Decentralised Negotiation for Multi-Object
Collective Transport with Robot Swarms

Guillermo Legarda Herranz
IRIDIA-CoDE
Université libre de Bruxelles
Brussels, Belgium
guillermo.legarda.herranz@ulb.be

Abstract—Recent developments of robot swarms with richer
capabilities for sensing and manipulation of the environment have
opened the door to more complex applications of swarm robotics.
The introduction of such swarms in intralogistics, where workers
are still at risk of injury, is of particular interest. We present a
method to control a swarm of robots to simultaneously transport
multiple items that are too heavy or too large for a single robot to
carry. We introduce a decentralised negotiation strategy based on
inter-robot communication, which allows the robots to coordinate
with subgroups of the swarm. We then use genetic programming
to evolve behaviour tree controllers that generate the desired
action of each robot, which is then fed to the negotiation strategy
to produce the final output.

Index Terms—swarm robotics, collective transport, negotiation

I. INTRODUCTION

According to the latest data from Eurostat, almost 2.7
in every 100 workers in the European Union experienced
workplace injuries or illnesses in the transportation and storage
sector in the year 2019 [1]. To prevent accidents, autonomous
mobile robots may assist in the transport of heavy items, such
as pallets and packages [2]. However, these systems can be
costly and require additional infrastructure or detailed setup.
Additionally, they are usually controlled by a central unit, and
are therefore highly sensitive to its failure.

In this paper, we propose a method for collective transport of
heavy items using robot swarms. The goal of swarm robotics
is to design decentralised systems that are robust, scalable and
flexible [3]. By using readily replaceable, cost-effective robots,
swarms are an attractive solution to operate in dangerous
environments, like natural disaster sites and outer space.

Tuci et al. [4] differentiate between pushing-only strate-
gies for collective transport, where robots have no means
of holding an object, and grasping strategies, where robots
have specialised hardware to grasp or lift objects. The main
advantage of grasping strategies is that they prevent damages
to the objects by avoiding dragging them, which makes them
more suitable for real-world applications. However, they pose
the additional challenge of requiring a coordination strategy
for the robots to align their forces without releasing the
object. This implies that the robots need to position themselves
correctly about an object before attaching themselves to it
and attempting to move it. As a consequence, it is commonly

978-1-6654-8217-2/22/$31.00 ©2022 IEEE

Sabine Hauert
Bristol Robotics Laboratory
University of Bristol
Bristol, United Kingdom
sabine.hauert@bristol.ac.uk

Simon Jones
Bristol Robotics Laboratory
University of Bristol
Bristol, United Kingdom
simon?2.jones @bristol.ac.uk

assumed that the robots are attached to the object from the
start. We highlight two notable examples of this approach.
Campo et al. [5] proposed a negotiation method where robots
use LEDs to communicate their estimate of the goal direction.
Each robot then uses the directions indicated by the rest
of the robots to improve their own estimation. Ferrante et
al. [6] developed a socially-mediated negotiation mechanism,
where robots use direct communication to compute a common
direction of motion while taking into account how much of the
environment each robot is able to perceive.

Despite the many successful implementations of collective
transport strategies that exist in the literature [4], we notice an
absence of methods that explicitly consider the simultaneous
transport of multiple large items. To the best of our knowledge,
the only existing work that has tackled this issue was devel-
oped by Hamouda [7]. In their implementation, however, the
robots are only able to push an item in a straight line towards
the goal, and therefore have no obstacle avoidance capabilities
during transportation. Consequently, we present a negotiation
strategy for a swarm of robots with grasping capabilities to
simultaneously transport large items while safely navigating
the environment.

In the context of negotiation, every robot in a group suggests
an action based on its own perception of the environment.
Considering all the actions suggested, the group reaches
a consensus and acts accordingly. However, computing the
action that each robot must suggest such that the swarm
achieves the desired global behaviour is challenging. In swarm
robotics, while the design of the individual robot controllers
is often tackled manually, automatic design methods are a
convenient alternative, as they offer repeatability of the process
and reduced costs [8]. We are interested in off-line automatic
design, in which controllers are designed before the swarm
is deployed in the environment, without any need for human
intervention [9]. In particular, we take the modular approach,
where a set of low-level behaviours are combined to form
controllers [10].

In automatic design, the selection of the controller architec-
ture determines the set of tools that might be used to discover
a solution. We are especially interested in behaviour trees
(BTs). Originally designed to specify the behaviour of non-
player characters (NPCs) in video-games [11], BTs exhibit

multiple properties that make them suitable for robot control
applications [12]. They are modular, that is, each subtree
constitutes its own legal BT, which allows for testing and
reusing of parts of a BT separately. They are also human
readable, which makes the analysis of the resulting robot
behaviour more straightforward than, for example, neural
networks. Furthermore, they are reactive, and thus robots may
quickly react to changes in the environment.

Behaviour trees have been shown to provide designers with
a high degree of control over the granularity of the low-level
behaviours and promote understanding of the resulting robot
behaviour. In one of the earlier works on the control of real
robots using BTs, Scheper ef al. [13] used an evolutionary
algorithm to generate BT controllers for a flapping-wing
micro-aerial-vehicle (MAV). Jones et al. [14] later introduced
the use of genetic programming (GP) techniques to evolve BT
controllers for foraging tasks with a swarm of kilobots, as well
as a method for online evolution of BTs in the Xpuck Teraflop
swarm [15]. Finally, behaviour trees have also been used in
automatic modular design methods [16]. In a similar fashion to
Jones et al. [14], we use GP to evolve the BT controllers that
generate the inputs for the negotiation strategy. We develop
and evaluate our methodology in simulation'.

II. METHODS
A. Task

We conceive an environment consisting of a S5 m X 5 m
arena with a nest region on the right-hand-side (4z) and a
number of items scattered about it, which always require more
than one robot to transport (see Figure 4). In our collective
transport task, the objective is to have the robot swarm move
the items towards the nest. When an item is placed at the
nest, it is reset to its starting position to allow the swarm to
operate indefinitely, and its distance travelled is accumulated.
We therefore define the raw fitness of the task for each item,
i, as the normalised displacement:

) . . Az
fraw’i — max { xﬁnal,z Istart,z + Z; ’ 0}, (1)

tsimvmam

where Zgare,s and Tna; are the start and end positions, Ax;
is the net distance travelled by the item towards the +2 end
of the arena before the last time it was placed at the nest,
tsim is the simulation runtime and v,,4; = 0.2 ms™! is the
maximum speed of the robots. It is worth pointing out that
fraw,i 1s always nonnegative, even if the net displacement of
the item is towards the —x end of the arena. The total fitness
of the task is then

1 M
f: M;Jcmw,ia ()

where M is the number of items in the arena. Consequently,
f €]0,1], where a fitness of 0 indicates that no items were
transported towards the nest, while a fitness of 1 indicates that

'The entire codebase developed for this work is available on GitHub:
https://github.com/glegarda/collective-transport. git

all M items were constantly moving towards the nest at the
maximum velocity possible. We identify two main phenomena
that cause the fitness of a run to be lower than the theoretical
upper limit of 1. First, robots in the swarm inevitably spend
time exploring the environment. Second, interference between
robots hinders the motion of those carrying an item towards
the nest. Therefore, we expect even high-performing swarms
to achieve fitness values lower than 1.

We consider simulated holonomic, circular robots with a
diameter of 0.25 m. They are equipped with various sensing
and actuating capabilities to interact with the rest of the swarm
and the environment. They can detect nearby objects up to a
distance of 0.15 m and extract their position and orientation,
which allows them to navigate while avoiding collisions. We
also simulate point-like idealised fiducial markers that the
robots can detect up to 1 m away and thus compute their
relative position and orientation, as well as obtain data stored
in them. We cover the circumference of each robot with such
markers, which allows them to detect and identify each other.
All the robots have access to a common direction (east) and
can also exchange messages with neighbours that are within a
1 m radius. Finally, we assume that the actions of the robots
in our swarm are synchronised. While this concession implies
that the robots have access to a global clock, it allows us to
greatly simplify both the presentation and the implementation
of our coordination strategy, which is the topic that we want
to address in this paper.

The nest can be identified by the robots through the same
idealised fiducial markers used for neighbour detection. In this
case, it is the right wall of the arena that is covered with
markers. The robots know that they are at the nest when their
distance to any nest marker is under a certain threshold. The
items are simulated as regular polygons with a predefined set
of lifting points, which are once again identifiable by means
of our fiducial markers. Upon detection, these markers also
return the total number of lifting points of the item. Once
all the lifting points of an item are covered by robots, the
robots can attach themselves to the item and transport it. In
order for the robots to be able to communicate with each other
while transporting an item, all lifting points are within a 1 m
radius (the communication range of the robots) of the rest of
the lifting points. Additionally, to increase the chances of a
robot encountering a lifting point, we assume that additional
markers cover the remaining surface of the items. Each of
these markers holds a vector that points in the direction of the
nearest lifting point.

B. Control

A control methodology that implements a coordination
strategy is required for the swarm to collectively transport
items. The goal of such a coordination strategy is to allow
groups of robots carrying an item, which we refer to as porters,
to safely navigate the environment and move independently of
the rest of the swarm.

We therefore conceive a two-stage control loop. In the first
stage, given its perception of the environment, each robot

Default %@ Recruiter
Ready @‘@ Porter

Fig. 1. Available transitions of the {L, G} tuple, where L and G are binary
variables that denote whether the robot has detected an item and is part of a
group, respectively. Each value of the tuple corresponds to a different robot
state.

executes a BT to generate its desired outputs. In the second
stage, each robot communicates with its neighbours to share
its desired outputs and negotiate the action to be executed. The
BT is generated using GP, while the negotiation stage remains
hardcoded.

The rest of this section is devoted to describing the im-
plementations of the BTs and the negotiation strategy. The
negotiation strategy constitutes our main contribution and
motivates some aspects of the BT implementation.

1) Negotiation: In every iteration, each robot computes
two desired outputs: the velocity in its local frame, vyote,
and p,ote, a discrete variable representing an attachment
(1) or detachment (—1) command from an item. Since all
robots have access to a common direction, it then rotates
Ugote tO the global frame, v} .., and broadcasts a message,
which we call a vote. Each vote is defined as a tuple
m = {i,1, 9,7 1es LV otes Puote }» Where @ is the robot iden-
tifier and [is the item identifier, which is 0 when the robot is
not at a lifting point or when it is carrying an item. We denote
robots for which | # 0 as recruiters, since they represent
robots that are waiting for others to transport an item. The
variable g is the group identifier, which is 0 by default. When
a robot is at a lifting point, g is set to [if, in one controller
iteration, it receives as many messages with a value of [equal
to its own as the number of porters required to transport the
item, minus one. The values of 7, and Zb ,. correspond
to the magnitude and orientation of v, ., respectively.

Each robot then receives the votes cast by its neighbours

and computes the goal velocity in the global frame, v;ml, and
the attachment command, py,;. We define these as
S
Pgoal = Pwote + (1 - 50_(]) ' vaote,jégjga (3)

j=1

s
’ o ’ ’
Vgoal = | Vvote + (1 - 509) ! E vvote,j59j9 ’ 501090(11’ “)
Jj=1

where s is the number of messages received. The Kronecker
deltas dy4 and d,,, force every robot to coordinate with other
robots in the same, nonzero group, thus allowing them to
coordinate with a subgroup of the swarm. The other Kronecker
delta, dop,,,., prevents any moving robot from attaching itself
to an object. We choose to prioritise the attachment command
because we believe that a successful controller should rely on
the motion of the robot for most purposes.

Since all robots in the same group (i.e., all porters of the
same item) compute pgoq and v‘(']ml according to (3) and
(4), they all obtain the same values, so long as they form
a fully-connected network. This is achieved by design of the
items, through correct placement of the lifting point markers,
and therefore is of no concern to the robots. However, the
computed pgoq; and v‘(']ml do not necessarily coincide with any
of the individual votes, which differentiates our negotiation
strategy from traditional voting schemes. Each robot in the
group can then rotate v‘(']ml back to its local frame to obtain
Vgoal- Since the velocity magnitudes generated by the BT are
potentially unbound, |vgml| values are first saturated at 1.0
and then mapped to the [0, v,,4,] range. The result of all the
robots moving according to vgeq is that the group moves at
the same speed, in the same global direction. In a real-world
deployment, this would prevent potential damages to both the
item and the grasping hardware of the robots.

The states and transitions available to each robot in this
negotiation framework are summarised in Figure 1. We define
two variables: L, which is 1 when [is not 0, and 0 otherwise;
and G which, similarly, is 1 when g is not 0, and 0 otherwise.
Each possible combination of the { L, G} tuple then represents
a different state. Given (3) and (4), robots only consider the
votes cast by their neighbours when they are in the ready or
porter states, where do, = 1.

2) Behaviour trees: Behaviour trees are directed acyclic
graphs of nodes and edges. Periodically, the root node sends a
tick signal to its children, which is propagated down the tree.
Once the signal reaches the leaf nodes, these interact with the
environment and return one of three possible states: success,
failure or running. The result is then propagated back up the
tree until it reaches the root node.

BTs interact with the environment through the blackboard.
The blackboard consists of a list of entries, each of which
contains information about a different aspect of the environ-
ment as perceived by each robot. Entries can either be scalar
values or vectors, where vectors are given in polar form in
the heading-oriented frame of the robot. Additionally, every
entry has an access level. Leaf nodes may obtain the value of
an entry with read level, or may also modify an entry with
write level. Table I shows the blackboard constructed for this
work, of which each robot holds its own copy. The magnitude
of Vproe 18 0 when no obstacles are detected and 1 when
an obstacle is adjacent to the robot. The vectors vatsrs Urecrs
Vhome and vy are set to (1, £0) so long as the robot does
not detect any of their corresponding markers of interest. The
vote entries, Vyote and Dyore, are set to O at the beginning of
each iteration.

We adopt the methodology proposed by Francesca et al.
[10] to automatically design control software. We define a
set of behaviours and conditions using the blackboard entries
available. The GP algorithm then draws from this set to
construct BTs during the optimisation process, as described
in Section II-C. We define the following set of behaviours:

« Exploration: perform a random walk. If the robot en-

counters an obstacle, it Sets Vyote tO a unit vector with a

TABLE I
BLACKBOARD ENTRIES.

Name Access Description

Vproz R Location of nearby obstacles, if any

Vattr R Location of nearby neighbouring robots, if any
Vrecr R Location of recruiting neighbours, if any
Vhome R Location of the nearest nest marker, if any
Viift R Location of the nearest lifting point, if any
Sn R Number of neighbouring robots

Sr R Number of neighbouring recruiters

Sp R Number of porters of the same item

Puote RW Voted platform command

Vyote RW Voted velocity

Szero R Constant zero scalar

Vzero R Constant zero vector

Sser RW Scalar scratchpad

Vser RW Vector scratchpad

random orientation away from vpz.

« Stop: stand still.

« Attraction/Repulsion: move towards or away from neigh-
bours. The robot sets Vyote = QVattr — kVpros, Where
a € [-5,5] and k = 5.

¢ Recruitment/Anti-recruitment: move towards or away
from recruiters. The robot sets Vyote = AVrecr — kVproxs
where o and k are defined as above.

o Pick: attach to an item. If the robot is at a lifting point,
Duote = 1; otherwise, it sets Vyote = Visft — kVpros, Where
k is defined as above.

e Place: detach from an item. If the robot is at the nest,
Duote = —1; otherwise, it sets Vyote = Vhome — KVproz,
where k is defined as above.

All behaviours return success by default. However, if a be-
haviour sets either Vyote OF Pyote, any subsequent behaviours
that attempt to overwrite them in the same iteration will return
running. We also define the following conditions:

« Neighbour-count:
z(sn) =
values.

o Recruiter-count: return success with probability
z2(sp) = m, where k£ and [are 5.3 fixed-point
values.

o Porter: if the robot is a porter, return success with
probability 3.

o Nest: if the robot is at the nest, return success with
probability 3.

o Item: if the robot has located an item, return success with
probability 3.

« Fixed-probability: return success with probability (.

return success with probability

m, where k£ and [are 5.3 fixed-point

C. Evolution

We use the openGA library? for our implementation of GP.
We define each chromosome as a BT controller generated
using the syntax of the BehaviorTree.CPP library?.

The algorithm proceeds as follows. Initially, a population
of N = 30 individuals is generated using Koza’s ramped-

Zhttps://github.com/Arash-codedev/openGA. git
3https://github.com/BehaviorTree/BehaviorTree.CPP.git

half-and-half method with minimum and maximum depths of
dmin = 0 and dy,q; = 4, respectively [17]. To create each
BT, all the constituent behaviours and conditions defined in
Section II-B2, as well as the control-flow nodes introduced
by Marzinotto et al. [18], including the Node* extensions,
are available. We also define four decorators: inverter, which
returns success when its child returns failure and vice-versa;
success, which always returns success; failure, which always
returns failure and repeat, which returns running until its child
node returns success n times, or failure if its child returns
failure. In order to limit the search space of the algorithm,
the maximum number of children the selector, sequence,
selector* and sequence* nodes are allowed to have is limited
to four. If any of the selected nodes have parameters, their
values are drawn from a uniform probability distribution in
the appropriate range.

Once the population is initialised, the algorithm performs
genetic operations and selects the individuals for the subse-
quent generation for 7., = 400 generations. For the genetic
operations, N - fcrossover NeWw individuals are generated by
crossover, where f. ossover = 0.7. Each of the newly gen-
erated individuals then undergo parameter, point and subtree
mutation with probabilities pparam = 0.05, ppoint = 0.05
and psyptree = 0.1, respectively. From the resulting pool,
Nelite = 3 individuals are transferred to the next generation
using elitism. The remaining N — 1.y, individuals of the new
generation are selected using rank selection.

This implementation of GP often suffers from bloat, where
the size of the BTs grows uncontrollably, but their fitness does
not reflect a similar growth [17]. To limit its effects and keep
the resulting BT's readable, we implement covariant parsimony
pressure, which dynamically sets the parsimony coefficient
during a run to penalise larger trees [19].

To evaluate the fitness of each individual, we built a
lightweight 2D simulator of our environment using the Box2D
physics engine*. For every fitness evaluation, we initialise an
instance of the environment with an arena, three two-porter
items and 16 robots. The items are placed on the left-hand
side of the arena, while the robots are randomly scattered
around the right-hand side of the arena (see Figure 4). Each
controller is run for 120 s. The simulator runs one iteration
of the complete control loop every 0.1 s, computing a goal
velocity vgeq. We then apply white noise with a standard
deviation of 5% to every velocity [20]. The physics is updated
with a frequency of 30 Hz, that is, three times per control
iteration. The fitness of the controller is then obtained as the
mean fitness, as per (2), of five independent runs.

To assess our methodology, we conduct 10 independent
evolutionary runs. In each run, for each generation, we record
the highest-performing controller, its raw fitness and size, and
the mean raw fitness and size of the population. The resulting
BTs may contain superfluous substructures, that is, sections
of the BT that can never be ticked and therefore do not affect
the outcome. To further improve readability of the trees for

“https://github.com/erincatto/box2d.git

0.16 X - 100
0.14 4 - 80
2 0.12
: Fo0 g
L; 0.10 0 E
2 0.08 -
0.06 —— Mean fitness over all runs 20
0044 1 —-=='Highest final fitness Lo
T T T T T T T T T
50 100 150 200 250 300 350 400 400

Generation

Fig. 2. (Left) evolution of the raw fitness of the highest-performing controllers
of the 10 evolutionary runs. The blue line shows the mean raw fitness, the
red line shows the raw fitness of the controller with highest final raw fitness
and box and whisker plots are shown every 50 generations. (Right) size of
the highest-performing BTs in the last generation of all 10 runs.

Fig. 3. Fittest solution of the evolutionary runs. The control-flow nodes used
are sequence (—), selector (7) and selector* (7) nodes. Lilac thombuses are
decorators; in this case, failure. Dotted lines represent nodes removed by
pruning. ST1 and ST2 are subtrees of interest (see text).

analysis, we mechanically prune the BTs by following the
automatic procedure outlined in Jones et al. [15] to remove
said substructures. We verify that the resulting BT is equivalent
to the original by running five instances of the simulator with
the robots in the same initial conditions and equal seeds for
the pseudorandom number generators employed. We log the
positions of every robot in the swarm at every controller
timestep and verify that the resulting files are identical.

III. RESULTS

Figure 2 shows the evolution of the raw fitness of the
highest-performing controllers across the 10 independent runs.
The lines indicate the run that obtained the controller with
the highest final raw fitness and the mean raw fitness over
all runs. We also show box and whisker plots every 50
generations. Additionally, the figure shows a box and whisker
plot representing the sizes of the highest-performing BTs in
the last generation of the 10 runs, before we apply the pruning
technique. The results shows that the swarm is able to evolve
a solution to collectively transport items towards the nest.

The low medians in Figure 2 suggest that the evolutionary
runs were dominated by low-performance controllers. By
inspecting the solutions obtained from each run, we concluded
that half of the controllers were executing the pick behaviour
exclusively. Indeed, by executing the pick behaviour, the
robots move from obstacle to obstacle and, if they ever run
into a lifting point, they wait for other robots to fill the rest of
the lifting points (in the case considered, there is only another
lifting point). Once all the robots required to transport the
item are located under the corresponding lifting points, they
attach themselves to the item and continue moving between
obstacles. As a result, the swarm is rewarded for transporting
the items, even though the robots do not actively move towards
the nest.

The spread of the box and whisker plots reflect how the
remaining controllers were able to achieve the task with
various levels of success. In order to understand what the
swarm is actually doing in the more successful cases, we take
advantage of the readability of behaviour trees. We consider
the highest-performing controller obtained by the evolutionary
algorithm, which obtained a raw fitness value of 0.163.

As shown in Figure 3, if we consider constituent behaviours
and conditions as single nodes of the BT, the tree has 15 nodes.
To prune the BT, we only need to make use of the fact that, if
one node in a sequence always returns running, no additional
nodes in that sequence are ever ticked. Since, as mentioned
in Section II-B2, no behaviour may overwrite Vyote OF Dyote,
the second of the two consecutive place behaviours always
returns running. We therefore remove all remaining nodes in
the sequence. By applying the same principle to the parent
sequence, we obtain a pruned BT with 11 nodes.

Analysing the resulting behaviour of the swarm then be-
comes straightforward. We recognise two subtrees of interest.
In the first subtree (ST1), a robot executes the pick behaviour
to explore the environment and find the items. Thus, it moves
forward while performing obstacle avoidance and, when an
item is found, it moves towards the nearest lifting point and
waits for enough robots to attach itself to the item. In the
second subtree (ST2), a robot checks if it is a porter. If it
is, it executes the place behaviour; that is, it heads towards
the nest and, once reached, it detaches from the item. If it is
not a porter, the BT ticks the second instance of ST1. Since
ST2 contains two place behaviours in a sequence, ST2 always
returns running if the robot is a porter, or failure if the robot is
not a porter. Consequently, since ST1 and ST2 are the children
of a selector*, the BT skips the first ST1 and the robot executes
the place behaviour as long as it is a porter.

Figure 4 shows a timelapse of a run of the swarm in
which the robots execute the controller shown in Figure 3.
Besides the behaviour deduced from the analysis of the BT,
we can observe how the swarm is able to carry two items
simultaneously towards the nest. Additionally, the figure shows
how the robots indeed need time to explore the environment
and locate the items, and also how porters can run into
other robots, which constitute obstacles in their way to the
nest. We therefore argue that, while seemingly low when

s e
e
e
e
3

&

125 e
Eﬁ% 3
ESS

T

Fig. 4. Timelapse of the behaviour of the swarm using the controller shown in Figure 3. From left to right, the swarm is initialised, the lifting points are
located, enough porters are gathered under the lifting points and two items are simultaneously transported towards the nest.

compared with the theoretical maximum fitness of 1, a fitness
of 0.163 is in line with our expectations for a high-performing
swarm. Nevertheless, further experimentation with different
population sizes, number of items and sizes of the items would
be needed to study their effect on the performance of the
swarm. This is left as a possibility for future work.

IV. CONCLUSIONS

We have presented a decentralised negotiation strategy
based on direct communication that allows the robots in a
swarm to collectively transport multiple large items simultane-
ously in a safe manner. We introduce it as the second stage of
the controller where, in the first stage, behaviour trees are used
to generate the desired outputs. We have also shown how these
BTs may be successfully evolved using genetic programming
techniques. The results show that, after pruning, the evolved
BTs are human readable, which makes the deduction of the
behaviour of the robots straightforward.

ACKNOWLEDGMENTS

The project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Demiurge: grant
agreement No 681872) and from Belgium’s Wallonia-Brussels
Federation through a ARC Advanced Project 2020 (Guaran-
teed by Optimization).

REFERENCES

[1] Eurostat. (2022, Mar.) Accidents at work - statistics by economic ac-
tivity. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=
Accidents_at_work_-_statistics_by_economic_activity.

[2] K. Azadeh, R. de Koster, and D. Roy, “Robotized warehouse sys-
tems: Developments and research opportunities,” ERIM Report Series
Research in Management Erasmus Research Institute of Management,
no. ERS-2017-009-LIS, 2017.

[3] E. Sahin, “Swarm robotics: from sources of inspiration to domains of
application,” in SAB 2004, ser. LNCS, E. Sahin and W. M. Spears, Eds.,
vol. 3342. Berlin, Germany: Springer, 2005, pp. 10-20.

[4] E. Tuci, M. H. M. Alkilabi, and O. Akanyeti, “Cooperative object
transport in multi-robot systems: A review of the state-of-the-art,” Front.
Robot. Al vol. 5, p. 59, 2018.

[S] A. Campo, S. Nouyan, M. Birattari, R. Gro, and M. Dorigo, “Ne-
gotiation of goal direction for cooperative transport,” in ANTS 2006,
ser. LNCS, M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli,
R. Poli, and T. Stiitzle, Eds., vol. 4150. Berlin, Germany: Springer,
2006, pp. 191-202.

[6] E. Ferrante, M. Brambilla, M. Birattari, and M. Dorigo, “Socially-
mediated negotiation for obstacle avoidance in collective transport,” in
DARS 10, ser. STAR, A. Martinoli, F. Mondada, N. Correll, G. Mer-
moud, M. Egerstedt, M. A. Hsieh, L. E. Parker, and K. Stgy, Eds.,
vol. 83. Berlin, Germany: Springer, 2013, pp. 571-583.

[7] A. 1. Hamouda, “Cooperative transport in swarm robotics. multi object
transportation,” Master’s thesis, AUC, Cairo, Egypt, 2018.

[8] S. Hauert, S. Mitri, L. Keller, and D. Floreano, “Evolving cooperation:
From biology to engineering,” in The Horizons of Evolutionary Robotics,
ser. Intelligent Robotics and Autonomous Agents, P. Vargas, E. Di Paolo,
I. Harvey, and P. Husbands, Eds. Cambridge, MA, USA: MIT Press,
2014, pp. 203-217.

[9] M. Birattari, A. Ligot, D. Bozhinoski, M. Brambilla, G. Francesca,
L. Garattoni, D. Garzon Ramos, K. Hasselmann, M. Kegeleirs, J. Kuck-
ling, F. Pagnozzi, A. Roli, M. Salman, and T. Stiitzle, “Automatic off-line
design of robot swarms: a manifesto,” Front. Robot. Al, vol. 6, p. 59,
2019.

[10] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari,
“AutoMoDe: a novel approach to the automatic design of control
software for robot swarms,” Swarm Intell., vol. 8, no. 2, pp. 89-112,
2014.

[11] D. Isla, “Handling complexity in the Halo 2 AL in GDC 2005, vol. 12.
London, United Kingdom: Game Developers Conference (GDC), 2005.

[12] M. Colledanchise and P. ()gren, Behavior Trees in Robotics and Al: An
Introduction, 1st ed., ser. Chapman & Hall/CRC Artificial Intelligence
and Robotics Series, R. Yampolskiy, Ed. Boca Raton, FL, USA: CRC
Press, 2018.

[13] K. Y. W. Scheper, S. Tijmons, C. C. de Visser, and G. C. H. E. de Croon,
“Behavior trees for evolutionary robotics,” Artif. Life, vol. 22, no. 1, pp.
23-48, 2016.

[14] S. Jones, M. Studley, S. Hauert, and A. Winfield, “Evolving behaviour
trees for swarm robotics,” in DARS 13, ser. SPAR, R. Gro8, A. Kolling,
S. Berman, E. Frazzoli, A. Martinoli, F. Matsuno, and M. Gauci, Eds.,
vol. 6. Cham, Switzerland: Springer, 2018, pp. 487-501.

[15] S. Jones, A. Winfield, S. Hauert, and M. Studley, “Onboard evolution
of understandable swarm behaviors,” Adv. Intell. Syst., vol. 1, no. 6, p.
1900031, 2019.

[16] J. Kuckling, V. van Pelt, and M. Birattari, “AutoMoDe-Cedrata: auto-
matic design of behavior trees for controlling a swarm of robots with
communication capabilities,” SN Comput. Sci., vol. 3, p. 136, 2022.

[17] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection, 1st ed. Cambridge, MA, USA: MIT Press,
1992, a Bradford Book.

[18] A. Marzinotto, M. Colledanchise, C. Smith, and P. ()gren, “Towards
a unified behavior trees framework for robot control,” in ICRA 2014.
Piscataway, NJ, USA: IEEE, 2014, pp. 5420-5427.

[19] R. Poli and N. F. McPhee, “Covariant parsimony pressure for genetic
programming,” University of Essex, Essex, United Kingdom, Tech. Rep.
CES-480, 2008.

[20] N. Jakobi, P. Husbands, and 1. Harvey, “Noise and the reality gap: the
use of simulation in evolutionary robotics,” in ECAL 95, ser. LNAI,
F. Mordn, A. Moreno, J. J. Merelo, and P. Chacén, Eds., vol. 929.
Berlin, Germany: Springer, 1995, pp. 704-720.

