
Mercator: hardware and software

architecture for experiments in swarm

SLAM

M. Kegeleirs, R. Todesco, D. Garzón Ramos, G.
Legarda Herranz, and M. Birattari

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2022-012

November 2022
Last revision: November 2022



IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2022-012

Revision history:

TR/IRIDIA/2022-012.001 November 2022
TR/IRIDIA/2022-012.002 November 2022

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.



Mercator: hardware and software architecture for experiments in

swarm SLAM

Miquel Kegeleirs, Raffaele Todesco,
David Garzón Ramos, Guillermo Legarda Herranz, and Mauro Birattari

IRIDIA, Université libre de Bruxelles, Belgium.

November 2022

1 Introduction

The Sphero RVR is an education-tailed device packed with a large sensor set. Its modularity makes it an
interesting candidate for robotics experiments, especially in swarm robotics. These native new capabili-
ties, such as odometry – the ability for the robot to locate itself into space – and the extended autonomy
might be a qualitative addition to the existing robot pool.

This document presents Mercator, an upgraded version of the Sphero RVR, as well as an ecosystem for
experimentation in swarm robotics with Mercator, including simulation in ARGoS3 and a cross-platform
control software interface that enables transparency between simulated and real-life behaviors of the robot.

2 Hardware architecture

The factory version of the Sphero RVR is equipped with the following sensors and actuators:

• an RGB ground color sensor that detects the color of the floor;

• a velocity sensor;

• a 3-axis accelerometer;

• a 3-axis gyroscope, measuring angular velocities;

• an IMU sensor, that measures the robot pitch, roll and yaw;

• an ambient light sensor;

• a locator odometry sensor, that allows the robot to locate itself;

• 5 RGB LEDs;

• 2 independent treads to move the robot.

Mercator is paired with a Raspberry Pi 41, and is equipped with additional sensors:

• 8 proximity sensors (Terabee Teraranger Multiflex2);

• a rotating lidar (YDLIDAR X4 3).

1https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
2https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-multiflex/
3https://www.ydlidar.com/products/view/5.html

1



(a) Base Sphero RVR (b) Mercator

Figure 1: The base Sphero RVR and Mercator.

Figure 2: Mercator software architecture

Communication between the robot and the Raspberry Pi is ensured through the UART protocol.

As shown on Figure 1b, the additional components (lidar, proximity sensors, and Raspberry Pi) are
mounted on a cardboard ”hat” on top of the robot. Consequently, the ground and odometry sensors are
still fully working, while the robot is able to detect obstacles with the proximity sensors. The lidar is the
only element at its height level in the experimental environment, in order to enable neighbor detection
between the robots. At the moment, the robot is however unable to detect ambient light. This will be
fixed in future improvements as the opaque cardboard will be replaced by translucent Plexiglas.

3 Software architecture

Sphero developed a Python API4 to enable interaction between the Rasperry Pi and Mercator through
the UART protocol. Any Linux distribution such as Ubuntu5 or Raspberry Pi OS6(previously Raspbian)
supports this API. This represents the first level of abstraction presented in Figure 2.

This base architecture allows to design control software for the robot, but only within this Python
environment which, as such, is not compatible with the ARGoS3 simulator. Hence, we use ROS to enable
communication between the ARGoS3 C++ control software and the Python RVR driver. In particular,
the control software will subscribe to sensor topics and publish actuator values, and the driver will do

4https://github.com/sphero-inc/sphero-sdk-raspberrypi-python
5https://ubuntu.com/download/server
6https://www.raspberrypi.com/software/operating-systems/

2



Figure 3: Mercator - ARGoS3 architecture with ROS

the opposite.

The following topics are used to share information between the driver and the control software:

• /rvr/groundcolor: the color detected by the ground sensor;

• /rvr/ambientlight: the ambient light perceived;

• /rvr/imu: IMU information, that groups:

– The orientation (pitch, roll and yaw) provided by the IMU sensor;

– Angular velocities from the gyroscope;

– Linear acceleration from the accelerometer.

• /rvr/odom: odometry information, that groups:

– The pose, including the position estimated by the locator and the orientation provided by the
so-called quaternion sensor;

– The twist, i.e., the angular velocities of the gyroscope and the linear velocities from the velocity
sensor.

• /rvr/wheelsspeed: the speed of the robot’s treads;

• /rvr/rgbleds: the color of the LEDs

This architecture is presented in Figure 3.

The flexibility and modularity of this architecture is highlighted when adding the additional hardware
modules: the lidar and the proximity sensors. Indeed, these sensors have their own ROS nodes (software
components), and they can connect to the same ROS master system as well. In order to integrate the
lidar and the proximity sensors with the rest of the architecture, they publish their information on dedi-
cated ROS topics (respectively, /scan and /ranges), which can be read by the ARGoS3 control software.
Hence, no additional work on the architecture is required to incorporate new sensors or actuators to the
robot.

3



Figure 4: Mercator complete architecture

The final architecture is schematized in Figure 4.

This modular architecture also helps to attenuate a ground sensor calibration issue. Depending on
the robot, the color sensed by the robot beneath is highly biased, either towards darker or lighter tones.
As no official calibration procedure is provided by Sphero, a color labeler ROS node has been integrated.
This additional node maps the raw reading to the RGB value of the closest label, defined by :

label = argmini di (1)

di = (Rsensor −Ri)
2 + (Gsensor −Gi)

2 + (Bsensor −Bi)
2 (2)

The result of this labeling is output on its own topic (/rvr/fixedcolor) which is provided as an input
to controllers.

4 Simulation environment

4.1 Robot model

A 3D model of the Sphero RVR has been realized, according to robot measures and pictures. This 3D
model can be seen in Figure 5. Regarding physics, a 2D physics model is implemented, using a cubed
colliding box around the robot shape, similarly to the e-puck implementation7. The treads are undergoing
a classical differential-drive model, with 2 distinct speeds vl and vr.

4.2 Simulating sensors

Due to the large sensor set of Mercator, simulating its capabilities accurately was a substantial part of
this work.

The implementation of each sensor in simulation is described in the following sections, including the
noise evaluation and generation.

4.2.1 Ground color sensor

The ARGoS3 simulator already includes grayscale ground sensor in some robot implementations. How-
ever, Mercator is able to detect the color underneath it and provide it as an RGB value. In ARGoS3,
this is simulated by checking the color of the virtual floor, at the position of the projection of the virtual

7https://github.com/demiurge-project/argos3-epuck

4



Figure 5: Sphero RVR 3D model. Black cylinders are visual representations of the RGB LEDs. The
green part of the upper side highlights the front of the robot.

color sensor on it. This virtual floor can be set as any image by the user.

The noise of the sensor has been evaluated for 4 different benchmark color measurements: red, green,
blue and yellow, over 300 samples each. The measured noise histograms, as well as their kernel density
estimation, are presented in Figure 6. Accordingly, a noise following a Gaussian distribution N(0, 5) for
each color channel is recommended in the experiment configuration. The µ and σ parameters of the
Gaussian distribution can be tweaked by the user to better simulate its own experimental environment.

4.2.2 Velocity sensor

The velocity sensor provides the robot speed along the X and Y axis ”absolute” axis, in m/s. The X
and Y axis here are defined as the axis according to Figure 7, at the boot time of the robot. However,
ARGoS3 rigidbodies only provide the position and orientation of the robot in the virtual space, the speed
must hence be computed from wheel speeds vl and vr:

1. Compute the velocity v of the robot by averaging vl and vr.

v =
vl + vr

2
(3)

2. Find the relative orientation Qrel from the original absolute orientation Qi and the current orien-
tation Qc, where all orientations are represented by quaternions.

Qrel = Q−1
i ∗Qc (4)

3. Compute the Euler angle α, representing the rotation around the Z axis, from Qrel.

4. Return the speed vector as
v⃗ = (v cosα, v sinα) (5)

4.2.3 Accelerometer

The 3-axis accelerometer provides the robot acceleration around its 3 axis (see Figure 7), in g. The axis
are defined as in the velocity sensor, the same method is hence applied to find the relative orientation
Qrel. To be able to simulate acceleration, the evolution of speed over time is computed from vl and vr:

1. Compute the velocity v of the robot by averaging vl and vr, as earlier.

v =
vl + vr

2
(6)

5



Figure 6: Noise of the color sensor for several ground colors. Each histogram color represents the
corresponding color channel.

Figure 7: Mercator axis system

6



2. Compute the relative orientation Qrel and find the Euler angle α from it.

Qrel = Q−1
i ∗Qc (7)

3. Compute the current velocity vector v⃗t from α.

v⃗c = (v cosα, v sinα) (8)

4. Retrieve the time spent between 2 speed measurements, which is the clock tick of ARGoS physics
simulator ∆t.

5. Compute the acceleration vector a⃗, with the previous speed vector v⃗t−1, and convert it to g (G =
9.81 m/s2).

a⃗ =
v⃗t − v⃗t−1

G∆t
(9)

6. Update the value v⃗t−1 to v⃗t for the next accelerometer reading.

4.2.4 Gyroscope

The gyroscope provides the angular velocity of the robot around each axis. Similarly to the accelerometer,
we only have access to the current orientation of the robot, and not its angular speed, which requires to
compute the difference between 2 timesteps:

1. Retrieve the differential orientation Qt, the rotation between the previous timestep orientation Qt−1

and the current one Qc.
Qt = Qc ∗Q−1

t−1 (10)

2. Convert Qt to Euler angles αX , αY and αZ , which represent the relative angular rotation and
constitute the angular vector α⃗.

3. Retrieve again the time spent between 2 measurements ∆t.

4. Compute the angular velocity vector v⃗ :

v⃗ =
α⃗

∆t
(11)

5. Update Qt−1 to Qt.

4.2.5 IMU

The Inertial Measure Unit (IMU) abstracts information from the magnetometer, accelerometer and gy-
roscope of the robot to provide orientation as pitch, roll, and yaw angles. As the IMU measurement is
based on an external reference (with the magnetometer) that all robots share, they also share the same
referential system for the IMU. For that reason, the simulated IMU provides the orientation that comes
from the absolute referential of the simulator, considering it has a virtual North pole that robots can
align to.

4.2.6 Light sensor

The single ambient light sensor is placed at the front of the robot and can perceive the ambient light
in lux. To simulate it, it is required to sum the contribution of each light source in the scene and take
occlusion into account:

1. Go through every light source in the scene

2. Check that light is not occluded by raycasting

3. Distribute the reading to the sensor according to its distance to it and its intensity

4. Clamp the value to the range the sensor can detect

The sum of all light sources contributions then constitute the sensor reading.

7



4.2.7 Locator

The locator can provide odometry information as (X,Y ) values inside an axis system that is defined as
the robot is aligned to North pole, similarly to the IMU. Although the axis systems of each robot are
aligned, the origin of the axis is the original position of each robot:

1. At the beginning of the experiment, save the position of the robot as the origin of the locator axis
(Xo, Yo)

2. Provide (X,Y ) readings as the current coordinates of the robot in the absolute simulator axis
system (Xc, Yc), translated to the locator origin.

(X,Y ) = (Xc, Yc)− (Xo, Yo) (12)

4.2.8 Quaternion

The quaternion sensor provides the relative orientation of the robot with respect to its booting position.
The approach is similar to the locator’s:

1. At the beginning of the experiment, save the orientation of the robot Qi

2. Find the relative orientation Qrel from the original absolute orientation Qi and the current orien-
tation Qc

Qrel = Q−1
i ∗Qc (13)

4.2.9 Proximity sensors

The proximity sensors allow to detect obstacles between 0.05 and 2 meters. To detect obstacles in
simulation, a raycasting approach has been applied:

1. For each sensor, check the first occluding object in the direction of the sensor

2. If the distance between the sensor and the obstacle is in the range [0.05, 2], the sensor reading is
that distance. Otherwise, it is −∞ or +∞ if the object is too close or too far, respectively.

The noise of the proximity sensors is normally-distributed with a low deviation, as shown in Figure 8.

4.2.10 Lidar

The lidar, due to its very similar functionality, has been implemented in the same way as the proximity
sensors, with different sensor placements, many more readings (719 against 8), and a broader range :
[0.10, 12] meters.

The lidar noise is distributed as in Figure 9. Accordingly, a uniform noise has been integrated, to
which the user can tweak the range to better fit its observations and environment.

4.3 Simulating actuators

The current actuator set comprises :

1. 4 wheels grouped into 2 treads (connecting 2 wheels each);

2. 5 RGB LEDs (2 in the front of the robot, one on each side, one in the back).

In simulation, the wheels are considered as a differential drive to which 2 different speeds can be
submitted (left and right), which matches the actual robot implementation. The LEDs are represented
with black cylinders (see Figure 5) and can display any color from its RGB encoding.

8



Figure 8: Proximity sensors noise distribution

Figure 9: Lidar noise distribution

9



Sensor/actuators Variables Range of values
Proximity prox [0, 1]8

∠q [0, 2π)8

Light light [0, 16000]
Ground color R,G,B [0, 255]3

Neighbour localization d [0, 10]m,m ∈ N
∠q [0, 2π)m,m ∈ N

Wheels v [0, 155]2

Table 1: The reference model variables for the RVR

4.4 The reference model

In AutoMoDe, every robot needs to be described as a reference model, a set of input/output variables
that are used by the different modules of the state machines produced by AutoMoDe. They provide
another layer of abstraction between the control software and the sensors and actuators. The reference
model variables for the Mercator are presented in Table 1.

The proximity sensor provides 8 readings included in [0, 1], 1 meaning that an obstacle is less than
0.05 meters away from the sensor, and 0 signalling no obstacles in range. The maximum range of the
proximity sensor can be tuned by the user to face different use cases. The proximity sensor also indicates
the angle of the sensor with respect to the head of the robot.

The light sensor provides the illuminance it perceives, in lux. However, as the latest robot prototype
does not have access to ambient light, this sensor is currently not in use.

The ground color sensor, as expected, provides the color output by the color labeler as an RGB value
triplet.

The neighbor locator is an abstraction that is required because of the difference between the robot
implementation and the simulation. To detect its neighbors, the real robot uses the lidar readings and
clusters them into groups it will consider as a single robot. In that way, each robot can detect its neigh-
bors in a 0 to 10 meters range by detecting the lidar of other robots which is the only object at the same
height. However, due to the physics simulation model, simulating inter-lidar detection is not possible.
The simulation uses an omnidirectional camera that is able to detect virtual, invisible LEDs placed on
the top of other robots. Practically, these two ways of detecting neighbors aim at the same objective,
which are grouped under the neighbour localization sensor of the reference model.

To extract the position of neighbors from lidar readings, they are clustered in the following way :

1. The algorithm goes through every of the 719 lidar readings.

2. If a reading lies outside of the [0.10, 0.75] range, it is discarded because it can not belong to another
robot. The upper bound of 75 cm is thought to avoid considering walls of the room in which the
arena lies as neighbors.

3. If 2 consecutive readings have a similar distance and angle (with arbitrary thresholds set at 2 cm
and 10 degrees), they are clustered together and considered as belonging to the same robot.

This algorithm eventually outputs the number of neighbors, their distance and their heading with respect
to the current robot.

The wheel variables are trivially the speed of each tread.

4.5 AutoMoDe-Watermelon

AutoMoDe-Chocolate control software takes the form of a probabilistic finite state machine (PFSM),
which is composed of 2 types of modules :

1. Behaviors : These are the states in the PFSM and represent a core behavior the robot can accom-
plish : exploration, stop, attraction/repulsion to neighbors or light, etc.

10



2. Transitions : The transitions are the conditions to transition from one state to the other. These
can be fixed probability, color of the floor, neighbor count, etc.

In particular, AutoMoDe-Chocolate contains the same behavior modules as the original AutoMoDe-
Vanilla, which are the following Francesca et al. (2014):

1. Exploration : the robot moves straight. If any of the proximity sensors positioned in front senses an
obstacle, that is, if proxi ≥ 0.1 for any i ∈ 1, 2, 7, 8, the robot turns on itself for a random number
of control cycles chosen in 0,1,...,τ ,where τ is an integer parameter in 1,2,...,100. The robot turns
away from the direction faced by the proximity sensor that returned the highest value.

2. Stop : the robot stays still.

3. Phototaxis : the robot moves towards the light source, if perceived; otherwise, it moves straight.
Obstacle avoidance is embedded: the robot follows the vectorw = w′−kwo, where k is a hard-coded
parameter whose value has been a priori fixed to 5 and w′ and wo are vectors defined as:

w′ =

{
wl =

∑8
i=1 (lighti,∠qi) , if light is perceived.

(1,∠0), otherwise;

wo =

8∑

i=1

(proxi,∠qi) ,
(14)

4. Anti-phototaxis : the robot moves away from the light source, if perceived; other-wise, it moves
straight. Obstacle avoidance is embedded: the robot follows the vector w = w′ − kwo, where

w′ =

{
−wl, if light is perceived

(1,∠0), otherwise:
(15)

and k, w’, and wo are defined in phototaxis.

5. Attraction : the robot goes in the direction of the robots in neighborhood, if any; otherwise, it
moves straight. Obstacle avoidance is embedded: the robot follows the vector w = w′−kwo, where

w′ =

{
wn =

∑n
m=1

(
α
di
,∠qi

)
, if robots are perceived

(1,∠0), otherwise;
(16)

and α is a real-valued parameter in [1,5], and where wo and k are defined in phototaxis.

6. Repulsion : the robot moves away from the other robots in its neighborhood, if any; otherwise, it
moves straight. Obstacle avoidance is embedded: the robot follows the vector w = w′−kwo, where

w′ =

{
−wn, if robots are perceived

(1,∠0), otherwise;
(17)

and wn is defined in attraction, while wo and k are defined in phototaxis.

However, the (anti-)phototaxis behaviors rely on the presence, for the e-puck, of multiple light sensors
which allow to find the direction of the light with respect to the robot. As Mercator owns a single light
sensor, these behaviors can not be implemented without regularly sampling the light intensity around the
robot to find its direction. Moreover, as the current prototype obstructs the light sensor, these modules
will not be used with Mercator. Exploration, stop, attraction and repulsion are compatible and working
with this robot.

Nonetheless, these modules also had to be tweaked, as the original modules were designed for the
e-puck. This leads to the introduction of AutoMoDe-Watermelon, the first AutoMoDe flavor designed
for Mercator. The behavior modules of AutoMoDe-Watermelon are the following :

1. Exploration : the robot moves straight. If any of the proximity sensors positioned in front senses an
obstacle, that is, if proxi ≥ 0.1 for any i ∈ 1, 2, 7, 8, or if there is a neighbor in front, the robot turns
on itself for a random number of control cycles chosen in 0,1,...,τ ,where τ is an integer parameter
in 1,2,...,100. The robot turns away from the direction faced by the proximity sensor that returned
the highest value.

11



2. Stop : the robot stays still.

3. Attraction : the robot goes in the direction of the robots in neighborhood, if any; otherwise, it
moves straight. Obstacle avoidance is embedded: the robot follows the vector w = kww

′ − kowo,
where

w′ =

{
wn =

∑n
m=1

(
α
di
,∠qi

)
, if robots are perceived

(1,∠0), otherwise;
(18)

and α is a real-valued parameter in [1,5], and where wo is defined in phototaxis; kw and ko are
hard-coded hyperparameters that have been a priori set respectively to 1.2 and 5.

4. Repulsion : the robot moves away from the other robots in its neighborhood, if any; otherwise, it
moves straight. Obstacle avoidance is embedded: the robot follows the vector w = w′−kwo, where

w′ =

{
−wn, if robots are perceived

(1,∠0), otherwise;
(19)

and wn is defined in attraction, while wo and k are defined in phototaxis.

Regarding transition conditions, AutoMoDe-Watermelon contains :

1. Black floor : if the ground is black (ground reading in grayscale is lower than 0.05), the transition
is enabled with probability β, where β is a parameter.

2. Gray floor : same as black-floor but the prerequisite is that the ground reading in grayscale is
around 0.5.

3. White floor : same as black-floor but the prerequisite is that the ground reading in grayscale is
above 0.78.

4. Neighbor count : the transition is enabled with probability

z(n) =
1

1 + eη(ξ−n)
(20)

where n is the number of robots in the neighborhood, η ∈ [0, 20] is a real-valued parameter and
ξ ∈ 0, 1, ..., 10 is an integer parameter. The transition is enabled with probability 0.5 if n = ξ. The
parameter η regulates the steepness of the function z(n) at n = ξ.

5. Inverted neighbor count : the transition is enabled with probability 1− z(n), where z(n) is defined
in neighbor count.

6. Fixed probability : the transition is enabled with probability β, where β is a parameter.

All of these transitions are compatible and implemented with Mercator. Moreover, to take advantage
of the ground color sensor, a 7th transition has been created, inspired by AutoMoDe-TuttifruttiGarzón Ramos
and Birattari (2020):

7. Color detection : if the robot perceives a given color c among a fixed set (red, green, blue and
yellow), the transition is enabled with probability β. β and c are parameters. To be resistant to
noise, the hue of the color perceived by the sensor is compared to each of the hues of the expected
labels. If it is close enough (under an arbitrary threshold of 15°), the closest label is considered as
the perceived color.

An example of an AutoMoDe-Watermelon PFSM can be found in Figure 10.

In order to obtain a control software that highlights a desired collective behavior of the swarm, the FSM
choice problem is turned into an optimization problem that will be tackled by iterated F-raceBirattari
et al. (2010), as in AutoMoDe-ChocolateFrancesca et al. (2015). This algorithm will then maximize the
performance of the swarm by evaluating different FSMs in the search space within a certain budget, i.e.,
the number of ARGoS3 simulations allowed. The performance of a given control software is defined by
mission-specific indicators. Each FSM is restricted to a maximum of 4 states, and 4 outgoing transitions
(which can not be self-transitions). Once the budget is depleted, iterated F-race outputs the best state
machine it could find.

12



Figure 10: An example of a PFSM control software that could be designed with AutoMoDe-Watermelon

5 Installation

Every package is not required for simulation use. Refer to the following table for environment require-
ments.

Package Required for simulation Required for real robot
argos3 ✓ ✓

argos3-rvr ✓ ✓

rvr ros ✗ ✓

RVR DAO ✓ (master branch) ✓ (ros branch)
Loop functions ✓ ✓

AutoMoDe-Watermelon ✓ (master branch) ✓ (ros branch)

These instructions are meant to be exhaustive and executed from scratch on a brand new simula-
tion/real robot setup. If you start from the Raspberry Pi image, you already have everything installed
but perhaps not up-to-date. Do not do anything else than updating the code and recompiling
in that case.

5.1 The ARGoS3 simulator

This installs the ARGoS3 software in its beta48 version. You can refer to the full installation instruc-
tions here for the required dependencies.

git clone https://github.com/ilpincy/argos3 ~/argos3

cd ~/argos3

git checkout 3.0.0-beta48

mkdir build && cd build

cmake ../src

make

sudo make install

5.2 The argos3-rvr plugin

This plugin adds the RVR entity and its sensors and actuators to ARGoS.

git clone https://github.com/rafftod/argos3-rvr ~/argos3-rvr

cd ~/argos3-rvr

mkdir build && cd build

cmake ../src

make

sudo make install

5.3 The rvr ros package

This package contains the driver and labelling nodes, as well as a draft controller for the real robot. You
can refer to the full installation instructions here for the required dependencies.

git clone https://github.com/rafftod/rvr_ros rvr_ros ~/rvr_ros

cd ~/rvr_ros

git submodule init

13



git submodule update

rosdep install --from-paths src --ignore-src -r -y

catkin_make

To run the scripts you should run :

source ./devel/setup.bash

Recommended : add it to .bashrc to avoid doing it at each login :

echo "source ${PWD}/devel/setup.bash" >> ~/.bashrc

source ~/.bashrc

Create a symbolic link for the Sphero SDK in the required folder :

ln -s ~/sphero-sdk-raspberrypi-python/sphero_sdk/ ~/rvr_ros/src/rvr_ros/src/

Rename the lidar port :

roscd ydlidar_ros_driver/startup

sudo chmod 777 ./*

sudo sh initenv.sh

5.4 RVR Reference model - DAO

This contains all the abstraction of the reference model.

Important : this repository is split into 2 branches :

• master for the simulation. Does not require ROS but does not work on the real robot. Mainly
existing to be run on the cluster or other environments where ROS is not supported.

• ros for the real robot (or simulation if your simulation environment is compatible with ROS).
Requires ROS and works with the real robot.

Installation from master

git clone https://github.com/rafftod/demiurge-rvr-dao ~/demiurge-rvr-dao

cd ~/demiurge-rvr-dao

git checkout master

mkdir build && cd build

cmake ..

make

sudo make install

Installation from ros

git clone https://github.com/rafftod/demiurge-rvr-dao ~/demiurge-rvr-dao

cd ~/demiurge-rvr-dao

git checkout ros

catkin_make install

5.5 Loop functions

This package contains the RVR loop functions.

Important : this repository is split into 2 branches :

• master for running the experiments normally. You should install this on the real robot and on your
simulation environment.

• epuck to replace RVRs with e-pucks to be compatible with the tracking system. You should install
this only on the computer tracking the robots.

14



git clone https://github.com/rafftod/experiments-loop-functions ~/rvr-loop-functions

cd ~/rvr-loop-functions

mkdir build && cd build

cmake ..

make

sudo make install

5.6 AutoMoDe-Watermelon

This contains AutoMoDe for the RVR.

Important : this repository is split into 2 branches :

• master for the simulation. Does not require ROS but does not work on the real robot. Mainly
existing to be run on the cluster or other environments where ROS is not supported.

• ros for the real robot (or simulation if your simulation environment is compatible with ROS).
Requires ROS and works with the real robot.

Installation from master

git clone https://github.com/rafftod/ARGoS3-AutoMoDe ~/ARGoS3-AutoMoDe

cd ~/ARGoS3-AutoMoDe

git checkout master

mkdir build && cd build

cmake ..

make

Installation from ros

git clone https://github.com/rafftod/ARGoS3-AutoMoDe ~/ARGoS3-AutoMoDe

cd ~/ARGoS3-AutoMoDe

git checkout ros

catkin_make

6 Usage

6.1 Simulation

You can simply run an experiment from an ARGoS file :

argos3 -c your_experiment.argos

Some examples figure in the experiments folder of the ARGoS3-AutoMoDe repository. Most importantly,
you should adapt :

• The loop function path and label in the loop_functions tag

• The AutoMoDe controller path in the automode_controller tag :

– /home/USERNAME/ARGoS3-AutoMoDe/build/src/libautomode.so for the master branch

– /home/USERNAME/ARGoS3-AutoMoDe/devel/lib/libautomode.so for the ros branch

The rest is an usual ARGoS file.

15



6.2 Real robot

Start the lidar :

roslaunch ydlidar_ros_driver X4.launch

Start the proximity sensors :

rosrun teraranger_array teraranger_multiflex _portname:=/dev/ttyACM0

Check that ranges are actually output by the Terabees :

rostopic echo ranges

Start the color labeler :

rosrun rvr_ros color_labeling.py

Start the driver :

rosrun rvr_ros rvr_async_driver.py

Start the ARGoS controller :

argos3 -c your_experiment.argos

A real robot example figures in the experiments folder of the ARGoS3-AutoMoDe repository (ros branch,
real_robot.argos file). Most importantly, you should adapt :

• The loop function path and label in the loop_functions tag

• The AutoMoDe controller path in the automode_controller tag :
/home/ubuntu/ARGoS3-AutoMoDe/devel/lib/libautomode.so should be the correct path.

Important : to stop the robot, run :

sh ~/rvr_ros/kill_nodes.sh

This kills the argos3 and driver processes. You have to start back the driver and ARGoS to use the
robot.

Acknowledgments

This project has received funding from the Fondation Jaumotte-Demoulin and from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(DEMIURGE Project, grant agreement No 681872) and from Belgium’s Wallonia-Brussels Federation
through the ARC Advanced Project GbO (Guaranteed by Optimization). M. Birattari and M. Kegeleirs
acknowledge support from the Belgian Fonds de la Recherche Scientifique (FNRS). D. Garzón Ramos ac-
knowledges support from the Colombian Ministry of Science, Technology and Innovation — Minciencias.

References

Birattari, M., Yuan, Z., Balaprakash, P., and Stützle, T. (2010). F-Race and Iterated F-Race: An
Overview, pages 311–336. Springer Berlin Heidelberg, Berlin, Heidelberg.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., Reina, A., Soley-
mani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V., and Birattari, M. (2015). AutoMoDe-
Chocolate: automatic design of control software for robot swarms. Swarm Intelligence, 9(2/3):125–152.

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M. (2014). Automode: A novel
approach to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2):89–112.

Garzón Ramos, D. and Birattari, M. (2020). Automatic design of collective behaviors for robots that can
display and perceive colors. Applied Sciences, 10(13):4654.

16


