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Abstract. Research in swarm robotics has shown that robot swarms
are effective in the exploration of unknown environments. However, lit-
tle work has been devoted to port the exploration capabilities of robot
swarms into the context of mapping. Indeed, conceiving robot swarms
that can map an unknown environment in a robust, scalable, and flexi-
ble way is an open issue. In this paper, we investigate a swarm mapping
method in which robots first individually map the environment by ran-
dom walk and then, we merge their maps into a single, global one. We
focus on five variants of random walk and we compare the quality of
the maps that a swarm produces when exploring the environment using
these variants. Our experiments with ten e-puck robots show that, de-
spite the individual maps being incomplete by themselves, it is possible
to collectively map the environment by merging them. We found that
the quality of the map depends on the exploration behavior of the indi-
viduals. Our results suggest that one of the variants of random walk, the
ballistic motion, gives better mapping results for closed environments.

Keywords: Swarm mapping · exploration · random walk.

1 Introduction

A robot swarm can collectively accomplish tasks that an individual robot could
not accomplish alone. By its own nature, a robot swarm is a self-organizing sys-
tem that operates autonomously without relying on a leader robot or on external
infrastructure. In addition, it possesses desirable properties such as scalability,
flexibility, and fault-tolerance [4] due to redundancy and locality of sensing and
communication. Because of these properties, robot swarms are ideal candidates
to perform missions that require to explore and map unknown environments in
which the risk that individual robots fail or are lost is high. Yet, no well-defined
methodology exists for swarm mapping (i.e. for exploring and mapping with
robot swarms).

Mapping has been largely explored [23] in the last decades and it is usually
the first task that a robot performs when it operates in an unknown environment.

1 All experiments were performed by MK and DGR. The article was drafted by MK
and DGR and revised by the three authors. The research was directed by MB.
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Most of the mapping methods have been designed to be general, platform inde-
pendent, and use-case independent. However, they have been developed mostly
for single robots and they cannot be directly adopted by centralized multi-robot
systems and robot swarms.

State-of-the-art methods for mapping often conflict with some characteristics
of robot swarms such as locality and the absence of global knowledge [4]. First,
these methods usually require external infrastructure to ensure inter-robot com-
munication or localization (a single point of failure that hinders fault tolerance).
Second, either one or a small number of robots is used, and they are expensive
and heavily equipped. This condition implies that the loss of a single robot se-
riously affects the whole system. As a result, adapting the research on mapping
to swarm robotics is not straightforward and little attention has been devoted
to close the gap between the two fields.

Some important questions still need to be addressed before effective swarm
mapping can be achieved: How should the swarm explore and gather information
on the environment? How should the robots share and spread the information
gathered? How should the information be retrieved and used to produce maps?
Our work aims to shed further light on the first of these questions. More precisely,
we investigate the possibility of using random walk as a strategy to explore and
gather information on the environment.

We are particularly interested in using random walk exploration in swarm
mapping because random walk is a simple behavior that can be easily imple-
mented in a robot swarm. Indeed, by its own nature, random walk is flexible,
scalable and robust as it does not rely on localization or communication. For
these reasons, though many different exploration strategies have been proposed
for single robot and centralized multi-robot systems [9, 18], random walk is still
the most commonly adopted behavior for exploring with robot swarms [5, 8, 3].

In this paper, we evaluate five different variants of random walk on swarm
mapping: Brownian motion, correlated random walk, Lévy walk, Lévy taxis, and
ballistic motion. In our experiments, each robot individually maps the environ-
ment, driven by a random walk. Later on, the individual maps are merged to
produce a single, global map of the environment. We assess the ability of the
robot swarm to map the environment through the quality of the global map pro-
duced. The main original contribution we make in the paper is the evaluation
of different variants of random walk in the context of swarm mapping. More-
over, to the best of our knowledge, this is the first paper in which random walk
exploration, the GMapping algorithm [11, 12], and the multirobot map merge al-
gorithm [13] are used together to achieve swarm mapping.

The paper is structured as follows. In Section 2, we discuss related work
in exploration and mapping with multi-robot systems. In Section 3, we present
the swarm mapping method that we investigate in the paper. In Section 4, we
describe the experimental setup. In Section 5, we illustrate the results of the
experiments. In Section 6, we conclude the paper and we sketch future research.
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2 Related work

Traditionally, mapping with multi-robot systems has been addressed separately
in the form of two sub-problems: multi-robot simultaneous localization and map-
ping (multi-robot SLAM) and multi-robot exploration [22].

Multi-robot SLAM concerns the collective production of maps. The work of
Saeedi et al. [23] provides a review of the methods that have been proposed on
this topic. The review describes advantages, problems, and challenges of widely
used methods based on the Extended Kalman Filter (EKF-SLAM), particle fil-
ters (PF-SLAM), and map merging, among others. Though current SLAM meth-
ods could be implemented in robot swarms, they would introduce constrains that
would affect the flexibility of the system: centralized mechanisms or complex
inter-robot interactions. The issues that one can encounter by adopting SLAM
on robot swarms are described by Barca et al [1].

The literature on multi-robot mapping often assumes an existent multi-robot
exploration and oversights the relationship between exploration and SLAM.
Rone et al. [22] described different exploration methods used in multi-robot
mapping and their characteristics. The review presents some exploration meth-
ods that could be easily implemented in robot swarms such as potential field
exploration, greedy mapping, and diffusion mapping, the last two relying on
random walk behaviors.

Recent work on swarm robotics has brought attention to the impact of using
different variants of random walk. For example, Dimidov et al. [3] studied the
performances of different variants of random walk while exploring and search-
ing for a static target in the environment. Schroeder et al. [24] conducted a
similar research and compared different variants of random walk to cover the
environment. The results of these studies highlight the relationship between the
performance on the task and the ability of the swarm to explore the environ-
ment with a particular variant. Our hypothesis is that the same differences in
performance should appear while performing swarm mapping with different vari-
ants of random walk. To corroborate our hypothesis, we investigate the mapping
performance of a robot swarm that explores by using five different variants.

Mapping with a robot swarm has already been reported by Ramachan-
dran [20], who evaluates the efficiency of the so-called Informed Correlated Lévy
Walk (i.e. a variant of random walk). However, our research differs in both the
method and objectives. First, Ramachandran proposed a method that computes
the global maps online in which robots know their absolute position and com-
municate thanks to external infrastructure. In our method, the global maps are
produced offline at the end of the experiment, the robots estimate their own
position, and they do not need to communicate while exploring and mapping
the environment. Second, in the experiments of Ramachandran, the code was
modified when ported from simulation to the real robots. In our case, we use the
same code in both. Finally, Ramachandran only evaluated the performances of
Lévy walk and Informed Correlated Lévy walk. As mentioned before, we evaluate
four more variants in addition to Lévy walk.
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3 Swarm mapping method

The swarm mapping method we propose integrates three algorithms: random
walk exploration, GMapping [11, 12], and multirobot map merge [13]. First, ran-
dom walk exploration defines the behavior that the robots use for exploring
the environment. Then, each robot uses the GMapping algorithm to gather in-
formation and produce an individual map of the area it has explored. Finally,
multirobot map merge is used to merge the individual maps and to produce a
global map of the environment.

We developed the swarm mapping method for a swarm of e-puck [15] robots.
The random walk behaviors are implementations based on models previously
proposed in the literature. GMapping and multirobot map merge are default im-
plementations that we adopted from the Robot Operating System (ROS) [19].
In the following, we provide a brief description of the algorithms and their con-
tribution to the swarm mapping method.

3.1 Random walk exploration

The first component of the swarm mapping method concerns the behavior that
drives the robots to explore the environment.

In our study, we consider five variants of random walk: Brownian motion [6],
correlated random walk [21], Lévy walk [25], Lévy taxis [16] and ballistic mo-
tion. We selected these variants because they have been reported as completely
random, specialized in intensification (i.e., intensive exploration of a small area
of the environment), and/or specialized in coverage (i.e., moderate exploration
of a large area of the environment). Indeed, we are interested in studying the
differences between intensification-oriented and coverage-oriented exploration in
swarm mapping.

Despite their different exploration abilities, Brownian motion, correlated ran-
dom walk, Lévy walk, and Lévy taxis share the same mathematical model [16,
3]. They can be described within a general behavior: the robot selects a direction
at random and moves towards it until a new direction is selected. The charac-
teristics of the movement for each variant are defined by the parametrization
of the model. In particular, the aforementioned variants differ in the ρ and µ
parameters: the former associated to the turning angle when the robot selects a
direction at random, and the later associated to the time the robot keeps mov-
ing along that direction. In our implementations, we used the parametrization
described as optimal by Pasternak et al. [16] and Dimidov et al. [3] as shown in
Table 1. Figure 1a describes the general behavior of Brownian motion, correlated
random walk, Lévy walk and Lévy taxis.

In addition to the four variants described above, we included the ballistic
motion behavior used by Francesca et al. in AutoMoDe-Vanilla [8]. The ballis-
tic motion used in the exploration module of Vanilla drives the robots with a
constant straight motion, only changing their direction when an obstacle is de-
tected. We consider here the ballistic motion as a random walk behavior because



Random walk exploration for swarm mapping 5

Table 1: Step length, turning angle, and specialty for the variants of random
walk

Variant Step length Turning angle Specialty

Brownian Motion µ = 3 ρ = 0 None
Correlated Random Walk µ = 3 ρ = 0.05 Intensification
Lévy Walk µ = 2.8 ρ = 0 Coverage
Lévy Taxis µ = 2.8 ρ = 0.05 Mix of coverage/intensification

Ballistic Motion N/A N/A Coverage
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Fig. 1: Finite state machines of the variants of random walk

the robots select the new direction at random. Figure 1b describes the general
behavior of the ballistic motion.

Figures 1a,1b also show that the five variants of random walk include a basic
obstacle avoidance behavior. Brownian motion, correlated random walk, Lévy
walk, and Lévy taxis integrate a repulsive force model [2] that drives the robots
away from any object in their detection range. In the case of the ballistic motion,
the obstacle avoidance is an intrinsic property of the behavior and it allows the
robots to avoid objects in the same range as the others.

3.2 Individual mapping

The second component of the swarm mapping method concerns the ability of
the robots to gather information and to individually map different areas of the
environment.
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We use the GMapping algorithm to produce an individual map for each robot
in the swarm. GMapping is a single-robot, SLAM algorithm that takes sensor
information and produces a two-dimensional occupancy grid of the environment.
In our method, we consider a model of robot that explores, computes its own
odometry (i.e. an estimation of its own displacement), and detects and locates
objects in a short range. This information is sufficient for GMapping to produce
a map that describes the empty and obstructed areas that the robot finds.

The odometry on each robot is first initialized with the deployment position
of the robot. Then, the robot continuously estimates its position in open loop by
integrating the movement commanded by the random walk behavior. Providing
the robots with knowledge about their starting position does not have any effect
on their ability to produce the individual maps. The information was included
in order to enable the merging of the individual maps in the following step of
the swarm mapping method.

3.3 Global mapping

The third component of the swarm mapping method concerns the combination
of the individual contribution of each robot in the swarm into a single global
map of the environment.

In our swarm mapping method, we merge the individual maps produced
by each robot into a single map by using the multirobot map merge algorithm.
Multirobot map merge is originally intended for merging an arbitrary number of
individual maps at run time. The maps are merged only when the robots have
finished the exploration of the environment. We chose multirobot map merge
because it has been used in previous research [13] to merge individual maps
produced by multi-robot systems and GMapping.

Multirobot map merge has two merging modes that differ on whether the
initial position of the robots is known or not, the former being more robust. On
the one hand, providing the algorithm with no positioning information is a closer
approach to the self-organizing nature of the robot swarms. On the other hand,
we consider reasonable that the initial relative position of the robots could be
known a priori when the robots are deployed in a fixed location. We consider
both cases in our swarm mapping method.

4 Experimental setup

We evaluate the swarm mapping method with a swarm of e-pucks mapping a
closed environment. The robots operate in an hexagonal closed environment
referred to as the arena. The time available to the robots for mapping the arena
is 180 s. The arena comprises an area of 2.30 m2 and it is surrounded by walls
of 0.94 m in length. On a per-experiment basis, the arena could contain none or
five rectangular obstacles of 0.02 m2. We expect that differences in the object
density in the arena should have an effect on the ability of the swarm to explore
the environment, and therefore, in the quality of the global map. The deployment
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(a) Simulation, no obsta-
cles

(b) Real environment, no ob-
stacles

(c) Simulation, five obsta-
cles

(d) Real environment, five
obstacles

Fig. 2: Arenas used in the experiments and starting position of the robots

position of the robots in the arena is fixed in all the experiments: the robots are
aligned along the west wall of the arena with 0.10 m between their center and
the wall, and 0.09 m between each other’s center.

Figure 2 shows the arenas and robots in their deployment position for both
the simulated and real environments. All the simulations are performed using
ARGoS3, beta 48 [17]. In the following, we describe the reference model of the
robots and the protocol we used in our experiments.

4.1 Robot

We consider an extended version of the e-puck [15, 10]. The e-puck is a differ-
ential wheeled mobile robot with a 0.08 m diameter and maximum velocity of
0.12 m s−1 It is equipped with an embedded computer and a set of eight infrared
proximity sensors. The proximity sensors are distributed around the robot and
they detect objects in a range of 0.10 m. We configured the robots to avoid
objects in a range of 0.08 m to let them map obstacles before avoiding them.

For the purpose of this study, we integrated ROS Indigo into the embedded
computer of the robot. We developed a ROS-based controller that drives the
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robot by using the variants of random walk described in Section 3.1. The con-
troller transforms the desired direction of movement into appropriate velocity
commands for the e-puck. In parallel, the controller also computes the odom-
etry of the robot and receives the readings from the proximity sensors. This
information is passed to GMapping at runtime to enable the robot mapping.

4.2 Protocol

We evaluate the five variants of random walk along with our swarm mapping
method, both in simulation and real environment.

We consider a swarm of 10 e-puck robots mapping the arena described in
Section 4. In all experiments, we execute our method for swarm mapping to pro-
duce one global map of the arena. In simulation, the swarm mapping is executed
30 times for each variant. In the real robot experiments, the swarm mapping
is executed 10 times for each variant. We repeated the experiments in the two
arena configurations: with and without obstacles. We report the individual and
global maps obtained in a per-experiment basis.

We assess the quality of the global maps by visual inspection. For the purpose
of our experiments, the quality metric represents the completeness and repre-
sentativeness of the maps when compared to a reference map. In this case, the
reference map is the ideal map to be produced if the robots map perfectly the
environment. We consider visual inspection a sufficient metric to qualitatively as-
sess the exploration abilities of the robots in swarm mapping. A well-established
methodology for quantitative assessment is still missing and should be the ob-
jective for future work.

5 Results

We present the qualitative analysis of the results for both simulated and real
experiments. In addition, we communicate the experiences made and the insights
gained while adopting GMapping and multirobot map merge in swarm mapping.
Individual and global maps, demonstrative videos, code, and ROS parameter
files are available in [14]. Figure 3 shows a sample of the maps produced in
swarm mapping for each variant of random walk.

With each variant, the robot swarm explores similarly the arena both in
simulation and real environment. The main difference between simulation and
real environment lies on the sensitivity of the proximity sensors: in real envi-
ronment, robots are more sensitive and tend to detect and avoid obstacles from
a further distance. As a result, then tend to cover more the environment. The
maps created in simulation match the areas of the arena explored by the swarm,
and provide usable information about its content. The maps obtained with real
e-pucks, on the contrary, do not reflect the explored areas and are hardly useful.
We compared the performance of the variants on the basis of the results obtained
in simulation.
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(a) Ref (b) BaM (c) BrM (d) CRW (e) LW (f) LT

Fig. 3: Swarm mapping results in simulation (above) and real robot experiments
(below): (a) Reference map; (b) Ballistic motion; (c) Brownian motion; (d) Cor-
related random walk; (e) Lévy walk; (f) Lévy taxis.

The results show that the ballistic motion provides maps with a better qual-
ity than the other variants. Indeed, robots using the ballistic motion tend to
cover better the arena while the other variants focus more on intensification.
The ballistic motion is able to provide (nearly) complete maps while the maps
produced with the other variants are mostly half-complete. In both cases, the
exploration behavior was not affected by the presence of obstacles in the arena.
We acknowledge that these observations are however only valid in the context of
closed space experiments. It is easy to convince oneself that the ballistic motion
cannot work in an open space without a high risk of loosing robots.

We also found that Brownian motion, correlated random walk, Lévy walk
and Lévy taxis performed similarly. In overall, the maps produced with these
variants do not differ neither in completeness or representativeness. As a matter
of fact, we did not find substantial differences in the coverage and intensification
abilities of these behaviors. The four variants responds to the same mathematical
model and hence, their behavior does not differ considerably. In this sense, we
argue that the parametrization of the model considered as optimal in previous
research [3] cannot be generalized and it is not optimal for the e-pucks.

We successfully integrated GMapping and multirobot map merge in swarm
mapping. The results in simulation show that, despite their limited resources,
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a swarm of e-pucks performing ballistic motion can map its environment. Still,
we think that porting algorithms from single robot and centralized multi-robot
systems is not necessarily the best approach to achieve swarm mapping.

First, GMapping was designed to work with robots equipped with dense
long-range sensors and good localization systems; swarm robots like the e-pucks
provide neither of them. Although we succeeded in obtaining the maps in simu-
lation, GMapping failed when ported to the real robots. Real e-pucks are prone
to have more noisy proximity readings and considerable errors in the estimation
of the odometry. Consequently, GMapping produced noisy and erroneous indi-
vidual maps that eventually could not be merged in good quality global maps.

Second, multirobot map merge was designed to merge maps regardless how
they were produced. Previous experiments with this algorithm were performed
with individual maps with a higher number of features and few overlapping
areas [13]. In our swarm mapping method, on the contrary, the swarm succeeded
in mapping due to the redundancy of small contributions from each individual
map. Each robot in the swarm only maps a small area of the environment and
the random walk exploration leads to increase the overlapping in those areas. As
a consequence, the multirobot map merge algorithm was not able to produce the
global map without the deployment position of the robots. Moreover, the ROS
implementation of the algorithm crashed in some experiments disregarding the
exploration behavior or the environment (real or simulated). Our results show
that multirobot map merge could be used to some extent in swarm mapping,
however a more suitable option should be explored in future work.

6 Conclusions

Robot swarms are suitable for the exploration and mapping of unknown envi-
ronments. Still, swarm mapping is a field under development and no well-defined
methodology exists to achieve it. In this article, we investigated the possibility
of using random walk exploration with GMapping and multirobot map merge
as a method to achieve swarm mapping. The robots explored and individually
mapped the environment by random walk, and then the individual maps were
merged to produce one single, global map. The redundancy of the individual
maps contributes to obtain a good quality representation of the environment.
This method can be ported with minimal effort to other ROS-based robot swarms
since it does not require complex interactions between robots.

We conducted experiments, both in simulation and real environment, with a
robot swarm mapping a closed environment while using five variants of random
walk: Brownian motion, correlated random walk, Lévy walk, Lévy taxis, and
ballistic motion. The robot swarm was able to successfully map the environment
in simulation. However, experiments in real environment were less satisfying and
highlighted the necessity to find strategies to better transfer the control software
from simulation to real environment. Results in simulation showed that ballistic
motion produces the best maps due to the better ability of the swarm to cover
the environment. Yet, these results are only valid for closed environments and
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could not be extended to open ones. The other variants, on the contrary, showed
a dominant intensification behavior that provided mostly half-complete maps.

We conclude that the selection and parametrization of the appropriate ran-
dom walk behavior for swarm mapping is a topic that requires further research.
Future work will be devoted to use modular automatic design methods like Au-
toMoDe [8] for this purpose. We expect a twofold contribution from AutoMoDe:
first, it would provide a framework to assess the selection and parametrization of
the behaviors in different environments; second, it would allow to port better the
control software from simulation to the real robots. With regards to the mapping
method, we will investigate the possibility of adopting concepts of distributed
mapping [7] into swarm mapping. Indeed, merging individual maps centralizes
the mapping process and, to some extent, affects the flexibility of the system.
We expect that distributed mapping will provide alternatives to produce and
retrieve useful partial maps in a fully distributed way.
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