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ABSTRACT

Several methods have already been proposed to automatically design control software for robot swarms by
assembling predefined modules. Yet, so far, the modules on which these methods operate have always been
defined manually in a process that is time consuming, requires domain knowledge, and must be performed
by an expert. Motivated by the goal of automatizing the definition of these modules, we propose an approach
in which repertoires of modules, in the form of neural networks, are automatically generated via a quality-
diversity evolutionary algorithm. To illustrate the proposal, we introduce Nata, a novel approach belonging
to the AutoMoDe family. Nata automatically generates probabilistic finite-state machines in which states are
selected from a repertoire of neural networks, and transition conditions are selected from a set of rules based
on the sensory capabilities of the robotic platform considered. Both the repertoire of neural networks and the
set of transition rules are automatically generated a priori, once and for all, in a mission-agnostic way. We
study Nata on three missions, both in simulation and with real robots. Nata is the first modular automatic

design method that assembles modules that were themselves generated automatically.

1. Introduction

Every robot of a swarm operates autonomously, only considers local
information perceived by itself or shared by neighboring peers, and
must cooperate with others to accomplish tasks that are beyond its
individual capabilities [1]. The main challenge in swarm robotics is to
conceive the behaviors of the individuals so that the many robot-robot
and robot-environment interactions that characterize the operation
of a swarm lead to a desired collective behavior [2,3]. A promising
approach for creating robot swarms is automatic design [4,5].

In automatic design, the mission to be tackled is formally specified
by a measure that indicates to which extent the swarm accomplishes
it. An optimization algorithm maximizes this measure to find an ap-
propriate individual behavior: in practice, it does so by fine-tuning the
parameters of the control software that is then executed on the robots.

The most popular approach to automatically conceive control soft-
ware for robot swarms is neuroevolution [4,6,7]. With this approach,
an instance of control software is a neural network whose synaptic
weights — and possibly the topology — are optimized by an evolution-
ary algorithm [8-11]. The main advantage of the neuroevolutionary
approach is its ease of operation: to use it, one only needs to map the
readings of the robot’s sensors to the input nodes of the neural network,
and the values of the output nodes to its actuators. No expertise in
swarm robotics is necessary in the definition of the design method. The
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main drawback is the lack of robustness to the discrepancies between
simulations and reality—what is called the reality gap [12,13]. In fact,
a neuroevolutionary design method used in a fully automatic context —
that is, in a one-shot process that does not allow human adaptations of
the method to the problem at hand [14,15] - is likely to produce control
software that performs well in simulation, but poorly in reality [16].

Another popular approach to the automatic design of robot swarms
comprises modular methods, which generate instances of control soft-
ware by combining low-level behaviors [17-19]. So far, the modular
methods that have been introduced have the downside of requiring
human expertise in either their operation or their conception. For ex-
ample, Duarte et al. [17] proposed a method based on the hierarchical
decomposition of complex behaviors into several simpler ones that are
then automatically generated via neuroevolution. As the decomposition
of complex behaviors is performed by hand and is mission dependent,
this method cannot be used in a fully-automatic context.

Francesca et al. [19] proposed AutoMoDe, an approach that auto-
matically combines hand-written modules into a predetermined control
architecture. The modules are low-level behaviors executed by the
robots, and conditions to transition from one low-level behavior to
another. Although the modules are conceived by a human, they are
created once and for all in a mission-agnostic fashion, which allows the
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AutoMoDe approach to be used in a fully-automatic context [15]. The
AutoMoDe approach currently comprises around ten design methods,
which have all been shown to produce control software that cross
the reality gap satisfactorily [19-28]. In fact, AutoMoDe has been
created specifically to overcome the robustness issue faced by the
neuroevolutionary approach [19] — see Section 2 for an explanation.

The definition and implementation of the modules that are to be
combined automatically is critical to the success of a modular method.
By success, we mean the ability of the method to exploit the capabilities
of the robotic platform for which control software is conceived so
that collective behaviors that are of interest to swarm robotics are
produced [29].

A fully-automatic modular method is typically conceived to produce
control software for a specific robotic platform, and cannot easily
be ported to other ones. One can imagine that robotic platforms of
different nature (e.g., air-based, ground-based, water-based), or robotic
platforms of the same nature but with different capabilities (e.g., com-
munication, vision, actuation) would require specific modules to appro-
priately utilize their capabilities. One can also imagine that, if these
modules were to be conceived manually, this should be done by an
expert in (swarm) robotics to obtain the best possible results.

In this paper, our goal is to conceive a new instance of AutoMoDe
that requires less human expertise to be implemented or to be ported
to different robotics platforms than the current instances.

In a previous research, we investigated the viability of replacing the
hand-coded low-level behavior modules of Chocolate, the state-of-
the-art AutoMoDe method [20], with automatically generated neural
networks [27]. We defined a method, AutoMoDe-Arlequin, which
produced control software that outperformed the one generated by
a classical neuroevolutionary design method. Although these results
were promising and opened the door to the exploration of novel design
methods, we did not completely free ourselves from human expertise in
the conception of Arlequin. Indeed, expert knowledge was involved
in (i) the hand-coding of the condition modules and (ii) the definition
of the performance measures that were used to generate the neural
networks by artificial evolution—which is known to be particularly
challenging [9,30].

To further dispense from human expertise in the definition of a
modular method, we address here the two aforementioned points by
(i) proposing a set of rules defined on the sensory capabilities of the
robotic platform to automatically generate condition modules, and (ii)
adopting an approach to generate repertoires of low-level behaviors in
a mission-agnostic way, without the need to define an objective or a
performance measure for each of the behaviors. Repertoires are large
sets of low-level behaviors that are as diverse as possible. They are
created using a quality-diversity algorithm that uses behavioral novelty
of candidate behavior as the objective function of an optimization
algorithm [31].

We present Nata,' a design method that automatically generates
control software by selecting modules from a repertoire of mission-
agnostic behaviors and assembling them into probabilistic finite-state
machines. We test Nata with physical robots on well-studied swarm
robotics missions. The repertoire is generated using novelty search
with local competition [33]; the hyperparameters of the novelty search
algorithm were selected to produce a repertoire similar to the one
presented in [32].

Nata is, to the best of our knowledge, the first repertoire-based
method to generate and assemble probabilistic finite-state machines

! The methods belonging to the AutoMoDe family all have food-related
names: Vanilla, Chocolate, Gianduja, TuttiFrutti... The method presented in
this paper is based on the work of Gomes et al. of the University of Lisbon [32].
To acknowledge the source of inspiration and to celebrate the original and
inspiring work of our colleagues, we named our method Nata, as in “pastéis
de nata”, the popular custard tarts from Belém, Lisbon.
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for robot swarms, the first swarm robotics repertoire-based method
to be tested on real robots, the first modular method that has been
generated automatically—that is, the behaviors and transition rules on
which the automatic design method operates are themselves generated
automatically.

2. Background

As stated in Section 1, AutoMoDe is a modular approach to the
automatic design of control software for robot swarms that was intro-
duced to address the issue of the reality gap. The reality gap is the
unavoidable difference between reality and the simulation models used
during the automatic design process. The introduction of AutoMoDe
was motivated by the observation that the reality-gap problem resem-
bles the one of overfitting encountered in machine learning [19]. An
important result in this domain is the bias-variance trade-off, which
decomposes the generalization error of a learning algorithm into two
terms: bias and variance [34,35]. Bias and variance are known to be
correlated to the complexity of learning algorithms: high-complexity
algorithms have high variance and low bias, whereas low-complexity
ones have low variance and high bias. It is also known that high-
complexity algorithms tend to overfit the training set more than less
complex ones.

Francesca et al. [19] applied these notions to the automatic design
of robot swarm, and conjectured that high-complexity automatic design
methods tend to suffer more from the reality-gap problem than low-
complexity ones because they are more likely to overfit the simulator
used during the design phase. The AutoMoDe approach they pro-
posed [19] has a lower complexity with respect to neuroevolution.
Indeed, the control software it can produce is restricted to what can
be obtained by selecting and combining a set of pre-defined modules
into a given architecture, and by fine-tuning a small set of parameters—
these restrictions are effectively a form of bias introduced to lower the
variance.

Arlequin [27] was introduced to test the conjecture that the
robustness to the reality gap of AutoMoDe results from the restriction
of the space of the control software that it can generate rather than
by the fact that the modules are skilfully hand-crafted. To this end,
Arlequin assembles modules obtained via neuroevolution—also in
this case, the modules are generated a priori and once and for all,
in a mission-agnostic way. The modules of Arlequin were gener-
ated using performance measures defined to obtain behaviors that are
qualitatively similar to the hand-crafted modules of Chocolate.

Conceiving the appropriate performance measure so that the neu-
roevolutionary process produces the desired swarm behavior is chal-
lenging and is typically done via trial-and-error [9,30]. Repertoire-
based methods using quality-diversity algorithms appear to be an in-
teresting step forward in order to free ourselves from the burden of
creating such performance measures.

Quality-diversity algorithms, such as MAP-elites [36] or novelty
search with local competition [33], are algorithms that explore a
given search space to find high-quality solutions to a problem while
maximizing their spatial diversity. These algorithms have already been
used to create repertoires of behaviors for legged robots [33,36-39],
wheeled robots [32,40-42], robotic arms [36,43,44], and UAV’s [45].
Most of the works considered open-loop controllers [36-40,43-45], that
is, the control software modules in the repertoire do not use sensory
information and only describe locomotor behaviors. The use of closed-
loop controllers - that is, control software modules that make use of
sensory information — was presented in subsequent works [32,41,42].

In our research, we search the space of possible behaviors — in
the form of neural networks —, to build a repertoire of high-quality
behavioral modules to be used as building blocks of the robots control
software. Gomes and Christensen [32] were the first to use a quality-
diversity algorithm to generate a repertoire of swarm behaviors. The
authors evaluated all behaviors of the repertoire on eight missions
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to assess their quality. Results showed that the repertoire contained
suitable solutions for all missions. In that work, behaviors of the
repertoire were not assembled, the model of the robot was rather
simple, and no real-robot experiments were conducted. Subsequently,
Gomes and Christensen [41] presented EvoRBC-II, a method to evolve
repertoires and assemble the modules using a supervisor decision tree
as an arbitrator that selects the low-level behavior to be executed. The
method was assessed on nine single-robot missions but no real-robot
experiment was conducted.

3. Modular repertoire-based automatic design

Nata belongs to the AutoMoDe family of modular methods. It com-
bines two types of modules — behaviors and conditions — into probabilis-
tic finite-state machines using irace [46]. Irace is the software package
implementing the Iterated F-race optimization algorithm; it is used with
its default parameters. Iterated F-race is based on F-race [47], a racing
procedure [48] originally proposed for the automatic configuration of
stochastic optimization algorithms and metaheuristics.

A behavior is an action executed by a robot. A condition is a
provision for switching from one behavior to another. The control
software of each individual robot is a probabilistic finite-state machine
in which each state is a behavior and each edge is associated with a
condition that enables it depending on whether it is satisfied. Behaviors
and conditions were generated automatically through procedures that
we will detail in the following.

In this section, we describe the procedure we followed to create the
repertoire of neural networks, we propose a methodology to generate
condition modules, and we explain how Nata uses its repertoire and
the generated conditions to produce control software for robot swarms.

3.1. Generation of a repertoire of behaviors using novelty search with local
competition

In this section, we present the idea behind the use of novelty search
with local competition and the creation of the repertoire of behaviors
of Nata.

We created the repertoire of Nata following the idea introduced
in [32] for building a repertoire of behaviors for robot swarms. Each
behavior in the repertoire is a neural network that can be used as
control software on a robot.

We generated this repertoire of behaviors using an evolutionary
process driven by novelty search with local competition [33,49]. This
process follows the framework introduced by Cully and Demiris [43]
and used by Gomes and Christensen [32], in which the selection of
novel solutions and the construction of the repertoire are two indepen-
dent steps; the algorithm is summarized in Algorithm 1 and in Fig. 1.
We first create an empty repertoire that will hold the set of best candi-
date neural networks and will eventually become the final repertoire.
After generating the initial population, we evaluate all neural networks
of the population in a set of randomly generated environments and
compute the median behavior characterization and the mean quality
score of each neural network. The randomly generated environments all
share the same size, shape, and ground color but can have a floor patch
of a random color (white, gray, or black) at a random position chosen
between three possible ones, up to one obstacle box at the center of the
arena, and up to one light source. We evaluate each neural network of
the population on 10 random environments for 100 s.

The behavior characterization is a vector that represents the behav-
ior of the robots in the swarm when evaluated in different environ-
ments [50]. To characterize the behavior of the swarm, we compute for
each individual robot the 7 following features: the linear and angular
speed; the distance to walls/obstacles, to other robots, and to the closest
robot; the ambient light and the ground color perceived. The behavior
characterization vector is composed of 14 real values: the mean and
the standard deviation for each of the features described above. These
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values are computed based on the evaluations of the swarm on the 10
random environments.

The quality score represents the number of collisions that occurred
during an evaluation of a neural network and is computed using the
following function: Q = 1 — C/(T - N), where C is the number of
collisions, T is the duration of the evaluation and N is the size of the
swarm.

After these steps, we update the repertoire with the newly evaluated
neural networks based on their novelty score and local competition
score. The novelty score is the mean distance of the current neural
network to its k nearest neighbors. The local competition score is
the number of neural networks in the k nearest neighbors that are
outperformed by the current neural network. In our case, we considered
k = 25. The given neural network is then added to the repertoire if its
nearest neighbor is sufficiently different from it (the distance between
is greater than parameter /). The given neural network may also replace
its nearest neighbors in the repertoire, if it is not sufficiently different
(the distance between is less than /) but its quality score is strictly
greater and the second nearest neighbor is sufficiently different from it.
The following generation of neural networks is created by crossover and
mutation on the genomes of the current generation. The evolutionary
process is a modified version of the NEAT [51] algorithm to allow
Pareto-based bi-objective optimization, where the two objectives are
the novelty score and the local competition score.

The repertoire is thus built in a task-agnostic way and has to be built
only once to be subsequently used in a great variety of swarm robotics
missions.

Algorithm 1 Repertoire evolution with novelty search with local com-

petition. In our case, /| = 1.5 is the repertoire distance threshold,
s = 50 is the repertoire growth per generation, S = 2000 is the
archive capacity, and k = 25 is the nearest neighbors count. The

archive A is filled during the execution of the algorithm with randomly
selected neural networks from the population to encourage uniform
behavior exploration [43]. It is used to compute the novelty and local
competition scores.

1: A<@, R0

2: P < RandomInitialPopulation()

3: for g € generation

4 forieP

5 foree€ E

6: 4,-b, < Evaluate(i,e)

7: B(i) < GeometricMedian({b, : e € E})

8 0() = Teer Tt

9 forieP

10: x < NearestNeighbors(i,AU P, k)

11: N() < Zye, 77415t (B(). Bx)

12: LC(i) « ZXG){ [O@) > O(x)]

13: 21> x» < NearestNeighbors (i, R,2)

14: if [R| =0 or |R| >0 and dist (B(i), B(x))) > !

15: R < RU{i}

16: else if [R| > 1 and Q@) > Q(y;) and dist (B(), B(y,))
>1-0.1

17: R« R\ {xpuli}

18: if |[A|>S -5

19: A« A\ SelectRandom(A, 4| +s—S5)

20: A« Au SelectRandom(P,s)
21: P < Breed (P) based on N(i) and LC(i)
22: return R

3.2. Generation of rules for condition modules

Condition modules are generated automatically via a set of rules
that operate on the reference model of the robot. More precisely,
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Candidate sufficiently different

Candidate has better quality than first neighbor
and sufficiently different from second neighbor?

[Create empty archive A and repertoire R]

Initialise population P
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Select candidate in P and compute quality and behavior characterization vector

Random environments left to
evaluated candidate in?

No

Compute median behavior characterisation and quality score and update candidate

Select next environment

Candidates left in population?

No

Select candidate in P and compute k=25 nearest neighbors in archive and population,

Select next candidate ==

2 nearest neighbors in repertoire, novelty score, and local competition score

Add candidate to repertoire

from nearest neighbors?

Replace first neighbor with
candidate in repertoire

Candidates left in population?

No

Select next candidate f=

Ves
{mhive full? =

Randomly remove s candidates from archive

No

Add s random candidates from population to archive

Create next generation P

Generation is less than max generation?

No

Return repertoire R

Fig. 1. Flowchart for the repertoire evolution. Creation of the repertoire using novelty search with local competition. Flowchart visualization of Algorithm 1.



K. Hasselmann et al.

Table 1

Condition modules: Five condition modules were generated based on the five inputs
of reference model RM1.1 presented in Table 2: proximity, light, ground, number of
neighboring robots perceived, and attraction vector.

Input Input class parameters
proximity sensor continuous p € [0,1]: probability

6 € [0, 8]: threshold

d € {0,1}: trigger above or below 6
light sensor continuous p € [0,1]: probability

6 € [0, 8]: threshold

b € {0,1}: trigger above or below 6
ground sensor categorical p € [0,1]: probability

C € {black, gray, white}
number of neighboring continuous p € [0, 1]: probability
robots perceived 0 € [0,20]: threshold

d € {0,1}: trigger above or below 6
attraction vector vector p € [0, 1]: probability

0 € {[-7, F1.[5.0L[0, 3).[5, 7]}
quadrant

the input variables of the reference model, which represent sensory
information, are used to define triggers for the condition modules. We
separate input variables into three classes: categorical, continuous, or
vector inputs. For each input variable, depending on the class to which
it belongs, a specific ruleset is automatically applied to generate one
transition module.

A condition module based on a categorical input triggers a transition
with probability p when the input is detected to be C with C €
{cl,cz, ,c,,}. If multiple sensors form the input, all the values must
be detected to be C.

A condition module based on a continuous input triggers a transition
with probability p when the input is detected to be above (d = 1) or
below (d = 0) the threshold ¢ with ¢ € R. If multiple sensors form the
input, the sum of the values need to be above or below the threshold
0.

A condition module based on a vector input triggers a transition
with probability p when the input is detected with angle in quadrant
O with Q € { [-x, ’7”], [’7”,0], [0, ’2—’], [f,n]}. In fact, for vector inputs,
the magnitude of the vector is disregarded, and the angle is used as
a categorical input with four distinct values representing four equal
quadrants of /2 rad.

The parameters p, C, d, 0, and Q are fine-tuned by the optimization
algorithm, when they apply. The details specific to the robotic platform
in use, including the classes of the inputs considered here are given in
Section 4.2.2 and Table 2.

The choices made to define the different rules that were applied to
generate the transitions do have implications on the whole design of
the system. These rules have their limitations, but it is our contention
that, simpler, easier rules to apply, allow for more straightforward
implementation. More fine-grained rules could lead to better design
in transitions but we do not expect they would make any significant
difference to the overall conclusions of this study.

The specific condition modules generated for the e-puck robot for
Nata using reference model RM1.1 is presented in Table 1.

3.3. Assembly of condition and behavior modules

As customary in most methods belonging to the AutoMoDe family,
Nata generates control software by assembling behavior and condi-
tion modules into probabilistic finite-state machines. Nata uses the
optimization algorithm irace [46] to generate probabilistic finite-state
machines that are limited in size: they can comprise up to 4 states and
up to 4 outgoing transitions per state; this constraint was set in other
AutoMoDe methods such as Vanilla, and Chocolate. For each state
of the probabilistic finite-state machine, irace selects one of the neural
networks of the repertoire. For each transition, irace configures one
condition module.
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4. Experiments and results
4.1. Experimental setup

The methods comprised in the study include: Nata, the novel
method introduced in this article; Arlequin [27], the first method of
the AutoMoDe family that uses neural networks as modules of a finite-
state machine; EvoStick [19], a standard neuroevolutionary method;
and Chocolate [19], the most studied method of the AutoMoDe fam-
ily that uses hand-crafted modules—more information about methods
is available in Section 4.2.1. We tested the ability of these methods
to produce control software in a fully-automatic way, to solve three
missions. The missions considered — which are described in Section 4.3
— are rather typical swarm robotics missions. Their complexity aligns
with previous work in the fully automatic design of robot swarms [16].
The following sections present details about the material and methods
used in this study.

4.2. Materials and methods

4.2.1. Automatic design methods

EvoStick is a neuroevolutionary method that generates fully-
connected neural networks with no hidden layers: 25 input nodes (8
dedicated to the readings of the proximity sensors, 8 to those of the
light sensors, 5 to those of the range-and-bearing, and 1 as bias) are
directly connected to the two output nodes that dictate the speed of the
wheels. The evolutionary algorithm that optimizes the synaptic weights
in the range [5, —5] has a population size of 100 individuals, which are
evaluated 10 times per generation. New generations are populated by
the 20 best individuals unchanged, and 80 are produced via mutations
of these 20 best individuals. We refer the reader to the original paper
for more details [52].

Chocolate has at its disposal a set of 6 low-level behaviors
(i.e., exploration, stop, attraction-to-light, attraction-from-light, attra-
ction-to-neighbors, repulsion-from-neighbors) and 6 conditions (i.e.,
black-floor, white-floor, gray-floor, neighbor-count, inverted-neighbor-
count, fixed-probability). All the modules were created once and for all
by hand; some of the low-level behaviors (i.e., exploration, attraction-
to-neighbors, repulsion-from-neighbors) have parameters that slightly
adjust their functioning; all conditions have parameters that adjust their
triggering frequencies. Chocolate uses the optimization algorithm
irace [46] to select, fine-tune, and combine these modules into proba-
bilistic finite-state machines of up to 4 states (i.e., low-level behaviors)
and up to 4 outgoing edges (i.e., conditions) per state. We refer the
reader to the original paper for more details [20].

Arlequin is in many aspects similar to Chocolate: it uses the
same optimization algorithm to produce probabilistic finite-state ma-
chines with the same properties. The only difference lies in the nature
of the 6 low-level behaviors that are at its disposal: the hand-crafted
modules of Chocolate are replaced by 6 neural networks generated
by EvoStick. These 6 neural networks are generated once and for all,
and are subsequently used without any further modification. We refer
the reader to the original paper for more details [27]. The software used
in the study, and in particular all implementations of design methods,
is available online as supplementary material [53].

In Fig. 2, we present functional diagrams depicting the different
automatic design methods compared in this study.

4.2.2. Protocol

Each design method is run 10 times, producing 10 instances of
control software for each mission. These instances of control software
are then tested once in simulation and once on a swarm of 20 e-puck
robots.
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a Design process

generates candidates

Generated
control software

-
Mission evolutionary % ARGo0S3
specifications > [ algorithm ] Simulator >
evaluates candidates
b Design process
generates candidates G ated
@ enerate
Mission irace © ARGOS3 3 control software
specifications > optimization Simulator O/<>$:
N evaluates candidates
—

Modules

Fig. 2. Functional diagrams. a, Functional diagram of Evostick. Evostick generates control software using neuroevolution: an evolutionary algorithm optimizes the weights of a
fully-connected neural network. The population comprises 100 individuals that are evolved via elitism and mutation. At the end of the process, the best performing neural network
is selected. b, Functional diagram of Chocolate, Arlequin, and Nata. The three methods belong to the AutoMoDe family: they assemble a priori defined modules into probabilistic
finite-state using the irace optimization algorithm. For Chocolate, the modules are a set of 6 hand-crafted behaviors, and 6 hand-crafted conditions. For Arlequin, the modules are
a set of 6 automatically generated behaviors in the form of neural networks, and 6 hand-crafted conditions. For Nata, the modules are a repertoire of 670 automatically generated
(via novelty search) behaviors in the form of neural networks, and 5 automatically generated conditions.

The e-puck robot. The e-puck is a small differential-drive robot
equipped with various sensors and actuators. It measures 55mm in
height and 70 mm in diameter. The robot is equipped with light sensors
capable of measuring ambient light, proximity sensors capable of
detecting nearby obstacles, and ground sensors capable of detecting the
gray-scale color of the floor under the robot. The robot is also equipped
with two extension boards: the Overo Gumstix, a Linux single-board
computer that increases the computing power of the robot, and the
range-and-bearing board, allowing the robot to detect its neighboring
peers by sensing their relative angle and distance.

Reference model. The specific configuration of the e-puck robot used
in this study is formally described by reference model RM1.1 given in
Table 2 — see [54] for

details. All methods in this study use the variables defined in this
reference model to generate control software.

The argos simulator. All simulations in this study were performed us-
ing ARGoS3 [55] (version 48), a simulator specifically conceived for
running large-scale swarm robotics experiments. We used the ARGoS-
Epuck library [56] (version 48) to simulate the version of the e-
puck robot equipped with the two extension boards (mentioned in
Section 4.2.2).

The generated control software was directly cross-compiled so that
the software running in simulation could be directly ported to the robot
without undergoing any modifications.

4.3. Missions under analysis

The three missions (Fig. 3) considered are classical swarm robotics
missions; here, we present the characteristics and objective functions
of each of them.

4.3.1. XOR-aggregation
The robots must aggregate on one of the two black areas in the
arena. The performance of the swarm is computed based on the fol-
lowing objective function:
T N

Fa=zzli(1);

t=1 i=1

Table 2

Reference model RM1.1: capabilities of the e-puck robotic platform used in this study.
For inputs, the class — that defines the derived condition modules - is indicated in
the last column. The attraction vector V' points to the aggregate position of the n
neighboring peers that are within the detection range of approximately 0.70m. It is
computed as V = Z:;,ﬂ(ﬁsme)’ where r,, and «b,, are the range and the bearing of

neighbor m, respectively. If n= 0, then V = (1, £0).

Input Value Description Input class

ProxXie(1, g [0,1] reading of continuous
proximity sensor i

lightic(y .. s [0,1] reading of continuous
light sensor i

gndc(,3) {black, gray, white} reading of categorical
ground sensor j

n [0,20] number of neighboring continuous
robots perceived

14 (10.5,201, [0, 27]) attraction vector vector

Output Value Description

Urein [-0.12,0.12] ms™! target linear

wheel velocity

Period of the control cycle: 100 ms.

1) = 1, if robot i is in the area with a majority of robots;

! 0, otherwise.
The duration of the experimental run is T = 180s, and N = 20 is the
size of the swarm.

4.3.2. Foraging

The robots must find one of the two black areas, which represent
food sources and return to the white area, which represents the nest.
The performance of the swarm is computed based on the following
objective function:

F; =K;

where K is the total number of round trips performed. The duration of
an experimental run is T = 180s, and the swarm size is N = 20.
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Fig. 3. Arenas for the three missions. a, d, XOR-Aggregation. b, e, Foraging. c, f, Shelter w/Cues. a-c simulation; d-f, real robots. The 20 robots operate in a dodecagonal
arena of 491 m?, the red glow in b, ¢, e, and f indicates the presence of a light source at the bottom side of the arena. Dimensions (in meters) of the elements present in the

arenas are given in a, b, and c.

4.3.3. Shelter with cues from the environment

The robots must aggregate in a shelter: a white area open on one
side and surrounded by walls on the three other ones. A light source is
positioned outside of the arena and is directed towards the open side
of the shelter. The floor of the arena on the side of the walls of the
shelter is black. The performance of the swarm is computed based on
the following objective function:

T N
Fo=Y Y 1Ly
=1 i=1
1, if robot i is in the shelter;
Lo = )
0, otherwise.

The duration of the experimental run is 7 = 180s, and N = 20 is the
size of the swarm.

4.4. Statistical analysis

We present the performance of the different methods using notched
box-and-whiskers plots. In these plots, the thick black line in the middle
of the box represents the median of the performance distribution. The
upper and lower edges of the boxes represent the upper and lower quar-
tiles of the distribution. The upper and lower horizontal ticks represent
the upper and lower observations in 1.5 times the interquartile range;
dots represent outliers.

To aggregate the performance of the methods across missions we
used a min-max normalization: for each mission, the performance is
normalized based on the maximum and minimum performance ob-
served in reality across all methods. The normalized performance in
reality ranges thus between O and 1, while the one in simulation can
exceed 1. Aggregated performance distributions are then represented
as notched box-and-whiskers plots.

We also report the aggregated performance drop experienced by
each method across the three missions, together with the 95% confi-
dence interval. The performance drop is computed as the difference
between the performance assessed in simulation and the one observed
on the physical robots, which we normalize with the performance
assessed in simulation. The performance drop is to be minimized: a
value of 1 means that the performance in reality is null, and a value of

0 that the performance is equal in simulation and in reality. Note that
negative performance drop are possible if control software performs
better in reality than in simulation.

We eventually performed a Friedman test [57], which aggregates all
results obtained in real robot experiments by ranking the performance
of all methods across missions. We report the average rank of each
method and its 95% confidence interval. We have a statistically signif-
icant difference (with at least 95% confidence) between two methods
when their confidence intervals do not overlap.

4.5. Results

Fig. 4 shows the performance obtained by the four methods on
the three missions both in simulation and on physical robots. In sim-
ulation, for the Foraging mission, EvoStick outperforms the other
three modular methods, which perform similarly (the notches rep-
resenting the 95% confidence interval on the boxplots overlap). For
XOR-Aggregation, all methods perform similarly, whereas for Shelter
w/Cues differences between methods are all significant: EvoStick
performed best, followed by Arlequin, then Chocolate and finally
Nata. Overall, when aggregating all results (see Fig. 5a), EvoStick
produced control software that performed best in simulation. Among
the modular methods, Arlequin and Chocolate produced control
software that perform similarly, and the one produced by Nata is
outperformed by the one of Chocolate.

In reality, things are different. In fact, we observed several rank
inversions between the methods. For Foraging, Nata and Chocolate
perform similarly, and outperform both Arlequin and EvoStick.
For XOR-Aggregation, Chocolate is the best performing method.
Nata and Arlequin perform similarly and slightly worse than Choc—
olate, but considerably better than EvoStick. For Shelter w/Cues,
the median performance of Chocolate is twice better than those
of the other three methods, which perform similarly. Overall, when
executed on a swarm of e-puck robots, the control software produced by
Chocolate is the best performing one, followed by the one produced
by Nata, then Arlequin and EvoStick (see Fig. 5a). According to
the Friedman rank sum test, the differences between these four methods
are all significant with a confidence level of at least 95% (see Fig. 5c).
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Fig. 4. Results per mission. Performance obtained in simulation (narrow white boxes) and in reality (thick gray boxes) in all three missions (the higher the better).
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missions (the higher the better). Prior to aggregation, results are normalized between the lowest and the highest performance observed in reality by any method in a given mission.
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performance in simulation exceeded the one in reality. b. Normalized performance drop experienced by the methods, aggregated across all missions, and 95% confidence interval.
For a given instance of control software, the performance drop is computed as the difference between the performance assessed in simulation and the one observed in reality, and
is normalized with the one assessed in simulation. c. Friedman test results. Friedman test on the aggregate results in reality of the three missions, the plot shows the average rank

and the 95% confidence interval (the lower the better).

Fig. 5b shows the performance drop from simulation to reality,
which gives an estimation of how much the methods are affected by the
reality gap. EvoStick suffers from the biggest overall performance
drop and shows very poor performance in reality in all three missions,
whereas Chocolate suffered from the lowest overall performance
drop and is the method that is the best at crossing the reality gap. Nata
suffered from a significantly lower performance drop than EvoStick
and Arlequin, but bigger than the one of Chocolate, although not
significantly.

Both in simulation and with physical robots, the results that we
obtained using already existing methods, namely Chocolate, Evo-
Stick and Arlequin, are consistent with previous studies (see [10,
16,27,581).

It is also worth mentioning that, as it can be observed in the sup-
plementary videos [53] and as shown by the results in simulation, the
different missions considered in the study can be accomplished by the

design methods, and the allocated computing resources are sufficient
to reach a satisfactory level of performance. All results obtained in
simulation and real-robot experiments are available as supplementary
data [53].

5. Discussion and conclusions

In this paper, we addressed the drawbacks of both the neuroevo-
lutionary robotics approach and the modular one: neuroevolutionary
methods suffer from important performance drops due to the reality
gap, whereas modular methods require human designers to metic-
ulously implement behavior and condition modules. We presented
Nata, a modular method that produces control software by auto-
matically selecting and combining task-agnostic behaviors that were
themselves automatically generated, via novelty search. Nata pro-
duced control software that is more robust to the reality gap than the



K. Hasselmann et al.

one produced by the classical neuroevolutionary approach, whereas the
process adopted to generate the modules to be combined requires less
human expertise than the ones previously adopted by other modular
methods. The results presented are to be considered as a proof of
concept; in the future, we will work on further assessing the capabilities
of Nata and extending them. In particular, we will focus on identifying
the class of mission that Nata can tackle and on further improving its
robustness to the reality gap.

The performance of Nata is satisfactory as it exceeds the one
of EvoStick and Arlequin. Admittedly, Nata did not reach the
performance level of Chocolate. Yet, it is worth noting that in
contrast to Chocolate- which was conceived by a human expert
who identified and implemented the relevant low-level behaviors and
transition conditions — Nata was defined automatically: low-level be-
haviors and transition conditions were generated automatically. To the
best of our knowledge, Nata is therefore the first modular automatic
design method that has been generated automatically. In this sense, in
Nata, the principles of automatic design have been applied at a meta
level: the automatic design of collective behaviors for robot swarms is
achieved by a method that was itself generated automatically.

One possible drawback of modular methods and specifically to
automatically generating the behavioral modules to be combined into
probabilistic finite-state machines — or any other control architecture —
is the risk of introducing a source of overfitting within the method, and
nullify the benefits of modularity. In modular approaches overfitting
can occur at two levels: during the implementation of the modules,
and during their combination and their (possible) fine-tuning. The
overfitting that occurs during the implementation of the modules is
mission independent, and is caused by a mismatch between how the
robots behave in simulation and in reality when executing a given
module. The overfitting that occurs during the combination and fine-
tuning of the modules is mission specific, and could be caused by
unforeseen interactions between the robots and/or between the robots
and the environment. The two levels contribute to the effects of the
reality gap experienced by an instance of control software generated by
a modular design method. It is hard to identify which level contributes
the most and, therefore, on which level one should work to reduce the
overall performance drop.

The combination process (i.e., optimization algorithm, control ar-
chitecture, and constraints) is identical in Nata, Arlequin, and
Chocolate. It is therefore reasonable to assume that the overfitting
that occurs at the level of the implementation of the modules is the most
important factor that explains the discrepancies we observed between
the three methods.

As Nata produced control software that is more robust to the reality
gap than the one produced by Arlequin, it appears that generating
behaviors in the form of neural networks using novelty search with
the aim of minimizing collisions is more appropriate than using direct
evolution. The modules of Chocolate were crafted by hand and
evaluations on physical robots during their implementation ensured
that they crossed the reality gap satisfactorily. Evaluating the modules
of the repertoire of Nata on robots with the objective of potentially
pruning the repertoire to only keep modules that cross the reality gap
satisfactorily would be extremely costly and time consuming. Indeed,
a repertoire typically contains several hundreds of behavioral modules
and each module should be evaluated in multiple environments so as
to correctly assess its behavior characterization vector. We foresee that
the pruning of the repertoire could be done by leveraging the concept
of pseudo-reality [59]. A pseudo-reality is a simulation model, different
from the one used during the design, that is used to mimic the reality
gap experienced when going from simulation to reality. Evaluations of
behavioral modules in pseudo-reality, which are fast and inexpensive,
could give an idea on their robustness to the reality gap and could
subsequently be used to filter and select modules with the best potential
to perform seamlessly in reality.
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