase, the organisms that scored the highest fitness will be
elected according to a elitism percentage parameter to the next generation with-
out any modifications. While the remaining organisms will be subject to certain
procedures based on the probabilistic values of the parameters in NEAT. These
procedures are for example: mutating weights, adding new links or nodes, and
making crossover operation between two genomes.

Applying crossover operations between any two random genomes can cause prob-
lems and lead to neglecting some important data if the compatibility ratio between
the two genomes is low.
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Figure 3.1: Incomplete crossover operation.

There is incompatibility between the two previous genomes. The two genomes
samples have three genes K, U , and T . There is only one matched gene between
them U . This incompatibility causes damage to the resulting offspring, and drop
important data presented in the parents after the crossover operation.

Therefore, crossover operations must only take place among the genomes that
share high compatibility. Otherwise, crossover operation might produce damaged
offspring that could miss essential information contained in the parents as a re-
sult of the incompatibility. This issue leads to Competing Conventions problem
(Montana & Davis, 1989) (?, ?).

NEAT avoids such a problem by measuring the compatibility distance which is
based on the matching genes, the disjoint genes, and the excess genes of the
genome. The matching genes are the only shared genes between the two genomes,
and the more matched genes they have, the better results will be obtained from the
crossover operations, and the produced will be offspring more meaningful. The
following figure illustrates these genes inside the genome.
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Figure 3.2: Analysis of genome structure during the crossover operation.
(Stanley & Miikkulainen, 2002)

The two genomes: Parent1 and Parent2 share the first five genes. The genes
at end of the longer genome Parent2 are excess genes: gene number 9 and gene
number 10. The rest of the genes that take place between the matched genes and
the excess genes, and contained in one parent are disjoint genes: from gene num-
ber 6 until gene number 8.

In other words, if the representative structures of two genomes match up they
can execute crossover operation without worrying about Competing Conventions
problem. This highlights the importance of this measurement, where the large
number of disjoint and excess genes make the genome less compatible with other
genomes.

Usually, The initial fitness of the newly evolved structure is often diminished,
this is due to the fact the new added component has not yet adapted to the body
structure, and it needs some time to have the chance for adapting the new weights
in order to improve the performance. Otherwise, if this matter is not taken into
consideration, most of the newly evolved structures will be neglected due to the
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loss of fitness.

In NEAT, that is handled through protecting innovation with speciation. Every
generation consists of multiple species and if the compatibility between the two
organisms is low they will be stored in two different species. And then after a
certain period of time the stored organisms will be removed from the species if
there is no improvement in their fitness.

Based on this method, I note that the complexity of the neural network is dy-
namic and depends mainly on the complexity of the mission. Many research have
used this method to solve missions in the field of reinforcement learning. And
due to the fact that it is difficult for manual methods to deal with these kind of
missions that have unstable nature, therefore, Neat is a promising alternative in
this field.

3.3 Types of neural networks
This section provides detailed information on the structure of the general recurrent
neural network in addition to the structure of its special case Long short-term
memory.

3.3.1 Reccurent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs) become a benchmark in artificial intelligent.
They have been used widely in many different domains especially in deep learning
to promote the capability and create sort of memory in the computation through
the training session (Rumelhart et al., 1985). These special structures lead to in-
crease the performance, especially in sequential data applications. Some notable
applications use RNNs are: Speech recognition (Sak, Senior, & Beaufays, 2014)
and Handwriting recognition (Graves et al., 2009).

Neural networks are actually black boxes use matrices of weights for learning.
Therefore, I cannot have a full understanding about their behaviors, nevertheless,
the developer should at least internalize about the flow of the data inside the net-
work in order to set meaningful connections among the nodes.

What distinguishes RNNs is the use of the hidden state that affects the decision
in its activation function, unlike the simple feedforward neural networks. In the
simple neural networks, the activation function depends only on the current input
with attached weights, while in RNNs, the historical information i.e. the previous
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hidden state has been also used for computing the next hidden state, which makes
the computation more logical and more consistent by forming a memory-like be-
havior, and that makes RNNs a useful technique for learning sequential data.

The activation function of standard recurrent neural networks:

Wt = Func(W × [ht−1, xt] + b0)

, where Func can be sigmoid , hyperbolic tangent, or any activation function.

Recurrent neural networks try to imitate the thinking process of the human be-
ing by using information and experiences from the past to take a decision.

Figure 3.3: Unfolding the structure of RNN .

The unfolding process of the recurrent structure shows the dependencies be-
tween the data. For instance: Ht+1 depends on the input Xt+1 and on the previous
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state Ht. In the same way Ht depends on its input Xt and on the previous state
Ht−1

Although RNNs with their distinctive structures outperform other simple net-
works, still there are disadvantages that may limit their performance. The issue
might occur in the back-propagation phase, resulting in a lack of memory capacity,
especially when dealing with long-term dependencies of consecutive data. Where
after computing the predicted value through the feedforward phase, there must
be an algorithm to provide some orientation and guidance to update the weight
matrix based on the error rate between the predicted value and the expected one.
This process takes place in the back-propagation phase by computing the gradi-
ent. However, if the value of gradient used to be less than one, it will continue to
decline as I move backward until it ends up with a value very close to zero which
leads to vanishing gradient problem. On the other hand if the value of the gradient
is greater than one I will end up with exploding gradient problem (Hochreiter et
al., 2001).

Traditionally, to avoid exploding gradient problem a technique called gradient
clipping has been used to rescale gradient if its norm is too big (Pascanu, Mikolov,
& Bengio, 2013). Nevertheless, I cannot cope with vanishing problem by using
the same standard structure, hence, a new structure called Long short-term mem-
ory (LSTM) has been developed (Hochreiter & Schmidhuber, 1997).

3.3.2 Long short-term memory (LSTM)
In LSTM, the architecture is more complicated than standard recurrent neural net-
works, and it may increase the nonlinearity of its behavior. On the other hand, it
can overcome the previous problems that might encounter the general RNNs.

The node in LSTM has multiple gates with attached weights that control the flow
of data rather than relying solely on the previous state as in the general RNNs.
Here there is another hidden state called cell state Ct keeps inside the LSTM and
it is not exposed to the outside world. This advanced architecture will for sure
increase the search space during its operation due to the new added weights that
need to be adapted.

23



Figure 3.4: LSTM node structure.

There are different versions of LSTM regarding the relations among the gates e.g
peephole LSTM, nevertheless, they almost work in a similar way (Greff et al.,
2017).

The common activation function of the gates is the sigmoid function, and for
better understanding, we could think of it as strings of binary values zeros or ones
refer to the obsolete data and the preserved data respectively.
All the gates receive the same data i.e the input Xt as well as the previous state
ht−1 and they work as follow:

Forget Gate: helps to make decisions about the data that should be neglected and
the data that should be saved.

Ft = σ(Wf × [ht−1, xt] + b0) (3.1)

Input Gate: in the Input Gate, new data from the current input will be added to the
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current cell state which scaled through the multiplication with the write Gate.

It = σ(Wi × [ht−1, xt] + b0) (3.2)

Write Gate: decides how much to write to the cell state.

Wt = tanh(Ww × [ht−1, xt] + b0) (3.3)

Cell state: the additional hidden state as local memory in LSTM

Ct = Ft × Ct−1 + It ×Wt (3.4)

Output Gate: this gate decides how much to reveal the cell to the outside world.

Ot = σ(Wo × [ht−1, xt] + b0) (3.5)

Finally, the new hidden state ht will be calculated as follows:

ht = Ot × tanh(Ct) (3.6)

It should be noted that increasing the complexity might not always improve the
performance. The challenge would be to find an efficient way to exploit this big
search space.

3.4 Methods
As mentioned in the introduction, the family of methods in this thesis attempt to
improve the neural network performance from three different aspects.

These aspects are:

• Complex architecture: By Using LSTM nodes. The challenging part in this
aspect would be on how to deal with the complexity of LSTM nodes in
order to reduce the search space.

• Topology: I introduce a new structure called R-evostick that causes a delay
computation inside the neural network which in turn could create depen-
dencies in data.

• Functionality: By producing a heterogeneous neural network HA-NEAT
with multiple activation functions as an in an effort to reduce the size of the
neural network compared with the homogeneous networks in the standard
NEAT.
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3.4.1 Using a Complex Structure: LSTM
As mentioned earlier, the biggest challenge that could be faced with advance com-
plex architectures is how to deal with their complexities more than how to build
them. Otherwise, the arbitrary use of them will lead to bad performance.

Due to the fact that NEAT is an offline method and there is no back-propagation
phase to update the weights, thus, I need to find a smarter way to update them not
just by adding a Gaussian noise to the weights and elect the organisms of the best
performance.

It might be a good idea to take advantage of the high-performance organisms in
NEAT to reduce the search space of other organisms while updating their weights

This simple algorithm is called Wise Gaussian and it updates the weights of
the organisms based on best one in the generation:

Wnew = Wold + [(FitnessMax − FitnessCurrent)÷ (Fitnessmax + α)] (3.7)

,where α is a small number to avoid dividing by zero

After inserting LSTM nodes in NEAT, there will be two kinds of weights: Weights
of LSTM nodes and Weights of NEAT links. To give the chance for these weights
to adapt to each other, I added an extra parameter with a low percentage in NEAT
to update LSTM weights.

mutate lstm weights prop = 0.3

Finally, the last modification to reduce the complexity of LSTM nodes was rescal-
ing their output into Sigmoid function.

The standard activation function of the LSTM output is hyperbolic tangent

tanh =
ex − e−x

ex + e−x
(3.8)

with range [−1, 1] while the Sigmoid function

σ =
ex

ex + 1
(3.9)
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has the range [0, 1] Using the shorter range might help to reduce the search
space during the design phase.

I preserved the convention of LSTM by using the same formula with tanh function,
except I rescaled its output value into sigmoid value. For rescaling the hyperbolic
tangent, and based on the equation between hyperbolic tangent and sigmoid:

tanh(x) = 2σ(2x)− 1

, hence the sigmoid value will be

σ(x) =
[
tanh

(x
2

)
+ 1
]
÷ 2 (3.10)

These steps helped to improve the adaptation of LSTM with NEAT which was
reflected in its performance as I shall see later.

3.4.2 Introducing a novel topology: R-evostick
The links among the nodes in the neural network play an important role in the
neural network behavior. Hence, the performance of the same size of neural net-
work after the design phase would vary according to its topology.

It could be possible to take advantage of the topology to build a neural network
with delay in its computation. In which it will have some senses on previous data.

R-evostick is an upgraded version of Evostick. R-evostick causes a delay in
the computation by passing a copy of the input data into an intermediate node
before passing it again to the output node.

The figure 3.5 illustrates the differences between Evostick and R-evostick in a
simple structure contains one input and two output.
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Figure 3.5: Evostick vs R-evostick

In R-evostick topology the output receives the data from two branches:

Direct branch: It will take one step to transfer the data from the input to the
output like Evostick from the input X to Y1 & Y2.

Indirect branch: It will take two steps to reach the output through the new
hidden node H .

This topology can be useful in missions that use sequential data. R-evostick
can also have different versions according it its depth of delay. For instance R-
evostick×3 signifies that the longest indirect branch for receiving the data needs
three time steps.

3.4.3 Heterogeneous Networks: HA-NEAT
Unlike homogeneous neural networks with single activation function, heteroge-
neous neural networks equipped with various activation functions in their nodes.
The idea is inspired from the paper (Hagg, Mensing, & Asteroth, 2017).

The objective from the heterogeneous networks is exploit the combination of dif-
ferent activation functions to evolve neural networks having smaller size i.e. fewer
number of nodes and links with the same capabilities of homogeneous networks.

The method for evolving the neural network is NEAT, and the used activation
functions are:
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• Sigmoid Function:
ex

ex + 1
(3.11)

• ReLu Function:
Max(0, X) (3.12)

• Step Function: {
0, X < 0

1, X > 0
(3.13)

• Gaussian Function:
1

σ
√
2π
e−(x−µ)2/2σ2

(3.14)

The figure 3.6 shows these activation functions for better understanding their be-
havior, where combining them could lead to complex activation functions.

Figure 3.6: A group of mathematical functions for heterogeneous networks

The function hyperbolic tangent was not used because it has different range than
previous functions. Tanh ranges between [−1, 1]. While the range of used func-
tions is positive, and they share the minimum value which is zero.
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The implementation of the node should be Extended to add information about
its activation function, and the mutation of the activation function should happen
once in one node per genome based on a new parameter added in NEAT

mutate activation func = 0.5

The value of The parameter mutate activation func is set to 0.5 to give the op-
portunity to all node in the genome to be selected. Whereas, if it is set to 1, then
always the first node in the genome will be mutated. mutated genome will be pro-
tected through innovation, and it will be stored in a new species to give the newly
genomes enough time to adapt to their new activation function.

To compare my methods with other contributions, I chose three different methods
have been used in literature: Evostick with a simple full connected feedforward
neural network, Elman with a context layer that has recurrent connections with the
hidden layer, and finally the standard NEAT. Evostick & Elman have fixed topol-
ogy while NEAT can evolve the structure. These methods were chosen because
their behavior and their characteristics are close to the methods that I developed:
LSTM & R-evostick have fixed topology while HA-NEAT can evolve the struc-
ture.
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Chapter 4

Experimental set-up

4.1 Simulator
ARGoS is a multi-physics simulator widely used for robot swarms experiments,
and it supports different types of robots(Pinciroli et al., 2012). Argos allows us-
ing large swarms in simulation unlike most other simulators. It also allows to use
multiple physics engines for the simulation.

ARGoS can employ e-puck robots easily through the plugin argos3-epuck. The
version used for this thesis is 3.0.0-beta48.

Building an experiment in ARGoS needs:

1. Configuration file (.argos) includes the setting and the properties of the op-
erational environment.

2. The source code: contains information about the controller i.e the input
data from the sensors readings and the output data feed the actuators of the
robot. The source code also includes the methodologies that have been used
for solving the mission.

3. The loop function: includes the objective function of the mission, where it
casts the experiment into an optimization problem.

The programming language that I used in ARGoS simulator is C++
The missions are conducted with a predefined budget of 50.000 executions per
mission.
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Parameter Value
Population size 100

number of generations 40
number of runs per generation 10

number of post evaluations 100

4.2 Robot
The type of robot that has been used in this thesis is e-puck robot. The e-puck is
an small wheeled robot developed for research and education purposes (Mondada
et al., 2009) and has been upgraded by (Millard et al., 2017). E-puck is a popular
robot and it is used by wide community throughout the world.

The list of the sensors and the actuators that are available in e-puck:

• Sensors:

– 8 light sensors located around the body of the robot to detect light
density.

– 3 ground sensors that detects gray-scale color variations on the ground.

– 8 proximity sensors placed around the body of the robot to sense ob-
stacles.

– An omni-directional camera on top of the robot that provides 360◦

view.

• Actuators:

– 3 LEDs around the robot to produce different colors.

– The motors of the 2 wheels that can generate a speed from 0 to 12 cm/s
independently of each other.

– A range-and-bearing device for local communication between the robots
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4.3 Case of study A: single-robot

4.3.1 Reference model 1.0
Input variable Values Description

proxi ∈ {1, 2, ..., 8} [0, 1]
Reading of proximity
sensor i

LEDs {Green,Red, ∅} Instructions for direc-
tions read by Camera

Output variable Values Description

vk ∈ {l, r} [0, 12]m/s
Target linear wheel ve-
locity

Adding more sensors to the previous reference model might only increase the
search space of the solution without obtaining much benefit. For instance: range-
and-bearing sensor which allows robots to perform localized communication may
not be unhelpful in single robot cases since there is only one robot in the experi-
ment, hence, there is no communication or exchange of data locally.

4.3.2 Reproducing a T-maze experiment
T-maze is a simple maze that is shaped like the letter -T- and it has many variants
vary in complexity in terms of shape and size (Olton, 1979). At the early 20th
century, T-maze and its variants were frequently used in laboratory experiments
as an attempt to measure and test the memory that an animal would create during
the experiment in order to reach the correct final destination.

During the experiment, stimuli are provided to the animal as a guide to select
the correct direction. These kind of mazes have been mostly applied to mice and
rodents. The experiment is proceeded by placing the animal e.g. a mouse at the
base of the maze. The maze is equipped with stimuli that help the animal to select
the correct direction: right path or left path. The selection of the correct path is ac-
companied by a reward. After executing multiple runs the mouse can go directly
to the correct path. This repetition with specific rewarded-zone help the mouse to
create spatial memory.

In the world of technology, T-maze experiment has been used frequently with
various methodologies that analyzed the T-maze experiment in different ways in
order to solve it.
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Figure 4.1: T-maze in Argos.

The purpose of using T-maze in robotics is to discover whether the robot is able
to build a local memory that affects its behavior and helps the robot to reach the
correct destination.

Before evaluating the main contribution of my thesis, I verified first the efficiency
of NEAT method. For this purpose I reproduced the T-maze experiment of the
research (Koos et al., 2013). My version of NEAT is based on the paper (Stanley
& Miikkulainen, 2002).
To reproduce the experiment I used the same experimental setup:

Experimental setup

The objective function: represents the sum of the total distance traveled on
X-axis dx and Y-axis dy represented by the two corridors of the maze, plus
1000 as a reward for the correct path.

fitness(c) = dx + dy +

{
1000 for the right turn
0 for the wrong turn

The neural network: it is a recurrent neural network contains 10 neurons: 8
for receiving the input from the sensors, and 2 motor neurons to compute
the speeds of the actuators.
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Figure 4.2: The controller of the T-maze
(Koos et al., 2013).

Guidance: instructions were given by the use of the color sensors to de-
termine the correct directions (left & right), and it was provided near the
T-junction to facilitate the experiment.

Result

As long as, the authors in the original work used bar-chart to show their results,
hence, for a fair comparison, I also used bar-chart to display the obtained results of
the reproduced work with NEAT along with the original one. However, It could be
better to use box-plot to give detailed information about the outliers, the medium
and the quartiles.
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Figure 4.3: The results of the reproduced vs the original work

The performance of the reproduced work with NEAT is close to the original one.
Nevertheless, there is something interesting about the behavior of the robot in the
testing session. Unlike the animal behavior, the robot took decision as soon as it
received the instruction about the correct path, and it did not need to create a local
memory for that, even if it received the instructions at the very beginning of the
experiment.

The robot actually heads towards the correct direction when it receives the in-
struction. This action will eventually leads the robot to the correct final destina-
tion. This behavior will enable the robot to accomplish the experiment no matter
how large the maze is. The following figure illustrates the behavior of the robot in
the T-maze experiment.
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Figure 4.4: The behavior of the robot during the experiment

From the figure 4.4 I can conclude that even simpler structure of neural network
like in Evostick method can solve this mission. The simpler structures might even
outperform the complex ones due to the fact that they have smaller search space.

To test the performance of Evostick on the work (Koos et al., 2013) I only changed
the structure of the controller into a simple neural network with two layers: input
and output, with full connection among them without having any recurrent links.
The weights had been mutated by using NEAT.
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Figure 4.5: Results of three different methods

The high performance of Evostick can be attributed to the fact that the mission
can be solved without having to create a local memory on one hand, and the fact
that the search space of Evostick for finding the solution is small on the other.

4.3.3 Extended T-maze experiment
Since the T-maze can be easily solved, I created a more complicated T-maze for
the single-robot experiment. My maze is an Extended T-maze with four final des-
tinations. Using this complex maze provides better evaluation on my methods,
and it will give the robot wider scope for exploration, leading to generate different
behaviors.

To cast this new maze experiment into optimization problem properly, a new ob-
jective function should be defined taking into account the fair access to the new
four destinations.
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Figure 4.6: Extended T-maze in Argos.

In the design phase, the abstract dependence on the traveled distance of the robot
to optimize the performance does not always give accurate results. For example if
the generated experiment sets the destination in the right side and the robot goes
to the left side, in this case, the objective function must return bad performance.
Therefore, the new objective function should rely on the distance between the lo-
cation of the robot and the correct destination. I used for that the distance formula
between two points. The objective is minimize the distance between the last loca-
tion of the robot and the correct destination by using the distance formula between
two points. √

(xrobot − xplace)2 + (yrobot − yplace)2

4.4 Case of study B: robot swarms

4.4.1 Reference model 2.0
For the two robot swarms missions, I used the same reference model to support
the automatic design in different missions without human intervention.
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Input variable Values Description

proxi ∈ {1, 2, ..., 8} [0, 1]
Reading of proximity
sensor i

gndj ∈ {1, 2, 3} {Black,Gray,White} Reading of ground sen-
sor j

n {0, ..., 20} Number of neighboring
e-pucks

rm ∈ {1, 2, ..., n} [0, 0.70]m Distance of neighbor m
∠bm ∈ {1, 2, ..., n} [0, 2π]rad Angle of neighbor m
rC ∈ BlobList > 6cm Distance of color c
∠bc ∈ BlobList [0, 2π]rad Angle of color c
Output variable Values Description

vk ∈ {l, r} [0, 12]m/s
Target linear wheel ve-
locity

This reference model is general and holds features might not be required by my
missions. However, the purpose of building a general model for robot swarms is
in order to use it with other missions without the need for any modification.

Because any per-mission human intervention on the robots would be too expen-
sive and time consuming, in addition, using the same reference model supports
the automatic design (M. Birattari et al., 2019).

4.4.2 Aggregation with two spots
Aggregation is one of the common missions in robot swarms where the robots
must aggregate on a specific spot (Kuckling, Ligot, Bozhinoski, & Birattari, 2018).

There are different versions of aggregation missions based on the size and the
number of the spots. My experiment is the aggregation with two spots. The
swarm should use the global collective behavior to aggregate in one of the two
black areas in order to maximize the performance.
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Figure 4.7: Arena with two spots for aggregation.

The color of the arena’s floor is gray and it contains two black circular areas on the
floor, namely u and v. The areas share the same radius of 0.35m and are centered
in (0.6, 0) and (−0.6, 0). At the beginning of the experiment 20 e-puck robots
are randomly distributed in the arena. The objective is maximize the number of
robots in one spot. The objective function Aggregation = max(Nu,Nv)/N ,
where Nu and Nv are the number of robots that are on the black areas u or v, and
N is the size of the swarm (Francesca et al., 2014).

4.4.3 Surface and perimeter coverage
In this mission, there are two different regions where the robots should behave in
a certain manner based on where they stand. (Francesca et al., 2015).

The arena has a black circle with a diameter of 0.6m: The robots should ag-
gregate on the perimeter of this spot, and white square with sides of 0.6m: The
robots must cover this region during the experiment.
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Figure 4.8: Arena with Surface and perimeter coverage setting.

The objective function of SPC is to minimize the following equation:

caE[da(T )] + cpE[dp(T )]

where ca = 0.08, cp = 0.06.
E[dp(T )] is the expected distance between a generic point on the circumference of
the circular region and the closest e-puck that intersects the circumference itself.
E[da(T )] is the expected distance between a generic point in the square region
and the closest e-puck that is in the square region (Francesca et al., 2015). The
objective function in Surface and perimeter coverage mission is scalarizing mul-
tiple objectives a priori by sum the fitness of the two objectives in the two regions
(Trianni & López-Ibáñez, 2015).
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Chapter 5

Results And Discussion

To do statistical analysis, 10 different controllers are produced for every methods
per mission.

5.1 Case Study A
In single robot experiment, the results are obtained by using 5 different seeds for
every branch in the extended T-maze to generate the test experiments. These 20
test experiments with different seeds are used by each controller in every method.

5.1.1 Extended T-maze experiment

Figure 5.1: The results of the extended T-maze experiment
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The large size of the boxes can be attributed to the fact that extended T-maze
experiment is a heterogeneous mission with four different destinations. The pro-
duced controllers could learn to reach some destinations and fail to reach the rest.
The medians in the methods: R-evostick and LSTM are higher than the rest. This
is a good start reflecting the feasibility of my contributions, nevertheless, The
overlapping in the notches which indicates 95% confidence interval of the median
denotes that still there is no significant differences among the methods, except for
the heterogeneous neural network HA-NEAT which completely failed the mis-
sion.

Robot behavior varies from one method to another, and since the objective func-
tion in this extended maze focuses on the last position of the robot with respect to
the correct destination, therefore, during the experiment the robot can explore the
maze freely, and the distance between the robot and the correct destination at the
end of the experiment reflects the efficiency of the used method as shown in the
box-plot. There are some instances from Elman and HA-NEAT where the robot
failed to explore and it instead kept rotating around itself. On the other hand, it is
also noticeable that the velocity of the robot varies from one method to another,
where in R-evostick and LSTM the robot is faster compared to methods: Evostick,
NEAT.

5.2 Case Study B
For robot swarm experiments, I used 10 different seeds to generate the test ex-
periments, and apply them on the two missions: Aggregation with two spots &
Surface and perimeter coverage.

It should be remembered that designing a controller for a robot swarms mission is
more challenging than designing a controller for a single-robot experiment, this is
attributed to the high degree of uncertainty of the behavior of the robots, and their
local interactions that take place during the operation.
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5.2.1 Aggregation with two spots

Figure 5.2: The results of aggregation mission

In robot swarms, it is notable that the performance of the methods changed. Evo-
stick method achieved the highest performance, while there is a drastic drop in
Elman and LSTM. The method HA-NEAT obtained the worst performance.

The behavior of robots correspond to this statistical results where in Evostick most
of the robots aggregated in one spot, and they clung to each other. Similarly, in
R-evostick and NEAT, most of the robots aggregated in one spot, while the robots
in the rest of the methods i.e. LSTM, ELman were exploring and roaming the
arena, and the number of robots in the spot was shrinking as shown in the figure
5.2.
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5.2.2 Surface and perimeter coverage

Figure 5.3: The results of surface and perimeter coverage mission

In surface and perimeter coverage mission, the medians of the methods have less
contrast compared to aggregation mission with better performance in LSTM &
Elman. This could partly depend on the nature of the mission and on the defini-
tion of its objective function that determines the scope of the search space.

The behavior of robots in surface and perimeter coverage mission is somewhat
similar to their behavior in aggregation mission, and they prefer clustering in the
black region

For further analysis, a Friedman test is performed on the basis of the obtained re-
sults to make a comparison, and to aggregate data from this the two robot swarms
missions:
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Friedman test computes the median rank over the two missions: aggregation with
two spots and surface and perimeter coverage, together, with the corresponding
95% confidence intervals. The difference between the corresponding median rank
is statistically significant if the intervals of two methods do not overlap.

5.3 Discussion
According to the obtained results, the family of methods with the exception of
HA-NEAT can have some positive effects in single-robot experiments, in addi-
tion, R-evostick may also have potential in robot swarms missions, nevertheless,
further investigations should be conducted to improve their performance.

The overlapping in the confidence intervals of the methods makes the differences
between the corresponding median rank is statistically insignificant. However, the
order of the methods in terms of performance was different from one mission to
another: In the extended T-maze experiment R-evostick scored the highest perfor-
mance followed by LSTM, and then Evostick and NEAT, while in robot swarms,
the Friedman test is performed on the basis of the obtained results in the box-plots
to aggregate data from the two missions: Aggregation with two spots and Surface
and perimeter coverage. The result of Friedman test shows that Evostick out-
performs all the methods followed by R-evostick then NEAT and Elman. These
differences in the performance methods can be attributed to the nature of the mis-
sion, where the degree of uncertainty is higher in the robot swarms missions than
in the single-robot experiment.

The ability of LSTM to converge in the extended t-maze experiment with a rel-
atively small budget reflects the positive impact of the modifications that I made
on the architecture of LSTM in terms of the new added parameters and the rescal-
ing process of the activation function from hyperbolic tangent function to sigmoid
function. These adjustments reduced the size of the search space during the de-
sign phase.
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The bad performance of heterogeneous neural network HA-NEAT can be at-
tributed to the difference in budget between my work and the paper (Hagg et al.,
2017). For example, the authors increased the number of generation to 3000 while
I used 40 generations. I did not use different budgets for my missions to support
the automatic design and to make a fair comparison among them. Although, I
successfully achieved the objective by producing parsimonious networks. The av-
erage size of the heterogeneous controllers produced by HA-NEAT with multiple
activation functions is less than the average size of the homogeneous controllers
produced by NEAT with a single activation function.

The results of the conducted missions that I obtained give some information about
the performance of the methods and their impact on the behavior of the robots.
However, since they are done in simulation, I cannot draw a final conclusion about
the performance of the methods due to the reality gap that could exist between the
simulation and real world. For instance, the performance of Evostick method in
(Francesca et al., 2015) and (Francesca et al., 2014) outperformed most of the
methods in simulation, but its performance declined with real robots.

Since there is no connection and local interactions in single-robot missions, this
may reduce the possibility of reality gap issue, and the good results of my methods
in the case of single-robot reflects a high chance for the family of methods that I
propose to work properly on real robots.

On the other hand, according to my findings, and in view of the results obtained
by the paper (Saffre et al., 2019), creating a local memory in robot swarms might
impair the performance because it may reduce the effect of the current local inter-
actions between the robots, and make them rely more on their historical data for
decision making. That would reduce the uncertainty in the experiment and would
make the behavior of the robots predefined.

The poor performance of Elman is affected by the complexity of the used neu-
ral network that has two extra layers: hidden, context. The number of links with
new weights will increase drastically as a result, making the search space larger,
and makes the method unable to find a good solution in a small, disproportionate
budget. It could require bigger budget to optimize its performance.
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Chapter 6

Conclusions

In this work, I proposed a family of methods for automatic design of controllers,
and I applied them on two domains in robotics: single-robot and robot swarms.
The approach that I used for evolving the controllers is evolutionary robotics and
the method for evolving the controllers was NEAT; which considered as a promi-
nent method in neuroevolution field.

The capability of NEAT has been tested by reproducing the T-maze experiment of
(Koos et al., 2013), and I showed the importance of defining small search space
by reproducing the experiment again with Evostick method.

My contribution aimed to analyze the neural network from three different aspects:

• Using a complex architecture: by employing long short-term memory units
LSTM.

• Introducing a novel topology that is causing an internal delay in its calcula-
tion: R-evostick.

• Evolving heterogeneous neural networks by mixing a set of activation func-
tions

The missions that I conducted are: extended T-maze experiment for single-robot.
Aggregation mission and surface and perimeter coverage mission for robot swarms.
I executed these missions in simulation by employing Argos simulator.

The fact that neural network is a black box makes my work more challenging.
However, I focused on reducing the search space of the complex added units.

My findings about LSTM in robot swarms is supported by the paper (Saffre et
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al., 2019), where the local memory could reduce the uncertainty in the behavior
and make the robots rely more on their historical data than the local interactions
which make their demeanor predefined. That may lead to lower performance.

In heterogeneous neural networks with a set of activation functions, the weak
performance could be attributed mainly to the my constrained budget, unlike the
one used in the paper (Hagg et al., 2017). My claim for using a unified budget for
all the missions is to support the fully automatic design without human interven-
tion. However, I achieved the main purpose of the paper by evolving parsimonious
networks compared to the standard homogeneous networks.
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Chapter 7

Future Work

In order to invest my contribution in this thesis, future work should focus on the
following points:

Applying the family of methods that I propose on real robots for better
evaluation and to check the reality gap.

Using the family of methods that I propose with more different missions in
single-robot and robot swarms.

Investigate different versions of recurrent neural network such as GRU neu-
ral networks.

Working more on heterogeneous neural networks, and using new activation
functions
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